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Abstract—The federated learning (FL) paradigm aims to
distribute the computational burden of the training process
among several computation units, usually called agents or
workers, while preserving private local training datasets. This is
generally achieved by resorting to a server–worker architecture
where agents iteratively update local models and communicate
local parameters to a server that aggregates and returns them
to the agents. However, the presence of adversarial agents,
which may intentionally exchange malicious parameters or may
have corrupted local datasets, can jeopardize the FL process.
Therefore, we propose selective trimmed average (SETA), which
is a resilient algorithm to cope with the undesirable effects of a
number of misbehaving agents in the global model. SETA is based
on properly filtering and combining the exchanged parameters.
We mathematically prove that the proposed algorithm is resilient
against data and local model poisoning attacks. Most resilient
methods presented so far in the literature assume that a trusted
server is in hand. In contrast, our algorithm works both in
server–worker and shared memory architectures, where the latter
excludes the necessity of a trusted server. The theoretical findings
are corroborated through numerical results on MNIST dataset
and on multiclass weather dataset (MWD).

Index Terms—Adversarial attacks, distributed optimization,
multiagent systems, resilient federated learning (FL).

I. INTRODUCTION

THE BASIC idea behind federated learning (FL) is to
distribute the training process among several computation
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units, referred to as agents in the following, for example,
computers, smartphones, possessing local training datasets that
may be heterogeneous [1], [2]. Although agents generally do
not want to disclose their local training datasets to preserve
their privacy [3], they are interested in jointly learning a
globally optimal model. The conventional architecture in FL
is the server–worker structure, as depicted in Fig. 1. In this
architecture, starting from a global model, each agent i moves
toward the optimal local model for its training dataset, Di,
through a stochastic gradient descent (SGD) algorithm and
communicates the resulting parameters wi to a server. In the
next step, the server updates the global model by aggregating
the received parameters wi, and sends the updated global
parameters w back to agents. The average of received parame-
ters is the most conventional aggregation rule in nonadversarial
environments [4], [5], [6], [7].

However, all networked systems are threatened by cyber-
attacks [8], [9] and FL is not an exemption. Adversarial
agents can perform two categories of attacks: 1) data poison-
ing [10], [11], [12] and 2) local model poisoning [13] attacks.
In data poisoning attacks, the adversaries inject malicious data
into the local training set of compromised agents, while the
latter run the learning process and honestly send the results
to the server. In model poisoning attacks, the adversaries
intentionally exchange malicious parameters to corrupt the
global model. Recent results [14], [15], [16] show that even a
single misbehaving agent can arbitrarily manipulate the global
model if the average aggregation rule is implemented.

To overcome this issue, alongside methodologies that aim to
detect and isolate misbehaving agents, such as [17] and [18],
several aggregation rules, for example, trimmed average or
median [14], Krum [15], Bulyan [19], Byrd-SAGA [16],
Zeno [20] and RSA [21], have been proposed to make
distributed learning resilient against adversaries in server–
worker architectures. The common idea behind most existing
resilient distributed learning algorithms is that outlier local
parameters must be filtered out so as not to have any influence
on the global model. For instance, the trimmed average
aggregation rule [14] computes the coordinatewise average of
the vectors of model parameters, discarding β percentage of
the highest and lowest values, where β is a design parameter. A
similar idea was recently proposed in [22], wherein a trimmed
average is applied to the estimate of the global gradient
vector by agents, discarding β percentage of the highest
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Fig. 1. Server–worker architecture where n agents locally update their models
and send the computed parameters wi to a server that aggregates them into a
global parameter vector w.

and lowest-coordinatewise values. The median aggregation
rule [14] considers the coordinatewise median of the vectors
of model parameters received from agents. A comparison
between trimmed average and median aggregation rules can be
found in [14]. In Krum [15], the local parameter vector having
the lowest distance to others is selected as global model. An
extension of Krum is provided by Bulyan [19] where param-
eters are updated according to a two-stage approach: 1) the
set of local parameters with the lowest distance from others
is recursively determined and 2) then, they are combined by
discarding the farthest values from the coordinatewise median.
A geometric median-based robust aggregation on corrected
stochastic gradients is proposed in Byrd-SAGA [16] reducing
the stochastic gradient-induced noise from regular agents, that
is, not adversarial. A further approach based on computing and
exchanging redundant gradients by the workers is proposed
in [23] to overcome the computational complexity of median-
based approaches. In addition, the algorithm Zeno presented
in [20] exploits the knowledge of a training dataset by the
server to score the gradients received by the workers. The
approach is extended in [24] to handle asynchronous commu-
nication and an arbitrary number of adversaries. Finally, RSA
in [21] is based on introducing a regularization term in the
objective function to robustify the learning task and forcing
the workers’ local parameters to be close to the server’s one.

A key assumption in the resilient aggregation rules
presented so far is the availability of a trusted server, which
represents a server unit capable of aggregating the parameters
in a fault-free and attack-free manner. However, in case of
attacks to this unit, the entire learning process is at severe
risk since malicious global models can be transferred to
all workers. Furthermore, many of them, for example, [14],
[15], [19], [20], and [24], assume independent and identically
distributed (IID) local datasets which are unrealistic in FL
where each agent holds a private dataset.

Fig. 2. Shared memory architecture where n agents locally update their
models and share the computed parameters.

In this article, we propose a resilient algorithm that is
also applicable when all agents communicate according to
a virtual shared memory architecture, as depicted in Fig. 2,
in addition to the server–worker one. In the shared memory
architecture, we consider that each agent i holds a local
private memory, where the dataset Di is stored, and shares
the estimated local parameters wi(k+ 1) in a memory shared
with the other agents. In this shared memory, each agent
can read the memory areas of all others and can write only
on its own. This enables the omission of the trusted server
unit and is equivalent to letting all the agents communicate
with each other and exchange local parameters. Note that
this architecture ensures privacy of local data in alignment
with the FL paradigm. However, in this way each agent has
complete knowledge of the network, the local parameters of
all agents, as well as the update rules. This implies that
adversaries can exploit this information to craft serious attacks,
as detailed in [13], for which we demonstrate resilience. More
specifically, we look at the resilient FL problem from the
perspective of resilient distributed optimization [25], [26],
[27], [28], aiming to find suboptimal solutions that are not
affected by adversarial agents, without the need to explicitly
detect and isolate them as done, for instance, in [29]. We
present a resilient algorithm, called selective trimmed average
(SETA), based on a coordinatewise trimmed average of local
parameters to update the parameters of each regular agent.
For each coordinate, trimmed values are selected based on
whether the coordinate itself is evaluated as an outlier or not.
We assume the general case where adversarial agents can
collude with each other and can decide whether to perform
data poisoning or local model poisoning attacks.

To the best of our knowledge, this is the first work that
provides deterministic formal guarantees for resilient FL, also
relaxing the server–worker architecture. Furthermore, SETA
achieves better performance with non-IID datasets compared
to most state-of-the-art baselines under different types of
attacks. Note that a relaxation of the architecture can also
be found in [30] and [31] where distributed protocols are
designed but IID datasets are required.
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The trimmed average is the closest existing approach to
the one in this article. However, we identify the following
fundamental differences.

1) In the trimmed average, agents have the same global
model to evolve at each epoch. In contrast, in our
algorithm, the starting model at each epoch may be
different for the agents.

2) It is possible to execute our algorithm in an architecture
with shared memory, which relaxes the need to have a
trusted server unit.

