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Abstract  19 

While the increasing accumulation of anthropogenic litter in the marine environment has 20 

received considerable attention over the last decade, litter occurrence and distribution in 21 

rivers, the main source of marine litter, have been comparatively less investigated. 22 

Moreover, little information is available about the amount and typology of Riverine 23 

Anthropogenic Macro-litter (RAM) entering marine environments from intermittent rivers 24 

in low populated areas of the Mediterranean basin. To provide insights on this issue, we 25 

investigated density and composition of RAM accumulated over a total of 133 riverbanks, 26 

belonging to 37 river basins in the Sardinia Island (Mediterranean Sea). We report here that 27 

plastics, especially single-use items, represent the most frequent and abundant RAM 28 

category in all investigated basins. Statistical modelling revealed that occurence of 29 

lightweight RAM (especially plastic) is mostly explained by levels of urban (12.3% of the 30 

relative contribution) and agricultural (12%) land use of the territory, whereas the proximity 31 

of bridges to the sampling point (21%) and the local population density (19.8%) are best 32 

predictors of heavy weighted RAM items (i.e., large metal items, appliances) occurence. 33 

Our results confirm that plastics represent an important component of RAM and pinpoint 34 

that, beside plastic reduction policies and better waste management, actions aimed at 35 

abating and monitoring litter contamination should be localized on the proximity of 36 

bridges, whatever the local population density. Finally, to fill existing knowledge gaps in 37 

understanding the severity of litter discharge and accumulation in the Mediterranean Sea, 38 

land-to-sea systematic monitoring campaigns at appropriate spatial and temporal scales 39 

should be put in place.  40 

 41 

Keywords: intermittent rivers; macro-litter, plastic, Non-linear Boosted Regression Tree 42 
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Introduction 45 

Anthropogenic litter in aquatic environments is an emerging issue of global concern due to 46 

its negative impacts over the different hierarchical levels of ecological organization which, 47 

ultimately, have also socio-economic consequences (Conchubhair et al., 2019; Kühn et al., 48 

2015; Newman et al., 2015; Rochman et al., 2016). In the last few decades, the focus of 49 

investigation on the accumulation of anthropogenic litter (mainly plastic) has been heavily 50 

skewed towards the marine environment (Galgani et al., 2015), despite the fact that rivers 51 

represent the most important conduits for the transportation of anthropogenic litter to the 52 

marine environment (Blettler et al., 2018; Jambeck et al., 2015; Schmidt et al., 2017).  53 

It has been postulated that few very large rivers could be the major sources of plastic 54 

contamination of the oceanic contamination (Lebreton et al., 2017; Schmidt et al., 2017). 55 

However, a recent modelling study, based on field observation, revealed that about 1000 56 

rivers located in highly populated areas and mainly distributed in Asian countries can 57 

cumulatively discharge annually between 0.8 and 2.7 million metric tons of macro-plastic 58 

(i.e. plastic debris >5 mm) into the global oceans, which account for >80% of riverine 59 

annual plastic emissions to the sea (Meijer et al., 2021). 60 

Nevertheless, despite the current literature estimates, the real quantification of total 61 

plastic transport from land to seas remains still largely uncertain because of operational 62 

difficulties to obtain in situ measurements and due to the lack of standard observation 63 

techniques (Broere et al., 2021; Edelson et al., 2021; van Emmerik and Schwarz, 2020; 64 

Weiss et al., 2021). Intermittent rivers and ephemeral streams are common across Europe 65 

and dominate river networks in Mediterranean regions (Skoulikidis et al., 2017; 66 

Stubbington et al., 2018). As being ecosystems with unpredictably temporal dynamics of 67 

water supply, the role of intermittent rivers in RAM transport to the sea has been almost 68 

entirely ignored (Table S1).  69 

Riverine Anthropogenic Macro-litter (RAM) refers to the fraction of solid waste (>5 70 

mm) present in rivers and on riverbanks (González-Fernández et al., 2021; Schmidt et al., 71 

2017). Anthropogenic Macro-litter originates from mismanagement of urban waste, sewage 72 

outlets from wastewater treatment plants, illegal dumping, loss of products from industrial 73 
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and agricultural activities (Bruge et al., 2018; Faure et al., 2015; Galafassi et al., 2019; 74 

Kiessling et al., 2019).  75 

Plastic debris are considered dominant in riverine contamination, whereas other 76 

materials such as glass, metal are relatively minor contributors due to the intrinsic features 77 

of the materials (e.g., specific weight, buoyancy) that likely prevent them to be dislocated 78 

via river flow (Castro-Jiménez et al., 2019; Cesarini and Scalici, 2022; González-Fernández 79 

et al., 2021; Rech et al., 2014). Besides the aesthetic, ethical and socio-economic damage 80 

