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We study the pattern formation of a thin film flowing under an inclined planar sub-11

strate. The phenomenon is studied in the context of the Rayleigh-Taylor instability12

using the lubrication equation. Inspired by experimental observations, we numerically13

study the thin film response to a streamwise-invariant sinusoidal initial condition. The14

numerical response shows the emergence of predominant streamwise-aligned structures,15

modulated along the direction perpendicular to the flow, called rivulets. Oscillations of16

the thickness profile along the streamwise direction do not grow significantly when the17

inclination is very large or the liquid layer very thin. However, for small inclinations18

or thick films, streamwise perturbations grow on rivulets. A secondary stability anal-19

ysis of one-dimensional and steady rivulets reveals a strong stabilization mechanism20

for large inclinations or very thin films. The theoretical results are compared with21

experimental measurements of the streamwise oscillations of the rivulet profile, showing22

a good agreement. The emergence of rivulets is investigated by studying the impulse23

response. Both the experimental observation and the numerical simulation show a marked24

anisotropy favoring streamwise-aligned structures. A weakly non-linear model is proposed25

to rationalize the leveling of all but streamwise-aligned structures.26

1. Introduction27

Coating flows are ubiquitous in nature and industrial applications. Nature provides28

astonishing examples of the capability of coating flows to modify the topography of29

the substrate via chemical and thermodynamical reactions. The structures that can be30

observed in limestone caves, known as speleothems, are characterized by a morphogenesis31

that is related to the hydrodynamic instability of a coating flow (Short et al. 2005; Meakin32

& Jamtveit 2010; Camporeale 2015; Bertagni & Camporeale 2017). These fascinating33

structures originate from the interaction between hydrodynamics and chemistry. The34

control of the instability related to coating processes is an important task in industrial35

applications as many fabrication processes involve the presence of a thin film flowing on36

a substrate (Weinstein & Ruschak 2004). Thin elastic shells of constant thickness can37

be fabricated by polymerization of the film, as performed in Lee et al. (2016). Marthelot38

et al. (2018b) showed a remarkable example of control of the flow instability to produce39

textured surfaces, by rotation of a cylindrical substrate.40
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The Rayleigh-Taylor instability is a phenomenon that occurs when a heavier fluid is41

placed above a lighter one. When a horizontal flat interface is considered, under the only42

effect of gravity, all wavelengths are unstable (Rayleigh 1882; Taylor 1950). The introduc-43

tion of capillary effects bounds the range of unstable wavelengths (Chandrasekhar 2013).44

When an upper wall confines the overhanging fluid, the resulting pattern is characterized45

by lenses arranged in hexagonal or square arrays (Fermigier et al. 1992). The lenses may46

saturate for small enough initial thickness (Marthelot et al. 2018a), or algebraically grow47

(Yiantsios & Higgins 1989; Lister et al. 2010), eventually resulting in dripping droplets.48

The problem of the dynamics of a thin film is usually studied within the context of the49

lubrication approximation. The model assumes much larger characteristic lengths in the50

directions which lay along the substrate than in the normal-to-the-substrate direction51

(Babchin et al. 1983; Ruschak 1978; Wilson 1982; Weinstein & Ruschak 2004).52

In the case of an inclined substrate, the route from a flat film towards dripping drops53

still needs to be analyzed. When the substrate is tilted with respect to the horizontal54

direction, the gravity component parallel to the substrate creates a flow. In this work, we55

consider a configuration with a permanent influx, in opposition to the case of cylindrical56

and spherical substrates in which a transient release of fluid is studied (Balestra et al.57

2018a,b). A strong modulation of the thickness along the direction perpendicular to the58

flow (spanwise direction) is identified as rivulet formation (Charogiannis et al. 2018).59

The presence of a predominant rivulet pattern when the inertia of the fluid is negligible60

was experimentally observed by Charogiannis et al. (2018). Similar rivulet patterns were61

observed by Rietz et al. (2017), in an experimental set-up where gravity was replaced62

by centrifugal acceleration. Lerisson et al. (2019) showed that a state characterized by63

lenses traveling on the rivulets may emerge, depending on the inclination angle and flow64

rate.65

The stability analysis was performed by linearizing the flow equations around a66

constant thickness, revealing that the flat film solution is always unstable to perturbations67

(Brun et al. 2015). These authors found experimentally a link between dripping and the68

absolute instability of the flow, modeled with the one-dimensional lubrication equation.69

The model was refined introducing inertial and viscous extensional stresses (Scheid et al.70

2016; Kofman et al. 2018). These authors showed that the occurrence of the absolute71

instability does not predict the dripping satisfactorily.72

In Lerisson et al. (2020) an experimental set-up able to continuously feed an inclined73

planar substrate with fluid was presented. Using a very viscous fluid such that inertial74

effects are negligible, the natural emergence of elongated, streamwise-oriented, steady75

patterns was observed. A detailed analysis of the appearance of these so-called rivulets76

was then performed, both when a spanwise periodic forcing is imposed at the inlet and77

when the rivulets emerge naturally from the lateral boundaries of the experiment. The78

forced dynamics revealed that there is a narrow range of attainable spacings of rivulets.79

The non-linear simulations agreed with the thickness measured in experiments, observing80

steady and streamwise-invariant rivulet states, periodic along the spanwise direction. The81

one-dimensional and saturated rivulet profile was recovered by simple static arguments,82

i.e. the equilibrium between capillary effects and hydrostatic pressure gradient (Roman83

et al. 2001; Zaccaria et al. 2011; Duprat & Stone 2015). The correct shape was obtained84

imposing the local flow rate along the direction transverse to the rivulet profile.85

In this work, we aim at rationalizing the observations of steady rivulet patterns by86

investigating the intrinsic rivulets selection and their stability.87

The paper is organized as follows. We first introduce an experimental visualization88

for the evolution of the film when the inlet is steadily forced along the spanwise di-89

rection. A numerical study for an initial condition that mimics these experimental90
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(a) (b)

Figure 1. (a) Sketch of the experimental apparatus with the detail of the sinusoidal and
comb-like blades for the steady forcing at the inlet along the spanwise direction. (b) Photo
of the experimental apparatus.

conditions, namely a regular pattern of sinusoidal perturbations in the spanwise direction,91

is performed. Periodic boundary conditions in all in-plane directions are imposed. The92

experimental and numerical results are then rationalized by a secondary stability analysis.93

We perturb the one-dimensional rivulet profile along the streamwise direction with a94

normal mode expansion and obtain a dispersion relation characterizing the secondary95

growth of lenses. We thus present a comparison of the secondary stability study with96

experimental measurements of the spatial amplification of disturbances over steady97

rivulets. The last section is devoted to the study of the emergence of rivulets from a98

flat film when the film is impulsively perturbed. We introduce a qualitative experimental99

visualization when the film is excited by a localized perturbation in the thickness, the100

results of which are numerically reproduced. A weakly non-linear model is eventually101

proposed to rationalize these observations.102

2. Experimental apparatus103

The experimental apparatus is the same described in Lerisson et al. (2020) (see Fig.104