3) We provide deterministic theoretical guarantees as
opposed to statistical results published for trimmed
average and many other aggregation rules.

The proposed algorithm is built on our previous work [32]
in resilient distributed optimization of scalar functions. In
particular, the results of our previous work are extended to
resilient FL and multidimensional problems in this article as
well as a more detailed mathematical analysis is provided.

In summary, the main contributions of this article are as
follows.

1) We propose a resilient FL algorithm, called (SETA),
aimed to cope with both data and local model poisoning
attacks with non-IID local datasets.

2) We extend resilient FL to the case of shared memory
architecture while guaranteeing that the additional
information shared by regular agents, and accessible by
adversaries, does not threaten the learning process.

3) We provide deterministic mathematical analysis, as well
as simulations on the MINST dataset and the realistic
multiclass weather dataset (MWD) [33], to confirm the
effectiveness of our algorithm.

The remainder of this article is organized as follows. In
Section II, preliminary notions in multiagent systems and
distributed optimization are reviewed. FL problem in nonad-
versarial setting is introduced in Section III. Section IV is
devoted to the problem statement and introducing the proposed
resilient FL algorithm. Section V focuses on the mathematical
analysis. Numerical results are provided in Section VI to
validate the approach and Section VII concludes this article.

A. Notation

Table I reports the main notation of this article. Unless
specified otherwise, we denote scalar values with small regular
font, vectors with bold font, and matrices with capital letters.
In addition, 1n (0n) is an n-element vector all equal to 1 (0),
|.| denotes the cardinality of a set, �.� is the floor function.

II. PRELIMINARIES

Consider a network composed of n computation units
which can interact with each other. In the remainder of the
manuscript, we refer to each computation unit as an agent or
node. Such a network is modeled as a graph G = (V, E), where
V = {1, 2, . . . , n} represents the set of agents in the network
and E ⊆ {V × V} the set of communication links (or edges)
among the agents, that is, if agent i sends information to j, then
(i, j) ∈ E . We denote the set of the in-neighbors of agent i as
Ni = {j ∈ V\{i}|(j, i) ∈ E}. A graph G is defined undirected if

TABLE I
MAIN NOTATIONS INTRODUCED IN THIS ARTICLE

the communication links are bidirectional, that is, if (i, j) ∈ E
implies that (j, i) ∈ E , and is defined directed otherwise. In
addition, a graph G is called complete if there exists an edge
between all the pairs of agents, that is, Ni = V\{i} ∀i ∈ V . A
path πi,j between nodes i and j is a sequence of consecutive
edges, starting from node i and ending in node j, that is, it
is composed of the edges {(i, v1), (v1, v2), . . . , (vm, j)} ⊂ E ,
where {i, v1, v2, . . . , vm, j} ⊂ V . A directed graph G is defined
as strongly connected, if there exists a directed path between
each pair of nodes (i, j) in V . If there exists πi,j between
nodes i and j, node j is said to be reachable from node i.
Furthermore, if there exists an agent i ∈ V such that all agents
in V are reachable from i, the graph G is said to be rooted. In
case each edge (j, i) ∈ E is associated with a positive weight,
aij > 0, the graph G is called weighted. The matrix A = [aij] ∈
R

n×n collecting the weights is defined as adjacency matrix,
that is, aij > 0 if (j, i) ∈ E and aij = 0 otherwise. A square
matrix A ∈ R

n×n with non-negative entries and with each
row (column) summing to 1 is called row (column) stochastic.
Moreover, A is called doubly stochastic if it is jointly row and
column stochastic. If the edge weights aij(k) are time-varying,
the weighted graph is time-varying as well and is denoted by
G(k) = (V, E(k)). Let EB(k) be the aggregated set of edges
E(k) in the time interval [k0, k0 + B) with k0 ∈ N, that is,

EB(k) = B−1∪
k=0

E(k0 + k).

A time-varying graph G(k) is defined as jointly strongly
connected, if there exists a finite positive integer B such that
the graph (V, EB(k)) is strongly connected for all finite k0.

A. Transition Matrix

Let wi(k) ∈ R
m be the state vector of agent i at time step

k, that is, in our case wi(k) is the vector collecting the model
parameters to optimize. The most common update rule of an
agent i in consensus-based multiagent systems [34] consists of
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a weighted summation over its own and its in-neighbors state
vectors, that is,

wi(k + 1) = aii(k)wi(k)+
∑

j∈Ni(k)

aij(k)wj(k). (1)

According to the definition of adjacency matrix, (1) can be
rewritten in matrix form as

W(k + 1) = A(k)W(k) (2)

where W(k) = [w1(k), . . . , wn(k)]T ∈ R
n×m is the matrix

containing the agents’ states at time step k. If the adjacency
matrix is row stochastic, the weighted summation becomes a
weighted average over each agent in-neighbors’ values and its
own state value at time step k. By virtue of (2), we can define
the following equation:

W(k + 1) = A(k)A(k − 1)W(k − 1). (3)

If we repeat this procedure, for all s < k it holds

W(k + 1) = A(k)A(k − 1) . . . A(s+ 1)A(s)W(s). (4)

To compact (4), the transition matrix is defined as

�(k, s) = A(k)A(k − 1) . . . A(s+ 1)A(s) (5)

for all s and k with k ≥ s, and �(k, k) = A(k), leading to

W(k + 1) = �(k, s)W(s). (6)

From (6), we observe that if all the rows of the transition
matrix asymptotically converge to the same stochastic vector,
then agreement among the agents is reached, that is, it holds

lim
k→∞wi(k) = lim

k→∞wj(k) ∀i, j ∈ V .

We recall a lemma providing a condition for convergence in
terms of connectivity and adjacency matrix weights.

Lemma 1 [35]: Consider a communication graph G.
Assume that there exists a scalar τ ∈ (0, 1), such that
∀i ∈ V , it holds aii(k) ≥ τ , and for all i = j, it holds
either aij(k) = 0 or aij(k) ≥ τ . If G is rooted and the
adjacency matrix A(k) is row stochastic ∀k, then there
exist two positive scalars B > 0 and ξ ∈ (0, 1) and a
stochastic vector φ(s) = [φ1(s), φ2(s), . . . , φn(s)]T such that
limk→∞�(k, s) = 1nφ(s)T and |[�(k, s)]i,j − φj(s)| ≤ Bξ k−s.

B. Ancillary Definitions and Lemmas

We introduce the following definitions that will be used in
the theoretical analysis.

Definition 1 [25]: A subset S ⊂ V of agents is said to be
r-reachable, with r ∈ N, if there exists an agent i ∈ S such
that |Ni\S| ≥ r.

Definition 2 [25]: For r ∈ N, graph G is said to be r-robust
if for all pairs of disjoint nonempty subsets, S1,S2 ⊂ V , at
least one of S1 or S2 is r-reachable.

Definition 2 implies that a complete graph with n agents
is �(n+ 1)/2�-robust. We additionally consider the following
lemmas.

Lemma 2 [36]: Suppose a graph G is r-robust. Let G′ be
a graph obtained by removing r− 1 or fewer incoming edges
from each node in G. Then, G′ is rooted.

Lemma 3 [37]: Let β be a positive scalar in (0, 1) and
{γk} be a positive scalar sequence. If limk→∞ γk = 0, then
limk→∞

∑k
l=0 βk−lγl = 0.

