
Received 22 June 2022, accepted 16 July 2022, date of publication 21 July 2022, date of current version 27 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3192826

A Bandwidth-Efficient Emulator of
Biologically-Relevant Spiking
Neural Networks on FPGA
GIANLUCA LEONE , LUIGI RAFFO , AND PAOLO MELONI
Università degli Studi di Cagliari, 09124 Cagliari, Italy

Corresponding author: Paolo Meloni (paolo.meloni@unica.it)

ABSTRACT Closed-loop experiments involving biological and artificial neural networks would improve
the understanding of neural cells functioning principles and lead to the development of new generation
neuroprosthesis. Several technological challenges require to be faced, as the development of real-time spiking
neural network emulators which could bear the increasing amount of data provided by new generation
High-Density Multielectrode Arrays. This work focuses on the development of a real-time spiking neural
network emulator addressing fully-connected neural networks. This work presents a new way to increase
the number of synapses supported by real-time neural network accelerators. The proposed solution has been
implemented on the Xilinx Zynq 7020 All-Programmable SoC and can emulate fully connected spiking
neural networks counting up to 3,098 Izhikevich neurons and 9.6e6 synapses in real-time, with a resolution
of 0.1 ms.

INDEX TERMS APSoC, fixed-point, FPGA, neural emulator, hardware accelerator, neural engineering,
real-time, spiking neural network.

I. INTRODUCTION
During the past decades the comprehension of biological neu-
ral network phenomena has been at the center of researchers’
interest in the medical and biomedical communities. Count-
less software and hardware instruments have been developed
to enhance the understanding of neural cells’ working princi-
ples [1]. Some tools can simulate biological neural networks
by relying on a wide range of mathematical models having
a different level of detail [2]. These kinds of tools can help
the investigation of how neurons interact with each other,
even though more and more often they are also exploited to
address completely different problems, such as neuromorphic
computing [3].

New generation High-Density Multielectrode Array,
scaled from hundreds to thousands of recording sites [4],
pushing for the development of signal processing sys-
tems capable of sorting order of magnitude more neural
data in real-time than in the past [5], and artificial neural
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networks capable to keep up and process the incoming data.
This translates into an imminent demand for bigger and
more-connected neural networks. As a result, during the
last years, the development of neural networks accelera-
tor has increased consistently [6]. Moreover, networks of
neural units are innately parallel, which means, standard
Von Neumann architectures are not the best fit to simulate
such networks. Therefore, in a so fickle and constantly-
evolving environment, programmable accelerators, such as
Field Programmable Gate Array (FPGA) based accelerators
are best suited to the parallel and ever-changing demands
nature of the experiments. Such hardware tools not only
permit scaling down simulation time, but also make possible
real-time interactions between artificial and biological neural
networks in a closed-loop fashion.

In this work, it is proposed a new method to increase
the maximum number of synapses that can be emulated
in real-time, without sacrificing the physiological dynamics
and latency of biological neural networks. The method takes
advantage of a physiological delay that affects the spike
propagation along the cell’s axon. This phenomenon, called
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axonal delay [7], makes possible to exploit the off-chip mem-
ory to store the synaptic weights. Furthermore, we applied
the proposed method during the design of an FPGA-based
hardware accelerator targeting fully connected neural net-
works of Izhikevich spiking neurons [8]. Indeed, on one hand,
spiking neural networks encode information in the temporal
domain, as biological neural cells do, emulating de facto
more accurately the dynamics of biological cells, on the other
hand, their implementation is more memory demanding than
non-spiking neural networks ones. Therefore, in the case
of low-end FPGA implementing spiking neural networks,
as the FPGA embedded into the Xilinx All-Programmable
SoC (APSoC) XC7Z020 used in this work, where is not
possible to store more than 5 Mb of data relying on the
on-chip memory only, the sizes of the network cannot grow
above a certain limit.

The off-chip DDR memory has been used in other works
that utilize spiking neural networks [9]–[11], however, the
focus of these works was on image classification, rather
than in the study of biological phenomena, therefore their
architecture is not meant to be interfaced with a biologi-
cal system which can require continuous interaction with
a 0.1 ms resolution.

The main findings of this work can be summarized as
follows:

- We demonstrate the physiological spike propagation
delay present in biological neural networks can be
exploited in the real-time emulation of spiking neural
networks, guaranteeing a higher number of synaptic
connections than by only using on-chip memory;

- We demonstrate Xilinx’s APSoCs are eligible to apply
the presented method, as their off-chip DDR mem-
ory has an adequate bandwidth to transfer the synaptic
weights, and their use allows to increase the number of
synapses that can be emulated in real-time;

- We demonstrate the Izhikevich neuron model equa-
tions [8] can be integrated into fixed-point arithmetic by
relying on a few FPGA resources, such as DSP and LUT,
without consistent behavioral variations.

The remainder of this article is organized as follows.
Section II is an overview of existing FPGA-based neural
network accelerators. Section III describes the utilized neu-
ron model and his fixed-point arithmetic. Section IV is an
overview of the hardware architecture. Section V presents the
results in terms of accuracy and performances achieved by
this work. Section VI is a comparison with the state of the
art. Section VII is left to conclusions and future works.

II. RELATED WORK
A wide scope of software and hardware tools addressing
spiking neural network emulation have been developed in
the last few years. Software tools such as Nest [2], Neu-
ron [12], and Brian [13] are well suited for biologically
realistic simulation of spiking neural networks. They are
flexible, and widely used by the scientific community for
a wide range of experiments. However, they require larger

and larger computer clusters for simulating high-count neural
networks [14] and therefore are not the best fit for embedded
applications.

Alternatively, parallel computing systems, implemented on
a wide range of different platforms, such as CPU, GPU, and
FPGA clusters, can achieve high throughput either. SpiN-
Naker [15] is a multiprocessor chip organized in a mesh of
48 neural computational cores, each made by 18 ARM968
processors. A board equipped with 4 SpiNNaker chips is
capable of emulating in real-time a range of synapses going
from 8e5 to 1.6e7 and a number of neurons ranging from
1,600 to 16,000, depending on the complexity of the neuron
model used. NeuroFlow [16] is an FPGA-based spiking neu-
ral network simulation platform capable of emulating both
integrate-and-fire and Izhikevich neurons. When hosted by a
cluster of 6 FPGAs it can simulate about 600,000 neurons,
and from 1,000 to 10,000 synapses per neuron. The total
amount of neurons decreases to 400,000 when the emulation
is in real-time.

