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Truncated Minimal-Norm Gauss�Newton Method

Applied to the Inversion of FDEM Data

Federica Pes[0000−0001−9064−7876]

University of Pisa, 56124 Pisa, Italy federica.pes@dcci.unipi.it

Abstract. Electromagnetic induction techniques are among the most
popular methods for non-invasive investigation of the soil. The collec-
tion of data is allowed by frequency domain electromagnetic devices.
Starting from these data, the reconstruction of some soil properties is a
challenging task, as the inverse problem is ill-posed, meaning that the
problem is underdetermined, ill-conditioned, that is, the solution is sen-
sitive to the presence of noise in the data, and nonlinear. Iterative pro-
cedures are commonly used to solve nonlinear inverse problems and the
Gauss�Newton method is one of the most popular. When the problem is
ill-conditioned, the Gauss�Newton method is coupled with regularization
techniques, to transform the problem into a well-conditioned one. In this
paper, we propose a minimal-norm regularized solution method based
on the Gauss�Newton iteration to invert FDEM data. Some numerical
examples on synthetic data, regarding the reconstruction of a vertical
portion of the soil, show good performances.

Keywords: Inverse problems · Nonlinear least-squares · Gauss�Newton
method · Regularization · FDEM.

1 Introduction

In many scienti�c and engineering applications, it is necessary to solve an inverse
problem in order to interpret indirect physical measurements. An example of in-
verse problem, which will be analyzed in numerical experiments of this paper,
concerns the study of the subsoil in a non-destructive way, by propagating elec-
tromagnetic waves, to obtain information about some properties. This geophys-
ical application is described by a nonlinear model. In the following, we develop
the theory for solving nonlinear least-squares problems, that can be adapted to
the mentioned geophysical model. Typically, this kind of problems can be solved
using iterative algorithms, such as the Gauss�Newton method. Moreover, if the
problem is ill-conditioned, then it is necessary to combine the iterative method
with regularization techniques to obtain an accurate solution.

The paper is organized as follows. In Section 2 we review the Gauss�Newton
method and its modi�ed version to compute the minimal-norm solution as well
as some basic computational tools. Section 3 is devoted to recalling some well-
known regularization techniques and to introduce the truncated MNGN2. Sec-
tion 4 brie�y describes a nonlinear model involved in applied geophysics and
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its discretization. In Section 5 we show some numerical examples that test the
di�erent regularization techniques to reconstruct a two-dimensional vertical sec-
tion of the ground and we illustrate some advantages of the TMNGN2 method.
Finally, Section 6 contains concluding remarks and outlines future research.

2 Mathematical Background

We consider the nonlinear least-squares problem

min
x∈Rn

‖r(x)‖22, r(x) = F (x)− b, (1)

where F : Rn → Rm is a nonlinear and at least twice continuously Fréchet
di�erentiable function, r(x) represents the residual vector function between the
model expectation F (x) and the known vector b ∈ Rm of measured data, and

‖·‖2 denotes the Euclidean norm, i.e., ‖r(x)‖22 =
∑m
i=1 (ri(x))

2
. The problem (1)

arises very frequently in data-�tting applications, in particular for parametrized
physical, chemical, or �nancial system in which the minimum sum of squared
errors measures the discrepancy between the model and the output of the system
at various observation points.

Nonlinear least-squares problems can be solved using optimization approaches,
as Newton's method [3,35], but more e�cient and less expensive variants are
often used instead. Indeed, Newton's method requires the computation of par-
tial second derivatives of r(x) at each iteration. By ignoring the second-order
term [30,37], Newton's method yields the Gauss�Newton method. If the functions
ri(x) are mildly nonlinear in a neighborhood of the solution or if the problem is
consistent (i.e., r(x) = 0), the behavior of the Gauss�Newton method is alike to
that of Newton's method.

The Gauss�Newton method is based on a sequence of linear approximations
of r(x), so that only �rst-order di�erential information on the model is needed.
Starting with an initial guess x(0), if x(k) denotes the current approximation,
then the new approximation is

x(k+1) = x(k) + αks
(k), k = 0, 1, 2, . . . , (2)

where the step s(k) is computed as a solution to the linear least-squares problem

min
s∈Rn

‖J(x(k))s+ r(x(k))‖22. (3)

Here, J(x) ∈ Rm×n represents the Jacobian matrix of the function r(x),

[J(x)]ij =
∂ri(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n.