(Rochman et al., 2016; Williams and Simmons, 1996), the contamination of plastic in 81 

riverine ecosystems can cause numerous negative consequences for biota and environment. 82 

Plastic debris can potentially degrades into microplastics that could be ingested by aquatic 83 

organisms, such as fishes and zooplankton (Galafassi et al., 2021; Rehse et al., 2018). 84 

Moreover the presence and accumulation of the trapped plastic in riparian vegetation can 85 

cause negative effects on the plant status and survival of trees (van Bijsterveldt et al., 86 

2021).  87 

Abundance, composition and distribution of RAM are influenced by the cumulative 88 

effects of an array of environmental characteristics, including: i) the presence of floating 89 

(e.g., hyacinth) (Schreyers et al., 2021) and riparian vegetation (e.g., arboreal, reeds, etc.) 90 

that act as a barrier, especially during flooding events (Cesarini and Scalici, 2022; Williams 91 

and Simmons, 1996; Windsor et al., 2019); ii) tidal influence, iii) seasonal changes of the 92 

water level, iv) flow rate (Battulga et al., 2019; Vriend et al., 2020b), and v) curvature and 93 

shape of the river (Calcar and van Emmerik, 2019).  94 

Moreover, RAM accumulation can be also influenced by several anthropogenic 95 

pressures like land use (Cowger et al., 2019; McCormick and Hoellein, 2016), shipping 96 

activities and the presence of fluvial infrastructures (irrigation and drainage channels, 97 

wastewater treatment plants, dams and bridges) (Calcar and van Emmerik, 2019; Mihai, 98 

2018; Schirinzi et al., 2020; Simon-Sánchez et al., 2019), human population and road 99 

density (Battulga et al., 2019; Jambeck et al., 2015; McCormick and Hoellein, 2016). 100 

The Mediterranean Sea is one of the most important accumulation zones of marine 101 

litter worldwide (Cózar et al., 2015; Eriksen et al., 2014; Suaria et al., 2016). Information 102 
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about RAM inputs from permanent rivers associated with highly populated areas in the 103 

Mediterranean Sea is available (e.g. Crosti et al., 2018; Castro-Jiménez et al., 2019; 104 

Schirinzi et al., 2020; Cesarini and Scalici, 2022), but, to date, information about RAM 105 

from intermittent rivers is still almost absent (Table S1).  106 

To address this knowledge gaps, by contending that RAM's role could be more 107 

important than previously thought or hypothesized, this study aims: (1) to assess density 108 

and composition of RAM in riverbanks of intermittent rivers in Sardinia; (2) to determine 109 

the main factors affecting the occurrence, composition, and distribution of RAM.  110 

 111 

  112 
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Materials and Methods  113 

Study area  114 

The study area is in Sardinia (Italy), the second largest island (ca. 24,106 km²) in the 115 

Mediterranean Sea. Sardinia, with a population of 1,630,474, corresponding to a density of 116 

nearly 67.7 inhabitants km-2, is one of the less densely populated regions in Italy.  117 

Sardinia is characterized by complex topography with the presence of a long mountain 118 

range (Sardinian-Corse Mountain System) that influence the local circulation and spatial 119 

distribution of the rainfall (Marras et al., 2021). Bi-seasonal climatic features, with hot arid 120 

summers, rainy autumn/winter seasons along with extreme precipitation events, determine 121 

irregular flow and strong seasonal hydrological fluctuations (De Waele et al., 2010; Palmas 122 

et al., 2020; Podda et al., 2020; Sabatini et al., 2018). The hydrographic network is 123 

characterized by the dominance of non-perennial rivers (90% of the total) (Skoulikidis et 124 

al., 2017). The recurrent temporal overlap of the dry season with a high water demand for 125 

agriculture irrigation, industry and domestic purposes have led the construction of a total of 126 

54 larger dams (Marchetto et al., 2009; Montaldo and Sarigu, 2017), that, interrupt the 127 

continuity of perennial rivers (Tirso, Flumendosa and Coghinas), strongly influencing their 128 

natural hydrological cycle (Moccia et al., 2020; Naselli-Flores et al., 2014). According to 129 

available data provided by Autonomous Region of Sardinia, all dams have both surface and 130 

bottom-discharge systems and an average height of 42.5  3 m. While punctual data on the 131 

volume of discharge per year was not available, it was possible to assert that the main 132 

discharge system is from surface with an average of 884.5  130 m3 sec-1.  133 

Furthermore, in Sardinia it has been predicted that the future reduction of mean 134 

precipitation due to global warming, may further exacerbate droughts with a strong 135 

decrease of mean runoff (Marras et al., 2021). For all reasons mentioned above, we 136 

considered all investigated rivers as intermittent.  137 

 138 

Anthropogenic macrolitter occurrence, abundance, and composition 139 

Litter monitoring was conducted over a total of 133 sampling sites (belonging to 37 river 140 

basins), covering different altitudinal zones and environmental conditions across 2018 and 141 
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2020 (Figure 1). Litter occurrence on the riverbanks was determined according to the 142 

