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ABSTRACT Recent advancements in communication technologies have significantly enhanced localization
techniques, improving both accuracy and operating modes. Initially, localization methods relied on global
navigation satellite systems, offering high accuracy but proving inefficient in Non-Line-of-Sight scenarios.
Furthermore, the absence of a passive mode, where the user can be localized without explicitly requesting
it, renders these methods unsuitable for applications like passive tracking systems. Fingerprinting methods,
a pattern matching techniques based on signal power estimation from target devices and distance estimation
from reference points, can be seen as a valid and promising alternative. However, these methods face
limitations due to extensive measurement campaigns needed to establish accurate sampling systems within
specific areas and the substantial amount of data required for machine learning algorithms to achieve optimal
performance. This study introduces a novel fingerprinting method capable of passive operation, involving all
smartphones within a designated area, suitable for both indoor and outdoor scenarios. The proposed solution
leverages Generative Adversarial Networks (GANs) to augment fingerprinting datasets, enhancing machine
learning models’ capabilities. Additionally, the offline phase’s cost-effectiveness is improved by integrating
a Bayesian system as a secondary machine learning component.

INDEX TERMS Fingerprinting, generative adversarial network, LTE, localization.

I. INTRODUCTION
In the last years, the development of new technologies
has improved the accuracy for locating people, animals,
or objects. Classic localization methods are based on wireless
signals and were introduced by the Global Navigation
Satellite System (GNSS) [1]. Despite this technology
achieves high accuracy, it suffers in indoor environments
(i.e., Non-Line-of-Sight scenarios - NLOS) for which this
system is almost unusable. Another issue stems from the
system being designated as active, necessitating users to
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indicate their intent for localization explicitly. This constraint
renders the system impractical for various purposes, such as
scenarios involving vehicular tracking (i.e., a passive tracking
system). The ubiquity of smartphones has made instant
communication with the surrounding world commonplace
while also providing a myriad of functionalities that enhance
daily life. Moreover, the vast majority of the population
now has access to cutting-edge cellular networks, including
4G and even more advanced technologies. This advanced
connectivity not only allows for faster internet browsing but
also opens doors to a world of opportunities in terms of
communication, work, and access to information at any time
and place.
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The fingerprinting technique is a type of radio frequency
localization combined with signal characteristics such as
Receive Signal Strenght Indicator (RSSI) or Time of Arrival
(ToA). RSSI and ToA are strictly linked to the type of
communication between receiver and transmitter, which
can be in line-of-sight (LOS) or non-line-of-sight (NLOS)
conditions. In the NLOS case, the signal is affected by
multipath and, therefore, is received as multiple paths leading
to a reduction of power due to reflection, diffraction, and
diffusion, if compared to the LOS case. On the contrary, in the
case of ToA, the multipath is noticeable due to the different
arrival times of the signal, which could be linked to a longer
path that the signal took due to the lack of visibility between
the transmitter and receiver.

Fingerprinting can be based on a range of communication
technologies such as WiFi, GSM, and Bluetooth systems.
Localization relies on pattern-matching techniques, where
the core idea is to capture the power of signals received
from target devices and compute the distance from strategic
or reference points. The signal parameter or characteristic
used as a reference is pre-measured, enabling subsequent
comparisons when the system is operational and ready to
locate terminals.

The fingerprinting technique consists of two phases: (i)
the offline phase is commonly defined as the calibration
phase [2], involves gathering reference characteristics to
construct a radio map; (ii) The online phase is responsible for
comparing the characteristics of a new signal that is not yet
present on the map and for determining the receiver’s position
in space through suitable calculations or artificial intelligence
methods.

The primary challenge associated with fingerprinting
lies in the offline phase, a stage that, depending on the
scenario, demands significant cost and time investment
due to the lengthy and extensive measurement campaigns
required [3]. These campaigns would necessitate a highly
accurate system to systematically sample, step by step, the
entire reference area. Alternative approaches to manually
gathering the samples entail leveraging machine learning
(ML) techniques [4], [5]. ML models are trained using real
data to predict signal characteristics even in parts of the
environment not covered during the data collection process.
However, ML requires substantial data to achieve optimal
performance for their models.