Moreover, at the state of the art, exists a broad collection
of real-time FPGA-based spiking neural network accelera-
tors more suited for embedded applications, having differ-
ent scales, architectures, and use cases. Some work aims to
implement low-power solutions, such as [17], where a neural
network of 800 neurons and 12,544 synapses is implemented
on a Xilinx Virtex-6 FPGA. The system implements a simpli-
fied Leaky Integrate-and-Fire (LIF) model [18] with a time
resolution of 1 ms, and embeds real-time learning capabil-
ities by integrating a simplified version of the Spike-Time
Dependent Plasticity (STDP) algorithm [19]. Other works
make use of the reprogrammable feature of FPGA and present
configurable designs which could be exploited for a wider
range of experiments, such as the work Snava [20]. Snava is a
real-time programmable multi-model spiking neural network
emulation system, capable of hosting up to 12,800 neurons
and 20,000 synapses. The system, implemented on a Xilinx
Kintex-7 FPGA, guarantees a resolution of 1 ms. The Snava
system, employing a Graphical User Interface (GUI), permits
to monitor the spiking activity, to configure the neuron, the
synapse model, and the interconnections.

The hardware implementation presented in [21] focuses
on studying fully-connected neural networks; their real-time
emulator targets closed-loop experiments, and it is hosted
by a Xilinx Virtex-6 FPGA. The system implements
1,440 Izhikevich neurons with a resolution of 0.1 ms and a
spike latency of 1 ms.

Other studies focus on more specific problems, such as
minimizing the neurons emulation latency down to 8 ns to
increase the maximum number of neurons that can be emu-
lated in a single FPGA chip, at the expense of the biological
meaning [22]. This result has been achieved by designing a
systolic array to integrate a simplified version of the Izhike-
vich neural model. By following the considerations found
in [23], it is possible to decrease the computational load with-
out renouncing the main emulating features of the Izhikevich
model.
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TABLE 1. Real-time FPGA-based neural network emulators comparison.

Conversely, Luo et al. [24] presented a bio-realistic
cerebellum model, and propose it as the first step for
the realization of neuroprosthesis systems with the pur-
pose of substituting damaged motor control units in the
brain. Luo et al. [24] propose a Network on Chip (NoC)
hardware architecture, implemented on a Xilinx Virtex-7
FPGA, capable of emulating 101,000 LIF neurons [20] and
100,000 synapses in closed-loop experiments.

In Khodamoradi et al. [25] is proposed an architectural
solution to support several axonal delays without using extra
FIFOs, schedulers, and separate routing networks for spiking
feedforward neural networks.

In Ambroise et al. [26], a folded low-resources architec-
ture capable of emulating 117 Izhikevich neurons in real-time
with a time resolution of 1 ms is presented. The system is
implemented on a Xilinx Virtex-4 chip, and the interconnec-
tions of the neuron are configurable, ranging from zero to a
fully connected network.

Finally, in Han et al. [9] and Panchapakesan et al.
[10], [11] Leak Integrate and Fire and Integrate and Fire
based spiking neural networks are used to address image
classification tasks on the MNIST and CIFAR-10 datasets on
Xilinx Zynq devices, chip provided with both FPGAs and
ARM processors. Their approaches take advantage of the
off-chip DDR memory to store the weights of the network,
however, not being designed as a biological relevant neural
network emulator, it is not applied any method to guarantee
the physiological dynamics of biological neural networks are
respected.

Table 1 summarizes the main characteristics of the above-
mentioned FPGA works. It is possible to notice how the
presented architecture, being fully connected, owns a dif-
ferent balance between its number of neurons and synapses
than most of the works in Table 1 [9], [10], [17], [20], [22],
[24], a significantly higher number of synapses and neurons
than the other works addressing fully connected neural net-
works [21], [26], and a higher number of synapses in general.
In fact, the presented work has been conceived as a tool to
study the behaviors of biological neural networks, rather than
a machine learning accelerator. Therefore, willing to allow
the emulation of arbitrarily connected population of neurons,
being the connectivity of the neurons still a topic of interest in
neuroscience research, it has been designed a system where
the neurons can be connected without restrictions, up to be
completely connected.

III. IZHIKEVICH NEURON MODEL
The Izhikevich model [8] permits the emulation of a large
set of biological behaviors at a low computational cost. The
model is composed by a two dimensional system of ordinary
differential equations 1, 2, plus a reset condition 3.

dv
dt
= 0.04v2 + 5v+ 140−u+ I (1)

du
dt
= a(bv− u) (2)

v > vth→

{
v = c
u = u+ d

(3)

v is the membrane potential of the neuron, and u is the
membrane recovery variable, both measured inmV . The term
vth is the threshold above which the modeled neuron fires a
spike. When it happens, both the membrane potential and
the membrane recovery variable are reset. The dimension-
less parameters a, b, c, and d permit tuning the model in
order to emulate properly the behaviors of neocortical and
thalamic neurons. I is the synaptic current, it permits taking
into account the synaptic connection among neurons. Indeed,
each synapse can be described as an oriented and weighted
connection between two neurons. When a neuron fires, its
post-synaptic neurons counts the spike by adding to I the
weight of its interconnection.

A. THE QUANTIZATION PROBLEM
The simplest and most common way to evaluate the Izhike-
vich model, nevertheless the way used in [8], is the one-step
forward Euler scheme, described by 4, 5, and 6.

vk+1 = vk + h(0.04v2k + 5vk + 140− uk + I + Ie) (4)

uk+1 = uk + ha(bvk − uk ) (5)

vk+1 > vth→

{
vk+1 = c
uk+1 = uk + d

(6)

where h is the time step, equal to 0.1 ms, chosen to be
compatible with most High-Density Multielectrode Arrays
based data acquisition systems, and Ie is a parametric
DC offset.