To improve convergence, we employ line search with the parameter αk > 0, which
can be estimated by any strategy that guarantees a reduction in the norm of the
residual. The choice of the step length is a trade-o� between giving a substantial
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reduction in the norm of the residual and, at the same time, not spending too
much time �nding the solution. If the scalar αk is chosen too small, convergence
is slow. We choose the step length by the Armijo�Goldstein principle [1,3,22]: it
is determined as the largest number in the sequence 1/2i, i = 0, 1, . . . , for which
the following inequality holds

‖rk‖22 − ‖r(x(k) + αks
(k))‖22 ≥

1

2
αk‖Jks(k)‖22, (4)

where Jk = J(x(k)) and rk = r(x(k)). The solution of the least-squares prob-
lem (3) is given by

s(k) = −J†krk, (5)

where J†k represents the Moore-Penrose pseudoinverse of Jk. This is a descent
direction if Jk has full rank. Under this assumption, if m ≥ n the pseudoinverse
is de�ned as J†k = (JTk Jk)

−1JTk , otherwise, if m < n, it is J†k = JTk (JkJ
T
k )
−1.

According to the de�nition given by Hadamard [25], problem (3) can be ill-
posed, in particular, the uniqueness of the solution is not always ensured. This
occurs when the system is underdetermined (m < n), or when the Jacobian
matrix J is rank-de�cient at the point x(k).

In case of a non-unique solution, the one computed by Eq. (5) is the so-called
minimal-norm solution, that is the one obtained by solving the minimal-norm
linear least-squares problem

min
s∈Rn

‖s‖22, s.t. s ∈
{
arg min

s∈Rn
‖Jks+ rk‖22

}
. (6)

To select a di�erent solution for the step s(k) of the new iterate x(k+1), a matrix
L ∈ Rp×n (p ≤ n) can be introduced in the objective function of problem (6),
that is,

min
s∈Rn

‖Ls‖22, s.t. s ∈
{
arg min

s∈Rn
‖Jks+ rk‖22

}
. (7)

The matrix L is typically a diagonal weighting matrix or a p × n discrete ap-
proximation of a derivative operator, in which case L is a banded matrix with
full row rank. For example, the matrices

D1 =

−1 1
. . .

. . .

−1 1

 and D2 =

1 −2 1
. . .

. . .
. . .

1 −2 1

 , (8)

of size (n− 1)× n and (n− 2)× n, respectively, are approximations to the �rst
and second derivative operators.

We remark that both problems (6) and (7) impose a regularity constraint
on the update vector s for the solution x(k), and not on the solution itself. The
consequence of imposing a regularity constraint directly on the solution x of
problem (1)

min
x∈Rn

‖Lx‖22, s.t. x ∈
{
arg min

x∈Rn
‖F (x)− b‖22

}
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has been analyzed in [20,37,38]. Considering an iterative method of the type (3),
the step s(k) is the solution of the linearized problem

min
s∈Rn

‖L(x(k) + αs)‖22, s.t. s ∈
{
arg min

s∈Rn
‖Jks+ rk‖22

}
. (9)

In [37], the authors have shown that the iteration of the minimal-norm Gauss�
Newton (MNGN) method is obtained by subtracting a projection term onto the
null space of Jk to the iteration (2)

x(k+1) = x(k) + αks
(k) − PN (Jk)x

(k), k = 0, 1, 2, . . . ,

where PN (Jk) denotes the orthogonal projector onto the null space of Jk. Then,
in [38], in order to avoid some issues in the convergence caused by the projection
term, the more e�cient implementation (MNGN2) is proposed

x(k+1) = x(k) + αks
(k) − βkPN (Jk)x

(k), k = 0, 1, 2, . . . , (10)

where the parameter βk controls that the projection does not cause an increase
in the residual. In the same paper, some techniques to estimate it are explained
in detail.

In the case of an ill-conditioned problem, it is necessary to regularize it.
Classical regularization techniques are the T(G)SVD and the Tikhonov method.
In this paper, we introduce the truncated MNGN2 method, that is a regularized
version of the MNGN2 method (10). We stress that the MNGN2 method has
been introduced in [38] for well-conditioned problems. Herein, we extend it for
ill-conditioned problems. Moreover, we apply the truncated MNGN2 algorithm
to an applied geophysics problem, with the aim of reconstructing a 2D section
of the subsurface.

