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Abstract— This paper presents a novel solution for the
discrete time dynamic average consensus problem. Given
a set of time-varying input signals over the nodes of an
undirected graph, the proposed algorithm tracks, at each
node, the input signals’ average. The algorithm is based on
a sequence of consensus stages combined with a second
order diffusive protocol. The former overcomes the need
of k-th order differences of the inputs and conservation of
the network state average, while the latter overcomes the
trade-off between speed and accuracy of the consensus
stages by just storing the previous estimate at each node.
The result is a protocol that is fast, arbitrarily accurate,
and robust against input noises and initializations. The
protocol is extended to an asynchronous and randomized
version that follows a gossiping scheme that is robust
against potential delays and packet losses. We study the
convergence properties of the algorithms and validate them
via simulations.

Index Terms— Consensus, distributed control, estima-
tion, sensor networks

I. INTRODUCTION

The problem of consensus in control theory [1] consists of
finding a protocol such that a set of nodes in a network agree
on the value of a certain quantity of interest. In particular,
the discrete time dynamic average consensus [2] is interesting
because the tracked signals usually evolve with time, and
protocols are implemented in computing units that work in
discrete steps. Despite the existing literature, current solutions
still suffer from some of the following issues: (i) integral and
difference input terms are not robust against input and initial-
ization noise, or changes of network size; (ii) trade-off between
convergence speed and steady-state accuracy; (iii) absence of
robustness against packet losses and communication delays.
These aspects affect the applicability of consensus in real-
world scenarios such as smart grids [3] or sensor networks [4].
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To overcome these issues, we propose a novel algorithm that
combines a multi-stage consensus protocol and a second order
diffusion method, along with its asynchronous and randomized
version.

Several solutions have been proposed to improve the capa-
bilities of discrete time dynamic average consensus algorithms.
For instance, some works achieve an arbitrarily small steady-
state error by exploiting the k-th differences of the input
signal [5], [6]. This is problematic when the inputs are noisy
since noise breaks the boundedness of the input signal. An
alternative is to rely only on the input signal, achieving an
arbitrarily small steady-state error by concatenating a cascade
of consensus filters [7], [8], as we do in this work. Besides,
this leads to other desirable properties like robustness against
non-averaged initializations and changes in the network size.
The counterpart is a slow convergence. Regarding robustness,
there exist continuous-time algorithms [9]–[12] that address
initialization issues and time-varying networks. Our algorithm
achieves the same robustness but in the desired discrete-time
setting.

The issue of slow convergence has been considered from
two main perspectives. Ghosh et al. [13] present second
order diffusion methods, which significantly speed up the
convergence [14] by increasing the memory requirements with
the previous estimate. These works are for static problems,
while our work deals with the dynamic consensus problem.
On the other hand, polynomial filters [15] consider a sequence
of consensus iterations as the evaluation of a polynomial.
For instance, Montijano et al. [6], [16] analyze Chebyshev
polynomials, proving that they significantly increase the con-
vergence speed. However, the k-th order differences of the
input signal are exploited. Thus, this work opts for a second
order method to speed up convergence. Closely related to our
paper, Van Scoy et al. [17] present a fast and robust discrete
time dynamic average consensus estimator. Compared to them,
our proposal does not need bounded inputs while achieving the
same robustness against initialization errors and accelerated
convergence. Beyond consensus, compression techniques [18]
or decomposition principles [19] can be used to reduce the
dimensionality of the data and computational cost.

Finally, regarding robustness against potential communica-
tion delays and packet losses, many applications deal with
time-varying networks, where nodes connect and disconnect
depending on events exogenous to the consensus protocol. To
account for this, gossip algorithms [20], [21] propose con-
sensus protocols computed at random asynchronous instants
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and neighbors. Other works either propose reformulations
over linear proportional consensus protocols against packet
drops [22] or continuous-time protocols against delays [23].
This motivates our second proposed algorithm, which is an
accelerated version of a discrete time dynamic average con-
sensus protocol that runs asynchronously and with randomized
communication links.

