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Abstract This paper analyzes the applicability of Eringen’s Generalized Continuum Theories as a model for
human blood in themicrocirculation. The applied theory considers a fluid with a fully deformable substructure,
namely a micromorphic fluid. This analysis is motivated by the fact that blood itself can be considered a
suspension of deformable particles, i.e., red blood cells (RBCs), suspended in a Newtonian fluid, i.e., blood
plasma. As a consequence, non-Newtonian phenomena such as shear-thinning are observed in blood. To test
the micromorphic fluid as a model for blood, the solution for the velocity and the motion of substructure is
determined for a cylindrical pipe flow and compared to experimental results of blood flow through narrow glass
capillaries representing idealized blood vessels. A similar analysis was also conducted by Kang and Eringen in
1976, but it contains some misprints and minor errors regarding the mathematical expressions and subsequent
discussion which are corrected in this paper. For certain material parameters, the micromorphic fluid models
capture high-shear blood flow in narrow glass capillaries very well. This concerns both the velocity profiles and
the shear-thinning behavior. Furthermore, a parameter study reveals that the flexibility of substructure governs
the micromorphic shear-thinning. In this regard, parallels can be drawn to the shear-thinning of human blood,
which is also induced by the deformability of RBCs. This makes themicromorphic fluid a complex but accurate
model for human blood, at least for the considered experiments.

Keywords Micromorphic · Fluid · Hemodynamics · Continuum Mechanics · Blood

1 Introduction

Cardiovascular diseases (CVDs) as leading cause of death worldwide, accounting for about “32% of all global
deaths” in 2019, [38], are highly relevant in many fields of study, such as drug development or medical
engineering. To reduce the morbidity due to CVDs, several prevention measures can be taken, including drugs
and surgery next to behavioral measures. For the development of such measures, a comprehensive knowledge
of the physical and chemical properties of blood is required. However, because blood is not a simple fluid
such as water, its physical properties are in general not explained by the well-known equations of motion
for a simple fluid either. Therefore, this paper starts from a generalized continuum approach as a model for
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blood in narrow blood vessels, developed by Eringen in 1964. For a better understanding of the considered
approach and the related experiments, a brief introduction to the two fields relevant for this paper, namely
hemodynamics and Eringen’s micro-continuum theories, is given below. Then, the governing equations of a
micromorphic fluid are stated. They are subsequently used to determine the motion and the micromotion of a
micromorphic fluid in a cylindrical tube. After validating the derived results, the motion of the micromorphic
fluid is compared to human blood flowing through narrow glass capillaries in Sect. 4. This problemwas already
solved and discussed by Kang and Eringen in 1976, leading to promising conclusions [22]. However, their
solution contains some misprints and the derivation of their results was not documented, so the results are not
reproducible. The purpose of this paper is to evaluate, whether the conclusions made in [22] are still valid.

1.1 Hemodynamics

Human blood can be construed as a tissue, an emulsion or a two-phase fluid, depending on the field of
study. However, in the rheological context of this paper, it is considered as a fluid in which particles are
suspended. Most importantly, it can, in general, not be considered as a Newtonian fluid. This is because it has
many properties that are not covered by classic fluid mechanics. The aim of this section is to point out the
differences to a Newtonian fluid by listing and—as far as possible—explaining several phenomena leading
to these differences. To be able to do so, it is useful to understand, what exactly blood is, and thus, what
components it is composed of.

Human blood and that of vertebrates, in general, consists of an aqueous solution, namely plasma, and
different particles, i.e., RBCs, white blood cells (WBCs) and platelets. Of these, the RBCs have the highest
volume fraction, or Hematocrit (Ht), of about 40% to 45% [33]. The blood plasmamakes up the highest volume
fraction of blood and can be considered aNewtonian fluid. It consistsmainly ofwater, but also contains “organic
molecules, proteins, and salts,” [3, p. 435]. The plasma viscosity at 37 ◦C usually takes values of 1.1mPa s to
1.3mPa s [23], whereas the viscosity of whole blood cannot be described by a single value, because it varies
with changing flow situations, as discussed below. As a consequence of the high hematocrit, this behavior is
primarily attributed to the RBCs [26]. Under special circumstances, WBCs and platelets can also have a severe
impact on the motion of blood, for example through platelet adhesion and aggregation due to injured blood
vessel and high shear rates leading to thrombosis, as explained in [28]. But these special circumstances are not
considered in this work.

As mentioned above, the hematocrit has a major influence on blood flow properties: For example, an
increased hematocrit yields an increased viscosity for all vessel sizes and shear rates [20]. The larger viscosity
due to more cells suspended in plasma is a logical consequence of rigid particles disturbing the streamlines
and thereby increasing the flow resistance [5]. At a sufficiently large shear rate, a migration of RBCs toward
the center of the vessel is observed, resulting in a high local hematocrit in the inner vessel and a RBC-free
plasmatic zone near the vascular wall. Consequently, the local viscosity near the vessel wall corresponds to
that of plasma, whose value is close to that of water and many times smaller than that of blood in large vessels.
As a result, the blood flows without any particle-wall-interaction-induced flow resistance through the vessel,
which promotes a decreased viscosity for whole blood. While the formation of a plasmatic layer occurs for
every vascular radius, experiments indicate that the absolute thickness of this layer does not change along the
vessel radius but is fixed at about 1.8µm [31,32]. Hence, the reduced viscosity for larger radii is negligible.
This effect is generally referred to as shear-thinning or, in the context of blood Fåhræus–Lindqvist effect, see
[13]. Shear-thinning is characterized by the apparent viscosity, which is derived from the Hagen–Poiseuille
equation [25,33]:

μapp = π

8
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Q
. (1.1)

Here, �p/L , R and Q denote the pressure drop along the distance L , the vessel radius and the volume flow
rate, respectively. For sufficiently large shear rates, the volume flow rate Q is approximately proportional to
the pressure drop �p/L multiplied by a factor M(R), which only depends on the vessel radius R. Hence, the
asymptotic apparent viscosity is defined as a function of R [19,21]:

μapp(R) := lim
Q→∞

π
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The error of this approximation was found to be negligible for pseudo-shear rates v > 50s−1 which is a
measure for the actually occurring shear rates [29]:

v := vm

2R
, vm := Q

πR2 , (1.3)

Here, vm denotes the volumetrically averaged velocity.
It has been shown that for R < 300µm the apparent viscosity decreases significantly, monotonously with

a decreasing vessel radius [13]. Consequently, in smaller vessels blood becomes continuously less viscous.
Since most of RBCs are packed near the vessel center, they flow with similar velocity as the surrounding
particles, forming a plug-shaped velocity profile, cf., [15]. It can be proven that the cell-free layer formation
and the Fåhræus–Lindqvist effect are a result of RBC deformability inducing axial migration, whereas the
exact mechanisms leading to fluidity in the core region are not clear yet [16]. While recent studies indicate that
a simple deformation of RBCs along the streamlines might be the cause of shear-thinning in the vessel core
region [24], another possible explanation is an extraordinary deformation called tank-treading that provokes a
drop-like behavior [37]. The RBC deformation in the core region further reduces the viscosity of blood.

A direct consequence of the cell-free layer is the so-called Fåhræus effect, which was discovered in 1929:
The majority of RBCs in the cross section of a narrow blood vessel are located near the vessel core. Obviously,
the average of the velocity in this RBC-rich core is significantly higher than the average plasma velocity
along the vessel cross section, especially because a larger fraction of plasma is located near the vessel walls
as compared to a homogeneous solution. Thus, in average in a narrow vessel RBCs travel faster than the
suspending plasma. Consequently, the average volume fraction of RBCs in a cross section, namely the true
Hematocrit, must be smaller than the Hematocrit of the whole blood [12]. This variable relation between true
tube Hematocrit and feed Hematocrit is referred to as the Fåhræus effect and was shown to decrease with
decreasing vessel radius and with decreasing feed hematocrit [2].

1.2 Micro-continuum approach

In this study, the micromorphic theory is used as a continuum model for blood. This theory was introduced
by Eringen and Suhubi for solid materials and adjusted by Eringen to model fluent media [6,8]. The approach
aims at describing media with a deformable substructure by considering the actual rotation and deformation
of substructure on a continuum level. Note that there are other continuum mechanical approaches applied to
non-Newtonian fluid problems, where the non-Newtonian behavior is modeled by identifying mathematical
instead of phenomenological relations governing the material behavior. For instance, the gradient theory from
[34] considers a stress tensor containing higher gradients of the strain-rate, whereas the stress tensor in the
micromorphic approach contains the micromotion instead, as shown below.

