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Abstract—Coastal monitoring represents a key element for the
support of many sea-related human activities, including ship navi-
gation, national security prevention, and environmental protection.
Within these fields, antenna arrays are recognized as viable can-
didates for the development of wide-area monitoring applications,
thanks to the possibility of using multifrequency (MF) radiating
systems as reflector feeds or as primary antennas. For this reason,
this article proposes a deterministic synthesis method for MF an-
tenna arrays allowing the independent pattern control at different
frequencies. Precisely, the optimization of the array excitations
is realized to provide a unique set of amplitudes, common to all
frequencies, and S sets of phases, corresponding to the S consid-
ered frequencies, thus enabling phase-only pattern switching. The
method, which is based on the alternating projection approach,
allows also to impose an upper bound on the ratio between the max-
imum and the minimum amplitude, hence providing advantages
in terms of feeding network simplification and energy efficiency,
while maintaining satisfactory beam and null pointing capabilities.
Numerical examples, including electromagnetic simulations, are
presented to check the effectiveness of the conceived method for
implementation in oceanographic acquisition systems.

Index Terms—Antenna arrays, dynamic range ratio (DRR)
reduction, multifrequency (MF) antennas, phase-only control,
power synthesis.

I. INTRODUCTION

COASTAL monitoring operations include a variety of crit-
ical tasks, ranging from homeland security to ocean pro-

tection, from ship detection to vessel tracking, from weather
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surveillance to geophysical parameters acquisition, such as sur-
face temperature as well as wind, current, and wave velocities.
Many of these activities can be performed by remote sensing
systems, among which a great interest is devoted to the mi-
crowave (μWave) and millimeter wave (mmWave) ones relying
on aerial platforms and satellites. In fact, atμWave and mmWave
frequencies, the carrier wavelengths are, on the one hand, suffi-
ciently long that signals propagate through atmospheric agents
with negligible attenuation, and, on the other hand, sufficiently
short that high-resolution imagery can be obtained [1].

For a long time, traditional acquisition systems have experi-
enced limits in spatial resolution and geographical coverage due
to the intrinsic limitations of the employed antenna technologies.
So, in [2] the metrics for assessing the radars performance
was investigated and the advantages provided by independent
observations have been revealed. In particular, the adoption of
different frequencies has been proposed as a valuable diversity
technique for performance improvement. Similarly, it has been
shown in [3] that an optimal multifrequency (MF) design of a
phased array feed can lead to a major performance improvement
over the traditional single-horn systems. Then, as phased-arrays
have become more suitable for a broader variety of services,
their possible use in the ocean engineering context has been
considered increasingly attractive, thanks to their great versa-
tility in satisfying complex beamforming specifications when
applied to systems with a large number of radiating elements [3],
[4]. Electronic beam steering, adaptive beam/null synthesis,
and reconfiguration capabilities represent some of the features
making them useful for oceanographic and radar applications.
Accordingly, in [5], μWave X-band marine radars were used as
wide coverage monitoring systems to acquire wave and current
velocities with high resolution. A high-frequency (HF) surface
wave radar was also proposed in [2], to enable maritime situa-
tional awareness in vessel monitoring networks covering wide
coastal areas.

Beside phase-only control, MF operation has been identified
as a further relevant feature to be supported in oceanographic
equipment. In fact, still in HF surface wave radars, the frequency
diversity reduces the probability of ship obscuration by wave
echoes, simultaneously increasing the probability of hitting a
high cross section [2]. Next generation radar systems are hence
expected to implement reconfigurable MF arrays to exploit the
same aperture over two or more frequency bands. By conse-
quence, several multiband or ultra-wideband antenna designs
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for MF operations have been recently developed. In particular,
in [6], a planar dual-band wide-scan phased-array for X-band
radar applications was presented. In [7], the authors proposed a
μWave feed array covering three operational frequencies in the
C, X, and Ku bands to accomplish multitask missions. The same
work takes into account the beam efficiency through an iterative
optimization procedure that enables the control of the dynamic
range ratio (DRR), representing the ratio between the maximum
and the minimum amplitude of the excitations [8]. Moreover, a
synthetic aperture radiometer operating at 55 and 183 GHz for
Earth observing applications was conceived in [9].

