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Verification of Pattern-Pattern Diagnosability in
Partially Observed Discrete Event Systems

Ziyue Ma, Member, IEEE, Yin Tong, Member, IEEE, and Carla Seatzu, Senior Member, IEEE

Abstract—This work studies a new notion of diagnos-
ability called the pattern-pattern diagnosability in discrete
event systems modeled by partially observable finite state
automata. Suppose that in the system there are some
sequences of events that are undesirable to happen which
we call the fault pattern. We want to determine whether
the occurrence of the fault pattern can be determined
before some sequences — which we call the critical pattern
and may cause fatal consequences after the fault pattern
— are completed. Both fault and critical patterns are
assumed to be regular and hence are described by the
languages accepted by finite automata. We propose a novel
notion of pattern-pattern diagnosability (PP-diagnosability)
which requires that the occurrence of a fault pattern can
always be detected before the completion of a critical
pattern thereafter. The properties of PP-diagnosability, and
the relations between PP-diagnosability and conventional
diagnosability are studied. Then we propose a method
to verify PP-diagnosability using a structure called the
pattern-pattern verifier. The complexity of the proposed
method is polynomial in the number of states of the plant
and the two pattern automata.

Index Terms—Discrete event systems, fault diagnosis,
pattern diagnosability, automata

I. INTRODUCTION

Fault diagnosis in discrete event systems [1], [2] has
drawn considerable attention over the past decades. The
aim of fault diagnosis is to infer whether or not a faulty
behavior has occurred based on the observation of the
sequence of events generated by a system. Diagnosabil-
ity [3], [4] guarantees that the occurrence of any fault
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can be detected in a finite number of future steps after
its occurrence.

The work on fault diagnosis in discrete event sys-
tems is initially proposed in [3], [4]. In [3] a fault is
modeled by a particular unobservable event called the
fault event. It is proved [3] that diagnosability can be
verified by checking the non-existence of the so-called
indeterminate cycles in the diagnoser automaton of the
plant. Later, in [5], [6], a polynomial-time algorithm
for the verification of diagnosability is proposed using
verifier automata. Various notions of diagnosability have
then been proposed and investigated in the last decades.
References [7] and [8] studied the robust diagnosability
in discrete event systems subject to intermittent and
permanent sensor losses. In [9] a notion called pattern
diagnosis is proposed where the fault is not modeled
by a single event but a set of finite strings. Since
in safety-critical systems the delay in the notion of
diagnosability could be too long to take reconfiguration
actions, a quantitative version of diagnosability, namely
k-diagnosability, is developed [10], [11], which requires
that the occurrence of faults be determined within at
most k-observable events upon its occurrence. The work
in [12] considers repairable faults, i.e., faults that may
be automatically (and possibly stealthy) repaired. The
notion of T-diagnosability in this case requires that the
occurrence of a fault is not only detected in finite time
but also before it is repaired. Other works include the
diagnosability verification in decentralized [13], [14] and
stochastic systems [15]. Besides finite state automata,
diagnosability in Petri nets is also investigated [16]–[20].

By the conventional notion of diagnosability, a plant
is considered diagnosable (resp., k-diagnosable) if the
occurrence of the fault can be detected by observing a
finite number of (resp., at most k) events thereafter. Such
a condition only specifies the length of the observation
(after the fault) but not the content of it. However, we
believe that such a notion of diagnosability may be too
strict in practice. In fact, in many cases observing an
arbitrarily long sequence of events after a fault may be
no harm: only some crucial sequences of events may
lead to fatal consequences.

Based on this consideration, in this paper we pro-
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pose a new notion of diagnosability called the pattern-
pattern diagnosability (PP-diagnosability) that concerns
the possibility of detecting the faulty behavior before
the execution of some critical sequences of events (in-
stead of a finite number of arbitrary observable events).
Consider a plant modeled by a partially observed finite
state automaton. The undesired behavior of the plant is
modeled by a fault pattern. On the other hand, a critical
pattern is (part of) the behavior of the plant whose
completion (after the occurrence of the fault pattern) may
cause fatal consequences. We assume that both fault and
critical patterns are described by two regular languages
Kf and Kc, respectively. A plant is said to be pattern-
pattern diagnosable (PP-diagnosable) with respect to a
fault pattern Kf and a critical pattern Kc (also called
(Kf ,Kc)-diagnosable for short) if the occurrence of the
fault pattern can always be detected before the critical
pattern is completed afterwards.

The concept of pattern diagnosability is first proposed
in [9], [21] and is extended to Petri net models [22],
[23]. In [9], [21] a diagnoser-automaton-based method
is developed to verify pattern diagnosability. We point
out that the pattern diagnosability in [9], [21] can be
formulated as PP-diagnosability proposed in this paper
with particular fault and critical patterns. The main
differences are: (i) pattern diagnosability in [9], [21] re-
quires that the fault pattern be detected in a finite number
of future observations regardless its contents, while PP-
diagnosability requires that the fault pattern be detected
before a pre-defined critical pattern, (ii) in [9], [21] some
assumptions are made on the fault pattern (e.g., the fault
pattern is a bounded set, all sequences in the fault pattern
contain at least one observable event, etc.), while PP-
diagnosability defined in this paper does not rely on these
assumptions. Another closely related notion called safe
diagnosability is studied in [24]. Safe diagnosability is
stronger than conventional diagnosability since, besides
diagnosability condition, it also requires that the shortest
continuation that guarantees the detection of the fault
does not contain any predefined illegal strings. In PP-
diagnosability, however, we are not caring of whether
the fault can be detected in finite steps but whether
the occurrence of the fault pattern is detected before
some critical strings happen regardless the number of
steps to detect it. Overall, with PP-diagnosability we are
relaxing the diagnosability property to better fit practical
applications.