We end this section by introducing some useful tools. We recall the de�nition
of the singular value decomposition (SVD) of a matrix J as well as that of the
generalized singular value decomposition (GSVD) of a matrix pair (J, L) [24].

The SVD is a matrix decomposition of the form

J = UΣV T , (11)

where the diagonal matrix Σ ∈ Rm×n contains the singular values ordered such
that σ1 ≥ σ2 ≥ · · · ≥ σr > 0, with r = rank(J) ≤ min(m,n), and the matrices
U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n have orthonormal
columns.

Let J ∈ Rm×n and L ∈ Rp×n be matrices with rank(J) = r and rank(L) = p.
Suppose that m+ p ≥ n and

rank

([
J
L

])
= n,

or, equivalently, that N (J) ∩ N (L) = {0}. The GSVD of the matrix pair (J, L)
is de�ned by the factorizations

J = UΣJW
−1, L = V ΣLW

−1, (12)
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where U ∈ Rm×m and V ∈ Rp×p are matrices with orthonormal columns ui and
vi, respectively, and W ∈ Rn×n is nonsingular. If m ≥ n ≥ r, the structure of
the matrices ΣJ ∈ Rm×n and ΣL ∈ Rp×n is

ΣJ =


On−r

C
Id

O(m−n)×n

 , ΣL =

 Ip−r+d Op×d
S

 ,
where d = n−p, and the blocks C and S are nonnegative diagonal matrices such
that

C = diag(c1, . . . , cr−d), 0 < c1 ≤ c2 ≤ · · · ≤ cr−d < 1,

S = diag(s1, . . . , sr−d), 1 > s1 ≥ s2 ≥ · · · ≥ sr−d > 0,

with c2i + s2i = 1, for i = 1, . . . , r− d. The identity matrix of size k is denoted by
Ik, while Ok and Ok×` are zero matrices of size k and k × `, respectively; if one
of the dimensions of the identity or zero submatrices vanishes, the block has to
be omitted. The generalized singular values are the scalars γi = ci/si, and they
appear in nondecreasing order. If r ≤ m < n, the matrix ΣJ ∈ Rm×n has the
form

ΣJ =

 Om−r
Om×(n−m) C

Id

 ,
where the blocks are de�ned as above, and the structure of ΣL ∈ Rp×n is the
same as the previous one.

3 TGSVD, TMNGN2, and Tikhonov Regularization

In applications, typically, the measured data vector b is prone to noise caused
by measurement errors. This results in a perturbed data vector

b = b̂+ e, e ∈ Rm,

where b̂ ∈ Rm is the exact data vector and e ∈ Rm represents the noise vector.
Due to error propagation, the computed solution may deviate signi�cantly from
the exact solution, especially in ill-conditioned problems. It is well-known that
the concept of inverse problem is closely related to that of ill-conditioning. A
nonlinear operator F (x) is considered ill-conditioned in a domain Ω ⊂ Rn when
the condition number κ(J) of the Jacobian J = J(x) is very large for any
x ∈ Ω. In such cases, a common approach is to apply a regularization procedure
at each step of the Gauss�Newton method: the initial least-squares problem is
replaced by a nearby better conditioned problem, whose solution is less sensitive
to the error e in the right-hand side b and to round-o� errors introduced during
the solution process. For a more detailed discussion regarding regularization of
inverse problems, we refer to [19,27].
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One of the most widely used methods to do so is the truncated singular
value decomposition applied to the system matrix. The TSVD solves (6) after
substituting Jk by its best rank-` approximation. Here, ` is the regularization pa-
rameter, which has to be wisely estimated. Choosing its value amounts to �nding
a compromise between �delity to the original model and numerical stability.

Fixed a value for the truncation parameter 1 ≤ ` ≤ r, the iteration of the
truncated Gauss�Newton method becomes

x
(k+1)
` = x

(k)
` − αk

∑̀
i=1

uTi r(x
(k)
` )

σi
vi, k = 0, 1, 2, . . . , (13)

where ui and vi are the left and right singular vectors of Jk, respectively; see Eq.
(11). We remark that the singular value decomposition of the matrix Jk changes
at each step of the Gauss�Newton method, and that the rank r may change too.
In order not to burden the notation we write ui, vi, σi, and r without specifying
the dependence on k.