The above equations are solved by using fixed-point arith-
metic so that a considerable amount of FPGA’s resources
could be saved. However, we found out the accuracy and
the convergence of the model, when operating in fixed-point,
are not to be taken for granted. In order to investigate the
behavior of the fixed-point implementation of the model, two
MATLAB scripts have been developed. The former is used to
provide a trustworthy ground truth for the experiments, which
has been obtained by making use of floating-point arithmetic.
The latter script is used to test the accuracy of the fixed-point
solution at different levels of quantization.

IV. HARDWARE SPIKING NEURAL NETWORK
The spiking neural network emulator architecture is shown
in Figure 1. The Potential modules integrate the Izhikevich
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FIGURE 1. The block diagram of the neural network emulator.

equations, updating both the membrane potentials of the neu-
rons and the spike conditions. The neural potentials and the
spikes conditions are stored in two BRAM-based memories
called Potential mem and Spike mem. The Izhikevich equa-
tions’ parameters are stored in the BRAM-based memory
Param mem.

The synaptic current is stored in an additional BRAM-based
memory called Current mem, updated by the Current mod-
ules. In order to update the Current memory, the Current
modules read the stream of synaptic weights coming from
the off-chip DDR through four axi-stream interfaces and the
spike conditions from the Spike mem. The system is designed
to exploit the shared characteristics of the Xilinx Zynq-7000
family APSoC devices. The architecture is parametric, so the
netlist can be generated to fit in different devices of the
family and to emulate neural networks of different sizes.
The system setup presented in this paper is implemented on
a Z-7020 chip.

The number of synaptic weights grows quadratically with
the number of neurons in fully connected neural networks,
and the Block-RAM (BRAM), which are the internal memo-
ries embedded in Xilinx’s FPGA, are usually the bottleneck
that prevents to increase the number of synapses over a
certain limit. In the fully-connected neural network imple-
mented in [21], the synaptic weights are stored on-chip, in the
BRAMs, and the largest possible network which fits in is of
about 1,440 neurons, obtained using 392 36 kb BRAM tiles
in a Xilinx Virtex-6 XC6VLX240T chip. Indeed, if on one

hand, the Programmable Logic (PL) is capable of performing
heavy parallel computations, on the other hand, the available
memory space is not enough to host larger fully-connected
neural networks.Willing to overcome this result, it is possible
to exploit the off-chip DDR memory, which is the largest
memory available in the Zedboard development board used
in this work. The DDR is 512 MB large, and it can be
accessed concurrently from 4 High-Performance AXI ports
(HP AXI ports), by using 4 AXI DMA operating at their
maximum speed of 150 MHz [27], with an overall theoretical
bandwidth of 4.8e9 B/s [27]. Keeping the same sampling
frequency of [21], which is 10 kHz, it would be possible
to move about 4.8e5 B in 0.1 ms, which by using synaptic
weights of 8 bits each, would correspond to a fully-connected
neural network of about 692 neurons. However, taking into
consideration the biological delay which exists between the
generation of a spike in the soma, and the propagation of the
spike through the axon, towards the post-synaptic neurons,
called Axonal Delay (AD), it is possible to relax the 0.1 ms
deadline in favor of a looser one. By using an axonal delay
of 1 ms, as in [21], it would be possible to transfer the whole
set of weights every millisecond instead of every tenth of a
millisecond and reuse them 10 times to solve the Izhikevich
equations. In this way, it would be possible to transfer 10x
weights, which correspond to a fully connected neural net-
work of 4.8e6 synapses, and therefore 2.191 neurons. The
computational load increases consistently, as a matter of fact,
in the case of an axonal delay of 1 ms, and an integration

VOLUME 10, 2022 76783



G. Leone et al.: Bandwidth-Efficient Emulator of Biologically-Relevant Spiking Neural Networks

FIGURE 2. (a) The execution flow of a network which takes into account the axonal delay. (b) The execution flow of a network which takes advantage of
the axonal delay to emulate more synapsis in real-time.

frequency of 10 kHz, the throughput of the digital system
should increase by a factor of 10. However, this is a manda-
tory requirement if more neurons and synapses need to be
emulated in the same amount of time. Figure 2 (a) shows
howwithout taking advantage of the axonal delay the neurons
are updated at every integration step, whereas the spikes are
forwarded 1 ms later their computation to the output, because
of the axonal delay. By looking at Figure 2 (b) it is possible
to observe the synaptic weights can be transferred during a
longer period of time, 10 integration steps in the example,
and the neuron emulation can be spread along this period,
by increasing by a factor of 10 the operations per byte.

In the work [7], typical axonal delay values are reported for
different mammalian species and neural tissue areas. Values
range from 0.3 ms for fast-conducting axons, such as cat
visual thalamocortical axons, up to 130 ms, required to reach
axon terminals in monkeys’ visual cortex.

A. ARCHITECTURAL OVERVIEW
The main blocks of the biological neural network emula-
tor and their interconnections are shown in Figure 1. The
main actors are the Potential modules, which integrate the
Izhikevich Equations 4, 5, and 6, and the Current mod-
ules which compute the synaptic current. Moreover, the
spikes, the synaptic currents, the parameters of the Izhikevich
model a, b, c, d , the membrane potentials, and the membrane
recovery variables are stored inside BRAM-based memories,
called after their contents, as shown in the schematic depicted
in Figure 1.

The Potential modules are fully pipelined and have a
throughput of one integrated neuron per clock cycle. By tak-
ing advantage of the parametric port size of Xilinx’s BRAMs,
it is possible to instantiate more potential modules in paral-
lel when higher throughput is required. Moreover, the cur-
rent modules are fully pipelined, this allows to achieve a
throughput of 8 summed synaptic weights per clock cycle.
The synaptic weights are stored in the off-chip DDR and
streamed through four AXI High-Performance Ports to the

programmable logic. The stream is handled by four DMAs.
A different current module is instantiated to handle each of
the four streams of synaptic weights. In this way, it is possible
to reach the maximum throughput possible, since the four
streams of weights are not processed in time-multiplexing by
the same current module, but in parallel from four different
modules.With this setup, there is no need to store the synaptic
weights on-chip, since they are processed as they arrive,
and the BRAMs can be saved to store the neurons’ model
parameters. If the axonal delay is set to a number higher
than 0.1 ms (the time resolution chosen in this work), more
current modules can be placed in parallel, and the current
of multiple time steps can be computed at once. Multi-
ple instances of the Current mem and the Spike mem are
required too. The modules Spike Memory Reader and Cur-
rent Memory Writer are used by the Current modules as
interfaces to write the computed synaptic currents into the
Current memory and read the spike conditions from the Spike
memory. These interface modules permit sharing a single
memory port between the four sets of current modules in a
time-multiplexed fashion, without creating any bottleneck,
as explained in Section IV-B

1) DATA TRANSFER
The synaptic weights are moved from the DDR to the
Programmable Logic (PL). The transaction is entrusted
to 4 Xilinx AXI DMA IPs, each one connected to a different
AXI High-Performance port. The response channels of the
AXI buses are used to write back the spikes of the network in
the DDR.