The main contributions of this work are summarized
as follows:
• First, the notion of PP-diagnosability is proposed

and its relations with conventional notions of di-
agnosability are studied. We show that the conven-

tional diagnosability [3] and pattern diagnosability
[9], [21] can be formulated by PP-diagnosability
with particular fault and critical patterns.

• We then study the properties of PP-diagnosability.
We prove that PP-diagnosability is preserved if we
shrink the critical pattern while fixing the fault
pattern. Moreover, we present an interesting, coun-
terintuitive example to show that PP-diagnosability
is not preserved if we modify (either enlarge or
shrink) the fault pattern while fixing the critical
pattern. On the other hand, we observe that in
general PP-diagnosability may not be preserved
while modifying the fault pattern.

• Finally, we propose a method to verify PP-
diagnosability for a given fault pattern Kf and
a critical pattern Kc. We first augment Kf and
Kc to synthesize two automata called the pattern
recognizers. Then we propose a structure called
pattern-pattern verifier (PP-verifier) using parallel
composition. We prove that the PP-diagnosability
is equivalent to the non-existence of PP-violating
states in the PP-verifier, and hence the verification
of PP-diagnosability can be done by a structural
inspection on the corresponding PP-verifier.

• The structural complexity of our approach is O(n2 ·
(n2f + nf · nc)) where n is the number of states of
the plant, while nf and nc are the number of states
of the automata that model the fault and the critical
pattern Kf and Kc, respectively. Besides the merit
of generality, our method has computational advan-
tages with respect to the methods in [9], [21] since
we do not need to construct observer/diagnoser of
the system.

II. PRELIMINARIES

A. Deterministic Finite Automaton

A deterministic finite automaton (automaton for short)
is a four-tuple G = (Q,E, δ, q0, Qm) where Q is a set of
states; E is a set of events; δ : Q×E → Q is the partial
transition function; q0 ∈ Q is the initial state; Qm ⊆ Q
is the set of final (marked) states.

We use E∗ to denote the Kleene closure of E, con-
sisting of all finite sequences composed by the events
in E (including the empty sequence ε). The transition
function δ is extended to δ∗ : Q×E∗ → Q by recursively
defining δ∗(q, ε) = q and δ∗(q, se) = δ(δ∗(q, s), e),
where s ∈ E∗ and e ∈ E. The generated language of
G is defined as L(G) = {s ∈ E∗ | δ∗(q0, s) ∈ Q}. The
accepted language of G is defined as Lm(G) = {s ∈
E∗ | δ∗(q0, s) ∈ Qm}.

The accessible part of an automaton G =
(Q,E, δ, q0, Qm), denoted as Ac(G), is the automaton
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G′ = (Q′, E, δ′, q0, Q
′
m) obtained from G by removing

all unreachable states and their corresponding transi-
tions. Precisely speaking, Q′ = {q ∈ Q | (∃s ∈
L(G)) δ∗(q0, s) = q}, Q′m = {qm ∈ Qm | (∃s ∈
L(G)) δ∗(q0, s) = qm} = Q′ ∩ Qm, and δ′ is the
restriction of δ to Q′ × E → Q′.

A sequence s̄ ∈ E∗ is a prefix of a sequence s ∈ E∗
if there exists s′ ∈ E∗ such that s = s̄s′. In particular,
prefix s̄ is strict if s′ 6= ε. The prefix closure of s ∈ E∗
is the set Pr(s) = {s′ ∈ E∗ | (∃s′′ ∈ E∗) s′s′′ = s}.
The length of a sequence s ∈ E∗, denoted by |s|, is the
number of events in s.

A language L ⊆ E∗ is called right-closed (resp., left-
closed) if for all s ∈ L and s′ ∈ E∗, it holds that ss′ ∈ L
(resp., s′s ∈ L).

Definition 1: [25] Given two automata G′ =
(Q′, E′, δ′, q′0, Q

′
m) and G′′ = (Q′′, E′′, δ′′, q′′0 , Q

′′
m), the

product of G′ and G′′ is the automaton

G′×G′′ = Ac(Q′×Q′′, E′∪E′′, δ, (q′0, q′′0), Q′m×Q′′m),

where δ is defined as: δ((q′i, q
′′
j ), e) =

(δ′(q′i, e), δ
′′(q′′j , e)) if both δ′(q′i, e) and δ′′(q′′j , e)

are defined; otherwise δ((q′i, q
′′
j ), e) is undefined. ♦

For G′ and G′′ defined on the same alphabet, i.e.,
E′ = E′′, L(G′ ×G′′) = L(G′) ∩ L(G′′) and Lm(G′ ×
G′′) = Lm(G′) ∩ Lm(G′′) hold.

B. Partial Observation and Diagnosability

Given an automaton G = (Q,E, δ, q0, Qm), the event
set E is partitioned into the set of observable events Eo
and the set of unobservable events Euo, i.e., E = Eo ∪
Euo. Given a sequence s ∈ E∗, the natural projection
P : E∗ → E∗o is defined as:

P (ε) = ε;

P (e) = e, if e ∈ Eo;
P (e) = ε, if e ∈ Euo;
P (se) = P (s)P (e), for s ∈ E∗, e ∈ E.