On the other hand, if the step s(k) is determined by regularizing problem (7),
the iteration is expressed in terms of the GSVD of the matrix pair (Jk, L):

x
(k+1)
` = x

(k)
` − αk

p∑
i=p−`+1

uTi−Nr(x
(k)
` )

ci−n+r
wi − αk

n∑
i=p+1

(uTi−Nr(x
(k)
` ))wi,

where the integer 0 ≤ ` ≤ p − n + r is the regularization parameter, ui−N and
wi are the column vectors of the matrices U and W of (12), respectively, and
the integer N = max(n −m, 0) allows us to condense in a single formula both
the overdetermined and underdetermined case. As in the previous formulation,
the GSVD of (Jk, L) changes at each iteration, therefore the same observation
made before on the abuse of notation by not indicating the dependence on k of
ui−N , wi, ci−n+r, and r is valid.

The truncated MNGN2 method solves (9), when L = In, considering the
best rank-` approximation of Jk. As remarked in Section 2, the iteration of the
TMNGN2 method di�ers from that of the truncated Gauss�Newton (13) for the
presence of a projection term. Indeed it is of the form

x
(k+1)
` = x

(k)
` − αk

∑̀
i=1

uTi r(x
(k)
` )

σi
vi − βk

n∑
i=`+1

(vTi x
(k)
` )vi, k = 0, 1, 2, . . . .

Similarly, if L 6= In, the TMNGN2 iteration depends on the GSVD of (Jk, L)
and it is given by

x
(k+1)
` = x

(k)
` − αk

p∑
i=p−`+1

uTi−Nr(x
(k)
` )

ci−n+r
wi − αk

n∑
i=p+1

(uTi−Nr(x
(k)
` ))wi

− βk
p−∑̀
i=1

(ŵix
(k)
` )wi,
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where ŵi are the row vectors of the matrix W−1; see Eq. (12). The non-
regularized version of the last two formulas has been obtained in [38].

Another approach consists of regularizing the least-squares problem (3) by
the Tikhonov method, that is, solving the minimization problem

min
s∈Rn

{
‖Jks+ rk‖22 + λ2‖Ls‖22

}
, (14)

for a �xed value of the parameter λ > 0 and a chosen regularization matrix
L ∈ Rp×n. The regularization parameter λ controls the balance between the two
terms of the functional, i.e., the weights attributed to the residual term and to
the regularization term. Equivalently, (14) can be written as

min
s∈Rn

∥∥∥∥[JkλL
]
s+

[
rk
0

]∥∥∥∥2
2

.

The solution of (14) is given by

s = −(JTk Jk + λ2LTL)−1JTk rk.

Then, if L = In, after substituting the SVD of Jk, the iteration of the Gauss�
Newton method with Tikhonov regularization is

x
(k+1)
λ = x

(k)
λ − αk

r∑
i=1

σi(u
T
i r(x

(k)
λ ))

σ2
i + λ2

vi, k = 0, 1, 2, . . . ,

where {ui,vi, σi} are the singular triplets of Jk (Eq. (11)). If L 6= In, considering
the GSVD of the matrix pair (Jk, L), the iterative method becomes

x
(k+1)
λ = x

(k)
λ − αk

p∑
i=n−r+1

ci−n+r(u
T
i−Nr(x

(k)
λ ))

c2i−n+r + λ2s2i−n+r
wi − αk

n∑
i=p+1

(uTi−Nr(x
(k)
λ ))wi,

where ui−N and wi are the column vectors of the matrices U and W of (12),
respectively, and N = max(n−m, 0).

3.1 Regularization Parameter Estimation

The solution vectors obtained through the Gauss�Newton method, regularized
by TGSVD/TMNGN2 or by the Tikhonov approach, will be denoted by x` or xλ
at convergence, respectively, where ` and λ are the corresponding regularization
parameters. A regularization method should also incorporate a technique for
estimating the optimal regularization parameter.

Most of the methods for determining the regularization parameter are based
on residual norms and, in the case of the L-curve, also on the (semi)norm of
the solution. Assuming the knowledge of the error norm ‖e‖2 or of a good
estimate of it, the discrepancy principle introduced by Morozov [34] can be
used to determine the parameter. In real situations, when the noise is unknown,
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heuristic techniques, as the L-curve criterion [26,28,29] or the generalized cross-
validation [8,21,23], allow to estimate the regularization parameter without infor-
mation on the noise level. There are many contributions dedicated to developing
and analyzing di�erent methods to select the regularization parameter. In this
regard, the interested reader can see [7,27,32,36,39] and references therein.