For a micromorphic material, each material point is considered the center of mass of a deformable particle
of infinitesimal size. The position of a material point is described by the vector X or x in the reference or
current configuration, respectively. Analogously, on the micro-level, the infinitesimal vectorsΞ and ξ describe
the position of a material point within a particle with respect to its center of mass in the reference and current
configuration, respectively. The inverse motion and inverse micromotion are required to exist and to be unique,
because two material points cannot be located at the same spatial point simultaneously. In order to relate
differential line elements in the two configurations, the deformation tensor F and the micromotion tensor χ
are introduced [8]:

F(X, t) = ∂xk
∂XM

ek ⊗ EM , χ(X, t) = ∂ξk

∂ΞM
ek ⊗ EM . (1.4)

As indicated by the lower and upper case index letters, F and χ depend on both the current and reference
configuration and are two-point tensors. Similar to the macro-scale deformation tensor, the micromotion tensor
describes the particle deformation on the micro-scale. Thereby, it approximately links the microscopic position
vectors in the two configurations via [8]:

ξ = χ · Ξ . (1.5)

Furthermore, the determinants of both F and χ are assumed to be positive, in order to ‘retain the right-hand
screw orientations of the frames-of-references,’ [10, p. 6]. This is sufficient for the inverse tensors F−1 and
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χ−1 to exist. The Eulerian velocity gradient L and gyration tensor G are defined as [8]:

L = v ⊗ ∇ = Ḟ · F−1, G = χ̇ · χ−1, (1.6)

where v is the velocity field,∇ denotes the del or nabla operator, and a superscript dot indicates the Lagrangian
or material derivative:

φ̇:−dφ

dt
= ∂φ

∂t
+ (φ ⊗ ∇) · v. (1.7)

The micromotion induces a particle deformation on the micro-scale which is accompanied by a change of the
mass distribution, characterized by the microinertia tensor i [8]:

�i dv =
∫

dv

�′ξ ⊗ ξ dv′. (1.8)

Here,� and dv denote the density and an infinitesimal volume element in the current configuration, respectively,
while the superposed prime indicates the corresponding quantity on the micro-scale. Definition (1.8) slightly
deviates from the definition of the inertia tensor commonly used in classical mechanics [17]. However, the two
formulations can be transformed into each other, as described in [36]. By the use of the inertia tensor i and
gyration tensor G, the spin inertia per unit mass σ [6] is defined:

σ =
(
dG
dt

+ G · G
)

· i . (1.9)

The spin inertia itself is not a time-rate, though it contains the material derivative of the gyration tensor. It
characterizes the change in time of a particle’s spin angularmomentum (cf. [36]). Thefield quantities introduced
in this section are used to formulate the governing balance and constitutive equations of a micromorphic fluid
below.

2 Micromorphic fluid theory

This section comprises the governing equations to describe the motion of a micromorphic fluid in the current
configuration. Apart from fields of velocity, temperature, and pressure known from classical fluid mechan-
ics, micromorphic theory additionally depends on the gyration tensor G which consists of nine independent
components as introduced above. For a better interpretation, this tensor can be decomposed into its symmetric
part sym(G) representing the microshearing and stretching, and its skew-symmetric part skw(G) representing
the microrotation. The evolution of these fields is also explained by the balance equations stated below.

2.1 Balance equations

The balance equations are presented in their local form since they are required to hold in every arbitrary
infinitesimal control volume dv within the domain Ω . On the boundary ∂Ω , certain jump conditions resulting
from boundary integrals in the balances’ global form must hold, if no Dirichlet boundary conditions are
specified. These will not be stated in this article, but further information on them can be found in [6]. In
addition, all balance equations stated in this subsection can also be found in [6]. First, the usual local form of
the balance of mass is given by

d�

dt
+ �(v · ∇) = 0. (2.1)

The momentum equation reads

∇ · t + �

(
f − dv

dt

)
= 0. (2.2)
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Here, f and t are the external body force and stress tensor, respectively. In contrary to classical continuum
mechanics, the stress tensor is usually not symmetric for microfluids. The micro-motion is governed by the
so-called micro-spin balance,

∇ · 〈3〉
λ + t − s + � (l − σ ) = 0, (2.3)

and depends on the symmetric micro-stress average tensor s, the first moments stress tensor of third-order
〈3〉
λ ,

and the external moments tensor l. Here, the micro-stress average tensor corresponds to the averaged stress
tensor of a point particle. It can be obtained from the momentum equation within a particle, see [8]. The
balance of angular momentum of a point particle is fulfilled, if the corresponding micro-stress is symmetric,
because a point particle itself does not contain a microstructure. Since the spin inertia σ contains the material
derivative of G, Eq. (2.3) corresponds to a balance equation describing the micromotion’s change in time. The
microinertia is assumed to be conserved, which is formalized by the following identity:

�
dε

dt
= t ·· (∇ ⊗ v) + (s − t) ·· GT + 〈3〉

λ ··· (∇ ⊗ G) + ∇ · q + �h, (2.4)

Furthermore, the balance of internal energy is given by

�
dε

dt
= t · · · (∇ ⊗ v) + (s − t) · · · GT + 〈3〉

λ · · · (∇ ⊗ G) + ∇ · q + �h, (2.5)

where ε, q and h denote the specific internal energy density, the heat vector field, and a heat source, respectively.
Moreover, the double dot operator ” ·· “ is defined through

Ai jei ⊗ e j ·· Bklek ⊗ el = Ai j Bi j . (2.6)

Finally, the Clausius–Duhem inequality in differential representation

−�

(
dψ

dt
+ η

dθ

dt

)
+ t ·· (∇ ⊗ v) + (s − t) ·· G + 〈3〉

λ ··· (G ⊗ ∇)T + 1

θ
q · (θ∇) ≥ 0 (2.7)

assures that the second law of thermodynamics is not violated [10]. Here, η and θ denote the specific entropy
and the absolute temperature, respectively, while ψ = ε − θη represents the Helmholtz free energy. Since in
this article only non-heat-conducting materials are considered, the energy balance will not be solved.

2.2 Constitutive equations

In order to obtain a set of Partial Differential Equations (PDEs) governing the microfluid fields, constitutive
equations need to be employed. In this article, the linear constitutive equations from [6] are used if not stated
otherwise. First, the non-symmetric stress tensor

t = (−π + λvv · ∇ + λ01 ·· G)1 + 2μvd + 2μ0(G − w) + 2μ1(GT + w) (2.8)

links the stress to the velocity gradient, the gyration tensor, and the thermodynamic pressure π , and contains
the viscosity coefficients λv , λ0, μv , μ0, and μ1 as material parameters. Moreover, the velocity gradient was
decomposed into its symmetric part, i.e., the strain-rate tensor d = sym(v ⊗ ∇), and its skew-symmetric part,
namely the vorticity tensor w = skw(v ⊗ ∇). The average micro-stress tensor

s = (−π + ηvv · ∇ + η01 ·· G)1 + 2μvd + 2ζ2symG (2.9)

depends on the velocity gradient and on the gyration tensor as well as on the material parameters ηv , η0 and
ζ2. By equating these parameters with the corresponding ones in the stress tensor, i.e., ηv = λv and η0 = λ0,
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Fig. 1 Underlying domain

the governing equations reduce to the Navier–Stokes equations in the absence of micromotion, i.e., if G = w
[6]. Finally, the first stress moments tensor

〈3〉
λ = 1 ⊗ (γ1G · ∇ + γ2∇ · G + γ3(1 ·· G)∇)

+ 1 ⊗ (γ4G · ∇ + γ5∇ · G + γ6(1 ·· G)∇) ··
〈4〉
T

+ (γ7G · ∇ + γ8∇ · G + γ9(1 ·· G)∇) ⊗ g

+ γ10G ⊗ ∇ + γ11(G ⊗ ∇) ··
〈4〉
T + γ12GT ⊗ ∇

+ γ13(GT ⊗ ∇)T + γ14∇ ⊗ G + γ15∇ ⊗ GT

(2.10)

introduces 15 new gyration viscosity coefficients γi and, furthermore, depends on the gyration tensor, the

metric tensor g, and the transposition tensor
〈4〉
T:=ei ⊗ e j ⊗ e j ⊗ ei . The first stress moments tensor represents

the “surface tractions acting on the [particle] surfaces,” [8, p. 194], and thereby affects the stress on the
macro-scale via Eq. (2.3). It should be mentioned that in more recent works, a different representation of
the constitutive equations is chosen. For example in [11], the first moments stress tensor only depends on
11 viscosity coefficients but is also independent of the metric tensor. Usually, the viscosity coefficients are
functions of the temperature, but due to the neglect of non-heat-conductive media, they can be treated as
material constants.