Within the antenna research field, many other synthesis meth-
ods for multiband, wideband, and ultrawideband frequency in-
variant arrays have been derived in the recent years [10], [11],
[12]. Compressive sensing was specifically used in [13], to
provide a design technique for MF sparse arrays. An innova-
tive approach based on genetic algorithms was instead adopted
in [14], to optimize the distribution of the antenna elements
operating at different frequencies and sharing the same physical
aperture. In [15], a phase-only synthesis technique was proposed
to allow the MF design of a reflectarray by optimizing the
antenna functioning over a certain bandwidth. The broadband
beam-steering problem in conformal arrays was also addressed
in [16], by applying the time reversal technique, which takes the
Fourier transform of the time reversed version of the received
signals. Unfortunately, its applicability is limited to the pattern
beam-steering and the DRR is not taken into account. In [17],
a multiobjective evolutionary algorithm was developed to syn-
thesize wideband conformal arrays by determining the positions
and excitations of the elements to minimize the side-lobe level
(SLL) at different scan directions and frequencies.

This overview reveals that several array processing algorithms
are currently available, but the design of a technique jointly
allowing MF beam/null synthesis, phase-only control, DRR re-
duction, and applicability to conformal structures still represents
an open problem. Therefore, to address this issue, this article
proposes a synthesis method enabling MF phase-only and DRR
controls for antenna arrays in which the geometry, the number
of elements, and the single-element patterns are all arbitrary.
The method, which extends the preliminary solution developed
in [18], relies on the alternating projection approach [19] to
optimize the array excitation vectors at the desired frequencies
in agreement with the assigned pattern masks. The optimized
vectors share a common amplitude, controlled through a DRR
constraint, and differ only for the phases, thus providing the re-
quired DRR and phase-only controls that simplify the realization
of the feeding network. Furthermore, mutual coupling effects are
included in the synthesis process with a wideband design that
is achieved by selecting a proper number of sufficiently close
discrete frequencies within the desired bandwidth. To prove the
effectiveness of the introduced MF feature in capturing different
characteristics of the monitored environment, the conceived
algorithm is applied to some typical beamforming problems
occurring in coastal monitoring scenarios. This task, which
relies on accurate electromagnetic simulations, involves both
small arrays of microstrip patch antennas and large arrays of
circular open-ended waveguides, so as to check the suitability

Fig. 1. Antenna array referred to a Cartesian systemO(x, y, z):P denotes the
generic observation point having direction specified by the unit vector r̂, while
r̄n for n = 1, . . .,N represent the positions of the array elements (identified by
blue dots).

of the proposed solution on operating vehicles of different
sizes.

The rest of this article is organized as follows. Section II
introduces the addressed problem. Section III describes the
developed algorithm. Section IV discusses the numerical results.
Finally, Section V concludes this article.

II. PROBLEM FORMULATION

Let us consider an antenna array of arbitrary geometry com-
posed by N elements (see Fig. 1). With reference to a Cartesian
system O(x, y, z), let r̄n = xn î+ yn ĵ+ zn k̂ be the position
of the nth element, î, ĵ, k̂ being the unit vectors of the Cartesian
axes. Besides, the generic direction of observation is denoted
as r̂ = sin θ cosφ î+ sin θ sinφ ĵ+ cos θ k̂, and θ and φ are the
zenith and azimuth angles, respectively. The radiation pattern of
the antenna array at the direction r̂ and working frequency f can
be expressed as