In the numerical experiments reported in this paper, we determine the reg-
ularization parameters by the L-curve criterion. In the upcoming subsection we
remind what it consists of.

L-curve. This method is based on a plot of the logarithm of the (semi)norm
‖Lsreg‖2 of the regularized solution versus the logarithm of the corresponding
residual norm ‖Jksreg + rk‖2. With the subscript �reg� we refer in general to
both parameters ` and λ, depending on the approach adopted to regularize. The
L-curve is also a powerful graphical tool for the analysis of discrete ill-posed
problems, since it graphically represents the compromise between the minimiza-
tion of these two quantities, which is the core of any regularization method.

When the regularization parameter is continuous, as in Tikhonov regulariza-
tion, the L-curve is a continuous curve. In case of regularization methods with
a discrete regularization parameter, such as TGSVD/TMNGN2, the L-curve
consists of a �nite set of points(

log ‖Jksreg + rk‖2, log ‖Lsreg‖2
)
, in TGSVD,(

log ‖Jksreg + rk‖2, log ‖L(x(k) + αsreg)‖2
)
, in TMNGN2.

This criterion chooses the regularization parameter corresponding to the point
of maximum curvature on the log-log plot of the L-curve, which corresponds to
the corner of the �L�-shape.

4 A Nonlinear Model for FDEM Data Inversion

In this section, we brie�y describe a nonlinear model typical of applied geo-
physics. It is based on electromagnetic induction techniques that allow to in-
vestigate in a non-destructive way some soil properties. Mathematically, it is
represented by a system of �rst kind integral equations.

Before describing the nonlinear model, we recall that, in 1980, a linear model
was developed by McNeill [33] to reproduce the readings of one of the �rst
available ground conductivity meters (GCM), the Geonics EM-38. Regarding
this model and the possibility of recovering the distribution of the electrical
conductivity, in [5], a Tikhonov regularization technique was implemented to
reconstruct the conductivity pro�le from measurements obtained by positioning
a GCM at various heights above the ground, while in [9] the Tikhonov approach
was optimized by a projected conjugate gradient algorithm.

More recently, in [15], the linear system has been studied under the hypoth-
esis that the values of the unknown function are known at the boundaries. The
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aforementioned paper led to propose subsequently a numerical method to com-
pute the solution of a system of �rst kind integral equations in the presence
of boundary constraints. The algorithm descends from the Riesz representation
theorem and the solution is sought in a reproducing kernel Hilbert space. A �rst
version of the algorithm is introduced in [16], that addresses the idea for a single
integral equation. Afterwards, in [17] the theory is generalized for a system of
integral equations of the �rst kind.

In 1982, Wait [40] described a nonlinear forward model for predicting the
electromagnetic response of the subsoil. In [31], the technique adopted in [5] was
extended and applied to a nonlinear model for the same physical system, previ-
ously described in [41]. A regularized inversion algorithm was studied in [12,14]
and then it was extended to process complex-valued datasets [13]. The algo-
rithm was coded in Matlab and included in the publicly available software pack-
age FDEMtools [10] which includes a graphical user interface (GUI), that has
already been employed in real-world applications [4,13,18]. In [6] the authors
propose to solve a variational problem to obtain a 2D reconstruction of some
properties of a soil vertical section. Recently, the FDEMtools package has been
updated by inserting some variants for the computation of the minimal-norm
solution regarding the resolution of the inverse problem, as well as a GUI for a
forward modelling [11].

In the model, the soil is assumed to have a layered structure with n layers
below ground level, starting from z1 = 0. Each subsoil layer, of thickness dk
(meters), ranges from depth zk to zk+1, k = 1, . . . , n−1, and is characterized by
an electrical conductivity σk (Siemens/meter) and a magnetic permeability µk
(Henry/meter), for k = 1, . . . , n. The thickness of the deepest layer dn, starting
at zn, is considered in�nite.