III. FEDERATED LEARNING PROBLEM IN

NONADVERSARIAL SETTINGS

Traditional centralized learning algorithms require all train-
ing samples to be available to a central processing unit
computing the optimal model. However, such algorithms may
not be suitable for certain scenarios, where, for instance,
1) the owners of the training samples prefer not to disclose
private information with a central processing unit or 2) the
number of samples is too large, and it is impractical or even
impossible to process them with a single processing unit.
FL overcomes these limitations by distributing the learning
process among multiple agents that hold private local datasets.
This ensures privacy preservation and enables the processing
of large datasets in a distributed fashion.

We now present the FL problem in a nonadversarial setting.
Consider n agents that communicate with a server unit or share
a memory and aim to collaboratively learn the parameters
w of a global model. Each agent i has access to a local
training dataset Di and its local objective is to find the optimal
model parameters w ∈ R

m, obtained by solving the following
optimization problem:

min
w

f (w,Di) = min
w

fi(w) (7)

where fi, generally referred to as loss function, depends on
Di, for example, the mean square error (MSE) function can
be chosen.

Assumption 1: The objective functions fi(w) are convex,
and their gradients are continuous and bounded for bounded
|w| ∀i ∈ V , namely, ||∇fi(w)|| ≤ L if |w| <∞.

A sensible global model can be obtained as follows:

min
wi

n∑

i=0

fi(wi), (8a)

subject to wi = wj ∀i, j ∈ V (8b)

where each agent i holds a copy of the decision vector wi

and these copies are required to agree in (8b). The formulation
in (8) can be viewed as a distributed optimization problem.

Remark 1: Assumption 1 is not too restrictive and several
loss functions exist that satisfy it [38], [39]. Moreover, as
discussed in [38], the main advantage of nonconvex loss
functions is their ability to reduce the effects of outlier
samples. Since our algorithm is resilient against manipulated
samples, the importance of using these functions diminishes.

IV. RESILIENT FEDERATED LEARNING PROBLEM AND

ALGORITHM DESIGN

As mentioned in the Introduction, it is possible to apportion
all kinds of attacks in two categories, depicted in Fig. 3.

1) Data Poisoning Attack (e.g., [40]): The adversary injects
deceptive samples in the local datasets Di of some
agents, while these agents run the learning process to
solve (7) and honestly send the results to the server.
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Fig. 3. Depiction of data (in orange) and model (in red) poisoning attacks.

Since the local objective fi(w) depends on the dataset,
the effect of this attack is that a compromised agent i
will try to locally optimize a different objective function
f a
i (w). Note that it is usually difficult to detect this kind

of attack [41] since agents execute the update algorithm
correctly, while their dataset is corrupted. Next, we will
refer to compromised agents as adversarial ones.

2) Model Poisoning Attack (e.g., [13]): The adversary
manipulates the local model parameters wi that are sent
during the learning process. As a result, the adversaries
do not solve (7). Instead, they generally optimize an
adversarial objective aiming to mislead all the regular
agents. This leads to the possibility of adversarial agents
sending arbitrary model parameters wi to other agents,
with no constraints on their behavior being imposed.

Consider n agents among which nr ≤ n are regular and
aim to solve the FL problem in Section III and na ≤ F
are adversarial, that is, they perform either data or model
poisoning attacks, with F a positive constant and n = nr + na.
A sensible solution to (8) in an adversarial setting is to ignore
the adversaries and find the optimizer among the regular agents

min
wi

∑

i∈Vr

fi(wi)

subject to wi = wj ∀i, j ∈ Vr (9)

where Vr represents the set of regular agents with nominal
behavior. In the following, without loss of generality, we
model shared memory architectures as complete graphs in
which each agent receives the model parameters from all
the other agents, that is, all the agents share the respective
model parameters. Similar to (8), (9) can be viewed as
a distributed optimization problem and, in particular, as a
resilient distributed optimization problem.

A. Selective Trimmed Average Algorithm

We propose a resilient FL algorithm, referred to as (SETA)
algorithm, aimed to solve (9). The basic idea behind SETA is
that each regular agent filters out coordinatewise outlier values
received from other agents and updates the parameter vector
averaging the remaining values. Algorithm 1 summarizes the
proposed SETA protocol, which is composed of three main
phases.

For each time step k, in the first phase, each regular agent i
gathers the local parameters wj(k) from the other agents in
the network and, for each coordinate z ∈ {1, . . . , m}, runs a
clustering algorithm which builds the sets Vz

h(k) and Vz
l (k)

comprising the highest and lowest-F values wz
j (k) ∀j ∈ V ,

Algorithm 1 Selective Trimmed Average (SETA) Protocol
Require: F, Cost function fi related to dataset Di ∀i ∈ Vr
Each agent i runs indefinitely the following:

Phase 1 - Parameters clustering
Gather local parameters wj(k), j ∈ V\{i}
for each z ∈ {1, . . . , m} do

Cluster the values wz
j (k), ∀j ∈ V in 3 sets:

Vz
h(k) = {F agents with highest wz

j (k)}
Vz

l (k) = {F agents with lowest wz
j (k)}

Vz
n(k) = V\(Vz

h ∪ Vz
l )

end for
Phase 2 - Weights assignment
q = n− 2F
for each z ∈ {1, . . . , m} do

if i ∈ Vz
n(k) then

az
ij(k) =

{ 1
q if j ∈ Vz

n(k)
0 otherwise.

else

izr(k) =
{

arg minj∈Vz
n(k) wz

j (k) ifi ∈ Vz
l (k)

arg maxj∈Vz
n(k) wz

j (k) ifi ∈ Vz
h(k)

az
ij(k) =

⎧
⎪⎨

⎪⎩

1
q if j ∈ {Vz

n(k)\izr(k)
}

1
q if j = i
0 otherwise.

end if
end for
Phase 3 - State update
for each z ∈ {1, . . . , m} do

lzi (k) =
∑n

j=1 az
ij(k)w

z
j (k)

end for
c(k)← update step size [eq. (11)]
di(k)← update gradient fi(wi)
wi(k + 1) = li(k)− c(k)di(k)

respectively, as well as the set Vz
n(k) comprising the remaining

agents, that is, Vz
n(k) = V\(Vz

h(k) ∪ Vz
l )(k).

In the second phase, the weights az
ij(k) for the in-neighbors

are assigned. More in detail, if the agent i belongs to Vz
n(k),

then the weights az
ij(k) are set to 1/q ∀j ∈ Vz

n(k), and are
set to 0 otherwise. In case the agent belongs to any of the
outlier sets, that is, i ∈ Vz

h(k) ∪ Vz
l (k), the agent izr(k) with

lowest- or highest-state value in Vz
n(k) is selected to be ignored

if i ∈ Vz
l (k) or i ∈ Vz

h(k), respectively. Next, the weights az
ij

are set to 1/q for i = j and ∀j ∈ Vz
n(k)\{izr(k)}, and are set

to 0 otherwise.
An illustration of the effect of Phase 2 of SETA is provided

in Fig. 4. Starting from the complete graph with n agents
(in the circle on the left) representing the communication
network, Phase 2 leads to m graphs, one for each component
z ∈ {1, . . . , m}. Specifically, each graph (as depicted in the
zoom on the right) can be viewed as a combination of a
complete graph composed of q = n − 2F agents (in the
circle) and additional 2F agents (marked in gray) receiving
information, but which do not have any influence on others,
that is, the values of such 2F agents are filtered out by the other
agents. This implies that the edges of the graph considered for
each component are time-varying and depend on the identified
clusters at each time step.