This paper builds from the works by Franceschelli and
Gasparri [7], [8]. They present a multi-stage discrete time
dynamic average consensus filter that is fully distributed, does
not use the k-th order differences of the inputs signals, and is
robust against non-averaged nodes’ initialization. Besides, the
steady-state error can be arbitrarily reduced by increasing the
number of stages. The main limitation is the slow convergence,
so there is a trade-off between accuracy and speed. To solve
this issue, we propose a second order method to accelerate
the convergence, which permits to either increase the number
of stages (and reduce the steady-state error) with the same
convergence speed of the original filter, or speed up the
convergence for the same number of stages while maintaining
the steady-state error. Our main contribution is an acceleration
method to speed up (i) the multi-stage discrete time dynamic
average consensus protocol, which yields to quick, accurate
and robust tracking of the dynamic average, and (ii) the
asynchronous and randomized version of the former.

II. PRELIMINARIES

The system1 under study is a network composed by N > 1
nodes. The network is described by an undirected graph G =
{V, E}, where V = {1, . . . , i, . . . , N} is the set of nodes and
E is the set of edges. Nodes i and j can exchange information
if and only if (i, j) ∈ E , which implies that (j, i) ∈ E . Ni =
{j|(j, i) ∈ E} is the neighborhood of node i. The adjacency
matrix A ∈ RN×N associated to G is such that Aij = 1 if
(i, j) ∈ E and 0 otherwise. Aii = 0 always because we do not
allow self-loops. The degree matrix D associated to G is such
that Dij = car(Ni) ∀i = j and 0 otherwise. The Laplacian
matrix associated to G is L = D−A. For undirected graphs,
it holds that L is symmetric and has real eigenvalues. The
sorted eigenvalues of L are λ1(L) < . . . ≤ λN (L) ≤ 2Dmax,
where the relation Dmax = max({Dii}Ni=1) holds. The second
smallest eigenvalue, λ2(L), is called algebraic connectivity.
We denote vr,i(L),vl,i(L) the right and left eigenvectors of
L associated to the i-th eigenvalue.

A. Second Order Diffusion Methods

The linear (first-order) discrete time static average consen-
sus algorithm ( [24]) is

xi(k + 1) = Wiixi(k) +
∑

j∈Ni
Wijxj(k), (1)

1Notation: lower-case is for scalars, bold lower-case for vectors, bold
capital for matrices, and calligraphic capital for sets. We use ≥ for greater
than or equal, ⪰ for positive semidefiniteness, σ( ) for the eigenvalues of
a matrix, T for the transpose, car( ) for the cardinality of a set, E[ ] for
the expectancy operator, | | the absolute value, and || || for the 2-norm of a
vector/matrix. Pij (resp. pi) denotes the ij-th (resp. i-th) element of matrix
P (resp. vector p). I is the identity matrix of appropriate dimensions, 0 is
the zero matrix of appropriate dimension, and 1 is a column vector of ones.

with xi(0) the initial condition and W ∈ RN×N a weighted
matrix. In matrix form, (1) leads to

x(k + 1) = Wx(k). (2)

If W is doubly stochastic, i.e., 1TW = 1T and W1 = 1,
then it is known that the protocol in Eq. (2) converges to the
average of the initial states x̄i(0) = (1/N)

∑N
i=1 xi(0).

Without loss of generality, we consider W = I − ϵL. The
convergence speed can be too slow, specially in networks with
a small algebraic connectivity (λ2(W) = 1 − ϵλ2(L)). To
accelerate convergence, Ghosh et al. ( [13]) proposed a second-
order modification:

x(k + 1) = γWx(k) + (1− γ)x(k − 1). (3)

The properties of the protocol in Eq. (3) are well-studied
(e.g., [13]). In particular, protocol (3) improves the conver-
gence speed of (2) if γ ∈ (1, 2).