Rivers-OSPAR protocol (van Emmerik et al., 2020a) that was based on the OSPAR beach 143 

litter guidelines (OSPAR, 2010). Sampling was carried out on both riverbanks of each river 144 

and data of each river were cumulated. The methodological approach was based on the 145 

count of macro-litter items (>5 mm) on 100 m long stretches of riverbanks parallel to the  146 

waterline, from the waterline itself to the maximum level of floodplain landward (Figure 147 

S1). All visible RAM items, deposited in the riverbanks and/or entrapped in the vegetation, 148 

were counted within the entire sampling area and, for each station, litter density was 149 

calculated as the number of items per kilometer of riverbank (items km-1).  150 

The items were collected and sorted according to the UNEP-Code master list 151 

classification for beach litter items (Cheshire et al., 2009; Galgani et al., 2018). The list 152 

comprised 128 sub-categories grouped into nine anthropogenic litter materials: artificial 153 

polymer materials (PL), rubber (RB), cloth/textile (CL), paper/cardboard (PC), 154 

processed/worked wood (WD), metal (ME), glass and ceramics (GC), other materials (OT), 155 

undefined (UN).  156 

 157 

Factors affecting the occurrence, composition, and distribution of RAM 158 

To determine factors affecting the occurrence, composition and distribution of RAM we 159 

first identified from the literature an array of eleven potential variables, grouped into three 160 

categories (geomorphology, land use and human pressure; Table S2), assumed to mostly 161 

influence the occurence of litter items (presence/absence).  162 

Geo-morphological variables include: i) the sub-catchment area (km2) above the 163 

sampling site as a proxy of catchment runoff; ii) the river order as a proxy of 164 

upstream–downstream gradients (according to Strahler method’s (Strahler, 1957); iii) the 165 

stream slope as a proxy of potential water velocities. Season of sampling was also used as a 166 

proxy of river discharge events, considering the peculiar abovementioned climatic features 167 

of Sardinia. Land use data, obtained from the CORINE database, were merged in four 168 

categories: natural use (which includes forests and semi-natural areas, among others, but 169 

excludes recreational use of the territory), agricultural use, grazing use and urban use. Land 170 
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cover was expressed as the percentage (%) of each of these categories in the sub-catchment 171 

area above each sampling site.  172 

Human pressure proxies were estimated in terms of: i) road density (km km-2), ii) 173 

population density (population km-2), iii) the presence/absence of river bridges immediately 174 

above the sampling point. When bridges were present, the transects started at the bridge, 175 

moving downstream from there. In addition, since the presence of weirs and dams could 176 

negatively influence the presence and transport waste items in the riverbanks, the number 177 

of dams above the sampling station were also considered.  178 

Georeferenced datasets on hydrographic data, roadways, larger dams, and land use 179 

were acquired from the Regional Land Information System of Sardinia.  180 

 181 

Statistical analyses 182 

Density from each station was then used to generate distribution maps of the most 183 

important litter categories. The free Quantum GIS Desktop, version 2.18.3 (QGIS) 184 

(http://www.qgis.org/) software was used for creating distribution maps and to extract the 185 

exploratory variables. Sub-catchment area, slope as well as the stream order of each 186 

sampling site were calculated based on 10-m resolution Digital Elevation Model (DEM). 187 

For the entire river network generated by flow accumulation, stream order was derived with 188 

the Strahler method’s (Strahler, 1957).  189 

Since the artificial polymers and metal materials (PL and ME, respectively) were the 190 

most abundant anthropogenic litter material (cumulatively accounting for ca. 80% of total 191 

litter), we tested whether and to which extent some potential explanatory variables were 192 

putative drivers for PL and ME litter occurence using a non-linear Boosted Regression Tree 193 

model (BRT, Elith et al., 2008). As we aimed at identifying the conditions that might 194 

represent a threshold over which light (PL) and heavy materials (ME) could be found, we 195 

used only presence/absence transformed data. BRT models have been used to analyse the 196 

relationships between response and predictor variables in different fields of environmental 197 

science (Ju et al., 2021; Lagarde et al., 2021; Lemm et al., 2021; Saha et al., 2021). BRT 198 
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models allow testing different types of predictive variables by fitting complex non-linear 199 

relationships and handling interaction effect between predictors, while not depending on the 200 

normality and homoscedasticity of the data (Déath, 2007; Elith et al., 2008).  201 