3 Blood as a micromorphic in idealized narrow blood vessels

In this section, blood flow in a cylindrical pipe, which can be regarded as an idealized blood vessel ismodeled as
a micromorphic fluid. In order to assess how suitable the micromorphic model is, the hemodynamic properties
of a micromorphic fluid are analyzed. This is achieved by deriving the solution to the laminar flow problem.
Precisely, the solution of the BoundaryValue Problem (BVP) is found for the laminar incompressible stationary
case. Such a solution is not only valuable to determine restrictions on material parameters for blood but also
serves as a reference solution for the validation of numerical solutions. A solution of the problem was already
presented in [22], but it contains minor errors which also affect the final results. Therefore, the correct solution
is presented and also validated in the following.

3.1 Assumptions and boundary conditions

The domain corresponds to a circular pipe with radius R, and the problemwill therefore be solved in cylindrical
coordinates. Thus, the domain can be expressed as

Ω := {[r, ϕ, z] ∈ R
3| 0 ≤ r < R, 0 ≤ ϕ < 2π

}
.
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A sketch of this domain is shown in Fig. 1. Furthermore, the assumption of rotational symmetry allows to solve
the problem in the r -z-plane:

Ω := {[r, z] ∈ R
2| 0 < r < R

}
.

Accordingly, the former physical boundary at the pipe wall Γ1:={[r, z] ∈ R
2| r = R} and the cylinder

axis Γ2:={[r, z] ∈ R
2| r = 0} are defined, and make up the boundary of the computational domain:

∂Ω = Γ1 ∪ Γ2, Ω = Ω ∪ ∂Ω.

Another consequence of rotational symmetry is that the microrotation tensor contains only two components
spanned by er and ez , and therefore, the micro-rotation reads

skw(G) = Grz − Gzr

2

[
er ⊗ ez − ez ⊗ er

]
. (3.1)

Analogously, the micro-shearing only occurs due to motion in the r -z-plane. This means

sym(G) = Grz + Gzr

2

[
er ⊗ ez + ez ⊗ er

]
, (3.2)

where the migration velocities Grr and Gzz were neglected, because they are usually small in crowded sus-
pensions [22]. In addition, the fluid is assumed to flow parallel to the vessel wall, while the fields v and G only
change along r :

v = v(r)ez, (3.3a)

G = Grz(r)er ⊗ ez + Gzr (r)ez ⊗ er . (3.3b)

Therefore, the microinertia i is also a function of r . Because of the assumption of incompressibility, the
conservation of mass (Eq. (2.1)) reduces to the incompressibility condition:

v · ∇ = 0.

Accordingly, the micro-incompressibility is assumed:

G ·· 1 = 0.

Furthermore, the flow is assumed to be stationary, such that all partial derivatives with respect to time vanish.
As a consequence of the assumptions, the convective term also vanishes:

∂φ

∂t
= 0, (φ ⊗ ∇) · v = 0 ⇒ dφ

dt
= 0. (3.4)

Finally, external body forces or moments of any kind are not considered. The constitutive equations (2.2) can
be substituted in the balance equations (2.1), which allows to simplify the BVP, as derived in the following.

3.2 Boundary conditions

The boundary condition for the velocity field corresponds to the typical homogeneous Dirichlet or no-slip
boundary condition on Γ1:

v(R) = 0.

For the gyration tensor, on the other hand, the postulation of boundary conditions is not that simple: Multiple
different boundary conditions, such as (in-)homogeneous Dirichlet boundary conditions, see [7], or homo-
geneous Neumann boundary conditions for the micro-rotation are possible, see also [1,22]. However, here a
coupling boundary condition is applied. This is motivated by the fact that the velocity gradient is the only field
having a direct effect on the suspended particles. The vorticity will cause the particles to rotate near the wall,
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while the shearing of the fluid will induce a shearing and stretching of the particles. Formally, this effect is
expressed as [22]

G(r = R) =
(
λ1(v · ∇)1 + λ2d + λ3w

)∣∣∣
r=R

. (3.5)

The coupling parameters λ2 and λ3 can be obtained from a comparison with the linear and angular velocity of
a rigid, spherical particle in a dilute suspension, respectively: This particle is assumed to roll and slip along the
wall, depending on the concentration of the suspension, i.e., the hematocrit. The linear and angular velocity
were derived using perturbation methods in [22]. For a crowded suspension of deformable particles, these
findings are applied by relating the microshearing and microstretching to the derived linear particle velocity
and adjusting the derived particle rotation by a crowding factor (1−Ht) to account for frictional effects [22]:

λ2 = 1 − 5

16
Ht, λ3 =

(
1 − 5

16
Ht

)
(1 − Ht). (3.6)

The remaining coupling parameter λ1 is irrelevant in this case due to the incompressibility condition, but it is
linked to the migration velocity and assumed to vanish anyway [22].

Finally, all fields are required to be regular on Ω , which will result in mathematical boundary conditions
on Γ2, as shown during the derivation of the solution.

3.3 Constitutive equations and viscosity coefficients

Under the assumptions stated in Sect. 3.1, the constitutive equations simplify to [22]:

t = −π1 + 2μd + ζ1sym(G) + κ[skw(G) − w], (3.7a)

s = −π1 + 2μd + 2ζ2sym(G), (3.7b)
〈3〉
λ = 1 ⊗ (γ1G · ∇ + γ2∇ · G) + 1 ⊗ (γ4G · ∇ + γ5∇ · G) ··

〈4〉
T

+ (γ7G · ∇ + γ8∇ · G) ⊗ g + γ10G ⊗ ∇ + γ11(G ⊗ ∇) ··
〈4〉
T

+ γ12GT ⊗ ∇ + γ13(GT ⊗ ∇)T + γ14∇ ⊗ G + γ15∇ ⊗ GT,

(3.7c)

where the new viscosity coefficients μ, ζ1, ζ2 consist of combinations of viscosity coefficients introduced in
Sect. 2.2, which are given by [22]

μ := μv + κ/2 ζ1 := 2(μ0 + μ1), κ = 2(μ0 − μ1). (3.8)

Substituting Eqs. (3.7) in the Clausius–Duhem inequality (2.7) yields multiple restrictions on the viscosity
coefficients, of which the most important ones are given by [22, p. 145]:

μ ≥ 0, 2ζ2 − ζ1 ≥ κ ≥ 0, 4μ(ζ2 − ζ1/2) − (ζ1/2)
2 ≥ 0,

15∑
i=0

γi ≥ 0, γ2 + γ11 + γ14 ≥ 0, γ14 ≥ 0, γ14 ≥ γ15,

γ14 ≥ γ10 + γ13, γ14 ≥ γ12, . . .

(3.9)

Furthermore, in the context of blood, several conclusions regarding the magnitudes of the viscosity coefficients
and trends with respect to the initial hematocrit were made in [22]. They originate from a comparison with the
stress tensor for dilute suspensions [14]. Since blood is not considered a dilute but a dense suspension, they
cannot be adopted one-to-one. The findings do not include how crowded particles affect each other, but the
remaining findings are still assumed to hold:

– μ increases with increasing hematocrit.
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– |ζ1| and |ζ2| also increase with increasing hematocrit, but at a higher rate than μ, because they govern the
influence of deformability on the resulting stress. Hence, larger concentration yields stronger interactions
between particles. This effect will, for a dense suspension, exceed the effect of particles influencing each
other via the surrounding fluid.

– κ , on the other hand, represents the stress due to particle rotation, and thus will also increase at a higher
rate than μ. It is of the same order of magnitude as ζ2, but cannot have a larger order of magnitude than μ.

– The rotational viscosity coefficients γi correspond, if normalized by μ, to a characteristic length of the
particles and are therefore chosen such that

√
γi/μmatches the size of particles, i.e., around e-6m to e-5m.

3.4 Solution to the micromorphic pipe flow

The steady flow of a micromorphic fluid as described above is summarized by the following BVP in tensor
representation:

BVP =

⎧⎪⎪⎨
⎪⎪⎩

∇ · t = 0, 0 ≤ r < R,

∇ · 〈3〉
λ + t − s = 0, 0 ≤ r < R,

v = 0, r = R,
G − (λ2d + λ3w) = 0, r = R.

(3.10)

The final solutions to this BVP are stated here, while a comprehensive derivation is given in “Appendix A.” The
solutions are stated as functions of the normalized radial coordinate ρ:=r/R, while the solutions themselves
are normalized by

v0 := − PR2

4μ
, where P := dp

dz
.