In order to increase the number of samples used for the
training, data augmentation techniques can be used, which
generate synthetic data from existing datasets [6], [7]. Among
these techniques, Generative Adversarial Networks (GANs),
are prominent methods used to augment fingerprinting
datasets [8], [6], [9].
GANs was introduced by Goodfellow et al. in 2014 [10]

representing a specific family of generative networks where
two systems are trained simultaneously in a competitive
manner:, a generator G and a discriminator D, respectively.
G is designed to learn the probability distribution of the

training data, while D aims to determine whether a sample
comes from the training data or has been generated by G.
The two networks compete to the extent that the training
procedure for G maximizes the probability of D making a
mistake.

Based on these assumptions, this work aims to develop
a localization technique using fingerprinting of LTE signals
and capable of operating in indoor and outdoor environ-
ments. A system leveraging GANs was employed as a
modification of the method presented in [6] to augment real
data collected during measurement campaigns. The use of
GANs was mainly driven by the challenge of data sparsity.
By generating realistic synthetic data, GANs significantly
enhance our dataset’s density, eliminating the need for
extensive manual sampling, which is often impractical and
time-consuming. Additionally, GANs produce synthetic data
that reflects a wider range of signal variations caused by
dynamic changes in real-world environments. Therefore
the goal was to build a real-time system able to convert
RSSI samples of users interacting with a base station
(BS), also recognizing the user in a domestic or urban
setting, where keeping track of user locations is essential
for various purposes such as safety, security, and efficient
urban management [11]. In pursuit of this objective, LTE
technology was chosen owing to its maturity and widespread
accessibility. LTE networks enjoy a well-established global
presence, providing expansive coverage crucial for ensuring
dependable localization. This significance is particularly
pronounced in indoor settings, where LTE signals exhibit
superior penetration through building materials compared
to 5G. Additionally, the prevalence of LTE-compatible
devices, as opposed to those supporting 5G, ensures greater
compatibility and usability [12]. To accurately simulate
an LTE environment, we employed the srsLTE software
simulator.

The achieved spatial resolution is deemed highly precise,
particularly considering that the primary aim of this study
is to discern the presence of a mobile device with greater
accuracy compared to traditional smartphone GPS position-
ing. It is noteworthy that this study does not aspire to attain
even greater precision and accuracy, which would necessitate
the concurrent utilization of cross-cutting technologies such
as LTE, 5G, and WiFi [13]. Two reference scenarios, i.e.,
an indoor scenario consisting of a room in the University
of Cagliari and an outdoor scenario relating to a dataset of
RSSI fingerprints found online, were implemented to test the
performance of the proposed system.

The rest of the paper is structured as follows. Section II
outlines the technical background and related works on fin-
gerprinting methods. Hardware and software configurations
of the proposed system are presented in section III, while
the methodology is detailed in section IV. Test and results
performed to evaluate the proposed solution both in indoor
and outdoor scenarios are discussed in section V. Finally, the
conclusions are drawn in section VI.

82084 VOLUME 12, 2024



L. Serreli et al.: Generative Adversarial Network (GAN) Fingerprint Approach Over LTE

II. BACKGROUND AND RELATED WORKS
The technique of fingerprinting LTE signals for localization
purposes has been extensively explored in the literature.

An evaluation of fingerprinting using a simplified sta-
tistical matching algorithm with two similarity metrics is
proposed in [14]. The automatic collection of radio frequency
(RF) information is facilitated through the Minimization of
Drive Testing (MDT) in LTE networks addressing non-ideal
cell detection scenarios. Results indicate a substantial reduc-
tion of 76%, 34%, and 70% in computation time for rural,
urban, and Hetnet cases, respectively.