2) POTENTIAL
The Potential module implements the Izhikevich
Equations 4, 5, and 6, and it has been designed by using the
Verilog hardware description language, as the other modules.
Equations 4, 5, and 6 are implemented by means of a systolic
array, shared among the neurons in a time-multiplexed fash-
ion, which guarantees a throughput of one integrated neuron
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per clock cycle. Multiple Potential modules can be instanced
in the design.

FIGURE 3. The block diagram of the membrane potential pipeline.

The membrane potential pipeline makes use of three DSP
and a LUT-based multi-inputs adder, its architecture is shown
in Figure 3. The first DSP is used to multiply the membrane
potential vk to the constant 0.04. The product feeds the input
of the second DSP block which multiplies 0.04vk again by
the membrane potential, obtaining 0.04v2k . Concurrently, the
addition sumv = 5v+140+uk + I + Ie takes place by means
of a LUT-based multi-inputs adder. The sum goes in input to
the post-multiplication adder embedded in the second DSP,
so that the second DSP’s output could be δv = 0.04v2k+sumv.
The third DSP implements the operation vnew = hδv+ vk .

FIGURE 4. The block diagram of the membrane recovery variable pipeline.

The membrane recovery variable pipeline can be mapped
into two additional DSPs. The block diagram, implementing
Equation 5 is shown in Figure 4. The former DSP implements
the operation sumu = bvk + uk , and feeds the latter DSP,
which multiplies sumu by the pre-computed parameter ha,
and add uk to it, obtaining unew = uk + ha(bvk + uk ).
The reset or spike condition stated by equation 6 is verified

by a comparator, which in turn controls two multiplexers as
shown in Figure 5. When vnew > vthr the reset condition is
activated, the second inputs of the multiplexers are chosen,
therefore vk+1 = c and uk+1 = unew + d . Otherwise vk+1 =
vnew and uk+1 = unew.

Once evaluated, the membrane potential vk+1, the recovery
variable uk+1, and the spike condition, are stored in the
Potential memory and in the Spike memory.

3) CURRENT
The Current module evaluates the synaptic current of every
neuron of the network, so that Equation 4 could be integrated.

FIGURE 5. The block diagram of the reset condition architecture.

The Current module architecture is shown in Figure 6. The
synaptic weights are transmitted from the DDR through the
AXI High-Performance ports, and processed on the fly, with-
out the need to buffer them. Every synaptic weight is counted
in the evaluation of the synaptic current if the pre-synaptic
neuron is active. The spike conditions are read from the
Spike memory as the weights come, in order not to count the
weights of the inactive neurons. The weights of the inactive
neurons are excluded from the addition bymeans of a logical-
and involving both the weights and the spike conditions. Each
AXI High-Performance port transmits 64 bits per clock cycle,
and since the synaptic weights are 8 bits long, the Current
module processes 8 synaptic weights per clock cycle. Four
clusters of Current modules are instanced in the design, one
for each AXI High-Performance port, and every cluster is
made by R Current modules, where R is the ratio between
the selected axonal delay (AD) and the integration step,
so that R synaptic currents could be evaluated in parallel,
without retransmitting or storing the synaptic weights. The
weights are added by means of a LUT-based adder, whose
result drives a DSP-based accumulator, which permits com-
puting the synaptic current during multiple clock cycles.
Once evaluated, the synaptic current is stored in the Current
memory.

B. EXECUTION FLOW
The system execution flow repeats every time the selected
axonal delay period expires. Each cycle can be described as
follow:

- The Processing System (PS) enables four AXI DMA,
which handle the transmission of the synaptic weights
from the DDR to the PL, through 4 High-Performance
AXI-Stream buses.

- Four clusters of R Current modules process the synap-
tic weights transmitted from the four DMAs through
the four AXI High-Performance ports, meanwhile, the
Spike memories are accessed not to count the weights
of the inactive synapses. Amodule called SpikeMemory
Reader arbitrates the access to the spikememory through
a single port, by allowing only a cluster of Current
modules per clock cycle to access, in the meantime the
others wait. The AXI-Stream transactions of the waiting
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FIGURE 6. The block diagram of the Current module architecture.

clusters of current modules are paused. Every time the
Spike Memory Reader gets access to the spike memory
on behalf of a cluster of Current modules, it reads in
advance the spikes needed by that cluster for the next
4 clock cycles, taking advantage of the configurable
width of the BRAM ports. Therefore, since 8 weights
are transmitted per clock cycle, 32 spikes are read each
time. By doing so, during steady-state processing, access
conflicts do not take place.

- Once a stream of weights starts, each Current module
in the same cluster computes the synaptic current of
the same neuron, just at a different point in time. This
is possible because the computation of the synaptic
currents requires the synaptic weights and the spike
conditions of AD ms before, and therefore they have
just been computed and stored in the Spike memory.
Once evaluated, the synaptic currents are stored in the
Current memory. The Current memory is organized as a
multi-banked memory of R banks, where R is the ratio
between the axonal delay and the integration step. Each
bank has an entry per neuron, whereas different banks
host currents of different integration steps.

- As soon as the synaptic currents are available, it is
possible to integrate the Izhikevich Equations. In order
to keep the potential fetching logic simple, four Poten-
tial modules integrate the Izhikevich equations of four
different neurons concurrently. Once finished, the mem-
brane potentials of the same neurons in the next integra-
tion steps are evaluated.When all the integration steps of
those neurons are evaluated, the Potential modules start
integrating 4 new neurons. The results are stored in the
Potential and in the Spike memories.