The expression for the velocity field reads

v(ρ)

v0
= 1 − ρ2 + 1

μ + κ/2

[
C1�(I0(L) − I0(Lρ))

2L

(
ζ1(1 + f1) + κ(1 − f1)

)

+ C2�(I0(M) − I0(Mρ))

2M

(
ζ1(1 + f2) + κ(1 − f2)

)]
,

(3.11)

and the micromotion is given by

R

v0
G(r z)(ρ) = C1�

2
(1 + f1)I1(Lρ) + C2�

2
(1 + f2)I1(Mρ), (3.12a)

R

v0
G[r z](ρ) = ρ + C1�

2
(1 − f1)I1(Lρ) + C2�

2
(1 − f2)I1(Mρ), (3.12b)

where G(i j) and G[i j] denote the components of sym(G) and skw(G), respectively. The constants C1� andC2�
within the solutions are:

C1� = ( f2 − 1)μ/aλ2 − (1 + f2)μ/aλ3 + (1 + f2)

I1(L)( f1 − f2)
,

C2� = (1 − f1)μ/aλ2 + (1 + f1)λ3μ/a − (1 + f1)

I1(M)( f1 − f2)
,

a = μ + κ

2
+ λ2ζ1

2
− λ3κ

2
, L = αR, M = βR,

f1 = − (α2 − α2
2)

(α2 − α2
1)

K2

K1
, f2 = − (β2 − α2

2)

(β2 − α2
1)

K2

K1
.

Here, α and β are the positive solutions of the following equation:

(λ2 − α2
1)(λ

2 − α2
4)K1K4 − (λ2 − α2

2)(λ
2 − α2

3)K2K3
!= 0.
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The α2
i and Ki are composed of viscosity coefficients as follows:

K1 = γ1 + γ13 + γ15 + γ4 + γ12 + γ14, K2 = γ2 + γ11 + γ14 + γ5 + γ10 + γ15,

K3 = γ1 + γ13 + γ15 − (γ4 + γ12 + γ14), K4 = γ2 + γ11 + γ14 − (γ5 + γ10 + γ15),

α2
1 = −(ζ1 − 2ζ2)/K1, α2

2 = −(ζ1 − 2ζ2)/K2,

α2
3 = −κ(2μ + ζ1)/(K3(2μ + κ)), α2

4 = κ(2μ − ζ1)/(K4(2μ + κ)).

In the following, the obtained solutions are presented and discussed for some special cases. Here, Eqs. (3.12)
and (3.11) correspond to Eqs. (5.8) from [22, p. 149], although, the constants C1� and C2� deviate from these
used in [22], which will also be investigated below.

4 Results and discussion

By means of the solution obtained above, the applicability of a micromorphic fluid as a model for human
blood can be discussed. The analysis focuses on pipes with small radius, which represent simplified blood
vessels. First, the relationship between experimental data and analytical solutions is discussed to facilitate
a meaningful discussion of the results. Second, the results are compared to corresponding results from the
literature (cf. [22]). Third, a new set of viscosity coefficients is derived from the Fåhræus–Lindqvist effect.
Then, the resulting fluid model is compared to experimental data and, finally, the influence of several viscosity
coefficients on the micromorphic fluid behavior is investigated.

The viscosity coefficients used in this section generally depend on the initial RBC hematocrit. Amotivation
for restrictions regarding their magnitude is given in [22] and briefly repeated in Sect. 3.3. Furthermore, the
values for the coupling boundary condition in this section are specified in Eq. (3.6). Thus, the micromotion
of the fluid at the wall is considered to be driven by the surrounding fluid motion, but also slowed down by
particle–wall interaction and crowding effects.

4.1 Normalization of experimental data

As explained in Sect. 1, the viscosityμ of blood is not constant with respect to the vessel radius R, but decreases
with decreasing radius for R < 300µm, which corresponds to the well-known Fåhræus–Lindqvist effect (cf.
[13]). In order to conduct a meaningful discussion, it is necessary to clarify how the fields are normalized. To
achieve this, the apparent viscosity μapp is reformulated in terms of the micromorphic viscosity coefficient μ
from Eqs. (3.8) [22]:

μapp:= − πR4P

8Q
⇒ μapp = μ

4Q
, (4.1)

where Q denotes the total volume flow rate, given by

Q =
∫∫

A
v · dA =

∫∫
A

v · ez dA =
2π∫

0

R∫

0

v(r)r dr dϕ. (4.2)

By using ρ = r/R and dr = R dρ, the volume flow rate can be written in terms of the dimensionless velocity
from Eq. (3.11):

Q =
2π∫

0

1∫

0

R2v0
v(ρ)

v0
ρ dρ dϕ = 2πR2v0

1∫

0

v(ρ)

v0
ρ dρ. (4.3)

The remaining integral is denoted as Q, which yields an adapted, dimensionless expression for the volume
flow rate [22, p. 152]:

Q = 2πR2v0Q, Q =
1∫

0

v(ρ)

v0
ρ dρ. (4.4)
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For a Newtonian fluid, the apparent viscosity is constant, because the Newtonian volume flow rate Q is
always proportional to PR4. Consequently, Q = 1/4 will always hold. Hence, the apparent viscosity can be
interpreted as a measure for the change of the normalized volume flow rate for a varying radius. A variable
apparent viscosity indicates a deviation from Newtonian behavior. To normalize the solution properly, the
micromorphic viscosity coefficient μ can be set to a reference viscosity for all R. For instance, a suitable
reference viscosity is the asymptotic value of approximately 3.77mPa s obtained from experiments with large
radii by [20].

By choosing v0 as a function of a constant μ, the normalized volume flow rate Q for a micromorphic fluid
will change with the vessel radius, because the normalized solution v(ρ)/v0 still depends on R. The choice of
a reference velocity of ṽ0 = −PR2/(4μapp) with an experimentally obtained value of μapp corresponds to a
normalization by the experimental volumetrically averaged velocity vm, see Eqs. (4.1, 4.4):

v(ρ)

ṽ0
= − μ

4Q

4

PR2 v(ρ) = v(ρ)

2vm
. (4.5)

If the fluid model shows the same shear-thinning behavior as blood, the normalized volume flow rate will stay
constant with varying radius. Thus, if the subsequently computed volume flow rate of v(ρ)/ṽ0 does change
with R or dimensionless experimental data does not fit the model, it is an indication for a flawed model or
wrongly chosen parameters.

4.2 Comparison to Kang and Eringen

The solution derived above is compared to the reference solution from Kang and Eringen [22]. In order to
enable this comparison, all model parameters are matching those from the reference. The experimentally
obtained apparent viscosity of blood specified in [19,21] for R = 100µm was chosen for the micromorphic
viscosity coefficient μ to compare velocity profiles at different R with each other and with experimental
data. As explained above, this is a rather arbitrary and counter-intuitive choice for the viscosity, since it
neither corresponds to the asymptotic nor the actual apparent viscosity at R ∈ {20µm, 35µm}. Due to the
normalizationwith v0 and therebywithμ, the choice ofμ does not affect the velocity andmicromotion profiles.
Therefore, the values from [22] are adopted for now which includes the following viscosity coefficients:

μ = 2.8mPa s, κ/μ = 0.07, ζ1/μ = −0.75, ζ2/μ = 0.28,

K1/μ = 1.1 × 10−10 m2, K2/μ = 1.0 × 10−10 m2,

K3/μ = 0.9 × 10−10 m2, K4/μ = 0.6 × 10−10 m2.

(4.6)

There are two sign errors in the boundaryvalues given in [22]. Thefirst onewas alreadyoutlined in “AppendixA”
in Eq. (A.21): According to the coupling boundary from Eq. (3.5), the boundary condition should read

G(r z)(R) = λ2drz = λ2
v′(R)

2
=

(
1 − 5

16
Ht

)
v′(R)

2
, (4.7a)

G[r z](R) = λ3wr z = −λ3
v′(R)

2
= −(1 − Ht)

(
1 − 5

16
Ht

)
v′(R)

2
. (4.7b)

This formulation was also used for the derivation of our solution. However, after substituting the coefficients
λ2 and λ3 from [22, p. 151] into Eqs. (5.6) from [22], the boundary conditions read:

G(r z)(R) = −λ2v
′(R) =

(
1 − 5

16
Ht

)
v′(R)

2
, (4.8a)

G[r z](R) = λ3v
′(R) = (1 − Ht)

(
1 − 5

16
Ht

)
v′(R)

2
. (4.8b)

Comparison of Eqs. (4.7) and (4.8) reveals a sign error within the boundary condition for the microrotation
in [22]. This sign error would result in a negative relation between the microrotation and the vorticity at the
wall. Hence, the micro-rotation at the wall would not only be smaller than the corresponding vorticity due to
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Fig. 2 Normalized velocity fields obtained for R = 20µm and Ht = 40% compared to those provided by Kang and Eringen in
mathematical and graphical form [22, pp. 149–151] using the flawed boundary condition, as outlined in Sect. 4.2

friction but also in the opposite direction. This behavior is not physically plausible and the formulation from
[22] is therefore considered to be faulty.