Yan et al., proposes a CHAN-IPDR-ILS system for accu-
rate indoor localization, featuring a step length estimation
method that enhances accuracy by considering information
from the fusion CHAN and the improved pedestrian dead
reckoning (PDR) indoor localization system (CHAN-IPDR-
ILS) [15]. Pedestrian localization is achieved through a
motionmodel that combines acoustic estimation and dynamic
improved PDR estimation. The fusion localization approach
sets thresholds and confidence levels to mitigate accidental
and cumulative errors.

Other studies, such as in [16], suggest strategies for
Narrowband Internet of Things (NB-IoT) positioning using
fingerprinting, incorporating coverage and radio data from
multiple cells. The proposed strategies consistently achieve
a minimum average positioning error of approximately
20 meters across various network scenarios, contrasting with
the current state-of-the-art’s average error of about 70 meters.

In [17] Pecoraro et al., propose approaches based on Chan-
nel State Information (CSI) instead of RSSI, demonstrating
as methods based on RSSI shows inadequate performance
in LTE networks. Additionally, the system, relying on CSI
shape and statistical descriptors rather than direct CSI vec-
tors, showcases more stable performance, particularly when
there are changes in room configuration, such as moving
furniture.

Zhang et al., present a fingerprint-based localization
technique based on deep learning framework to collect
real time channel state information knowledge from LTE
eNodeB and to extract intrinsic features [18]. A time domain
fusion approach is proposed to assemble multiple positioning
estimations improving localization accuracy and robustness
(i.e., Mean Distance Error of 0.47 meters for indoor and
of 19.9 meters for outdoor scenarios) compared to previous
methods in literature.

Compared to the existing literature, this study has focused
on making the offline phase more cost-effective by integrat-
ing two machine learning systems into the system: a GAN
approach and a Bayesian system. In addition, the proposed
method was validated through practical experimentation by
instrumentation, generating an LTE cell and testing various
mobile devices with a view to both indoor and outdoor
localization.

Concerning the data augmentation with GANs, various
approaches can be found in the literature, primarily lever-
aging WiFi or Bluetooth signals. Below, the most relevant

FIGURE 1. Hardware set-up.

literature approaches, highlighting the differences compared
to the proposed solution, are presented.

In [8], a deep-learning-based framework for outdoor
localization using a rich features set in LTE networks, called
DeepFeat, has been proposed. To optimize computational
efficiency and reduce complexity, a feature selection module
is incorporated into the deep learning model, resulting in a
notable 20.6% reduction in computation and complexity. Chi-
squared algorithms to strategically narrow down the feature
set to 12 inputs, irrespective of the area size, has been used.
Additionally, to bolster the accuracy of the DeepFeat system,
a One-to-Many augmenter is introduced, expanding the
dataset and contributing to an overall improvement in system
performance. The main differences with our study concern
the generation of the augmented dataset. The technique called
One-to-Many employed in [8] involves duplicating samples
in k geographic directions. In contrast, in the proposed
approach, a GAN is employed to learn the probability
distribution from a real dataset and generate additional data.

In [6], Nabati et al. propose a method to reduce the
data collection costs for human-centric localization systems.
They leverage fingerprint-based localization and apply data
augmentation through deep learning, utilizing received signal
strength (RSS) or channel state information (CSI) in wireless
sensor networks for user localization in various environ-
ments. GANs are employed to learn the distribution from a
limited dataset, generating synthetic data to enhance posi-
tioning accuracy alongside real collected data. Experimental
results on a benchmark dataset demonstrate that the proposed
method, using a mix of 10% real data and 90% synthetic
data, achieves positioning accuracy comparable to utilizing
the entire dataset of collected data. The method employed in
the current work is derived from the data generation approach
used in [6]. The main difference lies in the type of signal
utilized: in our case, an LTE signal is employed, whereas the
paper uses WiFi signals.