- The evaluated spikes are written into the DDR. The
spikes are moved by using the response channels of the
AXI High-Performance ports.

V. RESULTS
In this section, the performance, the hardware resource uti-
lization, and the accuracy of the presented work are analyzed.

A. SYSTEM PERFORMANCE
The design presented in this paper is implemented on a
ZedBoard, a low-cost development board for the Xilinx Zynq
Z-7020 All-Programmable SoC. The architecture is paramet-
ric along multiple axes, as the number of neurons, synapses,
and the axonal delay. The system setup chosen is the one
that permits the emulation of the maximum number of fully
connected neurons, which is 3,098, with 9.6e6 synapses and
an axonal delay of 3 ms. To achieve this result, instead of
storing the synaptic weights into the chip’s internal BRAMs,
which are not enough to memorize 9.6e6 bytes, the synap-
tic weights are stored in the off-chip DDR and transferred
through the 4 AXI High-Performance ports present in every
Zynq device. Four DMAs take care of the transmission of the
weights, clocked at their maximum speed of 150 MHz [27].

Taking into account that the chosen emulation step is
0.1 ms, which is a common value in neuro-engineering appli-
cations, the system should process the whole set of synaptic
weights every 0.1 ms. However, taking advantage of the
axonal delay, a physiological latency that exists between
the generation of a spike in the soma, and its propagation
through the axon, towards the post-synaptic neurons [7],
it is possible to generate the outputs with a certain latency.
Taking advantage of this, it becomes possible to spread the
transmission of the synaptic weights into more than a tenth
of a millisecond, and then have more weights transmitted
without violating the physiological dynamics of the neuronal
cells. Increasing the axonal delay, from the performance point
of view, permits to increase the operational intensity, i.e. the
number of operations per byte, and therefore to enhance the
FPGA throughput, at the expense of instantiating multiple
current modules. The Roofline model, shown in figure 7,
helps understand how the operational intensity and the perfor-
mances of the architecture change depending on the Axonal
Delay (AD) value. The x-axis is the operational intensity
measured in operations per byte (ops/byte), and the y-axis
represents the overall performance in terms of the number of
operations per second (Gops). It can be observed how the
operational intensity rises up to 30 ops/byte as the axonal
delay increases. It is not possible to go beyond this limit,
reached for an axonal delay equal to 3 ms, because of the
saturation of the BRAM tiles required to store the Izhikevich
parameters, among which are the synaptic currents.

The computational bound of 240 Gops, represented by the
upper horizontal dotted line in Figure 7, would be reached
with an axonal delay equal to 5 ms, which would permit an
operational intensity of 50 ops/byte. To achieve such per-
formances, it would be necessary to instantiate 50 current
modules per axi port, for an overall number of 200 current
modules, any of which would compute 8 additions per clock
cycle at 150 MHz.
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FIGURE 7. The Roofline model at the varying of the Axonal Delay (AD).

In the case of a 3 ms axonal delay: the theoretical number
of weights that can be transmitted in real-time in 3 ms is
1.4e7 [27]. However, we experimented that is not possible to
transmit more than 9.6e6 synapses. To process the 4 streams
of weights coming from the 4 AXI High-Performance ports,
the PL has been clocked at the same frequency of 150 MHz
used to stream the weights. Thirty instances of the Current
module have been placed per each AXI High-Performance
port, for an overall number of Current modules equal to
120. Moreover, four Potential modules read the synaptic cur-
rents once computed, integrate the Izhikevich equations, and
evaluate the spike conditions. With this setup, the presented
system is capable to emulate in real-time a fully connected
neural network of 3,098 neurons and 9.6e6 synapses, with a
resolution of 0.1 ms and an axonal delay of 3 ms.

B. HARDWARE RESOURCE UTILIZATION
The Zynq 7020 hosts 106,400 Flip-Flops (FFs), 53,200 Look
UpTables (LUTs), 140 36KbBRAMs tiles, and 220DSP48E1
slices.

The Current module is implemented using an array of
and-gates, a LUT-based eight-inputs adder, and a DSP-based
accumulator. To meet the timing constraints of 150 MHz,
two pipeline stages have been introduced inside the cas-
cade of the and-gates array and the multi-addends adder.
The pipeline stages have been properly placed along the
combinational paths by enabling the retiming option in the
settings panel of the Vivado synthesizer. Table 2 shows
the post-implementation resource requirement of a single
Current module, obtained utilizing Vivado 2019.2. Note
that 120 Current module instances are necessary to properly
work in real-time since the selected axonal delay is 3 ms.

The potential module is mapped in hardware by the use
of 5 DSP, a LUT-based multi-inputs adder, and a LUT-
based comparator. One DSP is used as a multiplier only,

TABLE 2. Hardware resources distribution among the main modules.

TABLE 3. Resource utilization table.

whereas the remaining four DSP are configured to use both
the multiplier and the post-multiplier adder. To meet the
timing constraints of 150MHz, the Potential module has been
pipelined by adding three pipeline stages for each multipli-
cation and multiply-and-accumulate operation, one for each
addition, and one for the threshold comparison, for a total of
10 pipeline stages. Table 2 shows the post-implementation
resource requirement of a single Potential module, four of
them have been instanced in the presented design.

The Current memory has an entry of 15 bits per neuron
and two 60 bits ports; 30 instances of the Current memory
are placed since the currents of 30 consecutive integration
cycles are computed at the same time, for a total amount
of 60 BRAMs as shown in Table 2.
The Potential Memory has an entry of 42 bits per neuron;

one instance of the Potential memory requires 5 BRAMs,
as shown in Table 2. A single instance of the Potential mem-
ory is sufficient in the design, since the old potential values,
once used, can be overwritten. Moreover, 13.5 BRAM are
required to store the neuron parameters (a, b, c, d , Ie, h).
The Spike memory contains a bit per neuron, and

60 instances are required, two per each integration step,
since it is not possible to overwrite the entries of the Spike
memory while computing the new spike conditions. In fact,
the synaptic currents of the following neurons should be
computed by relying on the old spike conditions. Every Spike
memory requires a single 18Kb BRAM, for a total amount
of 30 36 KB BRAM tiles as shown in Table 2.