The solutions to the BVP in Eq. (3.10) are exemplarily compared for R = 20µm. This comparison includes
our analytical solution, the solutions published in [22], and a numerical solution. Before correcting the flawed
boundary condition as described above, all solutions are compared for the physically implausible boundary
condition stated by Kang and Eringen. It will be shown that our derived analytical solution does not coincide
with the analytical solution from Kang and Eringen. Therefore, a numerical solution is used to validate our
derived solution. This numerical solution was computed using the NDSolve-function of the Mathematica
software, in which the three scalar PDEs along with the boundary conditions were specified. Next to the
mathematical expression of the analytical solution, the velocity and the microrotation field were also plotted in
byKang andEringen in Fig. 3, see [22, p. 151], which are also compared to the analytical solutions. The fact that
these plotted solutions deviate from both analytical solutions indicates misprints or errors in [22]. Accordingly,
the coupling parameters λ2 and λ3 will be corrected such that the physically meaningful boundary condition
is prescribed, and the same comparison is performed again. After the adjustment, our analytical solution for
the microrotation coincides with the plotted microrotation solution from Kang and Eringen, whereas their
corresponding solution in mathematical form differs. For the velocity solution on the other hand, our validated
analytical solution does neither match the graphical nor the analytical solution published in [22]. This leads
to the conclusion that the analytical solutions from Kang and Eringen contain, first, misprints because their
analytical solutions do not match their plotted solutions, and second, errors, since both their graphical and
analytical solution for the velocity field differ from the correct solution to the BVP. The derivation of this
conclusion is given in more detail below.

For the original boundary conditions from [22], the different velocity profiles are shown in Fig. 2, and the
micromotion is displayed in Fig. 3. It is noticeable that the numerical results for all fields coincide with our
derived solutions, whereas the analytical solution from Kang and Eringen deviates from them and—in the case
of velocity and microrotation— from their plotted solution. For the microshearing, no graphical solution was
provided by Kang and Eringen. Hence, our analytical solution solves the BVP, unlike the solutions from Kang
and Eringen. The small difference between the analytical and graphical solution for the velocity field in [22]
could originate from inaccuracies in plotting, and thus, no statement regarding the source of the difference to
our solution can be made yet. In order to determine if a misprint in the boundary condition contributed to these
differences, the flawed boundary condition is corrected and the solutions are compared again.

After correcting the boundary condition, differences between our analytical solutions and those from Kang
and Eringen still exist, as depicted in Figs. 4 and 5. However, for the microrotation in Fig. 5b, the situation is
different: The correction of the boundary conditions causes our solution and the plotted solution from Kang
and Eringen to match, while their analytical solution still differs. Minor differences between our solution and
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Fig. 3 Normalized micromotion fields obtained for R = 20µm and Ht = 40% compared to those provided by Kang and Eringen
in mathematical and graphical form [22, pp. 149–151] using the flawed boundary condition, as outlined in Sect. 4.2

Fig. 4 Normalized velocity fields obtained for R = 20µm and Ht = 40% compared to those provided by Kang and Eringen in
mathematical and graphical form [22, pp. 149–151] using the corrected boundary condition, as outlined in Sect. 4.2

Kang and Eringen’s graphical solution originate from the extraction of the graphical solution. It should also
be noted that the plotted solution from [22] was negative for all ρ, whereas it should be positive for all ρ,
at least when considering the correct boundary condition. For Fig. 5b, this error was treated by mirroring the
graphical solution from [22]. The good accordance of our analytical with the graphical solution fromKang and
Eringen indicates that the corrected coupling boundary condition indeed corresponds to the boundary condition
they intended to use and that their analytical solution for the microrotation simply contains typographical
errors. Regarding the velocity field, neither the mathematical expression nor the plot from [22] agrees with
our validated solution. Thus, there is another error in the velocity solution that cannot be explained by a
typographical error, although it could be due to the typographical error in the microrotation solution. For the
microshearing it is similar: Albeit small, there is a difference between our validated analytical solution and the
one from [22]. Consequently, the latter also contains errors.
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Fig. 5 Normalized micromotion fields obtained for R = 20µm and Ht = 40% compared to those provided by Kang and Eringen
in mathematical and graphical form [22, pp. 149–151] using the corrected boundary condition, as outlined in Sect. 4.2. The sign
of the microrotation plot in [22] was changed for this figure, since it was negative for all ρ

To summarize, the solutions to the micromorphic pipe flow from Kang and Eringen contain several errors,
as already stated. One error regarded themisprints in the solution for themicrorotation, while the exact origin of
the remaining errors could not be identified. Moreover, the analysis showed that the flawed boundary condition
from [22] merely corresponds to a typographical error in the publication and that the physically meaningful
boundary condition from Eqs. (4.7) was also considered by Kang and Eringen.

4.3 Derivation of model parameters

Due to the counter-intuitive choice of μ and the flawed equations in [22] which might have led to the viscosity
coefficients from Eqs. (4.6), a new set of model parameters is derived based on experimental data. To acquire
this new set of parameters, the apparent viscosity of a micromorphic fluid is fitted to the actual apparent vis-
cosity of human blood with an initial hematocrit of 45%. The reference data were collected and aggregated in
[27]. It comprises the results of 18 different studies of RBCs suspended in a Newtonian fluid with hematocrit
values from 40% to 45%, where results with hematocrit of less than 45% were extrapolated. Since the sus-
pending fluid differed across the considered studies, an average for the relative apparent viscosity μrel, i.e., the
apparent viscosity divided by the viscosity of the suspending fluid μs, was determined. From hereinafter the
micromorphic viscosity μ denotes the asymptotic apparent viscosity as a function of μs under consideration
of the results from [27]:

μ := μs lim
R→∞ μrel(R), μ ≈ 3.23μs. (4.9)

The fitting was conducted with the help of the curve_fit function from the python package scipy.
optimize. This corresponds to applying the non-linear least-squares analysis to find a suitable set of param-
eters. The analysis was conducted for 19 data points in the range of radius from approximately 0.01mm to
2mm. For smaller vessel radii, the vessel dimension approximates the dimension of single RBCs, and the
continuum approach ceases to be valid. The following bounds were imposed on the parameters according to
the heuristics in [22]:

κ/μ ∈ [0.05, 0.5], ζ1/μ ∈ [−2,−1], ζ2/μ ∈ [0.1, 1],
K1/μ ∈ [1 × 10−10 m2, 5 × 10−10 m2], K2/μ ∈ [1 × 10−10 m2, 5 × 10−10 m2],
K3/μ ∈ [−5 × 10−10 m2, −0.9 × 10−10 m2], K4/μ ∈ [1.1 × 10−10m2, 5 × 10−10 m2].
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Fig. 6 Apparent viscosity of a micromorphic as compared to the experimental results published in [27] and [19]

The fitting resulted in the following set of parameters:

κ/μ ≈ 0.185, ζ1/μ ≈ −1.50, ζ2/μ ≈ 1.00,

K1/μ ≈ 1.39 × 10−10 m2, K2/μ ≈ 1.00 × 10−10 m2,

K3/μ ≈ −0.90 × 10−10 m2, K4/μ ≈ 5.00 × 10−10 m2.

(4.10)

It should be noted that the values obtained for the aggregated gyration viscosity coefficients Ki as well as
the coefficient ζ2 approximately lie on their respective bounds. This indicates that the optimal values for Ki
and ζ2 lie beyond the imposed bounds. Nonetheless, for the following analysis the values from Eqs. 4.10 are
considered.

4.4 Shear-thinning behavior of a micromorphic fluid

In this section, micromorphic fluid behavior is compared to the Fåhræus–Lindqvist effect. The asymptotic
relative viscosity is computed for R ∈ [10µm, 1000µm] and plotted against the experimental results fromPries
et al. [27] and Haynes [19]. The former was used to determine the material parameters, while the latter served
as reference data in the article from Kang and Eringen [22]. Since this analysis considers the relative instead of
the absolute apparent viscosity, the results from [19] are normalized by the viscosity of the suspending fluid,
i.e., Acid-Citrate-Dextrose (ACD). The different experimental results are not comparable one-to-one though,
because the experiments in [19] were conducted for Ht ∈ {0%, 20%, 30%, 40%, 50%, 60%, 70%, 80%}.
Therefore, the results were interpolated to 45% quadratically. The resulting apparent viscosity is shown in
Fig. 6. Additionally, the viscosity of two experiments conducted by Bugliarello and Sevilla [4] is included in
the plot which are discussed in Sect. 4.5.