F (a; f ; r̂) =

N∑
n=1

an Fn (f ; r̂) (1)

where a = [a1, . . . , aN ] is the (complex) vector of the excita-
tions and Fn(f ; r̂) is the embedded element pattern of the nth
array element at the frequency f , i.e., the radiation pattern of the
entire array with the excitation vector en = [0, . . . , 1, . . . , 0],
having unity in the nth position and zero in others. The DRR of
a is defined as

DRR(a) =
maxn |an|
minn |an| (2)

which is in general larger than one. When (2) approaches unity,
all the array elements have the same excitation amplitude and
the efficiency of the antenna structure is maximized, but at
the expense of its flexibility. In fact, the unity DRR strongly
reduces the degrees of freedom of the problem and, in partic-
ular, the capability of realizing a fine control of the radiation
pattern shape. This reduced flexibility can be partly overcome
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by the use of the element positions as optimization variables,
resulting in the so-called sparse or a-periodic isophoric array
architectures [20], [21], [22]. However, the synthesis problem
in these cases is by far more complicated, the control of the
pattern shape is less accurate and the feeding design may be
complicated by the irregular arrangement of the elements [23].
Indeed, in addition to the influence on the antenna efficiency,
the DRR control in the case of periodic arrays may also lead to
simpler feeding networks, whose practical realization can be a
hard task and should hence be properly taken into account at the
implementation stage.

The defined arbitrary array is required to work at S dif-
ferent frequencies f1, . . ., fS . More precisely, at the generic
frequencyfs, the array pattern has to belong to a predefined mask
Ms={ms(r̂) : M

low
s (r̂)≤|ms(r̂)| ≤ M up

s (r̂)}, whereM low
s (r̂)

andM up
s (r̂) are two positive functions representing its lower and

upper bounds, respectively.
The problem considered in this article is that of finding

S excitation vectors a1, . . . ,aS , with as = [a1s, . . . , aNs] for
s = 1, . . . , S, which are able to produce radiation patterns be-
longing to the corresponding mask at each of the S desired fre-
quencies. In addition to this requirement, the optimized vectors
must be such that |an1| = · · · = |anS | for n = 1, . . . , N , i.e.,
the excitation amplitude of each array element has to remain the
same at all the S frequencies. Finally, the (common) excitation
DRR must not exceed the prescribed value Dmax. The overall
mathematical problem can be formulated as follows.

Determine a1, . . . ,aS in such a way that

F (as; fs; r̂) ∈ Ms, s = 1, . . . , S (3a)

|an1| = |an2| = · · · = |anS | = ξn, n = 1, . . . , N (3b)

DRR(ξ) ≤ Dmax (3c)

where condition (3a) imposes that the pattern at each frequency
belongs to the prescribed mask, condition (3b) imposes that the
excitation amplitude is the same at the S frequencies but can
be different among the elements, while, finally, condition (3c)
imposes that the DRR of the excitations does not exceed the
given threshold.

III. SYNTHESIS ALGORITHM

The developed algorithm is based on the alternating projection
approach [24], which is an iterative procedure for determining
a point belonging to the intersection between two sets. To this
aim, (3) must be first reformulated as an intersection finding
problem. This operation requires the definition of the set W,
whose elements are given by

w̃ = {α1, . . . ,αS , κ1 (r̂) , . . . , κS (r̂)} (4)

where, for s = 1, . . . , S, αs = [α1s, . . . , αNs] and κs(r̂) iden-
tify as arbitrary complex vectors and functions, respectively.
Subsequently, inside W, two subsets U and V are introduced,
whose elements are given by

ũ = {u1, . . . ,uS , g1(r̂), . . . , gS(r̂) :gs(r̂) ∈ Ms, s

= 1, . . . , S;

|un1| = · · ·= |unS | = ξn, n=1, . . . , N ; DRR(ξ) ≤ Dmax}
(5)

ṽ = {v1, . . . ,vS , F (v1; f1; r̂), . . . , F (vS ; fS ; r̂)}. (6)