Emerging research highlights the potential of GANs in
addressing data scarcity issues. Specifically, studies have
demonstrated the efficacy of GANs in generating data points
to compensate for gaps caused by inaccessible data collection
sites or signal degradation. In [9], the authors introduce a
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data collection system leveraging a mobile robot. However,
the robot is limited to reaching areas without obstacles.
To overcome this limitation, GANs are employed to generate
data in regions inaccessible to the robot.

Moreover in [19], GANs are utilized to generate data for
Human Behavior Analysis. This is particularly beneficial in
scenarios where there may be short periods of person tracking
measurement losses, leading to gaps in tracking information.

III. EXPERIMENTAL SET-UP
This section provides a comprehensive overview of the
hardware and software configuration implemented for the
experimental setup. Additionally, it includes a description
of the two distinct datasets utilized for outdoor and indoor
scenarios. Following the methodology adopted in previous
studies, we opted to utilize a single BS for LTE finger-
printing. This decision was influenced by the substantial
cost associated with deploying multiple base stations [20].
Nonetheless, even with a single BS, exceptional localization
outcomes can be attained by harnessing RSSI data from
multiple reference points within the BS’s coverage area [21],
[22]. The hardware setup, depicted in Fig. 1, comprises a
USRP Ettus B210 board, a MSI GE63 8RE laptop running
Ubuntu 18.10, an LTE antenna, and several smartphones
equipped with USIMs. The technical specifications of the
laptop and LTE antenna are provided in Table 1, respectively.
The device employed for transmitting and receiving at the

LTE working frequencies in the implementation of the real
system is the Universal Software Radio Peripheral (USRP)
[23]. The USRP is designed as a hardware platform that
interfaces with a software processing system. Essentially, this
device enables communication with User Equipments (UEs)
as long as it can operate within the frequency bands of LTE
technology.

The USRP Ettus B210 is an integrated board that
guarantees a frequency range from 70MHz to 6 GHz and
has been designed to be a low-cost board that combines
an AD9361 transceiver, provides a bandwidth of 56 MHz,
a programmable Field Programmable Gate Array (FPGA)
and USB 3.0 connectivity. Several smartphones, including
models from Samsung, Huawei, Xiaomi, and Apple, were
utilized to simulate the UE. These smartphones were
equippedwithUniversal Subscriber IdentityModule (USIM),
and their Mobile Country Code (MCC) and Mobile Network
Code (MNC) had to align with the values declared in the
srsLTE software.

To replicate a realistic LTE environment, an LTE net-
work software simulator was employed. The srsLTE is an
open-source software that facilitates the establishment of an
end-to-end mobile network operating in 4G access mode.
This software is comprised of three main components:

• srsUE, a comprehensive software for utilizing a device
such as a UE;

• srsENB, a software that plays the role of eNodeB,
providing access for UEs and sending data to the Core
Newtwork;

TABLE 1. Technical specifications of the devices used for the experiments.

FIGURE 2. Indoor scenario.

• srsEPC, a lightweight implementation of the Core
Network of an LTE system, including MME, HSS
and Serving Gateway (SGW)/ Packet Data Network
Gateway (PGW).

The srsLTE software runs under Linux and is compatible with
various USRPs, including the Ettus B210.
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FIGURE 3. Pathloss calculated considering distance variation in indoor
environment.

For the purpose of this work, two different datasets were
utilized, characterizing two different scenarios. In the outdoor
case, a dataset derived from a large area of a parking lot
divided into 15-meter square cells was used. It’s worth
noting that the size of the cell determines the resolution of
the accuracy. In the outdoor scenario, various time-varying
variables can impact the system’s performance. Typically,
to address these challenges, multiple antennas are employed
to enhance the coupling between RSSI and the reference cell.
In the indoor scenario, a single antenna was chosen to be
used to have a term of comparison with the outdoor case.
Obviously, the accuracy of the two configurations is affected
by the number of antennas considered and the number of
samples per cell. Details on the configurationwill be provided
in section V.