At first glance, it stands out how well the micromorphic relative apparent viscosity matches the actual
relative apparent viscosity of RBC suspensions, as compiled in [27]. Clearly, this is due to the experimental
data being used for the derivation of the model parameters, but the ability to reproduce the Fåhræus–Lindqvist
effect at such accuracy is remarkable. It indicates that, for sufficiently high shear rates, a micromorphic fluid
with the parameters from Eqs. (4.10), will exhibit nearly the same flow resistance as human blood in glass
capillaries. However, for the micromorphic fluid to be a viable model for blood in microcirculation, it is not
only required to follow the Fåhræus–Lindqvist effect, but also to resemble the actual motion of human blood.
Consequently, the velocity distribution of amicromorphic fluid is investigated in the following section. Another
interesting observation concerns the experimental results from Haynes [19]: At Ht = 40%, they coincide well
with the data from Pries et al. [27], whereas they exceed the averaged values if interpolated to Ht = 45%. This
strong variation across experimental data from literature was also pointed out in [27].
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Fig. 7 Comparison of a micromorphic fluid and experimental data from [4] for different vessel radii

4.5 Comparison to experimental velocity profiles

In this section, several experimentally obtained velocity profiles of RBC suspensions in narrow glass capillaries
are compared to those of a micromorphic fluid. This concerns data from Bugliarello and Sevilla [4] and
Goldsmith and Marlow [15].

For R ∈ {20µm, 35µm}, a comparison with experimental data fromBugliarello and Sevilla [4] is possible.
The experiments were conducted on a pressure-driven flow of RBCs suspended in ACD at Ht = 40%. Along
with the absolute velocity, pressure-flow-diagramswere published,where the volumeflow rate can be computed
from the accompanyingmean velocity vm.This allows to determine v0 which, in turn, allows for a normalization
of given data. Since the published vm does not agree with the respective velocity measurements, it is adjusted
for the computation of v0 (see “Appendix B”). Furthermore, the relative apparent viscosity was computed
for both experiments using the ACD viscosity measured in [19] (see Fig. 6). Apparently, the relative apparent
viscosity from the measured blood flows exceed the asymptotic relative apparent viscosity of human blood.
Apart from noise, a possible explanation for the deviation is that the pseudo-shear rate v from Eq. (1.3) is too
small for the apparent viscosity to tend to its asymptotic limit. Especially, for R = 35µm with v ≈ 17 s−1,
this is a plausible explanation. For R = 20µm with v > 100 s−1 on the other hand, the deviation should
be negligible. In both cases, the normalization term v0 was additionally shifted by the ratio of the different
apparent viscosities. These two adjustments combined basically correspond to a normalization with respect to
the volume flow rate. The resulting velocity profiles are shown in Fig. 7a, 7b.

Although the parameter optimization was only executed with respect to the apparent viscosity, the micro-
morphic velocity fields closely resemble the velocity fields of blood. This is especially noticeable if compared
to a Newtonian velocity profile with the same volume flow rate: The micromorphic fluid exhibits the relatively
blunted shape toward the vessel center, comparable to crowded RBCs forming a core regionwith smaller veloc-
ity differences. Near the vessel wall on the other hand, the velocity increases rapidly, similar to a friction-poor
plasma layer.

Similar results are obtained from a comparison with experimental data from Goldsmith and Marlow [15],
where the velocity fields of RBC and ghost cell suspensions were measured at R ≈ 40µm and varying
hematocrit. Since in this case only a volumeflow rate but no pressure gradientwas given, the data are normalized
to meet the volume flow rate of the micromorphic fluid. The resulting comparison is displayed in Fig. 8.
Although the pseudo-shear rate v is below 50 s−1 for all considered data sets, the general, blunted shape of the
micromorphic and RBC suspension velocity profile is quite similar. Especially for an increasing pseudo-shear
rate, the experimental data tends toward the micromorphic solution. However, it should also be noted that the
volume flow rate of such low-shear experiments will most likely not agree with the micromorphic volume flow
rate.

In conclusion, not only does the micromorphic fluid with adequately chosen parameters meet the Fåhræus–
Lindqvist effect, but experimental velocity profiles can also be reproduced satisfactorily in a circular pipe flow.
As towhymicromorphic dynamics coincidewith hemodynamics, andwhichparameters influence this behavior,
will be investigated below.
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Fig. 8 Comparison of a micromorphic fluid and experimental data from [15] at R ≈ 40µm

Fig. 9 Influence of ζ1 on the normalized microshearing and relative microrotation of a micromorphic fluid in the microcirculation

4.6 Material parameter study

Using the derived material parameters from Eqs. (4.10), the micromorphic fluid motion resembles the motion
of blood very well. Now, in order to get a better understanding of the associated material parameters, this
section covers the influence of the viscosity coefficients contained in the stress tensor t , namely κ and ζ1,
on the (micro-)motion and on the accompanying shear-thinning behavior. Of course, the viscosity μ is also
included in t , but a variation of μ will only affect the apparent viscosity, while it does not implicate a change
within the normalized (micro-)motion.

For this study, the difference between vorticity and microrotation as well as the microshearing are of par-
ticular interest: Microrotations differing strongly from the surrounding fluid vorticity produce stress causing
the fluid resistance to increase, while the microshearing and microstretching along the fluid shearing, i.e., the
strain rate, causes stress reduction within the system. Therefore, the viscosity coefficients are varied around
their optimized values, and the resulting change in relative apparent viscosity μrel, velocity v, microshear-
ing sym(G), strain-rate d, and relative microrotation Ω is depicted. Here, the relative microrotation is defined
asΩ:=skw(G)−w. The parameter study regarding the field quantities is carried out at R = 35µm. For a vari-
ation of ζ1, the micromotion results are presented in Fig. 9, where the microshearing and relative micromotion
were normalized by the strain-rate and vorticity, respectively.

Varying ζ1 has an insignificant effect on the normalizedmicroshearing: Irrespective of ζ1, it nearly vanishes
in the RBC-rich core region, while stronger microshearing is induced in the high-shear area near the vessel
wall. Thus, the ratio of strain-rate to micro-shearing is mostly independent of ζ1. In contrast, the normalized
relative microrotation is strongly influenced by a variation of ζ1 in the core region: In relation to the fluid
vorticity, decreasing ζ1 also yields a decreasing relative microrotation. As for the microshearing, a variation
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Fig. 10 Influence of ζ1 on the relative microshearing, relative microrotation, and velocity field of a micromorphic fluid in the
microcirculation

Fig. 11 Influence of κ on the microshearing and relative microrotation field of a micromorphic fluid in the microcirculation

of ζ1 has a diminishing effect in the high-shear area close to the vessel wall. The concomitant change on the
macro-scale fields is displayed in Fig. 10.

The strain-rate is simply increased in magnitude near the vessel wall for decreasing ζ1, whereas the strain-
rate in the inner vessel is only influenced marginally. Mathematically speaking, this is a consequence of ζ1
directly influencing the Neumann boundary condition imposed on the velocity field. A possible interpretation
can be inferred from the stress tensor t: ζ1 governs the stress due to shearing on the micro-scale. In fact, Kang
and Eringen state that higher |ζ1|, |ζ2| correspond to more stress exerted on the system due to deformation, and
thus, a “more flexible substructure,” [22, p. 146]. However, since t is linear in ζ1, changing the sign of ζ1 also
reverses the effect. For ζ1 > 0, the stress in the system due to microshearing along the strain rate is increased,
while ζ1 < 0 induces stress relief as a consequence of microshearing along the strain rate. Hence, decreasing
ζ1 leads to a more flexible substructure. As a consequence, decreasing ζ1 also leads to an increased velocity
along the entire vessel.

Figure11 shows how κ influences themicromotion: The variation of κ barely affects the normalizedmicros-
hearing, while increasing κ results in a lower normalized relative microrotation, especially in the low-shear
area near the vessel center. In the high shear flow near the vessel wall on the other hand, the microrotation-to-
vorticity-ratio ismostly indifferent to a variation ofκ due to the imposedboundary condition. The corresponding
changes on the macroscopic field quantities are shown in Fig. 12. As a consequence of an increase in κ , the
strain-rate declines, and the velocity diminishes. As visible in the formulation of the stress tensor t and as
already stated in [22], large κ induce a high flow resistance due to particles rotating at a lower angular velocity
than the surrounding vorticity field.