To fit the BRT models, the learning rate (the importance of each iteration in the model) 202 

and tree complexity were set through an iterative process to ensure that the final model 203 

outcome consisted of at least 1000 decision trees (Elith et al., 2008). The relative 204 

importance of each predictor variable has been also calculated from the BRT model and 205 

was visualised in partial dependence plots. BRT models were run with a Bernoulli link 206 

function. The BTRs’ performance was evaluated by the amount of total deviance explained 207 

(DEV %) and by cross-validated correlation between model prediction and observed data 208 

(R2 of CV) (Derville et al., 2016; Ju et al., 2021; Nieto and Mélin, 2017; Saha et al., 2021). 209 

The predictive performance of the BTRs were also tested and evaluated using the 210 

threshold-independent Receiver-Operating Characteristic (ROC) curve and the estimation 211 

of the area under ROC plot (AUC) (Amorim et al., 2016; Derville et al., 2016; Saha et al., 212 

2021; Wang et al., 2021). Collinearity among covariates was tested by computing pairwise 213 

scatter plots among covariates. Covariates showing relevant Sperman’s Rho (ρ > 0.7) were 214 

discarded from the modelling. The Variance Inflation Factor (VIF) was also used to check 215 

collinearities among explanatory variables; those showing VIF >3 were also discarded from 216 

the analysis (Zuur et al., 2010).  217 

All analyses were carried out using the statistical software package R (R Core Team, 218 

2021). BRTs are estimated using the “dismo” library (Hijmans et al., 2011). The ROC 219 

analysis was performed using the R package pROC (Robin et al., 2011).  220 

 221 

Results 222 

A total of 2078 RAM items were collected from the 37 river basins, covering ca. 22 linear 223 

km of riverbanks. Out of 133 sampling stations, 114 (85.7%) showed the presence of litter 224 

items, and only 19 were litter free. Overall, 28 sub-categories of litter items were found on 225 

Sardinian rivers, even if the top 5 most abundant types of items represented most of the 226 

litter found (~70%, Table S3). Artificial polymers materials (PL, 70.4%) were the most 227 
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abundant category, followed by Metal (ME, 9.3%), Cloth/Texile (CL, 8.5%) and Glass & 228 

Ceramic (GC, 7.4%) (Figure 2a). Other materials (including rubber; RB), paper; PE, and 229 

processed wood; WD) represented cumulatively 4.4% of all the litter. Artificial polymers 230 

items consisted mostly of single-use plastic items such as bags (PL07, 60%), bottles caps 231 

and lids (PL01, 16%) and small bottles (PL02, 11%) (Figure 2b). Metal dominant 232 

categories were equally cans (ME03; 37%) and metallic objects larger than 50cm (ME10; 233 

38%).  234 

Overall, the mean litter density for all investigated riverbanks was 156±19 items km-1 235 

(median value of 90 items km-1). The highest litter mean density was measured in the river 236 

basins of Flumini Mannu (R2_1) (393±100 items km-1), Mannu di San Sperate (R2_2) 237 

(386±168 items km-1), Pelau (O3) (335±335 items km-1) and Flumendosa (P_1) (318±263 238 

items km-1) (Figure 2c). With the exception of Pelau river basin (O3), where the highest 239 

litter densities were measured at the most upstream location and mainly composed of glass 240 

and ceramic items (GC) (670 items km-1) (Figure 3a), likely too heavy to be transported 241 

downstream as per other lighter materials. All other river basins were characterized by litter 242 

dominated by PL, with the highest PL items densities recorded in downstream sampling 243 

stations (Figure 3b).  244 

Analysis of multi-collinearity among predictive variables revealed strong correlations 245 

between natural use (Natural_use), agricultural use (Agricoltural_use) (ρ = -0.9), number of 246 

larger dams above the sampling station (Dams) and sub-catchment area (Sub_catchment) (ρ 247 

= 0.7). After removing Natural_use and the Dams variables, the VIF values did not exceed 248 

3.0.  249 

The results of BTR model revealed that the presence of plastic litter (PL) is influenced 250 

by the joint effect of geomorphological variables, land use and human pressures. The PL 251 

model accounted for 40% of the total deviance and a CV correlation between predicted and 252 

observed data of 0.70. The analysis of the relative importance of the different predictors 253 

revealed that the sub-catchment area (Sub_catchment) (34.5%), urban use (Urban_use) 254 