At this point, the third phase updates the states following
the distributed subgradient optimization algorithm introduced
in [37] and using the graphs obtained in Phase 2 for each
component z, that is, the update rule for agent i is:
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Fig. 4. Depiction of the graph reshape for each component z ∈ {1, . . . , m} given by the implementation of Phase 2 of SETA (Algorithm 1). Complete graphs
are depicted by enclosing the agents in circles.

lzi (k) =
n∑

j=1

az
ij(k)w

z
j (k) ∀z

wi(k + 1) = li(k)− c(k)di(k) (10)

with c(k) the step size defined as

c(k) > 0,
∑∞

k=0 c(k) = ∞,
∑∞

k=0 c2(k) <∞. (11)

The driving force behind SETA is the principle of self-trust.
In Phase 2 of SETA, an agent may discover that its coordinate z
significantly deviates from those of other agents, making it an
outlier belonging to Vz

l (k) or Vz
h(k). Nevertheless, each agent

maintains confidence in its own estimation and includes its
own zth coordinates in the aggregation process, that is, az

ii =
(1/q), regardless of its perceived outlier status.

Remark 2: SETA is also suitable for a server–worker archi-
tecture in which, in Phase 1, all the local parameters wi(k)
are communicated to the central server, that builds the clusters
Vz

h(k), Vz
l (k), Vz

n(k). Based on these, the server computes the
variables az

ij(k) defined in Phase 2 and updates the states
wi(k + 1) as in Phase 3. Finally, the server sends back the
updated states to each agent i according to the architecture
in Fig. 1. Without loss of generality, we consider the shared
memory architecture in our mathematical treatments.

The main difference compared to previous aggregation rules
for server–worker architecture is that with SETA each agent i
receives a different parameter update wi(k + 1), and these
parameters converge to the same vector for all regular agents.

V. MATHEMATICAL ANALYSIS

We now focus on proving that SETA is resilient to all types
of attacks described in Section IV. To this aim, we first prove
that if n and F satisfy the inequality for the complete graph
to be 2F + 1 robust, that is,

�(n+ 1)/2� ≥ 2F + 1 (12)

then the agents reach consensus with SETA protocol and the
consensus value is not dependent on adversarial agents. Next,
we provide a deterministic bound on the convergence to the
optimal solution of the resilient FL problem.

A. Agents Consensus

As discussed above, SETA produces m different adjacency
matrices corresponding to m different graph topologies. We

notice that each agent i filters out at most 2F of its in-
neighbors’ states to update each coordinate of the parameter
vector wi. Considering Lemma 2, the (2F + 1)-robustness
property in (12) ensures that the resulting m graphs after
implementing SETA are rooted.

Lemma 4: Consider n agents with (2F+ 1)-robust network
in a shared memory architecture. Then, under Assumption 1,
all agents executing SETA in Algorithm 1 converge to a
constant consensus vector, w ∈ R

m, that is,

lim
k→∞
‖wi(k)− w‖ = 0 ∀i ∈ Vr

and w is not influenced by adversarial agents.
Proof: To prove this result we consider two steps: 1) by

assuming that regular agents are at consensus, we demonstrate
that this is not affected by adversaries and 2) then we
prove that regular agents actually reach a constant consensus
vector w.

Regarding the first step, in case all the adversaries belong
to Vz

l (k) ∪ Vz
h(k), they are filtered out by all regular agents

according to SETA and cannot deviate the consensus value. We
thus consider the case where Kz adversarial agents ai belong
to Vz

n(k), i = 1, . . . , Kz. This implies that there must also exist
Kz regular agents belonging to Vz

l (k) and Kz regular agents
belonging to Vz

h(k). The component z of the state of adversarial
agents ai can be written as a linear combination of two filtered
regular agents as follows:

wz
ai
(k) = σ z

i (k)wz
hi
(k)+ (1− σ z

i (k)
)
wz

li
(k) (13)

for i = 1, . . . , Kz and 0 < σ z
i (k) < 1 where wz

hi
(k) and wz

li
(k)

represent the components z of the regular agents that belong to
Vz

h(k) and Vz
l (k), respectively. Therefore, Az(k) is equivalent to

an additional row stochastic adjacency matrix, Az′(k), where
two filtered regular agents are considered in place of the
remaining adversarial agents in Vz

n(k). It follows that the
case of Kz adversarial agents in Vz

n(k) is mathematically
equivalent to the situation in which the adversarial agents
do not communicate their state, but rather send the states of
the respective two regular agents according to (13). In this
equivalent network graph, the regular agents filter out at most
2F of their incoming edges as well. Thus, since the graph
representing the network is 2F + 1-robust, we can conclude,
by virtue of Lemma 2, that the equivalent adjacency matrix
Az′(k) is rooted and stochastic. Furthermore, by recalling that
the adversarial agents are filtered out in Az′(k), we obtain that,
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if the regular agents reach a consensus, this value cannot be
influenced by the adversaries.

At this point, we focus on proving that the regular agents
reach a consensus vector w. From (10), we have

wi(k + 1) = li(k)− c(k)di(k). (14)

We can rewrite the zth value of wi(k + 1) in (14) as follows:

wz
i (k + 1) = lzi (k)− c(k)dz

i (k). (15)

According to the definition of lzi (k) in (10), (15) is equal to

wz
i (k + 1) =

n∑

j=1

az
ij(k)w

z
j (k)− c(k)dz

i (k). (16)

Then, using the transition matrix defined in (5), we obtain
∀i ∈ V and k > s

wz
i (k + 1) =

n∑

j=1

[
�z(k, s)

]
i,jw

z
j (s)

−
k−1∑

r=s

n∑

j=1

[
�z(k, r + 1)

]
i,j

(
c(r)dz

j (r)
)

− c(k)dz
i (k)

where �z is the transition matrix associated with [az
ij].

Since by Assumption 1 gradients are bounded, it holds
limk→∞ c(k)dz

i (k) = 0 according to (11). Therefore,
∀i1, i2 ∈ Vr, we have

lim
k→∞

(
wz

i1
(k + 1)− wz

i2
(k + 1)

)

= lim
k→∞

n∑

j=1

([
�z(k, s)

]
i1,j −

[
�z(k, s)

]
i2,j

)
wz

j (s)

︸ ︷︷ ︸
i)

− lim
k→∞

k−1∑

r=s

n∑

j=1

([
�z(k, r + 1)

]
i1,j −

[
�z(k, r + 1)

]
i2,j

)

︸ ︷︷ ︸
ii)

×
(

c(r)dz
j (r)

)
.