A GCM is an FDEM induction device composed of two coils, namely a trans-
mitter and a receiver, positioned at a �xed distance ρ from each other. The two
coils, operating at frequency f in Hertz, are at height h above the ground with
their axes oriented either vertically or horizontally with respect to the ground
surface. Both the depth z and the height h are measured in meters. The transmit-
ting coil generates a primary electromagnetic (EM) �eld HP above the ground,
which then propagates into it. HP induces eddy currents in the conductive parts
of the subsurface, generating in succession a secondary EM �eld HS , that prop-
agates towards the ground surface. This signal is detected by the receiver. The
GCM measures the ratio between the secondary EM �eld produced by such cur-
rents and the primary �eld. The reader interested on the working principles of
the instrument is referred to [11] for a detailed discussion.

Mathematically, the nonlinear model, derived from Maxwell's equations, con-
sists of two integral equations of the �rst kind. Let uk(λ) =

√
λ2 + iσkµkω, where

i is the unit imaginary number and ω = 2πf is the angular frequency of the elec-
tromagnetic wave generated by the device. The variable λ is non-negative and it
measures the ratio between the depth below the ground surface and the inter-coil
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distance ρ. If we denote the characteristic admittance in the kth layer by

Nk(λ) =
uk(λ)

iµkω
, k = 1, . . . , n,

then the surface admittance Yk(λ) at the top of the same layer veri�es the
recursionYn(λ) = Nn(λ),

Yk(λ) = Nk(λ)
Yk+1(λ) +Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))
, k = n− 1, . . . , 1.

(15)

as shown in [40]. Let us de�ne the re�ection factor as

Rω(λ) =
N0(λ)− Y1(λ)
N0(λ) + Y1(λ)

,

where Y1(λ) is computed by the recursion formula (15) and N0(λ) = λ/(iµ0ω),
with µ0 = 4π10−7H/m the value of the vacuum magnetic permeability, that is
the permeability of the free space. The ratio of the secondary �eld to the primary
one is given by the following system of two integral equations of the �rst kind

Mν(σ,µ;h, ω, ρ) = −ρ3−ν
∫ ∞
0

λ2−νe−2hλRω(λ)Jν(ρλ) dλ, ν = 0, 1,

by setting ν = 0 and ν = 1 for the vertical and horizontal orientation of the
coils, respectively. In the above equation, σ = [σ1, . . . , σn]

T , µ = [µ1, . . . , µn]
T ,

and Jν denotes the �rst kind Bessel function of order ν.
As is usual in many applications, we let the magnetic permeability take the

constant value µ0 in all layers. It is reasonable to make this assumption if the
ground does not contain ferromagnetic materials. Recent FDEM devices can
record multiple measurements with di�erent operating frequencies ω1, . . . , ωmω
or di�erent inter-coil distances ρ1, . . . , ρmρ at di�erent heights h1, . . . , hmh above
the ground. Considering also both orientations of the coils, we havem = 2mρmωmh

measurements. We denote them by b = [b1, . . . , bm]T , and the model prediction
by M(σ), where

M(σ) =

[
M0(σ)
M1(σ)

]
.

Then, the problem of data inversion consists of computing the conductivity vec-
tor σ which determines the best �t to the data vector b, that is, the one which
solves the problem

min
σ∈Rn

‖r(σ)‖22, with r(σ) =M(σ)− b.

This is the one-dimensional discretization of the problem, i.e., considering the
measurements collected by the instrument at a �xed point above the ground.

We now consider a 2D discretization of the problem. In practice, by moving
the device along a straight path above the ground, it is possible to collect data
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at several points. We depict the two-dimensional vertical section of the ground
as the rectangle [0, a] × [0, b], where [0, a] represents the horizontal path along
which the instrument is moved, and [0, b] is the depth under the ground; see Fig.
1. Our intention is to reconstruct the electrical conductivity as an image.

Fig. 1. 2D scheme of a vertical portion of the subsoil. The electrical conductivity of
the ith layer in the jth dataset is denoted by σij .

Given the two-dimensional section of the ground and assuming to have N
equispaced measurement sets, let σij be the electrical conductivity of the ith layer
in the jth dataset, and σj = [σ1j , . . . , σnj ]

T , j = 1, . . . , N . Let the corresponding
dataset be bj = [b1j , . . . , bmj ]

T . We group them in the matrices

S = (σij) = [σ1, . . . ,σN ] ∈ Rn×N , B = (bpj) = [b1, . . . ,bN ] ∈ Cm×N .