(1)

When a sequence s = e1e2 . . . ek ∈ L(G) occurs in a
plant, the corresponding observation is w = P (s) =
P (e1)P (e2) . . . P (ek). Two sequences s′, s′′ are said to
be observation-equivalent if P (s′) = P (s′′). The inverse
projection P−1 : E∗o → 2L(G) is defined as:

P−1(w) = {s ∈ L(G) | P (s) = w},

i.e., P−1(w) consists of all the sequences in L(G) whose
observations are w.

In the literature on fault diagnosis in discrete event
systems, the unobservable event set Euo is further par-
titioned into the set of regular unobservable events Er

and the set of fault events Ef . Some works consider
different fault types, i.e., Ef = {f1, f2, ..., fn}. In this
paper we consider a single type of faults, i.e., Ef = {f}
for simplicity, but all the proposed results may be easily
extended to the case of multiple types of faults.

Definition 2: [3] Given a live plant G =
(Q,E, δ, q0, Qm) where E = Eo ∪ Euo and Euo =
Er ∪ {f}, G is diagnosable with respect to fault f if
for all sequences σf ∈ L(G), there exists kσ ∈ N such
that for all σfσ′ ∈ L(G),

|σ′| ≥ kσ ⇒ ∀σ̂ ∈ P−1(P (σfσ′)) : f ∈ σ̂.

System G is k-diagnosable if there exists a universal
k ∈ N such that for all σf ∈ L(G), for all σfσ′ ∈ L(G),

|σ′| ≥ k ⇒ ∀σ̂ ∈ P−1(P (σfσ′)) : f ∈ σ̂.

♦
In plain words, diagnosability is a property such that

if the fault has occurred after σ, then after a sufficiently
long continuation σ′ (with |σ′| ≥ k) all sequences σ̂
that produce the same observation as that of σfσ′ must
contain the fault. This implies that the occurrence of fault
f can be detected within a finite delay of observations.
In the framework of finite state automata, diagnosability
and k-diagnosability are mathematically equivalent. The
upper bound on the length of the confused path in a
verifier automaton is n2 where n is the number of states
in the plant. Hence, a plant G is diagnosable if and only
if it is (n2)-diagnosable.

III. PROBLEM FORMULATION

A. Fault and Critical Patterns

The following example illustrates the motivation of
defining a new notion of diagnosability apart from the
original ones.

Example 1: Consider the plan of a robot in Figure 1
without the dashed blue zone. The corresponding au-
tomaton model is shown in the same figure without the
self-looped event d at state 5. In this system events
a, b, c, d, e, f are observable while event u is unobserv-
able. The robot is supposed to transport a part from zone
0 to zone 6 along the upper track via zones 3 and 5.
Let us consider a fault such that the robot erroneously
goes to zone 2 and picks a wrong part. Hence, the fault
pattern consists of all sequences ending with au. Our
safety requirement is that such a fault behavior au should
be detected before the wrong part is processed through
the bottom track routine, i.e., before the execution of a
critical sequence def . On the other hand, processing the
wrong part through the upper track is acceptable: any
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Fig. 1. A plan of a zone-controlled AGV and its corresponding
automaton model with unobservable event u.

sequence corresponding to the upper track routine (such
as auabuef ) causes no harm.

One can readily verify that such a system is not
pattern-diagnosable according to the definition in [9]. In
fact, after the fault pattern occurs, the faulty sequence
auabck and the non-faulty sequence aabck have the same
observation P (auabck) = P (aabck) = aabck, where k
can be arbitrarily large. Therefore, there does not exist an
integer k ∈ N such that the occurrence of fault sequence
au can be determined by observing at most k observable
events. However, the occurrence of fault pattern au can
always be detected before the critical sequence def is
completed. Hence, observing aabck for arbitrary large k
does not imply that the safety requirement is violated,
since the wrong part is never transported to zone 6. In
fact, the occurrence of fault pattern au can be determined
as soon as we observe event d, which always happens
before the completion of critical sequence def . ♦

Motivated by Example 1, we formulate the notions
of fault and critical patterns. Formally speaking, given a
plant G with event set E, a fault pattern is a language
Kf ⊆ E∗ which describes the undesirable behavior to
be diagnosed. On the other hand, a critical pattern is a
language Kc ⊆ E∗ which describes the behaviors that
may cause fatal consequences after the occurrence of the
fault pattern. In this work we consider regular patterns
such that both the fault pattern Kf and the critical pattern
Kc are accepted by automata Hf and Hc, respectively.
In other words, Lm(Hf ) = Kf and Lm(Hc) = Kc.
For simplicity, in the sequel, sequences in Kf and in
Kc are called “fault sequences” and “critical sequences”,

𝑞0
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𝐿𝑚 𝐻′ = 𝐾

𝐸

Fig. 2. Pretreatment of Kf ,Kc.

respectively.
Moreover, we assume that both Kf and Kc are right-

closed. The fault pattern Kf is right-closed since we
assume that the fault is not self-repairable (for self-
repairable fault, see e.g. [12])) once occurred. On the
other hand, notice that if a faulty sequence sf ∈ Kf can
be detected before the occurrence of a critical sequence
sc ∈ Kc, then sf can also be detected before any
continuation of sc, which implies that the critical pattern
Kc is also right-closed.

Remark 1: For the aim of fault diagnosis, we are not
interested in the accepted language of a plant G. Hence,
all states in G are considered final, i.e., Qm = Q, as
shown in Example 1. ♦

B. Pattern-Pattern Diagnosability

Since both Kf and Kc are right-closed, all successor
states of the final states in Hf and Hc (if they exist)
are also final. All final states in Hf and Hc can thus be
fused into a single final state, respectively, as shown in
Figure 2. For simplicity, in the sequel we omit the step
of the final-state-fusion and suppose that Hf and Hc

consist of a single final state with a self-loop labeled by
E. Moreover, we assume that Hc and Hf are complete,
i.e., L(Hf ) = L(Hc) = E∗. If Hc and/or Hf are not
complete, they can be transformed into their equivalent
complete automata without affecting their accepted lan-
guages (see Ch.2 in [25]).