︸ ︷︷ ︸
iii)

(17)

Considering that the resulting graph after implementing SETA
is equivalent to a row stochastic and rooted graph, in which
the adversaries are filtered out, from Lemma 1 it follows
∀i ∈ Vr:

lim
k→∞

[
�z(k, s)

]
i,j = ϕz

j (s) (18)

which yields to

lim
k→∞

([
�z(k, s)

]
i1,j
− [�z(k, s)

]
i2,j

)
= 0. (19)

Since any s < k can be selected for which wz
j (s) is bounded,

we observe that the term 1) of (17) tends to zero. Regarding
term 2), Lemma 1 leads to

−Bξ k−(r+1) ≤
n∑

j=1

([
�z(k, r + 1)

]
i1,j
− [�z(k, r + 1)

]
i2,j

)

≤ Bξ k−(r+1)

with B > 0 and 0 < ξ < 1. According to Assumption 1, we
can write the following inequality for term iii):

− nLc(r) ≤ c(r)
n∑

j=1

dz
j (r) ≤ nLc(r). (20)

Thus, the overall term given by multiplying ii) and iii) is
bounded in the interval

[
−nLB

k−1∑

r=s

ξ k−(r+1)c(r), nLB
k−1∑

r=s

ξ k−(r+1)c(r)

]
. (21)

In view of (11) and Lemma 3, both the extremes of the interval
tend to zero. Therefore, it holds

lim
k→∞

∥∥wi1(k)− wi2(k)
∥∥ = 0 ∀i1, i2 ∈ Vr (22)

proving that regular agents reach consensus. At this point, we
prove that the consensus value is a constant vector, w. Recall
that the adjacency matrix of the mathematically equivalent
graph achieved by (13), where adversarial agents are filtered
out, is row stochastic. Therefore, from (22) and the definition
of lzi (k) in (10), ∀i ∈ Vr, it follows:

lim
k→∞ lzi (k) = lim

k→∞

n∑

j=1

az
ij(k)w

z
j (k)

= lim
k→∞

∑

j∈Vr

az
ij(k)w

z
j (k) = lim

k→∞wz
i (k). (23)

On the other hand, the update rule in (10) yields to

lim
k→∞wz

i (k + 1) = lim
k→∞ lzi (k)− lim

k→∞ c(k)dz
i (k). (24)

Since in view of (11) it holds limk→∞ c(k)dz
i (k) = 0, by

combining (23) and (24), one obtains

lim
k→∞wz

i (k + 1) = lim
k→∞wz

i (k) (25)

which holds ∀z, z ∈ {1, . . . , m} and shows that consensus
vector of regular agents is constant, proving the desired
result.

B. Resiliency Analysis

In the previous section, we demonstrated that the regular
agents reach a consensus that is not influenced by adversaries.
We now need to prove that the agents converge to a sensible
solution of the optimization problem in (9). To demonstrate
this result, we first consider the following auxiliary lemma.

Lemma 5: If Assumption 1 holds, by implementing SETA
in Algorithm 1 ∀il ∈ Vz

l (k) ∀in ∈ Vz
n(k) and ∀ih ∈ Vz

h(k), z ∈
{1, . . . , m}, there exists a finite time step T <∞ such that for
all k > T , it holds dz

il
(k) > dz

in
(k) > dz

ih
(k).

Proof: To prove the result, first note that according to (10),
the difference lzil(k)− lzin(k) can be written as

lzil(k)− lzin(k) =
1

q

(
wz

il
(k)− wz

izr(k)
(k)
)
. (26)

Given the definition of Vz
l (k) and Vz

n(k) (Phase 1 of
SETA), it holds by construction wz

il
(k)− wz

izr(k)
(k) < 0.
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Therefore, lzil(k) − lzin(k) < 0. Similarly, we can prove that
lzin(k)− lzih(k) < 0. Therefore ∀k it holds

lzil(k) < lzin(k) < lzih(k). (27)

Next, recall that according to (10), the update rules for agents
il and in are

wz
il
(k + 1) = lzil(k)− c(k)dz

il
(k)

wz
in(k + 1) = lzin(k)− c(k)dz

in(k). (28)

Then, if dz
il
(k) ≥ dz

in
(k), from (27) and (28) it follows:

lzil(k)− c(k)dz
il
(k) < lzin(k)− c(k)dz

in(k) (29)

leading to

wz
il
(k + 1) < wz

in
(k + 1), if dz

il
(k) ≥ dz

in
(k). (30)

With the same argumentation, one obtains

wz
in
(k + 1) < wz

ih
(k + 1), if dz

in
(k) ≥ dz

ih
(k). (31)

At this point, since in view of Assumption 1 the functions fi(.)
are differentiable ∀i, and their gradients di(k) are continuous,
we observe that, by virtue of Lemma 4, the gradients converge
to different constant vectors according to the consensus value
of states. This implies that there exists a large enough time step
index s such that the ordering of gradients does not change
for ∀k ≥ s, that is, it holds ∀i, j, that if dz

i (s) ≥ dz
j (s) then

dz
i (k) ≥ dj(k)z ∀k ≥ s and z ∈ {1, . . . , m}.

In view of (26), the difference lzin(k)− lzil(k) is equal to

lzin(k − 1)− lzil(k − 1) = 1

q

(
wz

izr(k−1)
(k − 1)− wz

il
(k − 1)

)
.

(32)

Thus, the difference wz
in
(k)− wz

il
(k) can be written as

wz
in
(k)− wz

il
(k) = 1

q

(
wz

izr(k−1)
(k − 1)− wz

il
(k − 1)

)

− c(k − 1)
(

dz
in
(k − 1)− dz

il
(k − 1)

)
. (33)

Considering now the difference wz
izr(k−1)

(k − 1) − wz
il
(k − 1)

in (33), it holds

wz
izr(k−1)

(k − 1)− wz
il
(k − 1)

= 1

q

(
wz

izr(k−2)
(k − 2)− wz

il
(k − 2)

)

− c(k − 2)
(

dz
izr(k−1)

(k − 2)− dz
il
(k − 2)

)
(34)

where izr(k − 1) ∈ Vz
n(k − 1) by construction. Let us define

D = inf
k≥s

{
dz

izr(k+1)
(k)− dz

il
(k)
}

> 0 (35)

C = sup
k≥s

{
wz

izr(k)
(k)− wz

il
(k)
}

> 0 (36)

for which it holds 0 < C < ∞, since regular agents reach
consensus (Lemma 4).

We first analyze the case in which izr(k) ∈ Vz
n(k − 1) or

izr(k) ∈ Vz
h(k − 1), that is, the agent removed at time step k

was contained in Vz
n(k − 1) ∪ Vz

h(k − 1) at the previous time
step. From the definition of izr(k) in Phase 2 of Algorithm 1,

we observe that in this case it holds dz
izr(k)

(k− 1) ≥ dz
in
(k− 1).

Otherwise, with a similar argumentation to (30), we would
obtain wz

in
(k) < wz

izr(k)
(k), which is a contradiction given the

definition of izr(k) for il ∈ Vz
l (k). We want to prove that if

dz
il
(s) < dz

in
(s), then the agents il and in switch at a finite

time step T , that is, there exists s < T < ∞ such that
wz

in
(T) < wz

il
(T). From (34) we can recursively find out that,

the following inequality is verified for k > s:

wz
in
(k)− wz

il
(k) ≤ C

qk−s
− D

k−s∑

r=1

c(k − r)

qr−1
. (37)

To prove that there exists a time step T <∞ such that wz
in
(T)−

wz
il
(T) < 0, we show that the first term in the right-hand

side of (37) tends to zero faster than the second one. In view
of (37), we obtain

lim
k→∞

D
∑k−s

r=1
c(k−r)
qr−1

C
q(k−s)

= D

C
lim

k→∞

k−1∑

r=s

q(r+1−s)c(r)

≥ D

C
lim

k→∞

k−1∑

r=s

c(r) = ∞. (38)

We now consider the case in which izr(k) ∈ Vz
l (k − 1),

that is, the agent izr(k) ∈ Vz
n(k) was previously contained in

Vz
l (k − 1) at time step k − 1. In this case, according to (30),

there must exist an agent izs with higher gradient, that is,
dz

izr(k)
(k − 1) ≤ dz

izs
(k − 1), which switched its position with

izr(k), that is, such that izs ∈ Vz
n(k − 1) ∪ Vz

h(k − 1) and
izs ∈ Vz

l (k). This implies that the switching is a step toward
sorting the agents with respect to their gradients. We can then
reinitialize s = k and go forward again. Since the number
of agents is bounded and all the replacements are toward
sorting the agents, there exist finite time steps in which it holds
izr(k) ∈ Vz

l (k − 1). Considering a time step s in which izr(k) ∈
Vz

n(k − 1) ∪ Vz
h(k − 1) for all k > s, the same case as in the

above is obtained and it is proven that there exists a time step
T <∞ such that wz

in
(T)−wz

il
(T) < 0. We can write a similar

argument for dz
in
(s) < dz

ih
(s) and wz

in
(s) < wz

ih
(s). Moreover,

from (30) and (31) we observe that if the regular agents are
ordered they will not change their sets. This concludes the
proof.