We want to solve the nonlinear least-squares problem

min
S
‖M(S)−B‖2F =

N∑
j=1

min
σj
‖M(σj)− bj‖22, (16)

where ‖ ·‖F denotes the Frobenius norm and M(S) = [M(σ1), . . . ,M(σN )] con-
tains the readings predicted by the model. In (16) the two-dimensional problem
is brought to N independent one-dimensional problems. Therefore, each one-
dimensional problem is solved independently from each others and the obtained
solutions are placed side by side to obtain the two-dimensional reconstruction.
Each nonlinear least-squares problem for a single column is solved by the Gauss�
Newton method regularized by the TGSVD or by the Tikhonov approach, as well
as by the TMNGN2 method, as explained in Section 3. For each j = 1, . . . , N ,

we initialize the starting point σ
(0)
j with a vector whose components are ran-

domly and uniformly distributed within the intervals (0.48, 0.52), (1.48, 1.52),
and (1.49, 1.51). We observe that this di�ers from the initial point chosen in
previous papers, e.g., in [13,14], where the authors adopted a vector with all
equal entries (e.g., [0.5, . . . , 0.5]T or [1.5, . . . , 1.5]T ). Our choice emphasizes, in
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the numerical experiments, that the TMNGN2 method is not a�ected by a ran-
dom starting point, as it happens instead in the classical regularization method
if we do not use a vector with equal components.

For all iterative methods, the damping parameter αk is determined by cou-

pling the Armijo�Goldstein principle (4) to the positivity constraint σ
(k)
j ≥ 0.

Moreover, for the TMNGN2 method, the second relaxation parameter βk is
determined by an automatic procedure based on the comparison between the
residue obtained from TMNGN2 and the residual of Gauss�Newton at the same
step; the algorithm to choose βk is explained in detail in [38]. For all iterative
methods, we adopt the following stopping criterion: �xed a tolerance τ > 0,
we iterate until the di�erence between two successive approximations is small
enough

‖σ(k)
j − σ

(k−1)
j ‖2 < τ‖σ(k)

j ‖2,

or until a chosen maximum number of iterations Kmax is reached. In our nu-
merical tests, we set τ = 10−8 and Kmax = 100. An additional stopping rule is
considered, in order to detect the unboundedness of the approximate solution for
a particular value of the regularization parameter. The iteration is interrupted
if the ratio between the norms of the kth approximate solution and the starting

point σ
(0)
j is larger than a certain threshold, which in the numerical experiments

of this paper is set to 108. This indicates that the solution is growing without
bound and is therefore unlikely to converge to a meaningful result. This stopping
rule is useful in the case where the regularization parameter is not well chosen
and the computed solution is unbounded. By interrupting the iteration, the user
can investigate the cause of the unboundedness and adjust the regularization
parameter accordingly. Without this stopping rule, the iteration may continue
inde�nitely, leading to an over�ow or to misleading results.

5 Numerical Experiments

This section is devoted to analyzing the behavior of di�erent regularized solu-
tion methods for the inversion problem. In particular, we compare the results
obtained by applying the TGSVD with the minimization of the Tikhonov func-
tional and with the TMNGN2 method.

All the computations were carried out in Matlab version 9.10 (R2021a) on
an Intel(R) Xeon(R) Gold 6136 server with 128 GB of RAM memory and 32
cores, running the Ubuntu/Linux operating system.

We consider synthetic data by generating two test models for the electrical
conductivity. They are illustrated in the �rst picture of Fig. 2 and Fig. 4. To
generate the synthetic data, we choose a particular con�guration of the Geophex
GEM-2 device, with both orientations of the coils, with inter-coil distance ρ =
1.66m, six di�erent operating frequencies f = 775, 1175, 3925, 9825, 21725, 47025
Hz, and two measuring heights h = 0.8, 1.6 m above the ground. Therefore, we
have m = 24 data for each position j = 1, . . . , N . Chosen N = 50 soundings
along a 10 m path, the forward model generates the matrix B̂ of dimension
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m × N of the exact synthetic measurements. To simulate experimental errors,
we add a noise vector to each column of B̂

ej =
ε‖b̂j‖2√

m
w, j = 1, . . . , N,

where w is a normally distributed random vector with zero mean and unitary
variance and ε stands for the noise level. In our experiments, we set ε = 10−3.
We discretize the soil by n = 60 layers up to the depth of 3.5 m, each of which
is of equal thickness. As a regularization matrix L we tested D1 and D2; see Eq.
(8).