1). The substrate is an orientable glass plate of length L̂x = 600 mm and width Ŵi =105

300 mm, whose angle with respect to the vertical is varied from θ = 20◦ to θ = 80◦.106

The fluid is silicon oil (Bluestar Silicons 47V1000) of density ρ = 974 kg/m3, viscosity107

µ = 1089 mPa, and surface tension coefficient γ = 21 mN/m. The oil is injected through108

a horizontal rectangular opening of a reservoir and flows beneath the substrate. The flow109

rate is driven by the height difference with another reservoir that creates a hydrostatic110
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pressure gradient. The flow rate can be varied by changing the height difference of the111

two reservoirs. The system is designed in such a way that it is possible to steadily modify112

the inlet condition in the spanwise direction by adding a sinusoidal or a comb-like blades113

(see sketches in Fig. 1(a)). The sinusoidal blade is placed below the inlet with an angle114

of 30◦ with respect to the substrate, and the fluid fills the gap between the glass and the115

blade. Systematic measurements of the thickness give a thickness perturbation amplitude116

of ' 250µm. The comb-like blade presents teeth of thickness t̂t = 1 mm, streamwise size117

of l̂dt = 5 mm, and spanwise size of 2 mm. The teeth occlude the inlet and the fluid covers118

them by capillarity.119

The volumic flow rate q is measured by weighting the oil leaving the substrate for 180120

seconds. We define the equivalent Nusselt thickness hN as well as the reduced capillary121

length l∗c :122

hN =

(
3νq

Ŵig cos(θ)

)1/3

, l∗c =
lc√

sin(θ)
, (2.1)

where lc =
√
γ/(ρg) is the capillary length. We define a coordinate system (x̂, ŷ, ẑ),123

where x̂, ŷ and ẑ are respectively the streamwise, spanwise and normal-to-the-substrate124

directions.125

We employ a qualitative visualization technique based on shadowgraphs that are126

constructed looking at the distortion of the rays coming from a point light source127

through the liquid film. The surface deformation will focus or defocus the initially128

homogenous light and forms patterns that are highly sensitive to slight deformations.129

The combination of small and large deformations (Settles 2001; Moisy et al. 2009)130

within the same experiment makes the visualization impossible to relate to quantitative131

measurements of the thickness amplitude. However, the experiment gives access to the132

phases of perturbations, and thus to qualitative observations of the emerging pattern.133

We measure the film thickness using the confocal chromatic sensor STIL-CCS located134

on the upper part of the glass plate. We choose an acquisition rate of 100 Hz. The position135

of the sensor can be adjusted in the normal-to-the-substrate and spanwise directions once136

the streamwise location is selected.137

3. Observations of the secondary stability and instability of rivulets138

3.1. Experimental observations139

In this section, we briefly present selected results from the study of Lerisson et al.140

(2020) in the presence and absence of the spanwise inlet forcing devices shown in Fig.141

1(a). Fig. 2(a) shows a film thickness distribution obtained using an absorption technique142

(reproduced from Lerisson et al. (2020)). The inlet spanwise thickness profile is amplified,143

and streamwise-saturated and steady rivulets are observed downstream. The saturated144

rivulets are periodic along the spanwise direction. There is a narrow range of attainable145

spacings, when the inlet is forced, around the value L̂r = 2π
√

2l∗c (value shown in146

Fig. 2(a)), i.e. the most amplified wavelength in the dispersion relation of the flat film.147

Interestingly, even in the absence of the spanwise inlet forcing devices, the predominant148

spacing of the emerging rivulet structures is L̂r (see Fig. 2(b)).149

However, far downstream in Fig. 2(a), oscillations appear on the rivulet profiles. These150

oscillations are amplified and rivulets carrying traveling lenses are observed, for these151

values of angle and flow rate.152
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(a) (b)

Figure 2. (a) Film thickness for θ = 39◦ and hN = 1515µm (u = 1.5), steady inlet forcing

with the sinusoidal blade at the wavelength L̂f = 2π
√

2lc/
√

sin θ, extracted from Lerisson et al.
(2020). The thickness is measured with the absorption method and normalized by the flat film

thickness hN . The in-plane distances are normalized by the reduced capillary length lc/
√

sin θ.
(b) Typical rivulet pattern in the absence of the inlet forcing devices (Fig. 1(a)), θ = 20◦.

3.2. Numerical observations153

The aim of this section is to numerically study the emerging patterns for an initial154

condition that mimics the experimental conditions described in the previous section.155

We consider a gravity-driven thin film of viscous Newtonian fluid flowing under a156

planar substrate inclined with respect to the vertical with an angle θ. We introduce the157

following adimensionalization:158

x = x̂/l∗c ; y = ŷ/l∗c ; z = ẑ/hN ; t = t̂/τ∗, (3.1)

where τ∗ = νl2c/h
3
N sin2(θ)g is the characteristic time scale of the Rayleigh-Taylor159

instability. The numerical model for the evolution of the film thickness h is the lubrication160

equation in which the complete expression of the curvature is retained (Ruschak 1978;161

Wilson 1982; Weinstein & Ruschak 2004):162

∂th+ uh2∂xh+
1

3
∇ ·
[
h3∇h+ h3∇κ

]
= 0, (3.2)

where ∇ operates in the (x, y) directions, u = cot (θ)l̃∗c and l̃∗c = l∗c/hN . The linear163

advection velocity u corresponds to the surface film velocity at which linear interface164

thickness perturbations with respect to a flat condition are advected downstream (Brun165

et al. 2015). In physical quantities, an increase of the parameter u implies a decrease of166

the flow rate (since u is inversely proportional to hN ) or θ. The curvature κ reads:167

κ =
∂xxh(1 + (∂yh)2) + ∂yyh(1 + (∂xh)2)− 2∂xyh∂xh∂yh

(1 + (∂xh)2 + (∂yh)2)3/2
. (3.3)

The two-dimensional equation is implemented in COMSOL Multiphysics. We use the168

built-in Finite Elements Method solver, exploiting cubic elements with Lagrangian shape169

functions and a fully implicit time solver. The largest mesh element size is half of the170

reduced capillary length l̃∗c . The domain size is Lx × Ly, where Lx = 231 and Ly = 106,171

leading to approximately 50000 elements. A convergence analysis was performed, showing172

that convergence is achieved for this characteristic size of the elements. This characteristic173

element size was also validated by the experimental and numerical comparisons in174
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Figure 3. Non-linear response in the case of a streamwise-invariant sinusoidal initial condition,
for (a) u = 5.45 and (b) u = 1.5. From left to right: t = 1000, t = 1200. Results are reported
in the moving reference frame at the linear advection velocity (ξ = x− ut, y).