Example 2 (Ex. 1 cont.): In Example 1, the fault
pattern Kf = {s ∈ E∗ | (s′, s′′ ∈ E∗) s = s′aus′′} is
the marked language of automaton Hf in Figure 3. The
critical pattern Kc = {s ∈ E∗ | (s0, s1, s2, s3 ∈ E∗) s =
s0ds1es2fs3} is the marked language of automaton Hc

in the same figure. ♦



5

0
𝑎

𝑯𝒇

1

𝐸 ∖ {𝑎}

0
𝑑

1

𝐸 ∖ {𝑑}

𝑒
2

𝑯𝒄

𝐸 ∖ {𝑒}

𝑓
3

𝐸 ∖ {𝑓}

2

𝐸 ∖ {𝑎, 𝑢1}

𝑢1

𝑎

𝐸

𝐸

Fig. 3. Hf and Hc in which E = {a, b, c, d, f, g}.

Like most literature on diagnosis, in this paper we
assume that the plant G is live, i.e., at each state of
G there exists at least one output arc. If the plant is
not live, it can be transformed into an equivalent live
plant by adding self-loops of unobservable events at the
dead states [26]. Now we are ready to define the notion
of pattern-pattern diagnosability (PP-diagnosability) as
follows.

Definition 3: [PP-diagnosability] Given a plant G =
(Q,E, δ, q0, Qm) where E = Eo ∪ Euo, a fault pattern
Kf ⊆ E∗, and a critical pattern Kc ⊆ E∗ \ {ε}1,
G is pattern-pattern diagnosable (PP-diagnosable) with
respect to (Kf ,Kc) if for all sequences sf ∈ L(G)∩Kf ,
the following condition holds:

(∀sc ∈ Kc) [sfsc ∈ L(G)]⇒
(∃s̄ ∈ Pr(sfsc), s̄ 6= sfsc) P

−1(P (s̄)) ⊆ Kf .
(2)

♦
The notion of PP-diagnosability can be interpreted as

follows. For any fault sequence sf that can be generated
by the plant and that belongs to the fault pattern Kf ,
before a critical sequence sc in the critical pattern is
completed thereafter, there necessarily exists s̄ that is a
strict prefix of sfsc such that all sequences that look like
P (s̄) belong to the fault pattern Kf . This means that the
occurrence of fault sequence sf can always be detected
when observing P (s̄), before the critical sequence sc is
completed afterwards. Note that since Kf is right-closed,
the last term “P−1(P (s̄)) ⊆ Kf” in Eq. (2) means that
there exists at least one string ŝ ∈ P−1(P (s̄)) that can be
written as ŝ = uv where u ∈ Kf” (v can be the empty
string). To simplify the presentation, in the sequel “G
is PP-diagnosable with respect to fault pattern Kf and
critical pattern Kc” is also expressed as “G is (Kf ,Kc)-
diagnosable”.

1We require that the fault be detected before a critical sequence in
Kc occurs, which is not valid if ε ∈ Kc.
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Fig. 4. Hf and Hc for conventional k-diagnosability.

Remark 2: In this paper we impose no assumption on
the observability of fault pattern Kf and critical pattern
Kc: both patterns can be arbitrary regular languages over
alphabet E. This is different from the conventional fault
event diagnosis (which usually assumes that the fault
event is unobservable) and the pattern diagnosability [9]
(which assumes that the fault pattern is bounded and each
sequence in it contains at least one observable event).
Moreover, unlike the other works in the literature, we do
not require that the plant does not contain unobservable
cycles (i.e., cycles with all events unobservable). ♦

At the end of this section, we discuss the relation
of PP-diagnosability and conventional diagnosabilities.
First, we point out that the conventional notion of k-
diagnosability [10] can be formulated in terms of PP-
diagnosability with particular Kf and Kc. Precisely
speaking, k-diagnosability is equivalent to (Kf ,Kc)-
diagnosability with fault pattern Kf = (E \ {f})∗fE∗
and critical pattern Kc = (E∗uoEo)

kE∗. Such patterns
can be accepted by the corresponding automata Hf and
Hc in Figure 4. Since in the framework of automata,
diagnosability is equivalent to (n2)-diagnosability where
n is the number of plant states, PP-diagnosability is more
general than the conventional notion of diagnosability.
Second, pattern diagnosability in [9] can also be for-
mulated as PP-diagnosability with a particular critical
pattern Kc that is the accepted language of automaton
Hc in Figure 4 with k = 2n. The reason is: by [9]
a pattern is diagnosable if and only if there does not
exist an indeterminated cycle in the observer of the plant,
and the length of an indeterminated acyclic path in the
observer is bounded by 2n.

IV. PROPERTIES OF PATTERN-PATTERN

DIAGNOSABILITY

A property of the conventional diagnosability is that k-
diagnosability implies k′-diagnosability for any k′ > k.
In plain words, if a fault can be detected within a
delay k, then it can also be detected within a delay
larger than k, i.e., diagnosability is preserved when the
delay k increases. In this section, we study under which
condition the property of PP-diagnosability is preserved.
The following proposition shows that for a plant G that
is PP-diagnosable with respect to (Kf ,Kc), if we fix the
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fault pattern Kf and modify the critical pattern Kc, then
G is PP-diagnosable if the new critical pattern K ′c is a
subset of Kc.