(12.3%), agricultural use (Agricoltural_use) (12.0%), the presence of a bridge above the 255 

sampling point (Near_bridge) (10.1%) and road density (Road_density) (7.5%) represented 256 
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the highest share in relative explained deviance (Table 1). The partial responses of single 257 

predictors showed a predominantly positive linear trend with a plateau for Sub_catchment, 258 

Urban_use, Road_density and Agricoltural_use (Figure S2a). In particular, the 259 

sub-catchment curve is steeper than that of all other predictors and reaches a peak at a 260 

relatively small surface area (60 km-1). The effects of land use variables were 261 

approximately J-shaped, with the probability of occurence of PL litter significantly 262 

increased after 0.5% and 6.5% of coverage area for urban and agricultural use, respectively 263 

(Figure S2a). The PL litter is also found most in stretches of rivers characterized by the 264 

presence of a bridge. Road density concentration had a consistent positive relationship with 265 

PL items’ probability of occurence (Figure S2a).  266 

The BRT model applied to heavy materials (ME) explained 16% of the predicted 267 

deviance and a CV correlation between predicted and observed data of 0.57. The most 268 

significant predictor for ME occurence were the sub catchment area above the sampling 269 

station (22.6%) followed by the presence of a bridge (Near_bridge, 21.1%) and 270 

population’s density (Pop_density, 19,8%) (Table 1, Figure S2b). 271 

The outcomes of the AUC of ROC curves confirmed that the machine learning (BRTs) 272 

models have a good prediction capability for detecting the probability of occurrence of 273 

either PL or ME (0.92 and 0.83, respectively) (Table 1).  274 

 275 

Discussion  276 

Our study provides evidence that a high frequency (~ 86%) of intermittent rivers in 277 

Sardinia are contaminated by Riverine Anthropogenic Macro-litter (RAM). We show here 278 

that RAM composition in Sardinian intermittent rivers is dominated by PL items (~70 %) 279 

followed by metal (ME) and glass (GL) (9% and 7%, respectively). Our results confirm 280 

previous studies worldwide which reported PL items as the globally dominant category in 281 

riverbanks (Battulga et al., 2019; Bruge et al., 2018; Carpenter and Wolverton, 2017; 282 

Hoellein et al., 2014; Kiessling et al., 2019; Rech et al., 2014; Schöneich-Argent et al., 283 

2020; van Emmerik et al., 2020a). Within the PL macro-category, single-use items such as 284 

plastic bags (~60%) and bottle caps and/or covers (11%) are the most common items on 285 
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Sardinian riverbanks, as also observed in other European locations (Bernardini et al., 2020; 286 

Winton et al., 2020).  287 

The mean density of total litter for the whole study period is 156 items km-1 (median 288 

90 items km-1) with a remarkable heterogeneity among different river basins, despite their 289 

distance from each other. The Flumini Mannu is the most polluted basin (393± 100 items 290 

km-1), followed by the Mannu di San Sperate (386±168 items km-1) and Flumendosa 291 

(318±263 items km-1). Differences in geographical locations, social and economic context 292 

and sampling techniques make comparisons of RAM abundance among freshwater studies 293 

very challenging (Blettler et al., 2018; van Emmerik et al., 2019b; Vriend et al., 2020a). 294 

Nevertheless, considering those studies focused on riverbanks that used the same sampling 295 

approach of this study, we report here that the RAMs’ mean abundance in the intermittent 296 

rivers in Sardinia are an order of magnitude lower than those reported for the Rhine and the 297 

Meuse rivers (North Sea) (median value 2060 items km-1) (van Emmerik et al., 2020a, 298 

2020c). It is worth of notice that these systems are characterized by different hydrological 299 

and anthropogenic factors such as discharge and population density.  300 

The machine learning method (BRTs) identified the relative importance of a set of 301 

different factors able to explain a significant proportions of variance observed for light 302 

weight (PL) and heavy weight (ME) RAMs occurring along the Sardinian riverbanks. The 303 

model applied to the PL macro-category has a relatively good explanatory power and 304 

identifies, in decreasing order, the sub-catchment area surface, the urban and agricultural 305 

percentage use of land and the presence/absence of bridges as the most important predictors 306 

of RAM occurrence.  307 

Our model predicted that the larger the sub-catchment area surface above the sampling 308 

station, the more the occurrence of light (PL) RAMs can be expected. The primary role of 309 

the sub-catchment area surface can be associated with the fact that most plastic waste 310 

originates, generally, from land-based areas due to the littering or illegal landfill of waste 311 

(Chae and An, 2018; Geyer et al., 2017). There, light (PL) RAMs may be washed away 312 

from drainage areas by the additive effects of wind, heavy rainfall and floods (Bruge et al., 313 