B. Multi-Stage Discrete Time Dynamic Average
Consensus

The concepts in subsection II-A apply to the static consen-
sus problem, but this work deals with a dynamic consensus
problem. Node i has an input ri(k) ∈ R and an estimate
xi(k) ∈ R associated to a quantity of interest r(k) ∈ R.
x(k) = [x1(k), . . . , xN (k)]T is the joint estimate and r(k) =
[r1(k), . . . , rN (k)]T is the joint input of the network. Nodes,
by means of x(k), cooperate to track the average r̄(k) =
1
N

∑N
i=1 ri(k) by exchanging information with their neighbors

j ∈ Ni.
The multi-stage discrete time dynamic average consensus

algorithms presented by Franceschelli and Gasparri ( [7],
[8]) solve the problem for two cases: the synchronous and
time-invariant topology, and the asynchronous and randomized
topology. The former is solved by the following protocol:

xs(k + 1) =(I− ϵL)xs(k) + α(xs−1(k)− xs(k)). (4)

Here, s = {1, . . . ,m} denotes the stages of the filter, xs(k) is
the estimate at instant k and stage s, x0(k) = r(k), parameter
ϵ < 1

2Dmax
to ensure stability, and α ∈ (0, 1) is a parameter

that trades-off steady-state accuracy and convergence speed.
From (4) it is seen that the protocol is a chain of linear discrete
dynamic average consensus filters indexed by s.

The asynchronous and randomized algorithm follows the
same multi-stage architecture. In this case, each node selects
randomly and at each instant a single node j ∈ Ni to
communicate. For a given edge (i, j), the algorithm is:

xs(k + 1) =Pijx
s(k) +

α

Dii
pip

T
i x

s−1(k), (5)

with Pij = I+
pip

T
j

2 − (1+2/Dii)pip
T
i

2 and pi ∈ RN a vector
of zeros except for the i−th element, which is equal to 1.

As shown in [7], [8], the steady-state error and convergence
rate of protocols (4) and (5) are tied together by α: for a
fixed m, small values of α lead to quick convergence but
large steady-state error and vice versa. The trade-off can
be alleviated by m, but at the expense of an increase of
computation, memory and convergence time at final stages.
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Importantly, [8] proves that both algorithms are robust against
arbitrary initializations and noisy and unbounded inputs due to
the absence of integral control actions and input differences re-
spectively. The next section proposes a second order diffusion
protocol that, by adding an additional parameter, decouples
the steady-state error and the convergence speed, overcoming
the undesired trade-off in the multi-stage protocols.

As a remark, the stages of protocols (4), (5) run in parallel,
in the sense that, to estimate at stage s and instant k + 1, we
only need information from s− 1 and s at time k.

III. PROPOSED CONSENSUS ALGORITHM

In this section, we present two algorithms. The first solves
the problem of discrete time dynamic average consensus
by means of a second order recurrence and the multi-stage
architecture inspired by [7], [8]. The second solves the same
problem but under asynchronous and randomized restrictions,
where the nodes randomly communicate in a gossip-like style
[20].

A. Accelerated Multi-Stage Filter
The first proposed consensus protocol is based on two steps.

Given the current input ri(k) and estimates from neighbors
{xs

j(k)}ms=0 ∀j ∈ Ni ∪ {i}, node i updates {xs
i (k)}ms=0 fol-

lowing the multi-stage filter in Eq. (4), obtaining {x̃s
i (k)}ms=0,

where x̃s
i (k) ∈ R for s = 1, . . . ,m is a temporal estimate used

in the second step of the protocol. The updated estimate is then
corrected using the second order method in Eq. (3), leading
to the next estimate {xs

i (k + 1)}ms=0. Algorithm 1 details the
protocol.

Algorithm 1 Accelerated Multi-Stage Dynamic Consensus
Protocol at node i

1: State of agent: xs
i (−1) and xs

i (0), for s = 1, . . . ,m
2: Parameters: γ ∈ (1, 2), ϵ ∈ (0, 1

2Dmax
), α ∈ (0, 1

γ )
3: while True do
4: Measure ri(k)
5: Gather xs

j(k) for s = 1, . . . ,m and j ∈ Ni

6: Update xs
i (k) for s = 1, . . . ,m as follows:

x̃s
i (k)=xs

i (k)−
∑

j∈Ni

ϵ(xs
i (k)−xs

j(k))+α(xs−1
i (k)−xs

i (k))

xs
i (k + 1) = γ(x̃s

i (k)) + (1− γ)xs
i (k − 1) ∀s

7: end while

Note that Algorithm 1 is equal to (4) for γ = 1. First, for
space convenience, in the following we use the sub-index k to
abbreviate (k). We now prove the convergence properties of
the proposed protocol. The next result shows that the second
order method does not alter the steady-state properties of
the original multi-stage filter in [7], [8], which is important
in the subsequent results about the convergence rate of the
accelerated protocol.