The post-implementation resource utilization report of the
whole system is shown in Table 3. The Zynq 7020 chip is
only partially used. As expected the BRAM tiles are almost
fully occupied, as the 93.21% is utilized. Since most of the
data-crunchy computational logic has been mapped into the
DSPs, 63.64% of the DSPs are used. The 66.96% of the FFs
are free, as well as more than half of the LUTs (53.98%), and
only 4.5% of the LUTRAMs are used.
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C. ACCURACY EVALUATION
Equations 1, 2, and 3 are solved by using fixed-point arith-
metic, so that a considerable amount of FPGA’s resources
could be saved. However, we found out the accuracy and
the convergence of the Izhikevich model, when operating
in fixed-point, are not to be taken for granted. In order to
investigate the behavior of the fixed-point implementation
of the model, two MATLAB scripts were implemented. The
former is used to provide trustworthy ground truth for the
experiments, generated from a floating-point implementation
of the Izhikevich model. The latter script is used to ana-
lyze the fixed-point accuracy and understand how many bits
are needed to smoothly move towards a fixed-point repre-
sentation. To assess the behavior of the fixed-point neural
network a set of 1024 fully-connected Izhikevich neurons
were simulated, of which 768 are of the excitatory type, and
the remaining 256 are of the inhibitory type. Even if it is
possible making use of regular spiking and fast-spiking cells
to model the whole set of excitatory and inhibitory neurons
respectively, to simulate a more heterogeneous network, the
directives proposed in [8] had been followed. The excitatory
neurons are modelled by setting ai = 0.02, bi = 0.2,
ci = −65.0 + 15r2i and di = 8.0 + 6r2i , with ri a random
variable uniformly distributed on the interval [0,1], and i the
neuron index. On the value of ri depends the kind of neuron
dynamic obtained. With ri = 0 the cell dynamic is the one of
a regular spiking cell, with ri = 1 is obtained the dynamic of
a chattering cell, and with ri around the value 0.8, is emu-
lated the dynamic of an intrinsically bursting neuron. In a
similar way all the inhibitory cells parameters are randomly
assigned by using the following rules ai = 0.02 + 0.08r2i ,
bi = 0.25 − 0.05r2i , ci = −65 and di = 2; so that for
ri = 1 is obtained the dynamic of a fast spiking cell, and for
ri = 0 is simulated the dynamic of a low-threshold spiking
cell. For all the excitatory cells the DC offset Ie is set at
4 pA, whereas for all the inhibitory cells the DC offset is set
at 2 pA.

The functionality of the fixed-point network has been
assessed at both the single-cell and the network levels. The
spike jitter, or spike lag, has been verified neuron by neuron
between the floating and fixed point networks and used as
a comparison metric such in [28], as long as the mean fir-
ing rate, and the interspike interval. Moreover, the networks
bursts have been analyzed: the mean bursting rate, the burst
duration, and the interburst interval of the networks have been
compared. The bursts are identified as a sequence of more
than 4 spikes with an interspike interval of less than 100 ms.

1) CUSTOM DATA WIDTH SELECTION
The data width of every input, output, and internal signal was
chosen to optimize at the same time the emulation accuracy
and the resource utilization.We analyzed the dynamics of the
membrane potential, the recovery variable, and the synaptic
current by relying on the floating-point Matlab simulation of
the Izhikevich model. We found out the membrane poten-
tial reaches maximum values which fit into 8 integer bits,

the recovery variable into 6 integer bits, and as regards the
synaptic current, it fits into 8 bits. In order to optimize the
data mapping into Xilinx’s DSP48E1, the DSP’s input data
width has not to be exceeded. Conversely, to obtain the best
possible accuracywith such processing elements, once placed
the integer part of the data in input to the DSP, the remaining
bits of the DSP’s inputs can be filled with fractional bits.
The DSP48E1 contains a multiplier with two input ports of
25 and 18 bits and an adder with three 48-bits input ports, two
of which are used to carry out the multiplication. Therefore,
in the case of the membrane potential, which goes in input
to the DSP multiplier, it is possible to choose 18 bits or
25 bits data widths, corresponding to the formats < 8.10 >
or < 8.17 > bits. We did not find any significant difference
in accuracy between the two formats, therefore, we chose
< 8.10 > to save BRAM tiles. As regards the recovery var-
iable, it does not go directly inside a multiplier, there-
fore its data width can go up to 48 bits, being 48 bits
the input data width of the adder embedded in the DSP.
However, 24 bits, with the data format < 6.18 >, are a
good trade-off between accuracy and BRAM utilization.
When it comes to the synaptic current, since its integer
part fits into 8 bits, and the synaptic weights have the for-
mat < 1.7 > bits, the format < 8.7 > bits can be
used.

The constant 0.04 can be represented with the format
< 1.24 >. The first multiplication 0.04vk requires fewer
integer bits than the sum of the two integer parts of the factors
involved in the multiplication. In fact, 0.04 is smaller than
one. Since 1/16 is bigger than 0.04, and it would be a 4 digits
shift to the right, it can be inferred the integer part will lose
4 bits. Therefore, the new format for 0.04vk will be< 4.21 >.
The fractional part size has been selected to fit the next multi-
plier input width, and maximize the emulation precision. The
addition sumv = 4vk+vk+140−uk+I+Ie is implemented by
means of amulti-addend LUT-based adder. The addends sizes
are listed in Table 4. The fractional bits of the term sumv are
the same of the membrane recovery variable uk , whereas its
integer part fits into ten bits. The product 0.04vk is multiplied
by vk and added to sumv employing a DSP. The integer part
of the product fits in eleven bits, whereas the fractional part
size is truncated to fourteen bits before being multiplied by
the integration step h in the next DSP. The integration step
is equal to 0.1, therefore the output of the multiplication
h(0.04v2k+sumv) will require fewer integer bits than the input
factors. The power of two 2−3 corresponds to a three digits
right shift, and it is bigger than 0.1. Then, the integer part of
the product will fit into 8 bits. The term h(0.04v2k + sumv) is
added to vk by means of the post-multiplication adder of the
same DSP. Since the dynamic of vk does not exceed 8 integer
bits, as observed in the floating-point simulation, this sum
will still fit into 8 integer bits.