2018; Carpenter and Wolverton, 2017; Windsor et al., 2019; Zylstra, 2013). Moreover, the 314 
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larger the sub-catchment area, the more riparian vegetation plays a role in litter 315 

accumulation. In this regard, we report here that, for instance, plastic bags were mostly 316 

found trapped in the vegetation at the riverside, which is known to act as a trap for floating 317 

materials (Schöneich-Argent et al., 2020; Schreyers et al., 2021; van Emmerik and 318 

Schwarz, 2020; Williams and Simmons, 1996). Moreover, given that the floodplains were, 319 

sometimes, covered by dense arboreal, shrubs and herbaceous vegetation associations 320 

occurence and abundance of the smaller sized of PL items could be likely underestimated.  321 

The same, though lower, explanatory power on litter occurrence is observed for the 322 

agricultural and urban percentage use of the territory, the increase of which has been 323 

already reported to positively affect PL RAMs’ occurrence (Bruge et al., 2018; Carpenter 324 

and Wolverton, 2017; Cowger et al., 2019; Glanville and Chang, 2015; Guerranti et al., 325 

2020; van der Wal et al., 2015). This effect appears particularly relevant in the subset of 326 

Sardinian rivers (Flumini Mannu and Mannu di San Sperate) that run along the Campidano 327 

plain, characterized by an almost entire occupancy of the territory by agricultural and dense 328 

different urban uses.  329 

The third explanatory factor of PL RAMs occurrence identified by our model is the 330 

presence of bridges immediately above the sampling station. This result could depend on 331 

the slowdown of the river flow which favors the accumulation of waste on the riverbanks 332 

(Hoellein et al., 2014; Kiessling et al., 2019; Lebreton et al., 2017). Moreover, the 333 

prevalence of plastic bags in those localities suggests the persistence of the incorrect 334 

behavior of abandoning waste in places that, due to the landscape attractivity of bridges, 335 

makes them often used for refreshment breaks of tourists, motorists, and campers.  336 

The sub-catchment area, the presence of bridges and the population density are the 337 

most important predictors also of the occurrence of heavy materials (ME) in Sardinian 338 

riverbanks. The highest abundance of discarded house appliances and aluminum drink cans 339 

(38% and 37% of the total ME items, respectively) suggests that the illegal disposal and 340 

dumping of ME are main sources of litter.  341 

The 2019 report on Sardinian Urban Waste Management has estimated a total 342 

production of urban waste of ~740 tons year-1 with 454 kg/habitant/year (ARPAS, 2019). 343 
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Even if Sardinia is considered the second best performing region in Italy in terms of waste 344 

management with a recycling rate of 73% (ARPAS, 2019), a certain fraction of the total 345 

household waste generated is currently susceptible to uncontrolled disposal in unauthorized 346 

landfill and river dumping. Our results reveal also that illegal landfills in proximity of 347 

bridges and secondary roads are much more common in sub-catchment areas characterized 348 

by higher population density. This result, again, fits with the observations made on 349 

riverbanks of Chile, Wales and Romania, where the combination of illegal dumping and 350 

human presence, more than the road density, have been identified as the main sources of 351 

litter items occurrence (Cowger et al., 2019; Kiessling et al., 2019; Mihai, 2018; Rech et al., 352 

2014; Williams and Simmons, 1997).  353 

Moreover, we cannot exclude that other factors, not included in this study, and 354 

associated with hydrological (runoff, flow velocity, discharge, vegetation cover) and 355 

anthropogenic factors (tourism and recreation activities, poor waste management practices 356 

on land) could explain a certain portion of RAMs occurrence variance in riverbanks and 357 

their potential transport to the sea (Bruge et al., 2018; Kiessling et al., 2019; Schirinzi et al., 358 

2020; Windsor et al., 2019). In this regard, heavy rain and extreme flooding events have 359 

been suggested to affect the transport and accumulation of RAM items (Axelsson and van 360 

Sebille, 2017; van Emmerik et al., 2020b, 2019b, 2019a). Despite the above biases, we 361 

must notice here that, since we limited our analysis to macroscopic RAMs (> 5mm), the 362 

potential severity of our results could rise when considering smaller size items 363 

(Schöneich-Argent et al., 2020). The complex hydrological scenario that characterizes 364 

Sardinian coastal marine waters (Olita et al., 2013; Palmas et al., 2017) does not allow to 365 

infer about the actual linkages between the abundance of macro-litter observed across 366 

marine coastlines (Alvito et al., 2018; Cau et al., 2022) and their occurrence in riverbanks, 367 

since floating debris might end up well far from the source (Cózar et al., 2015; 368 