Proposition 1: For a given plant G =
(Q,E, δ, q0, Qm), (Kf ,Kc)-diagnosability implies
(Kf ,K

′
c)-diagnosability if K ′c ⊆ Kc.

Proof: We prove this proposition by contrapositive. Sup-
pose that G is not (Kf ,K

′
c)-diagnosable. By Defini-

tion 3, there exists a sequence s = sfsc ∈ L(G) such
that (i) sf ∈ Kf , sc ∈ K ′c, and (ii) there exists a
sequence ŝ ∈ P−1(P (sfsc)) such that ŝ /∈ Kf . Since
K ′c ⊆ Kc, sc also belongs to Kc. Hence, sequence
sfsc ∈ L(G) satisfies: (i) sf ∈ Kf , sc ∈ Kc, and (ii)
ŝ ∈ P−1(P (sfsc)) such that ŝ /∈ Kf . Therefore, G is
not (Kf ,Kc)-diagnosable. �

Proposition 1 is intuitive: if a fault sequence s ∈ Kf

can be detected before the completion of any sequence
in Kc thereafter, then s can also be detected before the
completion of any sequence in K ′c.

Now, let us consider the preserveness of PP-
diagnosability when the fault pattern changes. One may
conjecture that PP-diagnosability is preserved if we fix
the critical pattern Kc and reduce the fault pattern Kf ,
a result analogous to Proposition 1. Precisely speaking,
one may conjecture that (Kf ,Kc)-diagnosability implies
(K ′f ,Kc)-diagnosability if K ′f ⊆ Kf . However, such a
conjecture is false.

Fact 1: (Kf ,Kc)-diagnosability does not necessarily
imply (K ′f ,Kc)-diagnosability if K ′f ( Kf .
Proof: We prove this fact by the following exam-
ple. Consider the plant G in Figure 5 with alphabet
E = {u, a, b} in which event u is unobservable and
a, b are observable. Consider two fault patterns Kf =
{aE∗} ∪ {uaE∗}, K ′f = {aE∗} and one critical pattern
Kc = {{b, u}∗a{a, u}∗bE∗}. One can verify that G is
(Kf ,Kc)-diagnosable. When fault sequence aa occurs,
we observe P (aa) = aa whose consistent plant se-
quences are: aa, uaa both of which are faulty. This also
holds for fault sequence uaa. Hence, one can detect the
fault by observing aa, before the completion of critical
pattern ab. However, G is not (K ′f ,Kc)-diagnosable
since in such a case uaa is not faulty. Since for faulty
sequence aa there exists a non-faulty sequence uaa such
that P (uaa) = P (aa) = aa, it is not possible to detect
the faulty sequence aa before the next event b occurs —
at this moment the critical pattern ab has been completed.
�

The reason behind Fact 1 is that, when Kf is re-
duced to K ′f , some faulty sequences in the plant may
become non-faulty so that some originally fault-definite
sequences may become fault-ambiguous. On the other
hand, it is not difficult to understand that (Kf ,Kc)-
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Fig. 5. Example for Fact 1.

diagnosability does not necessarily imply (K ′f ,Kc)-
diagnosability if K ′f ) Kf , since fault-ambiguous se-
quences may come from the sequences in K ′f \ Kf .
Hence, PP-diagnosability may not be preserved if we
fix the critical pattern Kc and vary the fault pattern Kf .

V. VERIFICATION OF PP-DIAGNOSABILITY

In this section we propose a method to verify PP-
diagnosability for a plant G with respect to fault and
critical patterns Kf and Kc. The flowchart of our ap-
proach is depicted in Figure 6.
• First, the fault pattern automaton Hf is modified

to Ĥf by removing the self-loop at its final state.
An automaton Hfc is then computed which is the
concatenation2 of Ĥf and Hc (the critical pattern
automaton).

• Then, two pattern recognizers are constructed
which encode the information associated with the
patterns: the fault-pattern recognizer Hfr is the
product of G and Hf , while the critical-pattern
recognizer Hcr is the product of G and Hfc.

• Then, we perform a (backward) step shift on the
critical-pattern recognizer Hcr to obtain a new
automaton Hcr,−1 in which all strict prefixes s̄ in
Eq. (2) are captured, namely they lead to final states
in Hcr,−1.

• Next, a new automaton denoted as Vpp =
Hfr||oHcr,−1 and called pattern-pattern verifier
(PP-verifier) is synthesized from Hfr (the fault-
pattern recognizer) and Hcr,−1 (the critical-pattern

2The concatenation of two automata G1 and G2 is a new automaton
G consisting of both G1 and G2 followed by adding to each final
state of G1 an ε-transition to the initial state of G2. There hold:
L(G) = L(G1) · L(G2) and Lm(G) = Lm(G1) · Lm(G2). See
[25].
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Fig. 6. The flowchart of the proposed approach for verification of
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Fig. 7. Automaton Ĥf augmented from Hf and Hfc = Ĥf · Hc,
where Hf , Hc are from Fig. 3.

recognizer after step-shift). Operator ||o will be
formally defined in the sequel.

• Finally, the verification of PP-diagnosability is done
by checking the existence of a particular type of
states called pattern violating states in the PP-
verifier.