Lerisson et al. (2020). The equations are solved for the variables (h, κ). For all the175

considered cases, periodic boundary conditions are used.176

Experimentally, in the absence of the spanwise inlet perturbation device described in177

Fig. 1(a), the rivulet spacing is the one dictated by the most amplified mode in the flat178

film dispersion relation, i.e. Lr = 2π
√

2 (Lerisson et al. 2020). We numerically study179

the non-linear time evolution when a streamwise-invariant sinusoidal initial condition is180

considered. We choose as initial condition a sinus of wavelength Lr = 2π
√

2:181

h(x, y, t = 0) = h̄N

(
1 + A cos

(
2πy

Lr

))
, (3.4)

where A = 10−2, and h̄N = 0.54 is the initial value of the thickness that gives, for a182

pure streamwise saturated structure, the same local flow rate in the streamwise direction183

as a flat film of thickness h = 1 (Sec. 5.3 in Lerisson et al. (2020)).184

We introduce the moving reference frame at the linear advection velocity u (ξ =185

x − ut, y). Fig. 3 shows the evolution of the thickness with time for (a) u = 5.45 and186

(b) u = 1.5. For visualization purposes, we focus in the region ξ ∈ [−8π
√

2, 8π
√

2] and187

y ∈ [−6π
√

2, 6π
√

2]. In both cases, the streamwise invariant initial condition is amplified188

and reaches, at t = 800, a saturated state in the streamwise direction. For (a) u = 5.45,189

we do not observe any further evolution of the pattern for t > 800. For (b) u = 1.5,190

at t = 800 the rivulet profiles saturate. For t > 800, however, streamwise thickness191

perturbations grow, and at t = 1200 the flow is characterized by lenses traveling on the192

rivulets.193

The streamwise-invariant sinusoidal initial condition is amplified leading to a rivulet194

pattern saturated in space and time, periodic along the spanwise direction. The absence195

(resp. presence) of observable streamwise perturbations on the rivulet profiles at high196

(resp. low) values of u suggests that the stability of the rivulet profile to streamwise197

perturbations may be directly related to the linear advection velocity.198

The experimental observations of predominant spanwise-periodic rivulet patterns and199

the occurrence of lenses on the rivulets are confirmed by the non-linear simulations with200

periodic boundary conditions. In the following, we aim at rationalizing the emergence of201

predominant rivulets structures and their destabilization.202



Instability of a thin viscous film flowing under an inclined substrate 7

Figure 4. Periodic rivulet profile (black line) used for the stability analysis, compared with the
results of the pendulum equation of Section 5.4 of Lerisson et al. (2020) (red circles), and with
the experimental results for three central rivulets (grey dots), from Lerisson et al. (2020), for
10 transverse measurements at two different streamwise locations, at θ = 39◦ and different hN .
The red dashed line denotes the mean thickness h̄N of the rivulet.

4. Secondary stability analysis of rivulets203

In Sec. 3.1 it was experimentally shown that rivulet structures grow in the domain204

and saturate to a steady and spanwise-periodic state, invariant along the streamwise205

direction. However, for low values of u and at large distances from the inlet, the rivulet206

profile undergoes an instability and traveling lenses emerge on the rivulet structures, as207

shown in Fig. 2(a). The saturation of the rivulet structures and the occurrence of lenses208

was also observed in the non-linear numerical simulation of Fig. 3. No lateral interactions209

between rivulets are observed as the lenses grow. Here, we study the robustness of the210

saturated rivulet pattern via a secondary stability analysis. We first introduce the steady,211

streamwise-invariant and spanwise-periodic rivulet profile Hr(y), and then we focus on its212

local stability properties when perturbed along the streamwise direction x. The validity213

of the local stability analysis is limited to the regions where steady and one-dimensional214

rivulets are observed.215

4.1. Baseflow216

In this section, we define the saturated rivulet profile Hr(y), serving as baseflow for the217

local stability analysis. The numerical baseflow is the large-time solution (t = 10000) of218

the one-dimensional model presented in Section 5 of Lerisson et al. (2020). The profile, of219

periodic wavelength Lr, is given by a one-dimensional model in which the flow rate in the220

streamwise direction coincides with the one of a flat film of thickness h = 1, leading to a221

mean value h̄N = 0.54 of the thickness of the rivulet. The numerical procedure revealed222

that the rivulet profile is slowly saturating to a steady state Hr(y). In Fig. 4, we report223

the numerical periodic profile at t = 10000 (solid line) used for the stability analysis.224

The rivulet is characterized by a central lobe of large thickness that saturates to a steady225

profile described by the pendulum equation (red circles in Fig. 4), while the side lobes (of226

very low thickness) are slowly draining with a power law t−1/2 (Lister et al. 2010). It is227

remarkable that, with the considered adimensionalization, the profiles are independent of228

u, i.e. there is a unique rivulet shape (Lerisson et al. 2020). The numerical profile agrees229

well with the experimental results (dots in Fig. 4) and can therefore be safely used as230

baseflow Hr(y) for the stability analysis.231
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4.2. Dispersion relation232

Following the classical approach of the local stability analysis, we consider as a base233

state the single, spanwise-periodic and steady rivulet Hr(y) described in the previous Sec.234

4.1. The quasi-steadiness of the rivulet profile allows us to neglect the slow evolution of235

the side lobes at long times and thus to consider a normal mode expansion in time and236

along the direction in which the base state is invariant, i.e. the streamwise direction x237

(Schmid et al. 2002). The spanwise periodicity governing the base state Hr(y) is also238

enforced on the perturbation. The following normal mode decomposition is therefore239

used:240

h(x, y, t) = Hr(y) + εη̃(x, y, t) = Hr(y) + εη(y)ei(kxx−ωt), ε� 1, (4.1)

where η̃ is the thickness perturbation with respect to the baseflow profile Hr(y). By
considering the two-dimensional non-linear equation Eq. (3.2) and introducing the normal
mode decomposition Eq. (4.1), one obtains, up to O(ε):

ε∂tη̃ + εuH2
r∂xη̃ +

1

3
∂y

[
H3
r

(
dHr

dy
+

dκ(0)

dy

)
+ εH3

r∂y η̃

+εH3
r∂yκ̃(1) + 3εH2

r

(
dκ(0)

dy
+

dHr

dy

)
η̃

]
+
ε

3
∂x
[
H3
r (∂xκ̃(1) + ∂xη̃)

]
= 0, (4.2)

where κ(0) is the baseflow curvature, i.e. Eq. (3.3) evaluated for the baseflowHr(y), κ(0) =241

d2Hr

dy2 /(1 + (dHr

dy )2)3/2. Furthermore, κ̃(1) is the first order term of the curvature, i.e. the242

Jacobian of the curvature evaluated in the baseflow and applied to η̃ (κ̃(1) = [∂η̃κ(Hr)]η̃).243

The full expression of the operator ∂η̃κ(Hr) is reported in Appendix A. Deriving this244

expression with respect to x and y, we obtain ∂xκ̃(1) = ikxκ(1)(y)exp(i(kxx− ωt)) and245