In other words, the elements of W are 2S-tuples composed by
S arbitrary vectors having N complex elements and S arbitrary
complex scalar functions. The elements of U are instead com-
posed by S complex vectors, which satisfy constraints (3b) and
(3c), and by S scalar functions, which satisfy constraint (3a).
Finally, the elements ofV are composed by S arbitrary complex
vectors and the S patterns radiated by the adopted array at the
S selected frequencies. These settings imply that the elements
of V satisfy the array equation in (1), but not the constraints
in (3). An acceptable solution for the formulated problem has
hence to belong to both setsU andV. This leads to the requested
intersection finding problem, which can be solved through the
alternating projection approach by preliminarily defining the
squared distance between two elements w̃, w̃′ ∈ W as

ρ2 (w̃, w̃′) =
S∑

s=1

[‖αs −α′
s‖2E + ‖κs(r̂)− κ′

s(r̂)‖2
]

(7)

where ‖ · ‖E represents the Euclidean norm and ‖ · ‖ denotes
the mean-square norm. Using (7), the projector of point w̃ onto
the set X(⊂ W) can be defined as

PX : W → X

w̃ �→ x̃ = argmin
x̃∈X

ρ (w̃, x̃) . (8)

By consequence, this projector associates to w̃ the point(s)
x̃ of X having the minimum distance from w̃. The specific
expressions of the projector operators PU and PV are derived
in the following subsections. In this regard, it may be worth
to emphasize that, if the set X is closed, such a projection
point exists, and, if X is also convex, the projection is unique.
Otherwise, if X is not convex, more than one point could exist
and a proper selection procedure must be defined. With reference
to the here addressed problem, it is evident from (5) and (6) that
V is convex, but U is not because of the mask constraints [25].

Once the projection operators are characterized, the iterative
procedure

ũn+1 = PU[PV(ũn)], n = 0, 1, 2, . . . (9)

may be introduced to find a point belonging to the intersection
U ∩V by starting from a suitable point ũ0 ∈ U. Thanks to
the properties of the projector in (8) and of the distance in
(7), the sequence of distances from ũn to V is nonincreasing,
thus it converges to a point of U minimizing the distance from
V. As previously discussed, U is nonconvex, and, in addition,
the intersection U ∩V might be empty. For this reason, a
termination criterion must be introduced. This criterion states
that iteration (9) is stopped when

ρ(ũn,V) < ε or
ρ(ũn−1,V)− ρ(ũn,V)

ρ(ũn,V)
< δ (10)

where ε and δ are two suitable thresholds. Beside the termination
criterion, due to the nonconvexity of U , also a choice criterion
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must be adopted when more than one projection point is found.
The most suitable choice criterion (which is not critical [8])
depends on the application and is not discussed here. When the
iteration is stopped, the S vectors of ũ are chosen as the optimal
excitation vectors. With this choice, the phase-only control is
ensured, as well as the DRR reduction, which are required by
constraints (3b) and (3c), respectively. On the other hand, it may
be worth to remark that, due to the definition (5) of the set U ,
the S scalar functions of ũ satisfy constraint (3a), but have no
relation with the antenna array. Thus, the patterns radiated by
the array when excited by the optimal excitation vectors at the S
considered frequencies might, in general, not strictly belong to
the masks (unless ρ(ũn,V) = 0). However, as it will be shown
in Section IV, really satisfactory patterns are typically obtained,
denoting that constraint (3a) is closely approached.

A. Projector PU

Given the point w̃ = {α1, . . . ,αS , κ1(r̂), . . . , κS(r̂)} ∈ W,
the projection of w̃ onto the set U is the point ũ ∈ U that
minimizes the squared distance ρ2(w̃, ũ) in (7). Following the
analysis in [24], the vectors us, for s = 1, . . . , S, can be found
as

∠uns = ∠αns, n = 1, . . . , N ; s = 1, . . . , S (11)

|ξ′n| =
1

S

S∑
s=1

|αns|, n = 1, . . . , N. (12)