González-Fernández et al., 2021).  369 

Finally, it is worth of mention the higher quantities of litter items near bridges 370 

indicated that these areas can act both as sinks and source of RAM. In this perspective, 371 

more supportive infrastructures for the disposal of urban litter and monitoring and 372 
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surveillance measures should be envised. Surveillance of illegal waste disposal sites is 373 

often complicated by the relative geographical isolation of disposal locations which hinders 374 

the efficiency and cost effectiveness of intensive surveillance (Glanville and Chang, 2015; 375 

Tasaki et al., 2007). Surveillance cameras aimed at detecting illegal dumping action (Yun et 376 

al., 2019), could represent a powerful control method to be positioned in critical spots such 377 

as bridges. Also, the identification of bridges as sink and source can represent a useful 378 

insights for prioritizing mitigation actions foreseen by local authorities or cleanup activities.  379 

 380 

Conclusions 381 

Overall, the results of our study, though limited to a regional spatial scale, highlight that a 382 

certain, not irrelevant, amount of RAM litter can accumulate along the banks of intermittent 383 

rivers, confirming and posing light on the severity of riverine contamination and its 384 

potential to transport waste into the sea. This issue would appear more crucial in the 385 

southern Mediterranean Sea, in which most rivers have an intermittent water flow regime. 386 

Finally, to fill existing knowledge gaps in understanding the severity of litter discharge 387 

and accumulation, temporally and spatially replicated land-to-sea systematic monitoring 388 

campaigns should be put in place.  389 

We pinpoint also that further special effort should be also paid to optimize and 390 

standardize protocols of identification, characterization and quantification of RAMS in 391 

different environments (Bernardini et al., 2020; van Emmerik et al., 2020b; Vriend et al., 392 

2020b).  393 

 394 
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List of figures 743 

 744 

Figure 1. Study area and sampling stations of the investigated rivers (study period 745 

2018-2020). Upper case letters indicated the codes of rivers basins.   746 
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 747 

Figure 2. (a) Percentage of the number of litter items in Sardinian rivers. (b) 748 

Percentage of artificial polymer materials (PL). UNEP code sub-categories: PC03 749 

(Cups, food trays, food wrappers, cigarette packs, drink containers), PL01 (Bottles 750 

caps and lids), PL02 (Bottles < 2 L), PL03 (Bottles, drums, jerrycans and buckets > 2L, 751 

PL07 (Plastic bags (opaque & clear)), PL09 (gloves), PL11 (cigarettes, butts and 752 

filters), PL20 (fishing net), PL24 (other plastic items). (c) Box-whisker plot 753 

representation of the total litterdensity (items/km) of 37 river basins of Sardinia. 754 

  755 

  756 
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 757 

Figure 3. Geographical distribution and number of items km-1 of the total and of the 758 

most abundant litter materials. 759 

  760 
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Table 1. Summary of the relative contributions (%) of predictor variables for a boosted 761 

regression tree models developed for light (PL) and heavy (ME) materials. Total 762 

deviance explained by the model (DEV %), cross-validated correlation between model 763 

prediction and observed data (R2 of CV) and area under the curve (AUC).  764 

Material type Predictor Relative contribution (%) DEV (%) R2 of CV AUC 

L
ig

th
 m

a
te

ri
a

l 
(P

L
) 

Sub_catchment 34.6 

40% 0.70 0.92 

Urban_use 12.4 

Agricultural_use 12.0 

Near_bridge 10.1 

Road_density 7.51 

Slope 5.91 

Pop_density 5.45 

Distance_Mouth 4.57 

Grazing_use 3.68 

River_order 2.70 

Season 1.02 

H
ea

v
y

 m
a

te
ri

a
l 

(M
E

) 

Sub_catchment 22.5 

16% 0.57 0.83 

Near_bridge 21.1 

Pop_density 19.8 

Grazing_use 9.34 

Distance_Mouth 7.91 

Agricultural_use 5.66 

Slope 5.06 

Urban_use 2.92 

Season 2.26 

Road_density 2.12 

River_order 1.25 

 765 

 766 

 767 



Supplementary materials 768 

Table S1. Overview of studies carried out to date on the occurrence and distribution anthropogenic litter in rivers flowing in the 769 

Mediterranean Sea.  770 

Matrix  Unit Material  River area Reference 

Water Items m-3 and items km-2 Microplastic and macroplastic Po River (NE Italy) (van der Wal et al., 2015) 

Sediment Items kg-1 Microplastic, mesoplastic and macroplastic Ombrone, Osa and Albegna Rivers (Central W Italy) (Guerranti et al., 2017) 

Sediment Items kg-1 Microplastic Cecina River (Central W Italy) (Blašković et al., 2018) 

Water Items km-2 Microplastic Rhone River (S France) (Schmidt et al., 2018) 

Sediment and water Items kg-1 and items m-3 Microplastic Po River  (NE Italy) (Atwood et al., 2019) 