∂yκ̃(1) =
dκ(1)

dy (y)exp(i(kxx− ωt)).246

At O(1) the baseflow equation is recovered, while at O(ε) one obtains the following
evolution equation for the perturbation:

− iωη + ikxuH
2
r η +

1

3

d

dy

[
3H2

r

(
dHr

dy
+

dκ(0)

dy

)
η

+H3
r

(
dκ(1)

dy
+

dη

dy

)]
− 1

3
k2x
[
H3
r

(
κ(1) + η

)]
= 0, (4.3)

which is the dispersion relation Dr(ω, kx) = 0. The baseflow Hr(y) can be perturbed247

(i) imposing the streamwise wavenumber kx ∈ R and looking at the temporal evolution248

through the complex frequency ω ∈ C (temporal stability analysis) or (ii) imposing a249

temporal forcing of real frequency ω and looking at the spatial amplification of the250

perturbation, embodied by the complex spatial wavenumber kx ∈ C (spatial stability251

analysis).252

The numerical implementation of Eq. (4.3) is performed in MATLAB by a spectral253

collocation Fourier method. Once discretized, the eigenfunction problem (4.3) becomes254

an eigenvalue problem. The temporal and spatial stability analyses are respectively solved255

using the built-in MATLAB functions eig and polyeig. Numerical convergence is achieved256

for 100 collocations points. A preparatory analysis on the numerical rivulet profile Hr(y)257

used as baseflow for the stability analysis revealed a variation of the eigenvalues of the258

order of the numerical discretization, as long as t > 5000.259

4.3. Temporal stability analysis260

In this section, we report the results for the temporal stability analysis. Positive (resp.261
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Figure 5. (a) Temporal growth rate ωi and (b) real frequency ωr as functions of the streamwise
wavenumber kx, from the temporal stability analysis, for u = 1 (blue line), u = 1.5 (red line),
u = 2 (yellow line), u = 2.5 (purple line), u = 3 (green line), u = 5 (light blue line).

negatives) values of the temporal growth rate Im(ω) = ωi denote unstable (resp. stable)262

wavenumbers. A preliminary analysis on the spectrum revealed that all the eigenvalues263

have negative ωi for all kx, except one that is analyzed in the following.264

In Fig. 5(a) we report the variation of ωi with kx, for different values of u. The265

dispersion relations are characterized by a local maximum associated with the dominant266

wavenumber, and by a value of the wavenumber beyond which the temporal growth rate267

is negative (the cut-off wavenumber), i.e. perturbations with wavenumber larger than268

the cut-off are damped. Rivulets are strongly stabilized as the value of u increases.269

For u = 1 the growth rate ωi presents its maximum value at a dominant wavenumber270

close to kx = 0.56, while the cut-off wavenumber kcutx = 0.8. An increase of u quickly271

quenches large wavenumbers. Both the dominant growth rate and the cut-off wavenumber272

decrease. At u = 5, kcutx ∼ 10−2, with max(ωi) ∼ 10−3. For these values of u, the unstable273

wavelengths are of the order of one hundred reduced capillary lengths. The real frequency274

Re(ω) = ωr increases slightly less than linearly with kx (Fig. 5(b)). The resulting phase275

velocities ωr/kx increase as u increases.276

In Fig. 6(a) we show the real (dashed-dotted line) and imaginary (dashed line) parts277

of the mode η(y) for the dominant wavenumber kx = 0.5, normalized by the maximum278

modulus max(|η|), for u = 1.5. The mode is non-zero only in the steady central lobe279

region. For the same value of u, in Fig. 6(b) we report a three-dimensional plot of the280

linear combination of the baseflow Hr(y) (extended in the x direction along which it is281

invariant) with the mode at the dominant wavenumber (normalized by the maximum282

modulus), i.e. h(x, y) = Hr(y) + ARe (η(y) exp (ikxx)), with A = 0.25 an arbitrary283

amplitude for visualization purposes. The resulting pattern is characterized by rivulets284

that carry lenses. The temporal dependence of the mode, which is not represented285

in Fig. 6(b), is characterized by a growing amplitude exp (ωit) and by an oscillating286

behavior exp (iωrt). The presence of a non-zero real part of ω (Fig. 5(b)) implies that287

the perturbations are oscillating in time at fixed locations. This effect is related to the288

advection as lenses are traveling along the streamwise direction.289

The stability analysis reveals the occurrence of a secondary instability of the saturated290

and one-dimensional rivulets, which is located in the steady central lobe and leads to291

a pattern characterized by lenses that travel on the rivulets. Nevertheless, an increase292

in the advection u induces a very strong stabilization and only very large wavelengths293
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Figure 6. Temporal stability analysis, u = 1.5. (a) Real (solid line) and imaginary (dashed
line) parts of the eigenvector η(y), for the dominant wavenumber kx = 0.5, normalized by the
maximum modulus. (b) Linear combination of the baseflow Hr(y) (extended in the x direction
along which it is invariant) with the mode at the dominant wavenumber (normalized with the
maximum modulus), i.e. h(x, y) = Hr(y) + ARe (η(y) exp (ikxx)). A = 0.25 is an arbitrary
amplitude for visualization purposes.

remain slightly unstable. The stabilization is related to the advection term. In particular,294

perturbations in regions of different thickness experience different advection velocities,295

proportional to uH2
r (Kalliadasis et al. 2012). Regions of higher thickness travel faster296

than regions of lower thickness, leading to a steepening of the interface profile and297

eventually to a capillary leveling of perturbations. This steepening-leveling mechanism298

is all the more pronounced as u is large. Small wavelengths, which present high interface299

gradients, are progressively stabilized with u, leading to a cut-off wavelength of the300

order of 102l∗c at u = 5. In the numerical simulation of Fig. 3(a) the resulting pattern301

does not show any appreciable streamwise perturbations since the cut-off wavelength302

(Lc = 2π/kcutx ≈ 2× 102) is of the order of the maximum acceptable wavelength fitting303

in the domain. These results are consistent with the experimental observations of Lerisson304

et al. (2020) when large values of u are considered. For u > 3, only very large wavelengths305

are unstable and they are eventually suppressed because of the size of the experiment306

(2× 102l∗c < Lx < 3× 102l∗c ).307

4.4. Spatial stability analysis308

In this section, we study the spatial stability properties of the rivulet baseflow Hr(y)309

introduced in Sec. 4.1. The saturated rivulet profile is perturbed with a temporal310

harmonic perturbation of real frequency ω = ωr and we look for the spatial evolution of311

the perturbation, in terms of spatial growth rate −Im(kx) and streamwise wavenumber312