Now, if DRR(ξ′) ≤ Dmax, then |uns| = ξ′n for s = 1, . . . , S.
However, the vector ξ′ = [ξ′1, . . . , ξ

′
N ] derived by (12) might

not satisfy condition (3c). When this event occurs, the pro-
cedure described in [26] can be used to obtain a vector ξ
such that DRR(ξ) ≤ Dmax and |uns| = ξn for s = 1, . . . , S.
Accordingly, the functions gs(r̂) that minimize ρ2(w̃, ũ) can be
expressed as

gs(r̂) =

⎧⎪⎨
⎪⎩
M low

s (r̂) gs(r̂)
|gs(r̂)| , if |gs(r̂)| < M low

s (r̂)

M up
s (r̂) gs(r̂)

|gs(r̂)| , if |gs(r̂)| > M up
s (r̂)

gs(r̂), otherwise

(13)

which completes the evaluation of ũ = PU[w̃] .

B. Projector PV

Given the point w̃ = {α1, . . . ,αS , κ1(r̂), . . . , κS(r̂)} ∈ W,
the projection of w̃ onto the set V is the point ṽ ∈ V that
minimizes the squared distance ρ2(w̃, ṽ) in (7). Thanks to the
definition of the set V in (6), ρ2(w̃, ṽ) can be expressed as a
function of the vectors vs, which, after some manipulations,
may be written as

vs = [I+ Js]
† (hs +αs), s = 1, . . . , S (14)

where [·]† denotes the matrix pseudo inverse [27], I is theN ×N
identity matrix, and Js = [F s

mn], with

F s
mn =

∫
Ω

Fn (fs; r̂) F
∗
m (fs; r̂) dΩ, n,m = 1, . . . , N

(15)

hsn =

∫
Ω

κs (r̂) F
∗
n (fs; r̂) dΩ, n = 1, . . . , N (16)

where [·]∗ denotes the complex conjugate. Once the vectors
vs are calculated by (14), the projection ṽ = PV[w̃] can be
evaluated by using the definition of the set V in (6).

IV. NUMERICAL EXAMPLES

This section presents two numerical examples to check the
effectiveness of the proposed method, which is implemented in
Matlab R2022b on a personal laptop equipped with an Intel1
Core2 i7-12800H CPU at 2.40 GHz with 32 GB RAM. The
examples involve MF phase-only pattern synthesis problems
applied to a dual-frequency linear array working in C- and
X-band and to a large X-band multiring antenna array. In both
cases, the upper and lower bounds of the masks are identified
by piecewise linear functions. Concerning the starting point
(whose choice is indeed not critical [8]), the S vectors of ũ0

are zero vectors, while the corresponding S functions are the
lower bounds of the masks. The thresholds ε = δ = 10−6 are
selected for the termination condition in (10), and the pinv
Matlab function is used with its default setting for the evaluation
of the pseudo-inverse in (14).

A. Example 1: Uniform Linear Array of Patch Antennas

The first example considers, as single array element, a comb-
slot-loaded microstrip patch antenna of edge L = 14.5 mm
[Fig. 2(a)], whose structure relies on the design proposed in [6].
Precisely, the use of a comb-shaped slot, loaded on to a metallic
patch allows one to obtain both electric and magnetic radiation
characteristics, whose simultaneous usage improves the radiat-
ing performance. In addition, to achieve the desired electric and
magnetic radiation, a modified L-probe feeding system with a
capacitive matching ring arrangement is designed following the
procedure described in [6].