Proposition 1: Assume that rk = r is constant, G con-
nected, α ∈ (0, 1), and ϵ ∈ (0, 1

2Dmax
). Then, the steady-state

equilibrium xm,∗ of the protocol in (4) and Algorithm 1 is

xm,∗ = r̄1+

N∑
i=2

(
1

1 + ϵλ2(L)/α

)m

vr,i(L)v
T
l,i(L)r (6)

Proof: From Algorithm 1 and using the matrix form, the
operations at stage s = 1 and steady-state can be written in a
single equation

x1,∗ = γ(I− ϵL)x1,∗ + γαr− γαx1,∗ + (1− γ)x1,∗. (7)

This leads to ((1 + γα− 1 + γ − γ)I+ γϵL)x1,∗ = γαr.
Dividing both sides by γ, and concatenating the m stages,

xm,∗ = (αI+ ϵL)−1αmr, (8)

which is the steady-state equilibrium in the proof of Theorem
3.1 in [8]. The rest of the proof follows from there.

Corollary 1: Assume that rk = r is constant and G con-
nected. Then, the 2-norm of the error at equilibrium of a
network under Algorithm 1 is

||r̄1− xm,∗|| ≤ (N − 1)

(
1

1 + ϵλ2(L)/α

)m

||r̄1− r||. (9)

The statement is a direct consequence of Proposition 1 and
Theorem 3.2 in [7], showing that the steady-state error de-
creases when: the graph is more connected (greater λ2(L)), the
protocol has more stages (greater m), and α gets smaller. The
following result proves necessary equivalences to demonstrate
the convergence properties of Algorithm 1.

Proposition 2: Let ys
k = xs

k − xs,∗ be the error at the s-th
stage of the filter in Algorithm 1. Then, the error dynamics
can be expressed as(

ys
k+1

ys
k

)
= Q̂

(
ys
k

ys
k−1

)
+ αR̂

(
∆us

k

∆us
k−1

)
, (10)

where Q̂ =

(
γQ (1−γ)I
I 0

)
, R̂ =

(
R R(1−γ)
0 0

)
,

Q = (1 − α)I − ϵL, R = (αI + ϵL)−1, ∆us
k = us

k − us
k+1,

u1
k = rk and us

k = xs−1
k for s = 2, . . . ,m.

Proof: Using the steps in Algorithm 1 in a single
operation and matrix form,

ys
k+1 =γQys

k+γx
s,∗−xs,∗+(1−γ)xs

k−1 =

γQys
k+γx

s,∗−xs,∗+(1−γ)ys
k−1+(1−γ)xs,∗ (11)

Eq. (11) can be rewritten using Eq. (8):

ys
k+1 = γQys

k+(1−γ)ys
k−1+αR∆us

k+(1−γ)αR∆us
k−1. (12)

Eq. (10) follows from Eq.(12), concluding the proof.
Now we are ready to prove the convergence rate of Algo-
rithm 1 .

Theorem 1: Consider a network that executes Algorithm 1
with rk = r constant, with α ∈ (0, 1

γ ), γ ∈ (1, 2) and ϵ ∈
(0, 1

2Dmax
). Then, the convergence rate for the s-th stage is

βs = 1− αγ.
Proof: Let us consider the following Lyapunov function:

V s
k =

(
ys,T
k ys,T

k−1

)(
ys,T
k ys,T

k−1

)T
= ŷs

kŷ
s,T
k , (13)

with ŷs
k=
(
ys,T
k ys,T

k−1

)
. Then, the Lyapunov difference is

∆V s
k = V s

k+1 − V s
k = ŷs

k+1ŷ
s,T
k+1 − ŷs

kŷ
s,T
k . (14)