IV. METHODOLOGY
The initial tests were conducted in an anechoic chamber
to ensure a controlled environment. Using the srsLTE
software, we simulated an LTE network to establish secure
communication and collect fingerprint patterns along with
the IMSI (International Mobile Subscriber Identity) of the
user. This allowed us to receive a user identifier and store the
encrypted value associated with the fingerprints.

An omnidirectional LTE antenna was positioned in the
corner of the anechoic chamber, and the system automatically
recorded data for each cell, considering the option to relocate
the smartphone after a certain number of RSSImeasurements.
Within 30 minutes, the system recorded a sufficient number
of samples to cover 10 selected cells. Modifications were
made to the srsLTE code to enable the matching of RSSI with
IMSI. This involved utilizingWireshark for Python (Pyshark)
to capture communication packets between the E-nodeB and
the EPC software, where the IMSI is transmitted in plain text.

The experiment begins with the offline phase, obtaining
the fingerprint dataset using the srsLTE software. Once
srsLTE is started in both eNodeB and EPC components, the

smartphones begin to perform the procedure for connecting
to the network, releasing their identifier and thus starting the
phase of measurement. As shown in Fig. 2, in the indoor
scenario a grid of 16 cells is utilized, and within each 30 RSSI
samples are collected, resulting in a total of 480 samples.
Basically, it took 15 minutes as the goal is to have a rapid and
low-cost measurement campaign. In Fig. 3, the pathloss based
on the measurements conducted in an indoor environment
is illustrated, as the variation of the distance from the
antenna.

A. GENERATIVE AND BAYESIAN NETWORKS
The GAN used for augmenting the dataset is based on the
work in [6] which built a network suitable for generating
RSSI samples trained on a dataset of 250 samples for each
reference cell. A schematic diagram of the GAN network
used for this work is depicted in Fig. 4.

The network is initially trained with 25 samples per class,
representing 10% of the training data. Subsequently, it is
retrained using the remaining 90% of the data to generate
synthetic data. This process is repeated 100 times using
different random seeds to prevent and mitigate random
effects.

With respect to the network proposed by Nabati et al.,
various adjustments were made to adapt it to our input
data. Specifically, changes were implemented in the training
parameters, including adjustments to the batch size, the
number of GAN epochs, and the iteration count, to find the
optimal configuration for our dataset.

After some preliminary experiments, we observed that
the accuracy with 16-class discrimination was very low.
For this reason, numerous Naïve-Bayes networks in parallel
with different discrimination criteria and classes have been
considered.

Naïve-Bayes network with multiple layers working in par-
allel can be used to extrapolate the probability that a certain
RSSI belongs to a particular classN = {n1, . . . , ni, . . . , nm},
where ni is the generic cell.
The initial layer of the network attempts to position

the input data within two classes, denoted as C1 and C2,
each comprising 8 cells on the grid. C1 contains cells
n1 through nm/2, while C2 contains cells nm/2 + 1 through
nm. As the network progresses through its inner layers, the
number of classes increases, culminating in the final stage
with 16 classes. Each layer will therefore use a different
configuration, and each class Ci will be associated with a
different set of cells, defining different patterns. Fig. 5 shows
an example of a 4-level network with two pattern types,
2-class and 4-class, respectively.

A pattern is a configuration which splits the set of m
starting classes into k classes with k ≤ m. Seven different
patternsPj,k have been analyzed, whereP indicates a pattern
that brings j classes into k classes:

• P16,2 represents two classes containing two rows each,
as illustrated in Fig. 6a;

VOLUME 12, 2024 82087



L. Serreli et al.: Generative Adversarial Network (GAN) Fingerprint Approach Over LTE

FIGURE 4. GAN network architecture used to generate RSSI samples.

FIGURE 5. Bayesian neural network structure and examples of cell’s
patterns.