In Table 1 we report the relative restoration error (RRE) for each computed
solution, de�ned by

RRE(S) =
‖S− Sexact‖F
‖Sexact‖F

,

where Sexact is the exact solution.

Table 1. RRE obtained with di�erent regularization techniques: the TGSVD,
Tikhonov, and TMNGN2 methods. The algorithms are tested with di�erent regulariza-
tion matrices D1 and D2 and di�erent starting points (random components uniformly
distributed in the interval (0.48, 0.52) and (1.48, 1.52) for Example 1 and (0.48, 0.52)
and (1.49, 1.51) for Example 2).

Example 1 Example 2

(0.48, 0.52) (1.48, 1.52) (0.48, 0.52) (1.49, 1.51)

D1 D2 D1 D2 D1 D2 D1 D2

TGSVD 0.1569 0.2303 0.1549 0.2304 0.1701 0.1851 0.1690 0.1799

Tikhonov 0.1576 0.2276 0.1578 0.2295 0.1653 0.1758 0.1661 0.1782

TMNGN2 0.1730 0.2152 0.1730 0.2152 0.1708 0.1782 0.1789 0.1780

From the errors shown in Table 1, it can be observed that for almost all
algorithms, the errors obtained by regularizing the problem with the matrix D1

are smaller, compared to the regularization matrix D2.
Taking into consideration the matrix D1 as a regularization matrix, we can

observe that the RRE of the solutions obtained with the TGSVD and Tikhonov
are smaller than the one obtained with the TMNGN2 method. In any case,
however, in the right panel of Fig. 2 we can see some horizontal irregularities.
These are caused by the lack of regularity of the solutions obtained with the
TGSVD and the Tikhonov regularization. This lack of regularity can be shown
by a graph of the electrical conductivity corresponding to only one column of S.
Fig. 3 depicts S(:, 33) on the left pane and S(:, 48) on the right for all iterative
methods compared to the exact electrical conductivity in the same column. These
irregularities do not occur in the solution computed with the TMNGN2 method.
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By examining the RRE in Table 1, when L = D2, the TMNGN2 recovers a
better solution compared to the others, except in Example 2 and starting point
in (1.49, 1.51). Fig. 4 displays this case.

In both Fig. 2 and Fig. 4, we can notice some vertical artifacts or irregularities
caused by the fact that we are solving N inverse problems independently of each
other and we are chunking together their solutions. To avoid these irregular lines,
one could think of reconstructing the 2D-solution as if it were an image. In this
case, regularizers typically used in image restoration could be involved, which
also induce horizontal regularization.
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Fig. 2. Example 1. The exact solution (top-left) is compared to the solutions computed
by TGSVD (top-right), by TMNGN2 (bottom-left), and by Tikhonov (bottom-right).
The problem is regularized with matrix D1. The initial point has random components
uniformly distributed in the interval (0.48, 0.52).

6 Conclusions and Future Developments

In this paper, we have tested the TMNGN2 method and we have compared it
with TGSVD and Tikhonov regularization on an applied geophysics problem
with the aim of reconstructing a 2D portion of the subsurface. We noticed that,
compared to classical regularization methods, TMNGN2 does not su�er from an
initial point with random entries.

The 2D reconstruction of a portion of the subsoil considered as an image
and not arranging the 1D reconstructions side by side, will be a subject of study
and research in the near future. This should allow to introduce �horizontal� reg-
ularization, by considering other regularization matrices that are usually used
in image restoration, which would improve the reconstruction and avoid vertical
irregularities, caused by a �side by side� reconstruction. Moreover, the applica-
bility to 2D reconstructions is limited by the computational complexity of the
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Fig. 3. Example 1. Electrical conductivity obtained from the 33rd (left) and 48th
(right) dataset. The exact conductivity is compared to the solutions computed by
TGSVD, by TMNGN2, and by Tikhonov. The problem is regularized with matrix
D1. The initial point has random components uniformly distributed in the interval
(0.48, 0.52).
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Fig. 4. Example 2. The exact solution (top-left) is compared to the solutions computed
by TGSVD (top-right), by TMNGN2 (bottom-left), and by Tikhonov (bottom-right).
The problem is regularized with matrix D2. The initial point has random components
uniformly distributed in the interval (1.49, 1.51).
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SVD. As done for instance in [2], the SVD could be replaced by Krylov subspace
regularization methods.
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