A. Augmentation on Fault Pattern Automaton Hf

To capture the completion of the critical pattern Kc

after the occurrence of the fault pattern Kf , we concate-
nate the two patterns Kf and Kc to obtain a new pattern
Kf ·Kc. This step can be done by simply concatenating
the corresponding two automata Ĥf and Hc. In brief,
automaton Hfc is obtained by adding an unobservable
ε-transition from the final state of Ĥf to the initial state

00 30
𝑢𝑏

50 𝑓

𝑐

60
𝑒

11

𝑎

𝑯𝒇𝒓 = 𝑮 ×𝑯𝒇

42
𝑏

52 𝑓

𝑐

62
𝑒

𝑑

𝑢

22

12𝑎

02

𝑢

𝑑

𝑑

32
𝑏

𝑐

𝑢

𝑎

𝑎 𝑎

Fig. 8. Fault pattern recognizer Hfr .

of Hc.3 Since there exists a unique final state in Hf ,
in Ĥf there also exists a unique final state that has no
output arcs.

On the other hand, if Kc is left-closed, automaton Hfc

can be straightforwardly obtained by fusing the final state
of Ĥf and the initial state of Hc. For instance, for the
fault and the critical patterns in Figure 3, the automaton
Hfc = Ĥf ·Hc is depicted in Figure 7.

B. Pattern Recognizers

Now we combine the fault pattern automaton Hf and
the automaton Hfc obtained above with the behavior
of the plant G. We construct two automata called the
pattern recognizers, which are the products (see Defini-
tion 1) of G with Hf and Hfc, respectively. The fault-
pattern recognizer is denoted by Hfr = G×Hf (where
the subscript “fr” denotes “fault-pattern recognizer”),
while the critical-pattern recognizer is denoted by Hcr =
G × Hfc (where the subscript “cr” denotes “critical-
pattern recognizer”). Then, we have the following result.

Proposition 2: Given a plant G, a fault pattern Kf ,
and a critical pattern Kc, the following statements hold:

s = uv ∈ L(G), u ∈ Kf ⇔ s ∈ Lm(Hfr)

s = uv ∈ L(G), u ∈ Kf , v ∈ Kc ⇔ s ∈ Lm(Hcr)
(3)

Proof: This proposition directly follows from the defini-
tion of the product operator and the construction of Hfr

and Hcr. �
Example 3 (Ex. 2 cont.): For the plant G in Figure 1

without the dashed blue self-loop at state 5, the fault

3Automaton Hfc is not deterministic due to the introduction of
ε-transition. However, we do not need to determinize Hfc since
the method and the results in the sequel can be applied to non-
deterministic finite automata.
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Fig. 9. Critical pattern recognizer Hcr (with state 64 unmarked) and
corresponding Hcr,−1 (with state 64 marked).

pattern Kf = Lm(Hf ) in Figure 3, and the critical
pattern Kc = Lm(Hc) in Figure 3, the corresponding
pattern recognizers Hfr, Hcr are shown in Figures 8
and 9, respectively, without the dashed blue transitions.
There are 7 final states in Hfr while there is only one
final state 65 in Hcr. For readability, state “(q′i, q

′′
j )” is

denoted as “ij” in the figure. ♦
Proposition 2 indicates that, by doing the two products

G×Hf and G×Hfc, Lm(Hfr) consists of all sequences
u ∈ L(G)∩Kf , and Lm(Hcr) consists of all sequences
uv ∈ L(G) ∩ (Kf · Kc) where u ∈ L(G) ∩ Kf and
v ∈ Kc. However, since PP-diagnosability requires that
the occurrence of the fault pattern be detected before the
completion of the critical pattern, we are not interested
in such v ∈ Kc but those sequences v′ that are the
longest strict prefixes of critical sequences v which
satisfies |v| − |v′| = 1. To this aim, we will next revise
(which we call the step-shift) Hcr to a new automaton
Hcr,−1 such that Lm(Hcr,−1) consists of all sequences
that are strict prefixes of Lm(Hcr), i.e., Lm(Hcr,−1)
consists of all sequences uv ∈ L(G) such that (i)
u ∈ Kf and (ii) there exists an event e ∈ E such that
uve ∈ L(G) and ve ∈ Kc. We also emphasize that,
so far, the observability of events is not involved: when
doing the product to synthesize Hfr and Hcr, all events
in the corresponding automata involved are treated as
observable. The observation structure will be encoded
when constructing the pattern-pattern verifier in the next
subsection.

C. Step Shift for Critical Pattern Recognizer Hcr

Suppose that in a system a critical sequence v ∈ Kc

may occur after a faulty sequence u ∈ Kf . To ensure
PP-diagnosability, after the occurrence of u, we must

determine the fault at least one event before completing
v. To this aim, we modify the critical pattern recognizer
Hcr to a new automaton Hcr,−1 in which all such
sequences are captured. In terms of automata, this means
that the augmented critical pattern recognizer Hcr,−1
differs from the critical pattern recognizer Hc for the
fact that all the above sequences s also lead to final
states (since Kc is right-closed).

Definition 4: Given a language L ⊆ E∗, we define the
backward 1-step shift language L−1 as:

L−1 = L ∪ {s ∈ E∗ | (∃e ∈ E) se ∈ L}.

♦
In plain words, L−1 is enlarged from L by adding the

longest strict prefix of each sequence in L. To perform
the 1-step shift on a given language L is not difficult.
In fact, for L = Lm(G) where G = (Q,E, δ, q0, Qm),
L−1 is the accepted language of the automaton G′ =
(Q,E, δ, q0, Q

′
m) where Q′m = Qm ∪ Q̂ and

Q̂ = {q ∈ Q | (∃e ∈ E) δ(q, e) = q′ ∈ Qm}.