Exploiting Eq. (10) and the fact that rk is constant, Eq. (14)
leads to

∆V s
k = ŷs

k(Q̂Q̂T − I)ŷs,T
k . (15)
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Now, since γ ∈ (1, 2) and the spectral radius of Q is less
than 1 by construction, it can be shown that Eq. (15) is upper-
bounded by the following inequality:

∆V s
k ≤ −ŷs

k

(
γ2I− γ2Q2 0

0 I

)
ŷs,T
k = −ŷs

kFŷ
s,T
k . (16)

The eigenvalues of matrix F are the eigenvalues of
γ2I− γ2Q2 and I. If α < 1

γ , then γ2I − γ2Q2 ⪰ γI − γQ
and σ(γI− γQ) > 0. Therefore, F is positive definite, and

V s
k+1 − V s

k ≤ −λ̄ŷs
kŷ

s,T
k = −λ̄V s

k . (17)

It turns out that λ̄ = minλi∈σ(γI−γQ)∪σ(I){λi} = αγ. Thus,
V s
k+1 ≤ (1− αγ)V s

k .
Once the convergence rate of Algorithm 1 is proved, we can
compare it with its non-accelerated counterpart.

Proposition 3: Algorithm 1 always converges faster than
the protocol in Eq. (4) if γ ∈ (1, 2).

Proof: The convergence rate of the protocol in Eq. (4)
is βs = 1 − α, which coincides with the convergence rate
obtained by Franceschelli and Gasparri ( [7]). By comparing
both convergence rates, we have that 1−α > 1−αγ for γ ∈
(1, 2). Thus, the bound in Eq. (17) is smaller, and the decrease
in the Lyapunov function defined in Eq. (13) is greater, which
implies a faster convergence of Algorithm 1 than the protocol
in Eq. (4).

These results draw interesting properties. First, for any
choice of m and α of the original algorithm, such that α
also fulfills the condition α ∈ (0, 1/γ) with γ ∈ (1, 2),
then Algorithm 1 always converges faster than the non-
accelerated protocol (4). Besides, while α ties together steady-
state and convergence rate in both the original and accelerated
algorithm, on the original protocol we can only exploit m to
further tune the steady-state error. Meanwhile, on Algorithm 1,
by introducing γ, we have an additional degree of freedom
to also further tune the convergence, independent from the
steady-state error. Thus, the accelerated protocol provides
more flexibility in simultaneously tuning the steady-state error
and convergence rate.

All the previous results address the case where the input is
constant. The following result considers a dynamic input.

Proposition 4: Consider a time-varying input rk and a
network under Algorithm 1, with α ∈ (0, 1

γ ). Besides, define
∆us

∞ = sup
k=0,...,∞

∆us
k. Then, the next ISS property holds:

||ys
k|| ≤ (1− γα)k||ys

0||+
1

αγ
∆us

∞. (18)

Proof: The result follows from Input-to-State Stability
results for linear systems. From Eq. (12) we have that

||ys
k|| ≤ ||Kk|| · ||ys

0||+ α

(
k∑

h=0

||Kh||||R||

)
∆us

∞, (19)

with K = (γQ+(1−γ)I). First, note that ||R|| ≤ 1
α . Second,

||K|| ≤ (1− γ) + γ(1− α) = 1− γα. Then,

||ys
k|| ≤ (1− γα)k||ys

0||+ α

(
k∑

h=0

(1− γα)h

α

)
∆us

∞. (20)

Eq. (20) directly yields to Eq. (18).

Therefore, under dynamic inputs the system still converges.
Moreover, the convergence rate only depends on the variations
of the signal.

Corollary 2: The convergence rate of Algorithm 1 is faster
than the convergence rate of the original filter in (4) under
time-varying input signals rk, α ∈ (0, 1

γ ) and γ ∈ (1, 2).
Proof: In Proposition 3.5 from ( [7]) it is shown that

||ys
k|| ≤ (1− α)k||ys

0||+
1

α
∆us

∞. (21)

Comparing Eqs. (20) and (21), the first term experiences a
faster decay in (20) since 1 − γα < 1 − α. The second term
is lower in (20) since 1

αγ < 1
α .

In summary, the proposed algorithm proves to enhance the
convergence speed towards the dynamic average consensus
without modifying the steady-state error at any of the stages
of the filter. This is achieved by using an additional memory
slot for the estimate at the previous instant of time.