The membrane recovery variable pipeline is composed of
two DSPs which implement the operations bvk − uk and
ha(bvk − uk ) + uk . The 25 bits input port of the first DSP
are used for the parameter b, with the format < 1.24 >.
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TABLE 4. Potential module signals format.

This term’s maximum value is 0.25, which corresponds to
a two-digits right-shift, therefore bvk will require 6 integer
bits at most. The multiplier output is subtracted by uk using
the adder embedded in the same DSP. The output, in the
format < 6.19 >, fits into the 25 bits input of the second
DSP implementing the operation ha(bvk − uk ) + uk . The
term ha, directly stored pre-computed instead of a (to save a
multiplier), can reach the maximum value of 0.01. Therefore
it reduces by at least 6 bits the dynamic of (bvk − uk ).
In any case, being ha(bvk − uk ) + uk the new value of the
membrane recovery variable, it cannot have a dynamic that
goes above 6 integer bits, as observed during the floating-
point simulation.

2) SINGLE NEURON BEHAVIOUR
This section shows the behavior of the Izhikevich neu-
ron obtained by using the custom data width presented
in V-C1. Moreover, the single-cell behavior at the varying
of the fixed-point data width is shown as well. We selected
10 bits for the integer part. Using less than 10 bits causes data
overflows, as pointed out in [26]. On the other hand, using
more than 10 bits for the integer part does not provide any
accuracy benefits.

Figure 8 shows the superimposition of the fixed- and the
floating-point simulation of the membrane potential for sev-
eral fractional bits widths, within a time window of 200 ms.
From left to write regular spiking, chattering, intrinsically
bursting, fast-spiking, and low-threshold spiking cells. The
parameters used to simulate each neuron are listed in Table 5.
In the first row are used 10 fractional bits. The membrane
potential superimposition shows evident differences with the
floating-point model. Both the number and the timing of the
spike differ. In the second row, the number of fractional bits
is increased to 16. Starting from this format the spikes count
between the floating- and the fixed-point cells is the same,
for all the cell types. However, it is still possible to observe
a significant timing lag among the spikes. In the third row,
22 fractional bits are used, for a total data size of 32 bits.
This format permits obtaining two perfectly superimposed
simulations. The last row shows the case where the cus-
tom format described in V-C1 is used. There are no signifi-
cant behavioral differences between using 32 bits fixed-point
arithmetic and the custom data width proposed in this work.

TABLE 5. Single Cell Simulation Parameters Values.

However, the custom data-width permits to map efficiently
the computations into Xilinx’s DSPs and LUTs. Moreover,
the overall memory required per neuron is 371 bits, about the
61% required if 32 bits data-width is used.

3) NEURAL NETWORK BEHAVIOR
The firing patterns of the hardware fully-connected neural
network of 1024 Izhikevich neurons were compared to the
floating-point Matlab model. The network had been com-
pared along two seconds of activity.

The spike timing for each neuron of the network is shown
in Figure 9. The x-axis represents the time in samples (the
integration step is 0.1 ms, so 20k samples correspond to
2 seconds), whereas the y-axis has an entry for each neu-
ron of the network; neuron identifiers from 1 to 768 are of
excitatory neurons, neuron identifiers from 769 to 1024 are
of inhibitory neurons. The firing activity superimposition
of Figure 9 shows a match between the hardware and the
Matlab reference models. Within 2 seconds of activity, a total
amount of 20,874 spikes were fired from the Matlab refer-
ence model, whereas 20,886 were fired from the presented
hardware implementation. The total number of spikes fired
by the networks differs by about 0.06%. The mean firing
rate of the two networks is shown in Figure 10; in the case
of the hardware network, the MFR is 10.1924 spikes per
second, whereas it is 10.1982 spikes per second in the case
of the Matlab reference model. Among the spikes fired from
the Matlab reference model, 20,620 were correctly replicated
from the hardware network, with a maximum timing jitter
of 2 ms, which corresponds to the 98.78% of the spikes fired.
The 1.27% of the fired spikes are instead false positives, and
the 1.22% are false negatives.

The spike jitter distribution is shown in Figure 11, the
98.78% of the spikes are correctly reproduced with a max-
imum jitter of 2 ms, of which the 89.68% have a time jitter
less or equal to 1 ms.

The Inter-Spike interval (ISI) values are shown in
Figure 12. The first and the second columns depict respec-
tively the excitatory and inhibitory neurons of the networks,
whereas the first and the second rows show the Inter-Spike
interval of the Matlab and the Hardware networks. There are
not significant difference in the interspike time distributions
of the hardware and Matlab networks, for both the inhibitory
and the excitatory neurons.

The analysis of the bursting activity shows how the hard-
ware network behavior still retraces the firing pattern of the
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FIGURE 8. Fixed- and floating-point Izhikevich single-cell membrane potential superimposition at the varying of the fixed-point data width. The
waveforms have been captured within a time window of 200 ms. On the left is indicated the fixed-point data format. Each column depicts a different kind
of neuron, from left to right regular spiking, chattering, intrinsically bursting, fast-spiking, and low-threshold spiking cells.

FIGURE 9. Floating-point vs Hardware neural networks firing activity.

Matlab reference model. Figure 13 shows the Mean Burst-
ing Rate (MBR) of the two networks, the Burst Duration
(BD), and the Inter-Burst Interval (IBI). The mean bursting
rates are identical, in fact, the numbers of bursts of the two
networks are the same. The average burst duration of the
hardware network is 149.95 ms, whereas it is 150.55 ms for
the reference network. The mean interburst interval of the

FIGURE 10. Mean firing rate comparison.

hardware network is 123.49 ms, the one of the software
network is 123.03 ms.

VI. COMPARISON WITH THE STATE OF THE ART
The main characteristics of the FPGA accelerator we target
for comparison with our work are shown in Table 6.

The low-power embedded system implementation pre-
sented in [17] emulates 800 Leakage Integrate-and-Fire (LIF)
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FIGURE 11. Spike time jitter between software and hardware neural
networks.