Re(kx) through the dispersion relation Dr(kx, ω) (Eq. 4.3). Positive values of the spatial313

growth rate denote unstable configurations associated with downstream propagating314

waves (Huerre & Rossi 1998; Schmid et al. 2002; Gallaire & Brun 2017). The spectrum is315

characterized by only one unstable mode associated with downstream propagating waves,316

which is described in the following.317

In Fig. 7(a) we report the spatial growth rate −Im(kx) as a function of ω. The spatial318

growth rate presents a behavior similar to the temporal growth rate of Sec. 4.3, i.e.319

characterized by a maximum (dominant) value and a cut-off frequency beyond which320

perturbations are damped. The dominant value of −Im(kx) strongly decreases with321

u, while its associated dominant frequency presents a non-monotonous behavior. The322

same non-monotonous behavior is observed in the cut-off frequency. The streamwise323
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Figure 7. (a) Spatial growth rate and (b) streamwise wavenumber as functions of ω, from
the spatial stability analysis, for u = 1 (blue line), u = 1.5 (orange line), u = 2 (yellow line),
u = 2.5 (purple line), u = 3 (green line). The circles identify the values of the spatial growth
rate obtained by the Gaster transformation.

wavenumber Re(kx) (Fig. 7(b)) shows, with a good approximation, a linear dependence324

with ω. For fixed ω, the value of Re(kx) decreases with u.325

The results of the spatial stability analysis are compared with those of the temporal326

stability analysis, suitably rescaled by the Gaster transformation (Gaster 1962), valid327

for strongly convectively unstable systems (see Appendix B for details). Within this328

approximation, from the temporal stability analysis of Sec. 4.3 (labeled with (T )) we329

retrieve the spatial stability analysis properties (labeled with (S)) through the relations:330

ωr(S) = ωr(T ), Re(kx(S)) = Re(kx(T )), Im(kx(S)) = − ωi(T )
∂ωr

∂kx
(T )

, (4.4)

The results of the Gaster transformation Eq. (4.4) (circles) are in good agreement with331

the spatial stability analysis results in Fig. 7(a), for u > 1. In Appendix B we report the332

results for u < 1, where the Gaster transformation prediction deviates from the spatial333

stability analysis results.334

In the following, we experimentally investigate the link between the spatial stability335

analysis and the observable dynamics.336

5. Experimental measurements of the rivulet secondary instability337

5.1. Methods338

As described in Sec. 3.1, steady rivulets invade the experiment and saturate along the339

streamwise direction (Fig. 2). At a certain distance from the inlet, streamwise oscillations340

on the rivulet profiles grow and evolve in traveling lenses. We investigate the dependence341

of the overall dynamics and the amplitude of lenses with the parameters, by exploring342

different angles 40◦ < θ < 80◦ and thicknesses in the range 0.12 < hN/lc < 1 (related to343

the flow rate by Eq. 2.1). Note that u = cot (θ)lc√
sin θhN

, i.e. high values of the linear advection344

velocity correspond to low values of the flow rate or θ. We modify the inlet condition345

using the spanwise comb-like blade (Fig. 1(a)) with the optimal spacing predicted by the346

flat film linear dispersion relation, i.e. L̂r = 2π
√

2l∗c . The requirement of a reasonably347

small and constant error in a large range of the flow parameters, exempted from a348

case-dependent calibration procedure, makes the STIL-CCS confocal chromatic sensor a349
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(a) u = 1.85, ∆̂ = 0.004 (b) u = 1.57, ∆̂ = 0.132
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Figure 8. Registered maximum height ĥmax(t) of the rivulet, for (a) θ = 40◦ and hN = 1190µm

, (b) θ = 40◦ and hN = 1418µm. The black dashed line denotes ˆ̄h, and the red dashed lines
ˆ̄h± ∆̂.

suitable candidate. The latter is placed at the end of the plate to measure the variation350

of the amplitude of lenses oscillations as a function of θ and hN/lc.351

The procedure is the following. We place the comb in position, and we wait the time352

necessary for rivulets to invade the whole domain. We then measure the central rivulet353

maximum thickness ĥmax(t) for 20 periods. This leads to a registration time T that goes354

from 20 to 2000 seconds, depending on the angle. Once the data are registered, the flow355

rate is increased. We wait the time necessary to advect all the transient effects away356

from the glass plate; it varies from one minute, for θ = 40◦, to one hour, for θ = 80◦.357

Assuming the saturated rivulet profile (Fig. 4), we transform the point measurement358

of the maximum thickness in an estimate of the integral flux (i.e. hN in Eq. 2.1) by359

introducing the average thickness ˆ̄h as follows:360

ˆ̄h =

(
3

T

∫ T

0

ĥ3max(t)

3
dt

)1/3

, hN = ˆ̄h/1.71, (5.1)

being ĥmax = 1.71hN for a steady and saturated one-dimensional rivulet (Lerisson et al.361

2020). The deviation ∆̂ from the average thickness value is computed as:362

∆̂ =

√
1

T

∫ T

0

(
ĥmax(t)− ˆ̄h

)2

dt, (5.2)

which is adimensionalized using the capillary length, i.e. ∆ = ∆̂/lc. Two typical mea-363

surements are reported in Fig. 8.364

5.2. Results365

In Fig. 9 we report the deviation ∆ as a function of hN/lc, for different angles θ. At366

low values of hN/lc, ∆ is constant at a plateau value around ∆ ∼ 10−3. The plateau367

corresponds to the resolution of the optical sensor and is of order 1µm. At higher values368

of hN/lc, ∆ increases with hN/lc. We measure an increase of ∆ of two decades.369

The amplitude of the oscillations at the end of the plate is compared with the370

theoretical findings of the spatial stability analysis. The spatial amplification at a distance371

x of a temporal perturbation ∆0 on a fully-developed rivulet profile reads:372

∆/∆0 = exp(−Im(kx)x). (5.3)
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(a) θ = 40◦ (b) θ = 45◦ (c) θ = 50◦
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Figure 9. ∆ (blue dots) as a function of hN/lc, for different values of θ. The black horizontal
line denotes the plateau value due to the resolution of the optical sensor. The red lines denote
the amplification estimated using the spatial stability analysis of Sec. 4.4 and the size of the
plate, i.e. ∆ = ∆0 exp(−Im(kx)L), with an initial amplitude chosen to obtain a good fit of
the experimental data, (a) ∆0 = 2 × 10−4, (b) ∆0 = 3 × 10−5, (c) ∆0 = 7.5 × 10−6, (d)
∆0 = 1× 10−6,(e) ∆0 = 1.5× 10−5, (f) ∆0 = 3× 10−6.