These phenomena can also be observed for the relative apparent viscosity, as shown in Fig. 13. An increase
of ζ1 leads to a less pronounced shear-thinning and even shear-thickening for ζ1 > 0. In a similar manner,
higher values for κ damp the shear-thinning.

In conclusion, especially the negative material parameter ζ1 governs the micromorphic shear-thinning
behavior through stress reduction induced by particle deformation, whereas κ controls the stress due to dif-
ferences between particle rotation and fluid vorticity. Hence, the micromorphic shear-thinning behavior is
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Fig. 12 Influence of κ on the strain-rate and velocity field of a micromorphic fluid in the microcirculation

Fig. 13 Influence of ζ1 and κ on the relative apparent viscosity of a micromorphic fluid

determined by the flexibility on the micro-scale, as noted in [22]. Particle flexibility also corresponds to the
actual cause for shear-thinning in blood [16]. For the given configuration, both stress reduction and stress
build-up due to micromotion are mostly observed near the vessel wall. Moreover, the micromotion is only
activated in areas with sufficiently high strain-rates, where the ratio of micromotion to strain-rate is always
similar, irrespective of the chosen κ and ζ1. This displays a major difference between micromorphic fluid
behavior and hemodynamics: In actual blood, there is no particle deformation close to the wall, because there
are no RBCs located close to the wall. However, Kang and Eringen motivate this discrepancy by an inverse
relation between Ω and the RBC-concentration: High magnitudes of Ω , i.e., a strong deviation of vorticity
and microrotation, indicate that a particle has a greater sphere of influence, and thus, the local hematocrit must
be lower.

4.7 Influence of varying vessel diameter

Regarding the motion on a macroscopic scale, the most distinguishing property of vertebrate blood compared
to a Newtonian fluid is its shear-thinning behavior, i.e., the decrease of apparent viscosityμapp along increasing
strain-rate. As described in Sect. 1.1, the apparent viscosity of blood can be defined as a function of R, which,
in turn, is satisfactorily modeled by a micromorphic fluid with our derived viscosity coefficients. This section
is dedicated to analyzing the corresponding motion of a micromorphic fluid for varying vessel radii R. The
considered vessel radii range from 10µm to 500µm to cover the full scope of microcirculation. In the former
sections, it has already been shown that the velocity profile takes a more blunted shape than a Newtonian fluid.
This evolution along varying R can be observed in Fig. 14 for the micromorphic fluid, where it was again put
in context with a Newtonian fluid of the same normalized volume flow rate.

For large vessel radii, the micromorphic fluid almost fits the Newtonian fluid as expected, since here the
inertial effects dominate the viscous effects of thematerial. From there, themicromorphic fluid profiles become
more blunted until R = 35µm, from where the trend retrieves until the velocity profile is almost parabolic
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Fig. 14 Micromorphic velocity fields (solid line) for variable R as compared to a corresponding Newtonian velocity field (dotted
line)

Fig. 15 Normalized (relative) micromotion fields for varying vessel radius R

again at 10µm. It is not clear if this corresponds to the actual behavior of blood, or if the continuum approach
ceases to be valid. More experimental data are required to validate the micromorphic approach as a model for
blood in small vessels. In addition to the shape change, the normalized velocity profile also becomes steeper
if the vessel diameter is decreased. The normalized volume flow rate Q is thereby increased. As a result, the
volume flow rate Q is no longer proportional to PR4, as it would be for a Newtonian fluid. This behavior
corresponds to shear-thinning, or in the context of blood to the Fåhræus–Lindqvist effect. Since the origin of
the micromorphic shear-thinning can be attributed to the micromotion, the evolution of the microshearing and
the relative microrotation along varying vessel diameter is investigated below, see Fig. 15.

For decreasing vessel diameter, both the microshearingG(r z) and relative microrotationΩr z tend to a linear
function. For large vessel radii beyond the scope of microcirculation on the other side, both G(r z) and Ωr z
vanish in the core region, but are increased in magnitude near the vessel wall abruptly. This agrees with the fact
that blood can be considered a Newtonian fluid in large arteries. It also corresponds to the mechanism of the
RBC-free, plasmatic layer in blood flow, whose thickness does not scale with the vessel radius [19,31]. The
relative plasmatic layer thickness decreases along increasing vessel diameter, as does the micromotion’s area
of influence in Fig. 15. This behavior is also reflected in the strain-rate, as displayed in Fig. 16. For all radii but
R = 10µm, the micromorphic fluid can be divided into a low-viscosity and high-viscosity area, indicated by
the the steep strain-rate profile at the wall and the rather shallow profile in the core region, respectively. Just
like the plasmatic layer, the relative thickness of the low-viscosity part shrinks with increasing vessel diameter.
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Fig. 16 Normalized strain-rate in a micromorphic fluid along variable R

Accordingly, the micromorphic velocity profiles match the blood profiles very well, as the comparison from
Sect. 4.5 already showed.

5 Conclusion

While the calculations made in [22] partly contained misprints and the analysis was methodically flawed, the
conclusions reached regarding the velocity profile and apparent viscosity are still valid: Experimental data is
reproducible, shear-thinning occurs and even follows the Fåhræus–Lindqvist effect, while the reason for that,
namely particle deformability, is even in accordance with the corresponding physical interpretation. Therefore,
the so far studied effects indicate a high viability of a micromorphic fluid as a model for blood. However, there
are more effects observed in blood, such as the evolution of the plasmatic layer size or the Fåhræus effect.
They depend on the concentration, which is not a field quantity in micromorphic fluid theory. In order to
study these effects anyway, Kang and Eringen derived a formulation for the RBC-concentration as a field
quantity. This formulation is based on energy dissipation due to particle rotation and fluid shear in the presence
of particles (cf. [18,35]). Since the particles were considered to be rigid and spherical, this analysis is not
error-free applicable to a fluid model that considers a deformable microstructure. Therefore, it is not included
here. But the approach could be used to compute the concentration of a microfluid with a microstructure of
rigid, spherical particles, such as Eringen’s micropolar fluid [9].

Despite the good results, the theory of micromorphic fluids is complex in that it introduces nine additional
kinematic degrees of freedom and several additional viscosity coefficients compared to a Newtonian fluid.
Hence, it is mathematically viable, and the linear stress tensor is a great advantage toward many popular
models for blood depending on a strain-rate measure γ̇ = √

2d ·· d, see [30] for a comprehensive review. Such
models including a nonlinear stress tensor easily result in numerical complications and restrictions. However,
simulating a micromorphic fluid numerically can also result in a large model, requiring a lot of processing
power and memory. In addition, the determination of more than 20 material parameters is a complicated task
that requires a lot of reference data. Especially for blood, acquiring a large amount of data proves to be difficult,
because the suspended particles are not translucent. Thus, a first step would be the model reduction to identify
and discard redundant and unnecessary terms, in particular with regard to the first stress moments tensor, which
alone contains 15 gyration viscosity coefficients. Unfortunately, this task again requires a lot of experimental
data. Therefore, a less complex model, such as a modified micropolar fluid model, is desired to accurately
compute blood flow in micro-circulation.
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A Derivation of the micromorphic pipe flow

A.1 Evaluation of the momentum equation

Applying the product rule to themomentumequation in Eq. (2.2) yields a simpleOrdinaryDifferential Equation
(ODE):

∇ · t = 0 (A.1a)

⇔
(

∂tr z
∂r

+ 1

r
trz + ∂tzz

∂z

)
ez + ∂trr

∂r
er = 0, where

∂tzz
∂z

= ∂p

∂z
(A.1b)

⇒ t ′r z + 1

r
trz = ∂p

∂z
,

∂p

∂r
= 0. (A.1c)

Here the thermodynamic pressure was replaced by the hydrostatic pressure because of −p1 = t◦, where the
superscript circle denotes the spherical part of t , i.e., the thermodynamic pressure. In addition to the ODE in
Eqs. (A.1c), the second equation reveals information about the pressure:

p := p(z).