FIGURE 12. Inter spike interval of excitatory and inhibitory neurons.

neurons and 1.25e4 synapses. Our requirements in terms of
DSP and registers are higher, 2.2x more DSP and 1.5x more
registers respectively. However, the work [17] uses 2.3x more
LUT than the presented system, and emulates only 25.82%
of the neurons, and about 0.13% of the synapses of this work.
Moreover, the neuron integration frequency is 10 times lower.

The digital system presented in [20] is capable of hosting
12,800 neurons and 20,000 synapses with a time resolution
of 1.5 us. The network topology and the resolution used
in [20] do not permit a fair comparison with this work. In fact,
this work emulates fully-connected neural networks with a
time resolution of 0.1 ms, it counts 4.1 times fewer neurons,
however, hosting 480 times more synaptic connections than
in [20], it allows to emulate arbitrarily connected neural
networks.

The system presented in [21] is a fully connected
neural network accelerator prototyped into a high-end

FIGURE 13. Burst metrics comparison.

Virtex-6 FPGA. The time resolution and the neuron model
are the same as the presented work. Their digital system can
emulate 1,440 neurons and 2.07e6 synapses, which are the
46.48% and the 21.56% of this work’s result. Moreover, our
work requires only the 43.80% of the LUTs, the 72.49% of
the FFs, the 33.29% of the BRAMs, and the 34.31% of the
DSPs compared to the implementation in [21].

The low-latency neural network accelerator presented
in [22] is implemented on a Stratix-IV device, and can sustain
a maximum clock frequency of 250 MHz. This allows to
integrate the Izhikevich model in 8 ns and reuse many times
the same neuron computational core within their 0.78 ms
integrating step, as it happens in the presented work. How-
ever, the throughput of our Potential module guarantees an
integrated neuron every 6 ns, which is higher than 8 ns, even
though our maximum clock frequency is lower. In addition,
the neuron interconnections scheme of this work has more
biological meaning than in [22], where the neurons can have
a single synaptic interconnection. The maximum number
of neuron computational cores which fit in the Stratix-IV
device is 364, but it is not explicitly declared the maximum
number of neurons their architecture can handle in real-time.
Moreover, having a single synaptic connection per neuron,
the comparison with the other architectures of Table 6 would
not be fair.

The bio-realistic cerebellum model presented by
Luo et al. [24] emulates 101,000 LIF neurons [20]. So as
the presented work, the digital system can be coupled with
biological neural networks in closed-loop experiments. Even
though the number of neural units is consistently higher
compared to this work, it is to be taken into account that
the presented system emulates Izhikevich neurons, which
are far more computationally expensive than LIF neurons.
Moreover, the number of synapses this work supports is
96 times higher than in [24] and this result is obtained by
using the 9.11% of the LUT, the 19.93% of the FF, the
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TABLE 6. Real-time FPGA-based neural network emulators comparison.

13.59% of the BRAM, and the 6.07% of the DSP of the
implementation in [24].

The folded architecture presented in [26] permits saving
resources by reusing the same processing elements along
multiple clock cycles to evaluate the Izhikevich model. They
instanced a single neural computational core that can be com-
pared to our Potential module. Their core uses a single DSP,
whereas ours makes use of 5 DSP. However, due to this, their
architecture requires about x9 more LUT than our Potential
module. Moreover, even though in a folded architecture is
possible to save registers, by sharing them in time among
multiple variables, the folded architecture in [26] still requires
x3.5 more registers, probably because most of the registers
used by the presented work are the ones embedded into the
DSPs. The folded architecture needs 11 clock cycles to inte-
grate the Izhikevich model, whereas our Potential module can
integrate a neuron per clock cycle. In addition, the maximum
clock frequency of the presented work is higher: 150 MHz
against the 85 Mhz of the folded architecture in [26], and
summing up, this leads to a throughput 19.4 times higher in
favor of the presented architecture.

The image classifier presented in [9] accelerates the exe-
cution of spiking neural networks of LIF neurons. Their
approach takes advantage of the off-chip DDR memory to
store the synaptic weights of the network, as in this work.
As a matter of fact, their utilization in terms of BRAMs is
lower than most of the other works in Table 6. Moreover,
being the LIF model simpler than the Izhikevich model, and
counts fewer parameters, their LUTs and FFs utilization is
about a fifth of this work, and their BRAM utilization is the
31.03% of the presented work. However, being a hardware
accelerator for image classification tasks, even though the
number of neurons is almost the same (they emulate about 9%
fewer neurons than the presented design), the synapses only
serve to connect the neurons among the layers. Therefore, our
design counts 5.16 times more synapses than [9]. Finally, not
being conceived as a biological-meaningful neural network
emulator, [9] is not suited to be interfaced with biological
neural networks.

VII. CONCLUSION
We have presented a new method for increasing the
synapses count of real-time neural network accelerators.

We demonstrated the feasibility of the method by imple-
menting a real-time neural network accelerator counting
up to 3,098 neurons and 9.6e6 synapses into a Xilinx
Zynq 7020 All-Programmable SoC, with a resolution
of 0.1 ms. We showed the DDR memory provides enough
storage capability and I/O bandwidth to transfer the synap-
tic weights in real-time, and that by relying on the DDR,
it is possible to overcome the number of synapses that a
real-time spiking neural network emulator can store inside
its BRAM. This work demonstrates it is possible to emu-
late highly-connected neural networks in real-time and
paves the way to closed-loop experiments addressing bio-
logical and artificial neural network interaction, with the
aim of increasing the actual comprehension of biological
neural network functioning principles and neuroprosthesis
development.

We studied how to map the Izhikevich neuron model in
fixed-point arithmetic so as to simultaneously find a good
map into Xilinx’s DSP and LUT, and degrade the accuracy
of the network the least possible. We found a difference
of 0.06% in the total amount of fired spikes by the proposed
fixed-point neural network and the floating-point reference
model, with 98.78% of the spikes having a time jitter less
than 2 ms.

A long-term purpose for our work is interfacing biological
and artificial neural networks in real-time. By relying on the
support of a multielectrode array and a neural processing
interface, it could be possible to provide input and output data
exchange between the networks, paving the way to bio and
artificial neural network cooperation.
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