We assume that the observable disturbances are the inlet ones as they are amplified on373

largest distance, i.e. x = L. The perturbation amplitude ∆0 originates from background374

noise that is below the sensitivity of our measurement sensor (∼ 1µm). We assume375

that the noise triggers the dominant mode described in Sections 4.3 and 4.4,and that ∆0376

is constant for a fixed angle. Note that the dominant spatial growth rate changes with377

hN/lc since the value of u is varied.378

In Fig. 9 the red lines denote the theoretical values of ∆ for an inlet perturbation379

amplitude ∆0 chosen to obtain a good fit of the experimental data. The measurement is380

then not a direct measure of the spatial growth rate, but of the variation of the spatial381

growth rate with the parameters. The variation of the deviation with the parameters well382

agrees with the linear prediction.383

In Fig. 10 the experimental measurements of ∆ (colored dots) are summarized and384

reported together with the spatial amplification ∆/∆0 obtained by the spatial stability385

analysis (red dashed lines). At low values of hN/lc the experimental values of ∆ are below386

the resolution of the optical sensor. As hN/lc increases, ∆ emerges from the measurement387

resolution and we observe an increase of two orders of magnitudes in the considered range388

of parameters. This strong increase can be correlated to the theoretical amplification389

curves. At very low values of hN/lc and inclination angles the theoretical amplification390

is of order ∆/∆0 ∼ 100. Low values of the flow rate (hN/lc) or θ imply high values of u.391

In particular, the iso-level with value exp(−Im(kx)L) = 1.3 roughly corresponds to the392

case u = 3.5. As hN/lc and θ are increased the theoretical amplification rapidly grows.393

Our analysis suggests that the occurrence of streamwise oscillations on the rivulet394

profile is strongly related to the advection. The measured deviations strongly vary with395

u. When high values of u are considered, the occurrence of a steady and saturated rivulet396

pattern is observed (Fig. 11(a)). For low enough values of u, a state characterized by lenses397

which travel on rivulets is observed (Fig. 11(b)), as shown in (Lerisson et al. 2019). Small398
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Figure 10. Results of the analysis in the (θ, hN/lc) plane: experimental measurements of ∆
(colored dots) and inlet disturbance amplification ∆/∆0 = exp (−Im (kx)L) evaluated by the
spatial stability analysis of Sec. 4.4 (red iso-contours).

Figure 11. Representative patterns at θ = 45◦ for (a) hN = 623µm, i.e. hN/lc = 0.42 and
u = 2.83, characterized by rivulets, and for (b) hN = 1352µm, i.e. hN/lc = 0.92 and u = 1.29,
characterized by rivulets which carry lenses.

variations in the advection lead to dramatic effects on the overall pattern dynamics. A399

change in the inclination of the plate of 10 degrees, e.g. from θ = 60◦ to θ = 50◦ at400

hN/lc = 0.55, is enough to pass from a state characterized by large amplitude lenses to401

a rivulet pattern.402

In the route to dripping, the formation of lenses can be interpreted as a secondary403

instability of steady and streamwise-saturated rivulets, in which the role of the advection404

is essential.405

6. Linear and non-linear impulse response: breaking of isotropy and406

emergence of rivulets407

In the previous sections, we numerically and experimentally studied the stability of408

steady and streamwise-saturated rivulet structures with respect to streamwise perturba-409

tions, and the link with the growth of traveling lenses. As observed in Fig. 2, the instability410

of rivulets and the consequent emergence of lenses is preceded by the formation of rivulet411
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Figure 12. Shadowgraph visualization of an experimental impulse response, for θ = 20◦ and
hN = 1292µm, i.e. u = 5.45. Time increases going to the right and each snapshot is separated
by 15 s.

structures that invade the whole domain. Hereafter, we aim at giving a physical insight412

into the predominance of rivulet structures by studying the response of the flat film to413

an impulsive perturbation localized in space and time, i.e. the impulse response.414

6.1. Experimental observation415

In this section, we introduce a qualitative visualization of the evolution of a localized416

perturbation in the film thickness. The experimental apparatus is set without any inlet417

perturbation devices shown in Fig. 1(a). When high inclination angles and low flow418

rates are considered (i.e. high values of u), we experimentally observe a large region419

characterized by a uniform flat film where thickness perturbations from the lateral420

boundaries of the experiment do not penetrate (Lerisson et al. 2020). In this region,421

we trigger the destabilization with a thickness perturbation by blowing a puff of air with422

a syringe. The whole field is then projected on a screen via the shadowgraph technique423

and captured with a camera.424

In Fig. 12 we show the evolution of the perturbation with time. The initially localized425

perturbation is advected away in the streamwise direction with a constant velocity and426

spreads in the domain. The perturbation phase lines are concentric circles in the upstream427

part of the response. Nevertheless, the isotropy disappears in the downstream part. The428

shadowgraph reveals that the phase lines tend to be parallel to the streamwise direction,429

the effect becoming more and more evident as the time increases.430

The presence of phase lines aligned with the streamwise directions suggests the exis-431

tence of a wavefront characterized by streamwise structures, i.e. rivulets, when the flat432

film is perturbed using an impulse thickness perturbation. The selection of a streamwise433

wavefront is not related to the boundaries of the thin film in the experiment, i.e. the434

rivulets selection is intrinsic.435

6.2. Numerical observation436

Inspired by this experimental observation, in this section we numerically simulate the437

impulse response, via Eq. (3.2), for the same values of angle and flow rate used in the438

shadowgraph of Fig. 12, i.e. u = 5.45, in a double-periodic domain. The initial condition439
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Figure 13. Impulse response, θ = 20◦ and hN = 1292µm (u = 5.45). The time increases from
left to right and the time step is 30. Results are reported in the moving reference frame at the
linear advection velocity (ξ = x− ut, y).

is taken in the form:440

h(x, y, 0) = 1 + A exp

(
−x

2 + y2

2

)
, (6.1)

where A = 10−2. In Fig. 13 we plot the time evolution of the response in the moving441

reference frame (ξ = x− ut, y), from t = 0 to t = 90. In the moving reference frame, the442

response progressively invades the domain from the initial impulse location. At t = 30, we443

observe circular phase lines. At t = 60 the response loses its isotropy in the downstream444

part. At t = 90 streamwise structures are dominant in the downstream front of the445

response and they are also observable upstream.446

In the moving reference frame, the response spreads from the initial impulse location,447

meaning that in the fixed reference frame, the response is advected downstream at448

the linear advection velocity u. The numerical evolution qualitatively agrees with the449

experimental observation of Sec. 6.1. We first observe the evolution of the impulse450

response into an isotropic pattern. At large times, the response mostly evolve towards451

streamwise structures. However, the complicated form of the non-linear equation (3.2),452

including non-linear advection, hydrostatic pressure distribution and capillary effects,453

does not allow one to identify the physical mechanisms that lead to the emergence of454

streamwise structures observed in figures 12 and 13. Lerisson et al. (2020) furthermore455

observed that the rivulet propagation and growth is well described by the linear stability456

analysis of the flat film even at large amplitudes of the thickness perturbation, beyond457

the expected validity of the linear theory. Hereafter, we study the origin of the selection458

of rivulet structures by the linear and weakly non-linear dynamics.459

6.3. Linear response460

Upon introduction of the decomposition h = 1+εη (ε� 1) in Eq. (3.2), the linearized461

equation at O(ε) for the evolution of the thickness perturbation η with respect to the462

flat film reads:463

∂tη + u∂xη +
1

3

[
∇2η +∇4η

]
= 0. (6.2)