At this point, we can formally state our main theorem
regarding the resiliency of SETA in case of attacks. We define
the powerset P(Vr) of the set of regular agents Vr and its
subset S equal to S = {x ∈ P(Vr) | |x| = n− 2F}.

Theorem 1: Consider n agents among which up to F can
be adversarial. Assume F satisfies (12) and Assumption 1
holds. Then, by implementing SETA in Algorithm 1 in a
shared memory architecture, the states wi of regular agents
i ∈ Vr converge in the smallest hypercube containing all w∗j
defined as

w∗j = arg minw

∑

i∈�j

fi(w)

for �j ∈ S , j = 1, . . . , |S|.
Proof: By Lemma 5, it follows that there exists a time

step T in which the regular agents do not swap their position
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between sets Vz
h(k), Vz

l (k) and Vz
n(k) for k > T . Let us consider

k > T and define the sets �z
h and �z

l containing q regular
agents with highest and lowest-state values wz

i ∀i, respectively.
Let us introduce the following auxiliary vectors given the
component z:

M = arg minw
∑

i∈�z
h

fi(w)

m = arg minw
∑

i∈�z
l

fi(w). (39)

From Lemma 4, it follows that the regular agents reach
consensus despite the presence of adversaries in the network.
Let w be the consensus vector, that is, w = wi(k) ∀i ∈ Vr as
k → ∞. To prove the theorem, we show that the equivalent
following inequality is satisfied:

mz ≤ wz ≤ M
z ∀z ∈ {1, . . . , m}. (40)

Assume by contradiction that wz = M
z + ε, with ε > 0. We

introduce the following variables:

Mz(k) =
∑

i∈�z
h

wz
i (k), mz(k) =∑i∈�z

l
wz

i (k). (41)

By considering that there are maximum F adversarial agents
and that it holds |�z

h| = q = n− 2F, we deduce that there
must exist at least F regular agents with lower states wz

i (k)
which are not included in �z

h. This implies that Vz
l (k)∩�z

h = ∅
for all k > T . By applying a similar reasoning, we obtain
Vz

h(k) ∩�z
l = ∅ for all k > T . Therefore, by virtue of the

update procedure in (10), the following inequality holds true:

1

q
mz(k) ≤ lzi (k) ≤

1

q
Mz(k)

which leads to

wz
i (k + 1) ≤ 1

q
Mz(k)− c(k)dz

i (k). (42)

Considering (42) and (41) for Mz(k + 1), it follows:

Mz(k + 1) ≤ Mz(k)− c(k)
∑

i∈�z
h

dz
i (k) (43)

which can be generalized for Mz(k + Z) as

Mz(k + Z) ≤ Mz(k)−
Z−1∑

k=k0

⎛

⎝c(k)
∑

i∈�z
h

dz
i (k)

⎞

⎠. (44)

Since we assumed wz = M
z+ε, there exists a time step k0 > T

such that the following inequality is verified for k ≥ k0 and
i ∈ Vr:

M
z + 1

2
ε ≤ wz

i (k) ≤ M
z + 2ε (45)

which, summing for all j ∈ �h and considering the definition
in (41), leads to

q

(
M

z + 1

2
ε

)
≤ Mz(k) ≤ q

(
M

z + 2ε
)
. (46)

In view of (39) and the convexity of the loss functions, we
observe that if it holds wz

i (k) = M
z

for all i ∈ �z
h, then

the sum of respective gradients are null, that is, it holds

∑
i∈�z

h
dz

i (k) = 0. Therefore, in order to fulfill (45) it must
hold

∑
i∈�z

h
dz

i (k) > 0 for k > k0. At this point, recalling
that

∑∞
k=k0

c(k) = ∞, we obtain from (44) that, for a large
enough Z, it holds Mz(k0 + Z) < q(M

z + (1/2)ε), which is in
contradiction with (46). By applying a similar reasoning, one
can reach mz ≤ wz. This concludes the proof.

Remark 3: The adversarial agent’s behavior is not con-
strained in the above proof. Therefore, SETA is resilient
against both data and model poisoning attacks described in
Section IV.

Remark 4: The challenges of training FL algorithms are
significantly increased with non-IID datasets, as extensively
discussed in [42]. In some extreme cases, such as when each
agent possesses data samples, containing only one class in
a multiclass classification problem, the non-IID distribution
can lead the global model to fail in achieving satisfactory
performance. In the mathematical analysis presented in this
article, no assumptions about the properties of the datasets
are made. This means that Algorithm 1 leads the states
of all regular agents to a consensus vector, which is not
influenced by adversaries and belongs to the hypercube defined
in Theorem 1, regardless of whether the dataset is IID or non-
IID. However, as noted in [43], the local decision vectors are
closer in the IID case than in the non-IID case. Therefore,
the convergence hypercube is a smaller neighborhood around
the global optimal solution in the IID case compared to the
non-IID case. Consequently, we can expect more accurate
outcomes with IID datasets than with non-IID datasets.

The above theorem provides a region of convergence of the
regular agents. A condition for reaching the optimal solution
to (9) can be defined using the concept of redundancy in
distributed optimization. In particular, the work in [44] proves
that a necessary condition for finding a solution to (9) with up
to F adversarial agents is that the cost functions fi(w) fulfill the
2F-redundancy property, that is, that for any subset of agents,
�, where |�| = n− 2F the following holds true

arg min
w

∑

i∈�
fi(w) ∈W∗ (47)

where W∗ is the convex set of optimal solutions of (9). Based
on (47), we identify the condition for SETA to converge to an
optimal solution of (9).

Corollary 1: Assume that the conditions of Theorem 1
hold and the 2F-redundancy property is fulfilled. Then, by
implementing SETA in Algorithm 1, the states wi of regular
agents i ∈ Vr converge to an optimal solution of (9).

Proof: The proof easily follows considering that, if the 2F-
redundancy property is verified, then it holds m, M ∈ W∗.
According to Assumption 1, the loss functions are convex
and from Theorem 1 mz ≤ wz ≤ M

z
, therefore, it holds

w ∈W∗.
Note that reaching the exact optimal solution in 2F-

redundant problems can be viewed as a metric to evaluate
resilient optimization algorithms. In particular, since 2F-
redundancy is a necessary condition to find the exact
optimal solution of (9), a well-designed algorithm should
converge to this solution when the 2F-redundancy property
is met.
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VI. SIMULATION RESULTS

In this section, we validate the resiliency of SETA against
several attack types using two datasets with different levels of
complexity and compare it against different baselines.