The corresponding reflection coefficient, which is shown in
Fig. 2(b), enables the radiator to operate at the S = 2 frequen-
cies f1 = 6.5 GHz and f2 = 11.1 GHz, corresponding to the
wavelengths λ1 = 46.5 mm and λ2 = 26.9 mm, respectively.
The central frequency f = 9 GHz is instead not included, since
the relative pattern is in this case inconsistent, as it often hap-
pens for some bands with multiband elements [6]. The com-
plete structure, identifying a uniform linear array, consists of
N = 16 radiators equally spaced on the x-axis and lying in
the x− y plane [Fig. 2(c)]. The interelement distance, i.e., the
distance between the centers of two adjacent patches, is equal
to d = 15.3 mm (corresponding to 0.33λ1 and 0.57λ2). With
these choices, the overall antenna array has a planar, compact,
lightweight structure with potential application in many airborne
and autonomous aircraft vehicle (UAV) technologies. In addi-
tion, the dual frequency capability, allows the antenna to be
suitable for different applications. In fact, the lower frequency
f1 belongs to the C-band and is suitable for aeronautical radio
navigation, in particular for airborne radar altimeter as well as for
airborne vehicle telecommand, telemetry, and radio proximity
fuse applications. Moreover, the higher frequency f2 belongs
to the X-band and is typically used for synthetic aperture radar
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Fig. 2. Example 1 - Comb-slot-loaded microstrip patch antenna array. (a) Single element (blue and yellow colors identify FR4 and copper, respectively, red dot
represents the position of the capacitive matching ring used in the L-probe feeding system from the metallic bottom layer. (b) Reflection coefficient. (c) Antenna
array.

TABLE I
EXAMPLE 1 - OPTIMIZED EXCITATION VECTORS (IN AMPLITUDE AND PHASE) IN THE ABSENCE OF DRR CONSTRAINTS

(SAR) imaging and for low-cost compact microwave remote
sensing. Further antenna elements operating in these frequency
bands may be found in [28], [29], [30], and [31]. The embedded
element patterns Fn(fs; θ), with θ denoting the angle from the
array axis, are evaluated for n = 1, . . . , 16 and s = 1, 2 in the
positive x− z half plane by using the electromagnetic simulator
CST Microwave Studio Suite [32], to properly account for the
mutual coupling effects among the radiators. The maximum
gains at f1 and f2 are 4.32 and 1.64 dBi, respectively. The
S = 2 masks are subsequently defined to have a pencil-beam
shape with a pointing direction at θd = 90◦ and a −20 dB SLL.
In addition to these requirements, the first mask is conceived
to impose a null at θn = 125◦ to reject possible interferers
incoming from that direction or to suppress reflections from an
ambiguous region.

The first set of results is derived by applying the developed
algorithm in the absence of DRR constraints. The obtained nor-
malized patterns as a function of the zenith angle are reported in

Fig. 3, while the optimized excitation vectors are listed in Table I.
The values in the table further reveal that this performance is
achieved by adopting a common DRR, approximately equal
to 2.57. The curves in the figure show that the shape of the
synthesized patterns properly match all the three requirements
imposed by the defined masks: 1) main-lobe shape, 2) SLL, and
3) null depth. In strict mathematical terms, constraint (3b) is of
course rigorously satisfied, while constraint (3a) is really closely
approached.

The maximum gains obtained by these configurations are
13.1 dBi at f1 and 16.0 dBi at f2. Regarding this first solution, it
is worth to observe that the higher the DRR value, the higher the
amplitude unbalance and the mutual coupling effects among the
antenna elements. The first aspect might strongly complicate
the realization of the feeding network, requiring a careful power
division system design or, in the case of active arrays, the need
for different levels of operation for the power amplifiers, which
cannot operate at the same (optimal) value. This mismatch
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Fig. 3. Example 1 - Normalized patterns obtained at (a) f1 = 6.45 GHz and
(b) f2 = 11.14 GHz in the absence of the DRR constraints (red line: mask
upper bound, green line: mask lower bound, blue line: synthesized pattern). The
piecewise-defined lower and upper bounds of the masks are characterized by
the following values. M low