• P16,2: two classes containing two column each, as shown
in Fig. 6b;

• P16,2: two classes containing two column each with a
different configuration, as shown in Fig. 6c;

• P16,4: four quadrants as depicted in Fig. 6d;
• P16,4: four classes one for each row of the grid, Fig. 6e;
• P16,4: four classes one for each column of the grid,
Fig. 6f;

• P16,16: the grid is split in 16 classes, each corresponding
to one cell of the grid Fig. 6g;

B. POSITION CALCULATION AND ERROR EVALUATION
Each i-th layer of the Bayesian network has a probability that
the RSSI rj entering the system belongs to a certain class k.
Therefore, the output from each layer is defined as pi,k where
i is the i-th layer of the network, while k is the class to which

it belongs. The goal is to determine a score that identifies the
highest probability where rj precisely corresponds to the i-th
cell. Therefore, Pk is defined as the probability that adheres
to the relationship in Eq. 1

Pk =

n∑
i=1

Pi,k∀k ∈ [1,m] (1)

where n is equal to the number of layers in the network and
m is the number of classes k for layer i.
The localization error is defined as the average Euclidean

distance between the center of the real cell where the device
is actually located and the center of the cell where the device
has been localized. Starting from the assumption that it can
be found at any point inside the cell, it is assumed that all
the points inside the cell are still considered to be at the
center. Therefore, since each cell is a square with side L, the
minimum error that can be made is equal to L

2 if the user is in
the cell border.

V. TEST AND RESULTS
This section introduces two reference scenarios: an indoor
scenario comprising a room at the University of Cagliari and
an outdoor scenario based on a dataset of RSSI fingerprints
obtained from online sources.

A. INDOOR SCENARIO
The room was divided during the offline phase into
16 adjacent squares forming a 4 × 4 grid with the size
of each side of a square equal to 1 m. As the room is a
relatively stable environment, a fixed point was selected for
the antenna placement, simulating an eNodeB of the LTE
architecture. This setup allows for the identification of cells
that consistently remainwithin direct visibility of the antenna.
The sensitivity of the system is defined as half the side
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FIGURE 6. Different configuration in classes.

TABLE 2. Accuracy of the various layers of the Bayesian network.

of a single cell (i.e. ±0.5m), as there is no possibility of
further refining the measurement. a total of 30 samples were
collected during this phase. Fig. 2 shows the grid of the room.
The first goal is to evaluate the accuracy of the prediction of

the Bayesian network using the RSSI dataset acquired during
the offline phase. Each layer of the neural networkwas trained
with 80% of the dataset and tested with the remaining 20%.
Table 2 shows the accuracy level of the training and test part
for each layer, as well as the pattern.

The test conducted with 16 classes revealed inadequate
accuracy. Implementing only this level would lead to an
imprecise system. Conversely, dividing the grid into two
rows provides excellent accuracy, but the only available
information would be whether the localized user is before
or beyond the center of the room. The confusion matrices
for the training and testing of the first layer of the network,
respectively, are shown in Fig. 7a and in Fig. 7b. The accuracy
is calculated as reported in Eq. 2, where TP stands for True
Positive, TN for True Negative, FP for False Positive and
FN for False Negative. The labels 1 and 2 indicate just
how the initial set of cells was divided into two classes,
class 1, and class 2.

2.

Accuracy =
TP+ TN

TN + FP+ FN + TP
(2)

Applying the position calculation rule, which involves
integrating information from all layers of the network,
yields an accuracy of 73.75% with a distance error of
approximately 66 cm. However, it was observed that the
alternating columns pattern does not contribute to improving
accuracy. Conversely, excluding it from the network allows
for slightly higher accuracy, reaching 76.25% with an error
of 64 cm.

1) RESULTS WITH AUGMENTED DATA
Several network configurations, including different epochs
and percentages of real data, were experimented with for
training the GAN network. The resulting training and testing
accuracy varying these parameters are shown in Fig. 8. The
highest accuracy is attained when the network is trained
with 100% real data. However, it’s notable that when using
only 40% real data, the model doesn’t stabilize even after
50 epochs, yet it steadily improves, reaching a respectable
accuracy of 75%. This implies that increasing the number of
epochs, even with a smaller portion of real data, can lead to
substantial improvements in accuracy.