Water Items h-1 Multiple macrolitter materials Tiber River (Central W Italy) (Crosti et al., 2018) 

Water Items h-1 Multiple macrolitter materials Rhone River (S France) (Castro-Jiménez et al., 2019) 

Sediment Items kg-1 Microplastic Ebro River (NE Spain) (Simon-Sánchez et al., 2019) 

Water Items m-3 Microplastic Ofanto River (SE Italy) (Campanale et al., 2020) 

Water Items m-3 Microplastic Rhone and Tet Rivers (S France) (Constant et al., 2020) 

Sediment and water Items kg-1 and items L-1 Microplastic and mesoplastic Mignone River (Central W Italy) (Gallitelli et al., 2020) 

Water Items h-1 Multiple macrolitter materials Catalonia (NE Spain) (Schirinzi et al., 2020) 

Water Items m-3 Microplastic Kifissos and Pinios Rivers (E Grece) (Zeri et al., 2021) 

Water ng L-1 Micro-nanoplastic Ebro River (NE Spain) (Llorca et al., 2021) 

Water m3 Multiple macrolitter materials Segura River (SE Spain) (Rocamora et al., 2021) 

River banks Items m-2 Multiple macrolitter materials Latium Rivers (Central Italy) (Cesarini and Scalici, 2022) 

River banks Items km-1 Multiple macrolitter materials Sardinian Rivers  Present study 

 771 

 772 
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Table S2. Summary of candidate predictor variables used in BTR models and determination methods. 773 

 
Variables Unit Apparatus and Methods 

G
eo

m
o

rp
h

o
lo

g
y

 Sub_catchment (km2) QGIS; Catchment area above the sampling site 

River_Order Classified (1-5) QGIS; Stream order sensu (Strahler, 1957) 

Slope % QGIS; Gradient of strech 

Seasons (Winter, Spring, Summer, Autumn) As proxy of river runoff 

L
a

n
d

 u
se

 

Natural_use % QGIS; % in the catchment area above sampling site 

Agricoltur_use % QGIS; % in the catchment area above sampling site 

Grazing_use % QGIS; % in the catchment area above sampling site 

Urban_use % QGIS; % in the catchment area above sampling site 

H
u

m
a

n
  

p
re

ss
u

re
s Road_density  km km-2 QGIS; Length of road in the catchment area above sampling site/catchment area above sampling site 

Polulation_density Population km-2 QGIS; Population in the catchment area above sampling site/catchment area above sampling site 

River_bridge Presence/Absence (1-0) QGIS; Bridge immediately above the sampling station 

 Dams Count QGIS; Number of dams above the sampling station 

 774 



Table S3. Percentage of recorded items of 28 sub-categories found in Sardinian rivers. 775 

UNEP-Code General name Percentage of recorded items 

PL07 Plastic bags (opaque & clear) 42.40 

PL01 Bottles caps & lids 11.50 

PL02 Bottles < 2 L 7.51 

CL01 Clothing, shoes, hats & towel 6.02 

GC02 Bottles & jars 4.62 

PL24 Other plastic items 3.99 

PL03 Bottles, drums, jerrycans & buckets > 2L 3.90 

ME03 Aluminium drink cans 3.56 

ME10 Appliances  3.56 

GC01 Construction material 1.64 

CL06 Other cloth 1.54 

GC08 Other glass items 1.35 

PC03 Bottles, drums, jerrycans & buckets > 2L 1.35 

RB04 Tyres 1.35 

RB08 Other rubber items 1.06 

CL04 Rope & string 0.96 

ME05 Gas bottles, drums % buckets (> 4 L) 0.77 

WD04 Processed timber and pallet crates 0.67 

ME09 Wire, wire mesh & barber wire 0.63 

ME04 Other cans (< 4 L) 0.48 

ME06 Foil wrappers 0.34 

PL11 Cigarettes, butts & filters 0.19 

PL20 Fishing net 0.19 

ME02 Bottles caps, lids & pull tabs 0.14 

CL05 Carpet & furnishing 0.10 

RB05 Inner-tubes and rubber sheet 0.10 

CL03 Canvas, sailcloth & sacking 0.05 

PL09 Gloves 0.05 

 776 



 777 

Figure S1. Diagram of a typical stream cross-section encountered across the study area, 778 

emphasizing the sampled area from the waterline to max. level of floodplain.  779 

 780 
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 781 

Figure S2. Partial dependence plots of the relationship between predictive variables 782 

and occurrence of light (PL) (a) and heavy (ME) (b) materials. The percentage 783 

indicates the relative contribution of each variable in the BRTs. Black lines represent 784 

the smoothed results. 785 