The dispersion relation is recovered introducing the normal mode decomposition η ∝464

exp[i(k ·x−ωt)] , with k = (kx, ky), where kx and ky denote respectively the streamwise465

and spanwise wavenumbers:466

ω = ukx +
i

3

(
k2 − k4

)
, (6.3)
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Figure 14. (a) Temporal growth rate ωi as a function of kx and ky. (b) Linear impulse
response, u = 5.45. The vertical and horizontal axis are respectively the streamwise and spanwise
directions. From left to right: t = 30, t = 60, t = 90. Results are reported in the moving reference
frame at the linear advection velocity (ξ = x− ut, y).

where k =
√
k2x + k2y. The dispersion relation D(ω, kx, ky) = 0 is characterized by an467

isotropic temporal growth rate ωi, as shown in Fig. 14(a). The temporal frequency ωr is468

linear in kx and does not depend on ky.469

The initial condition for the numerical simulation is the thickness perturbation470

η(x, y, 0) = A exp(−x2/2 − y2/2), where A = 10−2. The linear numerical simulation471

results for u = 5.45, in the moving reference frame (ξ = x − ut, y), are presented in472

Fig. 14(b). As time increases, the perturbation spreads in concentric circles from the473

initial impulse location. Similarly to the non-linear simulation of Fig. 13, the response is474

advected away at the linear advection velocity u, in the fixed reference frame. The results475

can be rationalized considering the dispersion relation of Eq. (6.2). The wavepacket is476

non-dispersive since ωr is linear in kx. This means that there is no distortion of the477

wavepacket. Since the growth is isotropic, concentric circles invade the domain and at478

the same time are advected downstream with constant velocity ωr/kx = u. Higher values479

of u imply faster advection velocities. In the moving reference frame (ξ, y), the equation480

(6.2) reads:481

∂tη +
1

3

[
∇2
ξyη +∇4

ξyη

]
= 0, (6.4)

where ∇ξy operates in the reference frame (ξ, y). In this reference frame, the response482

spreads in perfectly isotropic concentric circles without being advected away. The linear483

dynamics agrees well with the early-times evolution of the non-linear simulation shown484

in Fig. 13, when the amplitude of the perturbations is still very small. However, since485

the linearized dynamics is not able to capture the anisotropy of the pattern observed in486

the non-linear simulation, we propose next a weakly non-linear study.487

6.4. Weakly non-linear response: the Nepomnyashchy equation488

We consider a weakly non-linear model for the flow of a thin film on the underside of an489

inclined planar substrate. Following Kalliadasis et al. (2012), the derivation is based on a490

multiple scale approach combined with an asymptotic expansion. Under the assumption491

of small interfacial disturbances and u = O(1), the weakly non-linear dynamics for a492

thickness perturbation η with respect to the flat film reads:493

∂tη + 2uη∂ξη +
1

3

[
∇2
ξyη +∇4

ξyη

]
= 0, (6.5)

where ∇ξy operates in moving the reference frame (ξ, y). The equation is formally494

analogous to the Nepomnyashchy equation (Kalliadasis et al. 2012). We consider the495
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Figure 15. u = 5.45. (a) Impulse response in the moving reference frame (ξ = x− ut, y) from
the weakly non-linear model and (b) its two-dimensional Fourier energy spectrum. From left to
right: t = 0, t = 30, t = 60, t = 90.

evolution of the thickness perturbation η starting from a Gaussian impulse η(ξ, y, 0) =496

A exp(−ξ2/2− y2/2) (A = 10−2), in analogy with the linear simulation.497

In Fig. 15(a) we report the thickness perturbation evolution. The initial localized498

perturbation spreads in the domain and is always centered in the vicinity of the initial499

impulse position, because of the moving reference frame. At t = 30 the perturbation has500

spread isotropically in the domain. Nevertheless, at t = 60, streamwise structures arise.501

At t = 90, the streamwise structures have invaded most of the perturbation region.502

In Fig. 15(b) we show the two-dimensional Fourier energy spectrum of η, normalized503

by its maximum value. Since we are considering a real signal, the Fourier spectrum is504

symmetric with respect to the kx and ky axes. We thus report only the values in the505

first quadrant (kx > 0, ky > 0). At t = 0, we observe the Fourier spectrum of a Gaussian506

impulse, which is a Gaussian centered around (kx = 0, ky = 0), i.e. the initial spectrum507

is isotropic. At t = 30 the energy is located in a region around
√
k2x + k2y = 1/

√
2. As508

time progressively increases, the energy concentrates towards (kx = 0, ky = 1/
√

2).509

Initially, the response is characterized by an isotropic pattern, reminiscent of the linear510

growth that is experienced in the first stages of the perturbation growth. As the amplitude511

becomes sufficiently large, the spectrum shows that the energy is focusing on the axis512

kx = 0, i.e. streamwise structures are selected. The emergence of streamwise structures513

agrees well with the results of the fully non-linear simulation and with the experimental514

observation. Moreover, the spectrum is localized around ky = 1/
√

2, the most amplified515

wavelength predicted by the flat film dispersion relation (Eq. 6.3), and rivulet structures516

are growing exponentially. Thus, the dynamics of pure streamwise structures stays linear,517

even in the weakly non-linear regime.518

The origin of the selection of rivulet structures is identified in the weakly non-519

linear advection term 2uη∂ξη, which acts in indirect manner to favor rivulet structures520

while damping all other orientations. The weakly non-linear model of Eq. (6.5) is521

formally analogous to the linear model of Eq. (6.4), except for the weakly non-linear522

advection term. It should be noticed that this term influences the dynamics of streamwise-523
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inhomogeneous structures only, on which it is seen to have a damping effect. The non-524

linear advection term embodies the difference in the perturbation advection velocity in525

regions of different thickness and is known to create wave steepening (Babchin et al.526

1983). The emerging steep gradients are damped by surface tension effects, leveling527

therefore the non-streamwise structures. In conclusion, the most unstable solution in528

the weakly non-linear regime is the one in which the capillary damping is reduced the529

most, as the term 2uη∂ξη, responsible of wave steepening, vanishes.530

When only streamwise structures are present, the advection term disappears and the531

weakly non-linear model is formally analogous to the linear equation in the moving532

reference frame Eq. (6.4). Consequently, the response of streamwise structures is linear533

up to second order in the perturbation.534

In conclusion, the weakly non-linear dynamics gives an insight into the origin of the535

emergence of rivulet structures: the latter are the only ones screened from the action536

of the difference in the advection. The dynamics of pure streamwise structures remains537

linear even in the weakly non-linear regime, thus explaining the agreement between the538

linear prediction and the experimental measurements at large amplitudes observed in539

Lerisson et al. (2020). At late times, rivulets eventually invade the perturbation region.540