After training the GAN network with 100% of the
dataset, it was employed to generate three additional datasets,
consisting of 200, 400, and 700 samples for each class. In the
case of the largest dataset, comprising 700 samples per class,
a dataset totaling 700× 16 = 11, 200 samples was obtained.
This dataset was then merged with the original dataset to
proceed with the Bayesian approach.

Three tests were conducted with the Bayesian network,
using 200, 400, and 700 samples, respectively. In the first
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FIGURE 7. Confusion matrix training the first layer of the network.

FIGURE 8. Accuracy of the GAN network training with different amounts of input data.

test, an accuracy of 77.5% with a precision of 68 cm was
achieved. The second test showed an improved accuracy of
92.5% with a precision of 55 cm. Finally, in the third test, the
accuracy remained high at 90.6%, with a precision of 58 cm.
Comparing the results with the test that does not utilize the
dataset generated by the GAN network, as shown in Table 3,
an improvement in performance is evident with 400 and
700 samples. Although the first test achieved a higher success
rate, the accuracy dropped slightly. For the other two cases,
notable improvements in both accuracy and precision in terms
of distance are noted. Between the two, the 700 samples
appear too heavy for the Bayesian network which is affected
by noise. The success rates for the three tests are shown
in Fig. 9, respectively 200 (Fig. 9a), 400 (Fig. 9b), and
700 samples (Fig. 9c), calculated on a dataset of 160 samples
(10 samples per cell) taken in the offline phase. In the
heat-maps of Fig. 9, a lighter color indicates a more accurate
prediction. The last two cases are much more precise and

TABLE 3. Performance with different number of input data.

only cell 8 is problematic. This could be due to the presence
of a table that produced scattering effects during the offline
phase.

B. OUTDOOR SCENARIO
The Bayesian network was initially tested in an outdoor
scenario. Subsequently, the same tests were repeated after
augmenting the dataset with samples generated by the GAN
network. As in the previous scenario, our expectation was
to improve localization precision by integrating GAN data
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FIGURE 9. Indoor scenario: heat maps of the success rates relating to the three Bayes+GAN tests.

as input for the Bayesian network. However, it’s important
to note that the enhancement in precision may not be as
substantial as in the indoor case. The outdoor environment
poses greater challenges due to its larger and more chaotic
nature, characterized by dynamic obstacles such as vehicles
and buses. The obstacles introduce phenomena like slow
fading and NLOS conditions, resulting in multiple signal
paths. Consequently, the performance of the system is
compromised compared to the indoor scenario, where there
is consistent visibility between the transmitter and receiver.

1) DATASET
The dataset used in this scenario was obtained online [24].
It involves a rather large environment involving a parking
lot. The location was divided into square cells with sides
L = 15m. This assumes that the precision of the system
cannot be less than L as it is defined as the sensitivity of the
localization system [25].

For the purpose of this work only one antenna was
considered to compare the outdoor case with the indoor
case. This dataset is composed of 25 cells (i.e., 5 × 5) with
500 samples per cell. To adapt the network already built for
the indoor case, 16 adjacent cells (i.e., 4 × 4) were chosen,
as in the previous case. Furthermore, only a small part of the
dataset was used, namely 80 samples per cell. The rest of the
dataset is used for testing purposes.