The states in Q̂ are those in G which are coreachable
to the original final states of G via only one event.
By redefining the final states in automaton Hcr as
described above, we obtain automaton Hcr,−1 whose
marked language is Lm(Hcr,−1) = L−1 where L =
Lm(Hcr). Clearly, Lm(Hcr,−1) contains all sequences
s = uv ∈ L(G) such that u ∈ Kf and there exists
an event e ∈ E such that uve ∈ L(G) and ve ∈ Kc.
Intuitively speaking, after the occurrence of a faulty
sequence, the execution of a sequence in the shortest
prefix sublanguage of Lm(Hcr,−1) is the last chance to
successfully diagnose the fault and issue an alarm: if the
fault cannot be determined at this moment, then a critical
pattern may be completed after the execution of the next
event.

Example 4 (Ex. 3 cont.): Consider the critical pattern
recognizer Hcr in Figure 9 in which state 65 is the only
final state. By marking state 64 as final (marked with a
red circle) which is one-step co-reachable to the original
final state 65, we obtain the automaton Hcr,−1 in the
same figure. Clearly, Lm(Hcr,−1) is the language that is
one-step shifted from Lm(Hcr). ♦

D. Pattern-Pattern Verifier

To check the condition in Eq. (2), it is sufficient
to check for each sequence s ∈ L(G) if there exists
another sequence s′ ∈ L(G) that looks like s such that s
contains the critical pattern after the fault pattern while
s′ does not contain the fault pattern. By Proposition 2,
all sequences s that contain a fault subsequence (i.e., s =
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uv, u ∈ Kf ) belong to Lm(Hfr), and all sequences s′

that contain a critical subsequence after a fault sequence
(i.e., s′ = uv, u ∈ Kf , ∃e ∈ E such that ve ∈ Kc)
belong to Lm(Hcr,−1). Hence, it is sufficient to examine
all observation-equivalent sequences in Hfr and Hcr. In
the literature, a tool widely used to check observation-
equivalent sequences in partially observed automata is
the so-called verifier automaton [6] (which is also called
the twin-plant). Here, we slightly modify the approach
to construct the verifier and call the resulting automaton
pattern-pattern verifier.

Definition 5: Given two automata G′ =
(Q′, E, δ′, q′0, Q

′
m), G′′ = (Q′′, E, δ′′, q′′0 , Q

′′
m)

where E = Eo ∪ Euo, the verifier composed by
G′ and G′′ is the nondeterministic finite automaton
V(G′,G′′) = G′||oG′′ = Ac(V,E, δv, v0) where (i)
V ⊆ Q′×Q′′; (ii) the initial verifier state is v0 = (q′0, q

′′
0);

(iii) the transition relation δv is defined as follows:
• for e ∈ Eo:

δv((q
′
i, q
′′
j ), e) = (δ′(q′i, e), δ

′′(q′′j , e))

if both δ′(q′i, e) and δ′′(q′′j , e) are defined;
• for e ∈ Euo:

δv((q
′
i, q
′′
j ), e) =

{
(δ′(q′i, e), q

′′
j ), if δ′(q′i, e) is defined

(q′i, δ
′′(q′′j , e)), if δ′′(q′′j , e) is defined

♦
Definition 6: Given a plant G, its fault pattern rec-

ognizer Hfr and its critical pattern recognizer after
step-shift Hcr,−1, the corresponding verifier Vpp =
Hfr||oHcr,−1 is called the pattern-pattern verifier (PP-
verifier). ♦

In plain words, the initial state is the pair (q′0, q
′′
0)

that consists of the two initial states in G′ and G′′.
An observable event can occur if and only if both G′

and G′′ must be able to execute the event at q′i and
at q′′j , respectively. On the other hand, an unobservable
event can occur if and only if either or both G′ and
G′′ are able to execute it at q′i and at q′′j . Differ-
ently from the original construction [6], here for an
unobservable event e we do not impose the transition
δv((q

′
i, q
′′
j ), e) = (δ′(q′i, e), δ

′′(q′′j , e)) at a verifier state
(q′i, q

′′
j ) if both δ′(q′i, e) and δ′′(q′′j , e) are defined. This

simplification does not cause essential difference with
respect to the original construction in [6] (since in the
case above state (δ′(q′i, e), δ

′′(q′′j , e)) can still be created
by (q′i, q

′′
j ) − (q′i, δ

′′(q′′j , e)) − (δ′(q′i, e), δ
′′(q′′j , e))) but

reduces the interleaving of unobservable transitions in
the verifier. Note that when doing ||o we do not specify
the set of final states in the resulting verifier, which is
also different from the classical concurrent composition
and product operations on automata.

Note that each state in Vpp is a pair (q′, q′′) whose first
component q′ is a state in Hfr and the second is a state
in Hcr,−1. In the following we define PP-violating states
in a PP-verifier. Then, we are ready to show that the
non-existence of PP-violating states in the corresponding
verifier is sufficient and necessary for PP-diagnosability,
which is the main result of this section.

Definition 7: Given a PP-verifier Vpp = Hfr||oHcr,−1
where Hfr = (Qfr, E, δfr, q0,fr, Qm,fr) and Hcr,−1 =

(Qcr, E, δcr, q0,cr, Q̂m,cr), a state (q′, q′′) in Vpp is called
a PP-violating state if state q′ is not final in Hfr (i.e.,
q′ /∈ Qm,fr) and state q′′ is final in Hcr,−1 (i.e., q′′ ∈
Q̂m,cr). ♦

Example 5 (Ex. 4 cont.): Again consider the plant G in
Figure 1 without the dashed blue self-loop at state q5, the
fault pattern Kf = Lm(Hf ) in Figure 3, and the critical
pattern Kc = Lm(Hc) in Figure 3. The corresponding
PP-verifier Vpp = Hfr||oHcr,−1 that has 37 states is
shown in Figure 10 without all dashed blue states and
transitions. For readability, state “(q′i, q