In the case of steady inlet forcing (Fig. 2) rivulets invade the whole domain and steady541

and streamwise saturated rivulet structures emerge downstream, as a result of the weakly542

non-linear dynamics. As seen in the previous sections, rivulets may eventually destabilize543

through a secondary instability, resulting in traveling lenses. In both the emergence and544

the stability of rivulets, the differences in advection in regions of different thickness is545

crucial.546

7. Conclusions547

In this paper, we studied the selection and stability of rivulet structures in a thin548

film flowing under an inclined planar substrate. When the inlet is steadily forced along549

the spanwise direction, predominant rivulet structures were experimentally observed,550

which may destabilize at some distance from the inlet through the development of551

traveling lenses. Inspired by this experimental observation, we performed a non-linear552

simulation with periodic boundary conditions, starting from an initial condition that553

mimicked the experimental forcing. The response to a streamwise-invariant sinusoidal554

initial condition confirmed the emergence of a persistent pattern of saturated rivulets,555

which may destabilize.556

We then focused on the study of the mechanisms that may explain the behaviors ob-557

served in the experiment and numerical simulations, by studying the secondary stability558

of one-dimensional and saturated rivulets when perturbed in the streamwise direction.559

As the relative importance of advection increases, short wavelengths are progressively560

stabilized and only very large wavelengths remain slightly unstable. We relate their561

stabilization to the different advection of thickness perturbations on the rivulet profile.562

An increase in the advection results in steeper gradients for the same perturbation563

wavelength. Capillary forces counteract the wave steepening and eventually damp the564

perturbation, for high enough values of the advection. We compared the theoretical565

results for the spatial amplification of disturbances of the inlet flow rate with extensive566

experimental measurements of oscillations on rivulets, and confirmed the observation of567

a steady and saturated rivulet state when high values of u are considered.568

Finally, we gave an insight into the early-stages selection of streamwise-aligned struc-569

tures, as observed in Lerisson et al. (2020), by studying the evolution of a localized im-570

pulse in the flat film. The experimental response showed that the wavefront selects mostly571
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streamwise structures. The numerical impulse response also showed an initial isotropic572

growth followed by the selection of predominant rivulet structures. The numerical results573

were rationalized using a weakly non-linear model, which showed the same selection of574

rivulets. The strength of the weakly non-linear model was to identify one source of non-575

linearity as the selection mechanism of streamwise structures, i.e. the weakly non-linear576

advection. The latter is known to create wave steepening, counteracted by capillary terms.577

The evolution leads to leveling of all but streamwise structures. We concluded that the578

departure from a flat film towards streamwise structures is the solution in which the wave579

steepening and capillary damping effects are reduced the most. As a consequence, the580

selection of streamwise structures is due to the difference in the advection of perturbations581

in regions of different thickness, which acts to level all but pure streamwise perturbations582

(rivulets), while the dynamics of the latter remains linear even in the weakly non-linear583

regime, thus rationalizing the results of Lerisson et al. (2020).584

Our work aimed at laying rigorous foundations in the study of coating flows on the585

underside of planar substrates, interpreting the route to dripping as a destabilization of586

the flat film towards rivulets followed by a secondary instability. Nevertheless, several587

open questions are left. In complement to the spatio-temporal impulse response studied588

in this work, the response to a permanent in time but localized in space defect was589

considered briefly in Lerisson et al. (2020). However, a more detailed study to properly590

quantify the evolution of the response, e.g. in terms of asymptotic properties of the linear591

response, still needs to be performed.592

Despite the predominance of streamwise-oriented structures, for some conditions, lenses593

appear on rivulets. While in this work a first analysis was performed in terms of spatial594

growth, a complete analysis of the precise evolution of perturbations along the streamwise595

direction remains to be pursued. In particular, a weakly non-parallel approach combined596

with a global resolvent technique could be suitable in this case. Furthermore, although597

the rivulet configuration shown in Fig. 11(b) may seem regular, we sometimes observe598

catastrophic events: lenses can merge in the streamwise direction, and eventually drip.599

While this work and the one of Lerisson et al. (2020) were focused on the emergence600

and stability of steady structures, further investigations focused on the dynamics of the601

traveling lenses are crucial to understand the route to dripping.602
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Figure 16. (a) Imaginary and (b) real parts of the complex frequency ω0 for the
absolute-convective stability analysis. The absolute-convective transition occurs at u0 = 0.56.
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Figure 17. Spatial growth rate given by the spatial stability analysis (solid lines) and by the
Gaster transformation (circles), for u = 0.6 (blue), u = 0.7 (orange), u = 0.8 (yellow), u = 0.9
(purple).

Appendix A. Expression of the Jacobian of the curvature609

The operator ∂η̃κ(H), in general form, reads:

∂η̃κ(H) =
(1 + (∂yH)2)∂xx + (1 + (∂xH)2)∂yy − 2∂xH∂yH∂xy

(1 + (∂xH)2 + (∂yH)2)3/2

+
2((∂xH)2∂yH − ∂xH(∂yH)2)

(1 + (∂xH)2 + (∂yH)2)3/2
∂x +

2((∂yH)2∂xH − ∂yH(∂xH)2)

(1 + (∂xH)2 + (∂yH)2)3/2
∂y

− 3
∂xxH(1 + (∂yH)2) + ∂yyH(1 + (∂xH)2)− 2∂xH∂yH∂xyH

(1 + (∂xH)2 + (∂yH)2)5/2
(∂xH∂x + ∂yH∂y).

(A 1)

The operator is evaluated for a baseflow H(x, y) = Hr(y) (i.e. ∂xH = 0) and we impose610

∂xη̃ = ikxη̃.611
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Appendix B. Absolute-convective transition of the saturated rivulet612

profile.613

The purpose of this Appendix is to verify the application of the Gaster transforma-614

tion used in Sec. 4.4. The Gaster transformation is applied in the context of strongly615

convectively unstable systems.616

To verify the convective nature of the instability of the one-dimensional and steady617

rivulet profile, we evaluate the value of u at which the absolute-convective transition618

occurs. We thus apply the Briggs-Bers criterion (Briggs 1964; Bers 1975; Huerre &619

Monkewitz 1990; Schmid et al. 2002) to the dispersion relation Dr(ω, kx) = 0, Eq.620

(4.3). We look for the saddle points in the complex kx plane ∂ω
∂kx

= 0 and evaluate621

the imaginary part of ω at the saddle point Im(ω0). The absolute-convective transition622

occurs when Im(ω0) = 0. A spectral code is implemented in MATLAB, and saddle points623

are searched for with the built-in function fsolve. We identified a single saddle point in624

the complex-kx plane. The absolute-convective transition occurs at u0 = 0.56 (Fig. 16),625

which is much lower than the values of u used throughout this work. Interestingly, the626

convective-absolute transition for the flat film takes place at u0 = 0.54 (Brun et al. 2015),627

very close to the saturated rivulet value.628

In Fig. 17 we report the comparison between the spatial stability analysis and the629

Gaster transformation, for u < 1. As u approaches the value for the absolute-convective630

transition, the prediction of the Gaster transformation deviates from the spatial stability631

analysis results.632
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