2) AUTONOMOUS NAÏVE-BAYES NETWORK
Due to the abundance of samples per cell in the outdoor
dataset, we standardized the sample distribution to match that
of the indoor case. Initially, we selected and tested 30 samples
per cell using the Bayesian network without incorporating
the GAN network. An accuracy of 69% was achieved with
30 samples, yielding a precision of 9.84 meters. This result
indicates lower precision compared to the indoor setting.
Consequently, the sample size was increased to 80. With
this adjustment, the Bayesian network achieved a slightly
higher accuracy of 73.4% with a precision of 9.53 meters.
It is noteworthy that the precision deteriorated compared
to the indoor scenario due to the larger cell size in this
dataset. However, with this configuration and sample size,

TABLE 4. Accuracy of layers of the Bayesian network for the outdoor
scenario.

comparable accuracy levels to those in the indoor scenario
were achieved.
Also in this case, 80% of the dataset was chosen to train
each layer of the network while 20% was used for the
test.

By comparing the results shown in Table 4 with those
in Table 2 which describe the results of the training and
testing of each layer of the Bayesian network, outdoor
and indoor respectively, we notice a substantial decrease
in performance for the outdoor case. This is due to the
particularly problematic scenario in terms of propagation.

3) RESULTS WITH AUGMENTED DATA
The GAN network was trained with part of the dataset
found online with 80 samples per cell. Three datasets
were subsequently generated, with 200, 300, 1000, and
2000 samples per each of the 16 cells (i.e., 4×4), respectively.
Thus, for the largest case (i.e., 2000 samples per cell) a total of
32,000 samples were obtained. The methods and parameters
used for the GAN network are the same as for the indoor
case.

For the Bayesian network, the results were obtained using
the same patterns as the indoor case. Table 5 presents the
accuracy and precision, measured in meters, of the results
categorized by the number of samples generated by the GAN
network while maintaining a constant 80 samples from the
original dataset.

The observed data indicates an increase in both accuracy
and precision up to 500 samples. Beyond this point, further
increasing the number of samples generated by the GAN
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FIGURE 10. Outdoor scenario: heat maps of the success rates relating to the five Bayes+GAN tests.

TABLE 5. Bayes + GAN test results in outdoor scenario.

network results in a decline in performance. This suggests
that the network may begin to interpret the additional
generated data as noise.

Figures 10a, 10b, 10c, 10d, and 10e depict heatmaps
illustrating the success rate of individual cells. Cells closer
to the antenna, located near cell 13, exhibit higher success
rates. Conversely, cell number 6 appears completely black
in cases 300, 500, and 1000, indicating a very low success
rate, approaching 20% of identified positions. Additionally,
the network encounters several issues, particularly on line
number 2, which are partially addressed with the inclusion
of 300-500 samples. This line corresponds to the subdivision
made by the first pattern, which demonstrates higher
accuracy, leading to clear differences in intersection areas.
However, pronounced slow-fading and fast-fading events
during the offline phase when obtaining the initial dataset
may have influenced the results.

VI. CONCLUSION
This study introduces an autonomous LTE-based system
designed for user positioning within its coverage area using
fingerprinting techniques. A novel algorithm leveraging

IMSI recognition was developed to determine if a user has
previously been located within a specific time-frame. Results
demonstrate the reasonable capability of the autonomous
network, employing the Bayesian approach, to differentiate
between various cells during testing. Significant enhance-
ments were observed by incorporating the GAN network into
the proposed approach, leading to improved success rates
and distance estimation precision, both indoors and outdoors.
In the outdoor scenario, accuracy was compromised due to
the chaotic nature of the environment, characterized by fac-
tors such as varying obstacles, moving vehicles, and changing
conditions. Conversely, the indoor environment provided a
more controlled setting, since NLOS communications was
not needed The application of a GAN trained on a dataset
consisting of 400 samples, in conjunction with a Bayesian
network, resulted in an accuracy of 92.5%. Furthermore,
a precision of 55 centimeters was achieved specifically within
indoor scenarios.

Given the outdoor scenario, the application of a GAN
trained on 500 samples, combined with a Bayesian network,
resulted in an accuracy of 80%. It’s important to emphasize
that the primary focus of the study does not lie in achieving
high accuracy for outdoor localization, as GPS technology
is readily available and typically sufficient for outdoor
scenarios.
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