1 (0◦) = M low
1 (84◦) = 10−8, M low

1 (87◦) = M low
1

(93◦) = .9, M low
1 (96◦) = M low

1 (180◦) = 10−8; M
up
1 (0◦) = M

up
1 (79◦) =

10−1, M
up
1 (85◦) = M

up
1 (95◦) = 1.1, M

up
1 (101◦) = M

up
1 (180◦) = 10−1,

M
up
1 (125◦) = 10−2.5; M low

2 (0◦)=M low
2 (86◦) = 10−8, M low

2 (89◦)=M low
2

(91◦) = 0.9, M low
2 (94◦) = M low

2 (180◦) = 10−8; Mup
2 (0◦) = M

up
2 (83◦) =

10−1, Mup
2 (87◦) = M

up
2 (93◦) = 1.1, Mup

2 (97◦) = M
up
2 (180◦) = 10−1.

might result in a significant loss of dc-to-RF efficiency, which is
undesirable in power-sensitive scenarios, such as, for example,
satellite communications and airborne radar [22]. Therefore, to
partly reduce the DRR value and hence simplify the feeding
network without excessively decreasing the number of available
degrees of freedom of the array, the proposed algorithm is run
again but in the presence of a DRR constraint with Dmax = 2.
This leads to the second set of results, corresponding to the
normalized patterns reported in Fig. 4 and the excitation vectors
listed in Table II. These curves and values reveal the capability
of the presented method to maintain quite satisfactory pattern

Fig. 4. Example 1 - Normalized patterns obtained at (a) f1 = 6.45 GHz and
(b) f2 = 11.14 GHz for Dmax = 2 (red line: mask upper bound, green line:
mask lower bound, blue line: synthesized pattern).

shapes simultaneously reducing the DRR of the excitations.
Furthermore, concerning the maximum gains, no degradation
occurs, since 13.1 and 16.0 dBi are still obtained at f1 and f2,
respectively. Note that, according to the imposed phase-only
control constraint, for both sets of results referred to this first
example, the switch from one pattern to another requires the
selection of the sole set of excitation phases, since the set of
amplitudes, being unique, is common to the two patterns.

B. Example 2: Large Multiring Array of Isotropic Elements

The second example considers a concentric array lying on the
x− y plane and consisting of N = 652 evenly spaced radia-
tors. More precisely, the elements are organized over NR = 16
rings centered at the origin in such a way that the interelement
distance is d = λmax/2, where λmax represents, among the S
wavelengths involved in the synthesis process, the maximum
one. The adopted geometry is shown in Fig. 5, while the ring radii
and the number radiators over each ring are reported in Table III.
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TABLE II
EXAMPLE 1 - OPTIMIZED EXCITATION VECTORS (IN AMPLITUDE AND PHASE) FOR Dmax = 2

TABLE III
EXAMPLE 2 - RADIUS AND NUMBER OF ELEMENTS OF EACH RING

Fig. 5. Example 2 - Array geometry.

This physical system is required to cover a 50% bandwidth
by operating at S = 3 equispaced frequencies: f1 = 7.5 GHz,
f2 = 10.0GHz, and f3 = 12.5GHz, corresponding to the wave-
lengths λ1 = λmax = 4.0 cm, λ2 = 3.0 cm, and λ3 = 2.4 cm,
respectively. These frequencies are often used in SAR imaging
applications for the development of a low-power high-sensitivity
X-band systems capable of imaging small radar-cross-section
targets using very low transmitted power [33]. For the em-
bedded elements, identical circular open-ended waveguides are
assumed, whose patterns in (1) may be modeled according
to [34] as

Fn (fs; r̂)

= (cos θ)qs exp

[
j
2π

λs
(xn sin θ cosφ+ yn sin θ sinφ)

]
,

s = 1, . . . S; n = 1, . . . , N (17)

where qs = 2.07[(d/λs)
2 − 0.5]. The S = 3 masks are defined

still considering the upper x− z half plane and adopting a

pencil-beam shape, but now selecting θd = 0◦ as pointing di-
rection, and imposing a –30 dB SLL for s = 1, 2 and a –40 dB
one for s = 3.