A. Setting

Datasets: We validate the proposed algorithm with two
datasets: 1) the MNIST dataset [45], [46], collecting gray
scale images of digits with resolution 28 × 28 and 2) the
MWD in [33], collecting colored images of different weather
conditions, that is, cloudy, sunny, rainy, and sunrise, with
variable resolution. In both cases, our FL objective is to
perform classification [of digits for 1) and weather condition
in 2)] considering that each agent has access to a private local
dataset Di. The choice of these two datasets is motivated by the
fact that the former a widely used standard dataset in literature,
allowing us to conduct a relatively simple initial validation
of our method; the latter presents a more challenging case
study, which is valuable for validating the algorithm in realistic
contexts that have practical applications. Specifically, as we
operate within the context of precision agriculture robotics
as for the European project CANOPIES,1 the classification
of weather conditions can help robots operate more safely in
their environment. For instance, if the robots detect cloudy or
rainy weather, they may decide to move to a sheltered location
to avoid damage or to speed up their activities. The MNIST
dataset is composed of 60000 training samples and 10000
testing samples, while MWD includes 1125 samples in total
which we resize to a resolution of 50× 50 and randomly split
into 80% for training and 20% for validation.

In the following, we consider both IID and non-IID distri-
bution of the training datasets among the agents. In the IID
case, the training samples are uniformly distributed among the
agents. In the non-IID case, the local datasets Di are composed
of random samples associated with k classes of the dataset.
In the MNIST dataset, we select k ∼ U(3, 4), that is, each
agent has samples of either three or four digits in the local
dataset, while for MWD case, we consider k ∼ U(1, 2), that
is, each agent has samples of one or two weather conditions
(out of four). The testing samples are used to evaluate the
performance.

Agents: In the MNIST case study, we analyze a system
comprising n = 100 agents, out of which na = F = 20 agents
are randomly designated as adversarial agents. In contrast, for
the MWD case study, we consider a system consisting of n =
50 agents, out of which na = F = 10 agents are randomly
selected as adversarial agents. Each agent has a two-layer
fully connected neural network with 100 hidden units in the
MNIST case and 256 units in the MWD case. Leaky ReLU
and Softmax activation functions are used for the hidden and
the output layers, respectively. Note that, although the leaky
ReLU is not differentiable at the origin, continuous pseudo
derivatives of leaky ReLU are proposed in the literature, for
example, [47], which can be used to satisfy Assumption 1 and
the mathematical soundness of the backpropagation learning

1https://canopies.inf.uniroma3.it/

procedure. Weights are initialized by each agent according to
a uniform distribution U(0m, 0.01 ·1m) and models are trained
for 1000 steps with a step size c(k) evolving as

c(k) =
{

c0, if k ≤ s
γ c0/((k − s)c0 + γ ), if k > s

which fulfills conditions in (11) and where s are warm-up steps
set to s = 300, γ is a positive constant γ = 500 and c(0) = 1
for the MNIST case and c(0) = 0.01 with MWD case.

Attacks and Baselines: To validate the resiliency of SETA,
we implement three local model poisoning attacks and one
data poisoning attack. Regarding the former, we consider:
1) Gaussian attack, as reported for example in [21] and [30],
where each adversarial agent i sends a parameter vector
wi obtained according to a Gaussian distribution, that is,
wi ∼ N (0m, 1m); 2) model flipping attack, as used for example
in [30], where each adversary flips the sign of weights
computed according to SETA, and communicates the flipped
parameters; and 3) optimization-based attack, introduced
in [13], where each adversary determines the local parameter
vector by solving an optimization problem. In particular,
given the direction along which the global parameter vector
would be updated in the absence of attacks, the optimization
objective is to deviate the global parameter vector as much
as possible toward the inverse of this direction. Regarding the
data poisoning attack, a label flipping attack [40] is considered.
For the MNIST case, each label is exchanged with the previous
digit, that is, 1 is set instead of 2, 2 instead of 3 and so on,
while 9 is used in place of label 0. Similarly, for the MWD,
we exchange each label with the previous one in the ordered
list consisting of cloudy, rainy, sunny, and sunrise. Hence,
samples originally belonging to the class rainy are assigned
the label cloudy, and so on. For all the attacks, we consider
that the adversarial agents begin the attack from the start of
our simulations.

To compare results, we consider the following baselines.
1) Centralized SGD, representing the ideal case where data

is not distributed among agents and a single server
computes the parameters without any attack, that is, no
aggregation rule is used and no adversaries are present.
Therefore, this baseline provides an upper bound for the
accuracy of SETA and the other FL baselines.

2) Average aggregation, which is the typical aggregation
rule where the parameters are updated by performing
a simple coordinatewise average of all agents’ local
parameters.

3) FedProx [48], that introduces a penalty term in the
optimization objective to mitigate the impact of strag-
glers and non-IID data. It encourages local models
at each agent to be close to a global model while
considering the differences in local datasets.

4) Median aggregation, where the coordinatewise median
is computed to update the parameters.

5) Trimmed average, where parameters are updated by
filtering out the F highest and smallest values in a
coordinatewise fashion and computing the remaining
average values.
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TABLE II
PERCENTAGE ACCURACY ON THE MNIST TEST SET ACHIEVED BY ALL THE CONSIDERED AGGREGATION RULES USING IID (LEFT) AND NON-IID

(RIGHT) DATA DISTRIBUTIONS. GAUSSIAN, MODEL FLIPPING, OPTIMIZATION-BASED, AND LABEL FLIPPING ATTACKS

ARE CONSIDERED. BEST RESULTS IN BOLD

6) Krum [15], where the local parameter vector with lowest
distance to its n−F− 2 closest local parameter vectors
is used.

7) Bulyan [19], where n − 2F local parameter vectors
are recursively selected by resorting to an aggregation
rule, and then they are combined by discarding, for
each coordinate, the 2F values that are furthest from
the median and by averaging the remaining ones. As
aggregation rule, we resort to Krum as done in [19].

B. Results

MNIST Case Study: The performance reached with different
aggregation rules and attacks is reported in Table II for the
MNIST dataset. Percentage accuracy on the test set using
the weights at the last training step is shown. In particular,
on the left IID distribution for the local datasets Di is
considered, while on the right non-IID distribution is used.
Results in case of Gaussian (first column of each block),
model flipping (second column), optimization-based (third
column) and label flipping (forth column) attacks are provided.
Accuracy equal to 97.1% in case of no attack (not reported in
the table) is achieved by the centralized SGD, representing the
performance to aim with FL approaches. Starting from the case
of IID distribution (in the left part of the table), we can observe
that a maximum decrease in performance equal to ≈7% is
achieved by SETA compared to the centralized in case of
model flipping, while a decrease lower than 3% is reached with
the other attacks. Similar performance is obtained by median
and trimmed average aggregation rules. Significantly lower
performance is reached instead using average aggregation rule
achieving < 14% with most attacks. Poor performance (lower
than 16%) in case of optimization-based attack is also obtained
with FedProx, Krum and Bulyan methods, although Bulyan
achieves the highest accuracy in case of model flipping attack,
reaching 93.54% compared to 90.62% of SETA. In the case
of non-IID distribution (right part of the table), we can notice
that a significant drop in performance is recorded with most
attacks when using average and FedProx aggregation rules,
both achieving, for instance, only ≈ 10% with optimization-
based attack. An overall performance decrease is also recorded
with median, Krum, and Bulyan, achieving performance lower
than 30% in the respective worst cases. Best accuracy is
achieved instead with most of the attacks using the proposed
SETA. In particular, a maximum decrease in performance,

(a) (b)

Fig. 5. Accuracy on the MNIST test set during the learning process using
IID (left) and non-IID (right) data distributions. Results achieved by average
(dark blue), Fedprox (light red), median (yellow), trimmed average (purple),
Krum (light green), Bulyan (light blue), and SETA (thick red lines) as well as
by the centralized architecture (dashed dark green lines) are reported. Three
model poisoning attacks (top part and bottom left of each figure) and one data
poisoning attack (bottom right of each figure) are considered. (a) MNIST case
study: IID data distribution. (b) MNIST case study: Non-IID data distribution.

with respect to the ideal centralized case, equal to ≈ 15%
is achieved in the case of model flipping, while a decrease
lower than 5% is reached with the other attacks. Slightly
lower performance is obtained in general by trimmed average
compared to SETA.