To design the algorithm, a possible way of proceed is
the following: (i) set βs ∈ (0, 1), which implies that
αγ = 1− βs ∈ (0, 1); (ii) therefore, α = (1−βs)/γ, which is
always feasible because (1− βs)/γ < 1/γ; (iii) at this point,
set the desired steady-state error and choose m according
to Corollary 1 to achieve the desired performance. Notably,
the computational and memory cost of Algorithm 1 grows
linearly with the number of stages, and thus increasing m
is a scalable design decision, considering also the current
advances in PMEMS technology. For instance, if we consider
the Ethernet protocol, with a frame between 64 and 1518
bytes and a 18-byte header, we can send between 11 and
375 floating point numbers, equivalent to m ∈ [11, 375].
Thus, we can fully exploit the real structure of communication
networks. In addition, by leveraging the results provided in [8],
Algorithm 1 inherits the robustness against initialization and
noisy unbounded inputs.

B. Accelerated Asynchronous Randomized Protocol
The second contribution is the asynchronous and random-

ized version of Algorithm 1. Now, instead of using all the
estimates from the neighborhood, node i selects one of its
neighbors j ∈ Ni according to an independent and identical
distribution (i.i.d.) with uniform probability. The rest of the
protocol follows the same reasoning, detailed in Algorithm 2.

The main result in this section shows the equivalence in
expectation between Algorithm 2 and Algorithm 1. Then, the
results provided in subsection III-A can be extrapolated to the
asynchronous and randomized setting.

Theorem 2: Consider a network under Algorithm 2 with
G connected, r(k) = r constant, α ∈ (0, 1

γ ), and γ ∈
(1, 2). If the sequence of selected edges is i.i.d. with uniform
probability, then Algorithm 2 preserves the steady-state error
properties of the original filter in (5), i.e,:

• xm(k) converges in distribution to a random variable xm
∞,

and this distribution is unique.
• limk→∞ E[xm(k)] = E[xm

∞] = xm,∗.
Proof: The first statement of the proof is a direct

extrapolation of the proof of Theorem 6 in [8]. Algorithm 2
fulfills all the following requirements: discrete time, Schur
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stability, affine dynamics and the sequence of edges is i.i.d.
with uniform probability. Regarding the second statement,
Theorem 4.1 in [7] proves

E[x̄1(k + 1)] = (I− ϵ′L)E[x1(k)] + α′(r− E[x1(k)]), (22)

with ϵ′ = 1
2car(E) and α′ = α

car(E) . Accordingly, the protocol
in Algorithm 2 is

E[x1(k + 1)] =γ(I− ϵ′L)E[x1(k)]+γα′(r− E[x1(k)])

+ (1− γ)E[x1(k − 1)]).
(23)

The rest of the proof follows from the fact that, if we replace
E[x1(k)] = E[x1(k + 1)] = E[x1(k − 1)] = E[xm,∗(k)], then
Eq. (23) and Eq. (7) are the same, so the same procedure can
be followed to prove the second statement.

Algorithm 2 Accelerated Asynchronous Randomized Multi-
Stage Dynamic Consensus Protocol at node i

1: State of agent: xs
i (−1) and xs

i (0), for s = 1, . . . ,m
2: Parameters: γ∈ (1, 2), α ∈ (0, 1

γ ), Di = Lii

3: while True do
4: Measure ri(k)
5: Select a random neighbor and gather xs

j(k)
6: Update xs

i (k) for s = 1, . . . ,m as follows:
x̃s
i (k) = (xs

i (k) + xs
j(k))/2 + α/Di(x

s−1
i (k)− xs

i (k))
xs
i (k + 1) = γ(x̃s

i (k)) + (1− γ)xs
i (k − 1) ∀s

7: end while

Therefore, Algorithms 1 and 2 are equivalent in expectation.
Interestingly, another advantage of our accelerated proposal is
that α can be tuned to have lower values while preserving
the convergence speed, leading to lower noise. In addition,
Algorithm 2 is easier to implement in a real device because
no synchronization is needed, and an inherent robustness
against delays and packet losses is achieved, following the
considerations in [8]. Besides, since the tracking properties are
independent on the initialization, the protocol is robust against
a varying number of nodes. Regarding the estimates’ variance,
the sequence of consensus stages act as a filter, reducing the
variance from stage to stage. This is observed in Algorithm 2,
where the neighboring estimates are averaged and corrected
by the estimate from the previous stage. We empirically verify
this fact in section IV, leaving its theoretical characterization
for future work.