′′
j )” is denoted as

“i, j” in the figure. ♦
Theorem 1: Given a plant G = (Q,E, δ, q0, Qm)

where E = Eo ∪ Euo, a fault pattern
Kf ⊆ E∗, and a critical pattern Kc ⊆ E∗,
let Hfr = (Qfr, E, δfr, q0,fr, Qm,fr) and
Hcr,−1 = (Qcr, E, δcr, q0,cr, Q̂m,cr) be the
corresponding fault pattern recognizer and the recognizer
after step-shift. Plant G is PP-diagnosable with respect
to (Kf ,Kc) if and only if the corresponding PP-verifier
Vpp = Hfr||oHcr,−1 does not contain any PP-violating
state.
Proof: By the construction of PP-verifier, there ex-
ists a state (q′, q′′) in Vpp if and only if there exist
two sequences s, s′ ∈ L(Hfr) ∩ L(Hcr,−1) such that
δfr(q0,fr, s) = q′, δcr(q0,cr, s) = q′′, and P (s) = P (s′),
where δfr and q0,fr (resp., δcr and q0,cr) are the transition
function and the initial state of Hfr (resp., Hcr,−1).

We now prove the “only if” part, and the “if” part
follows an analogous argument. Suppose that in Vpp there
exists a state (q′, q′′) such that q′ is not final in Hfr

and q′′ is final in Hcr,−1. By Proposition 2, there exists
two sequences s, s′ ∈ L(G) that satisfy the following
conditions: (i) P (s) = P (s′); (ii) s = uv ∈ L(G)
with u ∈ Kf , v ∈ Kc,−1 (since s ∈ Lm(Hcr,−1) and
by Proposition 2), and there exists e ∈ E such that
se ∈ L(G) and ve ∈ Kc; (iii) s′ does not have a prefix
in Kf (since s′ /∈ Lm(Hfr) and by Proposition 2).
Therefore, G is not PP-diagnosable with respect to
(Kf ,Kc). �

Example 6 (Ex. 5 cont.): In the PP-verifier in Figure 10
(without all dashed blue states and transitions) the final
sub-states of Hfr and Hcr,−1 components are underlined.
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Fig. 10. The pattern-pattern verifier composed by pattern recognizers Hfr and Hcr,−1 in Figures 8 and 9.

One can readily verify that there is no PP-violating state
in Vpp. According to Theorem 1, G is PP-diagnosable
with respect to (Kf ,Kc). In fact, after the fault pattern
E∗auE∗ occurs, to complete a critical sequence ending
with def , the plant necessarily follows the trajectory 4-
5-6-6 and executes d first when reaching state 5. By
observing such an event d we immediately know that G
must be going on the trajectory 2-4-5, which indicates
that the fault pattern must have occurred.

Now, let us modify the plant in Figure 1 by adding
the dashed blue event d at state 5. Still consider the fault
and the critical patterns Kf = Lm(Hf ), Kc = Lm(Hc)
in Figure 3. In such a case, the corresponding pattern
recognizers Hfr, Hcr, Hcr,−1 are those in Figures 8, 9
with the dashed transitions, and the corresponding PP-
verifier Vpp that has 43 states is shown in Figure 10 with
the blue dashed states and transitions. In such a case, in
Vpp there exists a state (q′, q′′) = (60, 64) (rectangular,
on the right bottom) in which q′ = 60 is not a final
state in Hfr while q′′ = 64 is a final state in Hcr. By
Theorem 1, the modified plant G is not PP-diagnosable
with respect to (Kf ,Kc). In fact, when the plant executes
s = auabude which belongs to the faulty pattern, we
observe P (s) = aabde whose consistent sequences are:

• auabude, faulty, whose trajectory is 0-1-2-0-3-5-6;
• aabude, non-faulty, whose trajectory is 0-1-0-3-5-6.

Hence, at this moment the occurrence of a fault pattern

cannot be determined. Then, by executing the next
event f , sequence auabudef is completed in which a
critical sequence occurs after a fault sequence. Therefore,
the modified G is not PP-diagnosable with respect to
(Kf ,Kc). ♦

At the end of this section we discuss the complexity
of our approach. Suppose that plant G, fault pattern au-
tomaton Hf , critical pattern automaton Hc have n, nf , nc
states, respectively. The augmentation from Hf to Ĥf .
Hence, Hfr = Hf × G has at most nf · n states, and
Hcr = Hfc × G = (Ĥf · Hc,−1) × G has at most
(nf + nc) · n states. The step-shift on Hcr do not add
any state. Thus, the number of states in the PP-verifier
Vpp = Hfr||oHcr,−1 is bounded by (nf ·n)·((nf+nc)·n)
that is n2 · (n2f + nf · nc). Therefore, the complexity of
the proposed method is quadratic in the number of states
of the plant G and the fault pattern automaton Hf , and
is linear with the number of states of the critical pattern
automaton Hc.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have proposed the notion of PP-
diagnosability in partially observable discrete event sys-
tems and have studied its properties. We have shown that
PP-diagnosability is preserved when the fault pattern is
fixed while the critical pattern reduces. Then we have
proposed a method to verify PP-diagnosability using a
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structure called the pattern-pattern verifier. Precisely, we
proved that a plant is PP-diagnosable if and only if its
PP-verifier does not contain any PP-violating state. The
complexity of our approach is polynomial in the number
of states in the plant and the two pattern automata. In the
future we will extend this work to PP-diagnosability on
timed discrete event systems and to other models such
as Petri nets.
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