Similarly to the previous example, the algorithm is first used
without DRR limitations, while subsequently it is run again
by imposing increasingly stringent DRR constraints. In par-
ticular, a second set of simulations is carried out by selecting
Dmax = 4 and a third one by imposing Dmax = 1. The three
sets of resulting normalized patterns are reported in Fig. 6 as
a function of θ, whose negative and positive values refer to
the half-planes corresponding to the azimuth angles equal 180◦

and 0◦, respectively. This representation has been preferred
to the previous one to avoid the split of each main beam in
two parts. The first three patterns in Fig. 6(a)–(c) reveal that,
also for this scenario, constraint (3a) is approximated quite
satisfactorily. However, this performance is obtained for a DRR
approximately equal to 12.3 (the excitations in this case are not
listed due to their large number), which may result too high for
implementation purposes. For this reason, the adoption of DRR
constraints becomes necessary. The second set of patterns in
Fig. 6(d)–(f) shows that the shape and SLL requirements can be
still properly satisfied by imposing a DRR lower than one third
of the previous one, with significant benefits in terms of feeding
network simplification. An acceptable behavior may also be
observed in Fig. 6(g)–(i) for the limiting case corresponding to
Dmax = 1, obtained applying the very stringent equiamplitude
requirement. In fact, except for a moderate distortion of the
main-lobe shape for f2 and a slight overcoming of the required
SLL for f3, all patterns are in very good agreement with the
desired specifications. Therefore, in this second application, the
pattern switching is not only enabled by phase-only control, as
in the previous example, but, if theDmax = 1 solution is chosen,
might be even realized just using phase shifters and completely
avoiding the precise design of unbalanced power dividers, since
the amplitudes would be all unitary. This solution, in addition to
representing the simplest design, is also the most energy efficient
one in the transmitting mode, since it allows all the amplifiers
to work at their optimum. Finally, also in this second example
the directivity values, which are listed in Table IV, are quite
satisfactory and do not experience significant modifications as
the DRR constraint becomes more stringent.
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Fig. 6. Example 2 - Normalized patterns obtained at (a), (d), (g) f1 = 7.5 GHz, (b), (e), (h) f2 = 10.0 GHz, and (c), (f), (i) f3 = 12.5 GHz in the
absence of (a)–(c) DRR constraints, for (d)–(f) Dmax = 4, and for (g)–(i) Dmax = 1 (red line: mask upper bound, green line: mask lower bound, blue line:
synthesized pattern). The piecewise-defined lower and upper bounds of the masks are characterized by the following values. M low

s (−90◦) = M low
s (−5◦) =

10−8, M low
s (−1.25◦) = .9; Mup

s (−90◦) = M
up
s (−8◦) = 10−1.5, Mup

s (−5.75◦) = 1.1; s = 1, 2; M low
3 (−90◦) = M low

3 (−2.5◦) = 10−8, M low
3 (−0.5◦) =

.9; Mup
3 (−90◦) = M

up
3 (−5◦) = 10−2, Mup

3 (−2◦) = 1.1.

TABLE IV
EXAMPLE 2 - DIRECTIVITY VALUES IN dBi

V. CONCLUSION

An innovative method of phase-only synthesis for MF con-
formal antenna arrays with DRR constraints has been proposed.
The method allows the optimization of the element excitations
in such a way that the power pattern of the array belongs to
assigned masks at a given number of desired frequencies. Thanks
to the phase-only constraint, the pattern switching at the different
frequencies can be enabled by the dynamic selection of the sole

phases while maintaining the amplitudes unmodified, whose
DRR may be, in addition, controlled during the optimization pro-
cess. This provides a certain versatility to the conceived method,
thus enabling a positive tradeoff between pattern accuracy and
implementation simplicity. Beside these aspects, the numerical
results have further revealed the capability of the developed
solution to account for the mutual coupling effects between
the radiators and to operate on large arrays with hundreds of
elements by adopting even unitary excitation amplitudes.
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