Fig. 5(a) and (b) show the accuracy on the test set during
the learning process with IID and non-IID distributions,
respectively. The four different attacks are reported, that is,
Gaussian (in the top left), model flipping (in the top right),
optimization-based (in the bottom left), and label flipping (in
the bottom right) attacks. Centralized SGD results are shown
with dotted dark green lines, while average, FedProx, median,
trimmed average, Krum, Bulyan, and the proposed SETA
algorithm are reported with dark blue, light red, yellow, purple,
light green, light blue, and dark red solid lines, respectively.
First, the plots confirm that the results in Table II are also
observed during the entire learning process. More specifically,
we can observe that in all the cases SETA outperforms the
others approaching more closely the centralized results and, as
expected, shows comparable performance with respect to the
trimmed average. Second, the plots show the robustness of the
proposed algorithm compared to the other baselines toward
chattering phenomena that are induced by the model flipping
and the optimization-based attacks.

MWD Case Study: Table III summarizes the results obtained
with MWD using the different aggregation rules and attacks.
Results with IID (left) and non-IID (right) distributions of
the dataset are shown. Similar observations to the MNIST
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TABLE III
PERCENTAGE ACCURACY ON THE MWD TEST SET ACHIEVED BY ALL THE CONSIDERED AGGREGATION RULES USING IID (LEFT) AND NON-IID

(RIGHT) DATA DISTRIBUTIONS. GAUSSIAN, MODEL FLIPPING, OPTIMIZATION-BASED, AND LABEL FLIPPING ATTACKS

ARE CONSIDERED. BEST RESULTS IN BOLD

(a) (b)

Fig. 6. Accuracy on the MWD test set during the learning process using IID (left) and non-IID (right) data distributions achieved by the average (in dark
blue), Fedprox (light red), median (yellow), trimmed average (purple), Krum (light green), Bulyan (light blue), and SETA (thick red lines) as well as by the
centralized architecture (dashed dark green lines) are reported. Three model poisoning attacks (top part and bottom left of each figure) and one data poisoning
attack (bottom right of each figure) are shown. (a) MWD case study: IID data distribution. (b) MWD case study: Non-IID data distribution.

case apply to the MWD case study. In this case, classifi-
cation accuracy equal to 83.93% is achieved in the ideal
scenario of no attack and centralized SGD (not reported in
the table). For the IID distribution setting, we can notice
that SETA achieves a maximum performance decrease of
approximately 4.5%, compared to the centralized approach,
with the model flipping attack. However, both Gaussian and
optimization-based attacks result in a performance decrease of
less than 3% using SETA. Similar performance is obtained
when using the trimmed average and median aggregation
rules. As for MNIST, lower performance is obtained in
general with average, FedProx, Krum, and Bulyan aggregation
rules. Specifically, average, FedProx, and Krum rules achieve
performance lower than 51% for Gaussian and optimization-
based attacks, while Bulyan obtains the best performance
equal to 81.25% for the model flipping attack, but performs
poorly on Gaussian and optimization-based attacks, achieving
accuracy lower than 42%. For the non-IID distribution setting
(on the right), an overall performance decrease is obtained
with average, FedProx, median, Krum, and Bulyan aggregation
rules, except for the label flipping attack with average method,
reaching best performance ≈ 82% and the model flipping
attack with Bulyan method, reaching best performance ≈
81%. In the remaining attacks, the best accuracy, similar to
the trimmed average, is achieved by SETA. Specifically, a
maximum performance decrease, compared to the centralized

Fig. 7. Evolution of the norm of the state vectors wi ∀i ∈ Vr of regular
agents using SETA.

case, equal to ≈ 17% is achieved in the case of model flipping,
while a decrease lower than 5.4% is reached with the other
attacks.

Similar to Fig. 5, we show the accuracy on the MWD test
set during the learning process in Fig. 6(a) and (b), for the IID
and non-IID distributions, respectively. As for the MNIST case
study, the figure shows that the results in Table III are also
recorded during the entire learning process. Furthermore, the
figure makes evident that the learning process is significantly
more challenging in this case study compared to the MNIST
one. However, in all tests, SETA is able to closely approach
the centralized results without any chattering phenomena.

Consensus of the Agents: Fig. 7 reports the evolution of the
norm of the state vectors wi ∀i ∈ Vr associated with regular

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



KAHENI et al.: SETA: A RESILIENT FL ALGORITHM WITH DETERMINISTIC GUARANTEES 13

Fig. 8. Accuracy of SETA with varying number of adversaries using MNIST
dataset and non-IID distribution.

agents that is achieved using SETA. For instance, the case
of non-IID distribution and optimization-based attack with
MNIST dataset is considered, but similar trends are observed
in the other cases. The figure shows that, coherently with
Lemma 4, during the initial training steps (reported in the
zoom figure), different norm values are recorded, while as the
training advances, the agents reach consensus on the weights.

Impact of Varying Number of Adversaries: We analyzed the
performance of SETA when varying the number of adversaries
within the set {5, 10, 15, 20, 24}, where each value satisfies
the 2F + 1 robustness condition with n = 100. Fig. 8
depicts the accuracy achieved by SETA under various attacks,
that is, Gaussian, model flipping, optimization-based, and
label flipping attacks, using the MNIST dataset and non-IID
distribution. The figure shows that stable results are obtained
with Gaussian and optimization-based attacks as the number
of adversaries increases. In contrast, a progressive decrease
in performance is observed in the case of the model flipping
attack, making it the most severe attack for SETA in our tests.
Finally, a stable behavior is observed with the label flipping
attack until F = 20, while a noticeable drop in performance is
evident at F = 24. This can be motivated by the fact that, with
non-IID data distribution, increasing the number of adversarial
agents might cause the number of adversarial flipped samples
of a specific digit to exceed the number of benign samples
of it. As a result, correct classification of that digit becomes
challenging, leading to a sudden 10% drop in accuracy.

VII. CONCLUSION

In this article we proposed a resilient FL algorithm, namely,
SETA, to tackle the presence of adversarial agents that can
compromise the distributed learning process. Given local
models of the agents, SETA first performs a coordinatewise
clustering of the local parameters. Then, it applies a coordi-
natewise trimmed average, in which the trimmed values are
selected according to the respective cluster. SETA enables
FL both in standard server–worker architecture and in shared
memory settings, where a trusted server is not needed. We
formally proved the convergence bounds of the algorithm
against model and data poisoning attacks and validated the
approach using MNIST and MWD datasets. We compared
the performance with respect to average, median, trimmed
average, FedProx, Krum, and Bulyan aggregation rules in
case of different attack types. Simulation results confirmed
the effectiveness of SETA in adversarial settings, providing

generally better performance than average, median, FedProx,
Krum, and Bulyan aggregation rules as well as comparable
results to trimmed average.

As part of future work, we aim to evaluate SETA’s
performance on additional real-world and heterogeneous
datasets and extend it to fully distributed settings, eliminating
both the shared memory and the need for a trusted server.
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