Finally, while protocols (4) and (5) allow α ∈ (0, 1), Algo-
rithms 1 and 2 constrain α ∈ (0, 1/γ). This is not a limitation
of the proposed algorithms. The discussion after Corollary 2
shows how to ensure that α < 1/γ always.

IV. ILLUSTRATIVE EXAMPLES
To evaluate Algorithms 1 and 2, we consider

an undirected graph of N = 8 nodes with
E={(1,2),(1,5),(1,8),(2,3),(2,8),(3,4),(3,6),(4,8),(6,7),(7,8)}
The parameters are α = 0.04, ϵ = 0.01, and m = 5.
The signals ri(k) evolve according to a uniform random
process, such that, every 2000 steps, ri(k) ∼ U(0, 1)
∀i ∈ V . Besides, we set the initial estimates for all stages
as xs(0)=[0.99, 0.27, 0.02, 0.48, 0.18, 0.24, 0.65, 0.50]T . This
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e
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Fig. 1. Simulation results for (left) the original multi-stage and
(right) the accelerated multi-stage algorithm (ours). The red bold
line is the average to be tracked, whereas the local estimates are
depicted in thin random color lines.

Fig. 2. Evolution of the absolute error between the average es-
timate across the network and the average of the input signals.
The accelerated multi-stage filter is in solid lines, whereas the
original multi-stage filter is in dashed lines.

initialization is random, according to the inherited robustness
of the multi-stage protocol [8]. The value of γ can be
computed by means of distributed algorithms that estimate
the algebraic connectivity of the graph (see, e.g., [25], [26]).

The evolution of the estimates for the synchronous and non-
randomized algorithms is shown in Fig. 1. With the additional
memory slot, the convergence time has been substantially im-
proved by Algorithm 1 (Fig. 1 (right)) compared to the original
non-accelerated protocol (Fig. 1 (left)), while maintaining the
steady-state performance. To better compare the steady-state
error and convergence speed, Fig. 2 draws the absolute error
between the average estimate across the network es(k) =
1
N

∑N
i=1 |xs

i (k) − ri(k)| and the average of the input signals
e(k) = [e1(k), . . . , em(k)]T . For the same convergence speed,
the accelerated filter can be designed with more stages and
improve the steady-state error in various orders of magnitude.

In the randomized algorithms, we set α = 0.0005. Besides,
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Fig. 3. Simulation results for (left) the randomized original
multi-stage and (right) the accelerated randomized multi-stage
algorithm (ours). The style is the same in Fig. 1.

since the topology changes arbitrarily, we fix γ = 1.7. Finally,
the signals ri(k) change every 20000 steps. Fig. 3 represents
the result of the experiments. With a low value of α, the noise
due to the randomized links is filtered. The accelerated filter
can compensate the degradation in convergence speed, while
the original filter is too slow to converge before the signals
change. Thus, a single additional memory slot per stage leads
to an acceleration that overcomes the trade-off between speed
and accuracy present in the original protocols in [7], [8].

V. CONCLUSIONS

This paper has presented two novel accelerated discrete
time dynamic average consensus protocols based on a se-
quence of proportional consensus filters and a second order
recurrence. The combination overcomes the trade-off between
convergence speed and steady-state error, while achieving
robustness against initialization and input noise. The multi-
stage scheme can arbitrarily reduce the steady-state error,
but this implies a slow convergence. Thanks to the second
order recurrence, the convergence is sped up, counteracting
this drawback, specially at final stages of the protocol. These
conclusions are shared by the asynchronous and randomized
version of the algorithm. In the latter, parameter α manifests
a trade-off between convergence speed, noise and average
steady-state error that the acceleration due to the second
order method compensates, while achieving robustness against
communication delays and packet losses.
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