Hence, the ODE in Eq. (A.1c) is solved by

tr z = r

2

∂p

∂z
+ C1

r
. (A.2)

For the sake of readability, the pressure gradient in z will hereinafter be referred to as P:=∂p/∂z. Substituting
the r z-component of the stress tensor t , as displayed in Eq. (3.7a), in the ODE, yields

(
μ + κ

2

)
v′(r) + ζ1

Grz(r) + Gzr (r)

2
+ κ

Grz(r) − Gzr (r)

2
= r P

2
+ C1

r
, (A.3)

where the constant C1 must vanish due to the regularity requirement at r = 0. The obtained equation corre-
sponds to Eq. (5.3a) from [22, p. 148]. Rewriting the expression leads to a function describing the velocity
gradient in terms of the micro-rotation, the micro-stretching and the pressure gradient:

v′(r) = 1

μ + κ/2

(
r P

2
− ζ1

Grz(r) + Gzr (r)

2
− κ

Grz(r) − Gzr (r)

2

)
. (A.4)
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A.2 Evaluation of the micro-spin balance

The separate parts of the micro-spin balance (2.3) under consideration of Eq. (3.7) read

∇·
〈3〉
λ =

[
γ1

(
G ′′

zr + G ′
zr

r
− Gzr

r2

)
+ γ2

(
G ′′

r z + G ′
r z

r
− Grz

r2

)]
er ⊗ ez

+
[
γ4

(
G ′′

zr + G ′
zr

r
− Gzr

r2

)
+ γ5

(
G ′′

r z + G ′
r z

r
− Grz

r2

)]
ez ⊗ er

+ γ10

[
G ′′

r z + G ′
r z

r
− Grz

r2

]
ez ⊗ er + γ11

[
G ′′

r z + G ′
r z

r
− Grz

r2

]
er ⊗ ez

+ γ12

[
G ′′

zr + G ′
zr

r
− Gzr

r2

]
ez ⊗ er + γ13

[
G ′′

zr + G ′
zr

r
− Gzr

r2

]
er ⊗ ez

+ γ14

[
G ′′

r z + G ′
r z

r
− Grz

r2

]
er ⊗ ez + γ14

[
G ′′

zr + G ′
zr

r
− Gzr

r2

]
ez ⊗ er

+ γ15

[
G ′′

r z + G ′
r z

r
− Grz

r2

]
ez ⊗ er + γ15

[
G ′′

zr + G ′
zr

r
− Gzr

r2

]
er ⊗ ez

(A.5)

and

t − s = (ζ1 − 2ζ2)
Grz + Gzr

2
(er ⊗ ez + ez ⊗ er )

+κ

2
(Grz − Gzr + v′)(er ⊗ ez − ez ⊗ er ). (A.6)

Plugging these into the micro-spin balance (2.3) yields the following system of differential equations from the
r z- and zr -component:

k1

(
G ′′

zr + G ′
zr

r
− Gzr

r2

)
+ k2

(
G ′′

r z + G ′
r z

r
− Grz

r2

)

+ ζ1 − 2ζ2
2

(Grz + Gzr ) + κ

2
(Grz − Gzr + v′) = 0, (A.7a)

k3

(
G ′′

zr + G ′
zr

r
− Gzr

r2

)
+ k4

(
G ′′

r z + G ′
r z

r
− Grz

r2

)

+ ζ1 − 2ζ2
2

(Grz + Gzr ) − κ

2
(a − Gzr + v′) = 0, (A.7b)

where the different ki summarize gyration viscosity coefficients:

k1 = γ1 + γ13 + γ15, k2 = γ2 + γ11 + γ14,

k3 = γ4 + γ12 + γ14, k4 = γ5 + γ10 + γ15.

This system of differential equations still depends on v′(r),Grz(r),Gzr (r) and P . Thus, Eq. (A.4) is substituted
in the PDEs in order to eliminate v′(r) and decouple the micro-spin balance from the momentum equation.
Adding and subtracting Eqs. (A.7) afterwards yields

K1

(
G ′′

zr (r) + G ′
zr (r)

r
−(α2

1 + r−2)Gzr (r)

)

+K2

(
G ′′

r z(r) + G ′
r z(r)

r
− (α2

2 + r−2)Grz(r)

)
= 0,

(A.8a)

K3

(
G ′′

zr (r) + G ′
zr (r)

r
−(α2

3 + r−2)Gzr (r)

)

+K4

(
G ′′

r z(r) + G ′
r z(r)

r
− (α2

4 + r−2)Grz(r)

)
= − κr P

2μ + κ
,
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(A.8b)

where the different Ki consists of the gyration viscosity coefficients

K1 = γ1 + γ13 + γ15 + γ4 + γ12 + γ14, (A.9a)

K2 = γ2 + γ11 + γ14 + γ5 + γ10 + γ15, (A.9b)

K3 = γ1 + γ13 + γ15 − (γ4 + γ12 + γ14), (A.9c)

K4 = γ2 + γ11 + γ14 − (γ5 + γ10 + γ15), (A.9d)

while the α2
i are composed of the summarized viscosity coefficients:

α2
1 = −(ζ1 − 2ζ2)/K1, α2

2 = −(ζ1 − 2ζ2)/K2 (A.10a)

α2
3 = −κ(2μ + ζ1)/(K3(2μ + κ)), α2

4 = κ(2μ − ζ1)/(K4(2μ + κ)). (A.10b)

The expressions for α2
i are adopted from [22], and Eqs. (A.8) correspond to Eqs. (5.3b)-(5.3c) in [22, p. 148].

In the following, these derived equations are used for finding a solution for the gyration tensor as well as
for the velocity field. This section concerns the solution of the above-derived BVP. The derived and partially
decoupled field equations are solved below, starting with the solution for G, which yields the velocity solution
after a simple integration.

A.3 Solution for the micro-motion

In order to solve Eqs. (A.8), the homogeneous problem is considered first, and the inhomogeneous problem is
solved afterwards to obtain a general solution. Finally, the boundary conditions are applied to find the specific
solution.

A.3.1 Homogeneous solution

The different expressions in Eqs. (A.8) are similar to the modified Bessel differential equation

x2 f ′′(x) + x f ′(x) − (x2 + n2) f (x) = 0, (A.11)

which is solved by the modified Bessel functions of the first and second kind. Therefore, the following ansatz
is made:

Grz(r) = C I1(αr) + ĈK1(αr), (A.12a)

Gzr (r) = DI1(βr) + D̂K1(βr). (A.12b)

Here, In(x) and Kn(x) denote the Bessel functions of the first and second kind, respectively. Since Kn(αr) is
not defined for r = 0, and the solution requires to be defined for all r ∈ Ω , Ĉ = D̂ = 0 can be concluded.
In order to solve the homogeneous problem, the ansatz function is substituted in Eq. (A.11) using the linear
coordinate transformation x(r) = αr with

∂

∂r
f (x(r)) = ∂ f (x(r))

∂x

∂x

∂r

⇔ ∂ f (αr)

∂r
= α

∂ f (x)

∂x

⇔ 1

α
f ′(αr) = f ′(x)

and analogously

1

α2 f ′′(αr) = f ′′(x).
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The modified Bessel differential equation can thereby be rewritten as

x2 I ′′
1 (x) + x I ′(x) − (x2 + 1)I1(x) = 0 (A.13a)

⇔ I ′′
1 (x) + x−1 I ′

1(x) − (1 + x−2)I1(x) = 0 (A.13b)

⇔ 1

α2 I
′′
1 (αr) + 1

α2r
I ′
1(αr) −

(
1 + 1

α2r2

)
I1(αr) = 0 (A.13c)

⇔ I ′′
1 (αr) + 1

r
I ′
1(αr) −

(
α2 + 1

r2

)
I1(αr) = 0 (A.13d)

⇔ I ′′
1 (αr) + 1

r
I ′
1(αr) −

(
α2
i + 1

r2

)
I1(αr) = (α2 − α2

i )I1(αr). (A.13e)

The identity from Eq. (A.13e) is used to transfer the system of PDEs into a system of linear equations:

(α2 − α2
1)K1DI1(αr) + (β2 − α2

2)K2C I1(βr) = 0, (A.14a)

(α2 − α2
3)K3DI1(αr) + (β2 − α2

4)K4C I1(βr) = 0. (A.14b)

The power series representation of the Bessel function of the first kind is given by:

In(z) =
( z
2

)n ∞∑
k=0

( z
2

)2k
k!(n + k)!

If this power series is substituted in Eq. (A.14)), according to the identity theorem for polynomials, the PDE
can only be fulfilled for all k ∈ N if the equalities

(α2 − α2
1)K1D

(αr

2

)2k+1 + (β2 − α2
2)K2C

(
βr

2

)2k+1

= 0 (A.15)

(α2 − α2
3)K3D

(αr

2

)2k+1 + (β2 − α2
4)K4C

(
βr

2

)2k+1

= 0 (A.16)

hold true. These two equations can only be fulfilled for all k if α = β. The homogeneous problem can therefore
be expressed as following system of linear equations:

(
K1(α

2 − α2
1)D + K2(α

2 − α2
2)C

)
I1(αr) = 0, (A.17a)(

K3(α
2 − α2

3)D + K4(α
2 − α2

4)C
)
I1(αr) = 0, (A.17b)

⇔
(

(α2 − α2
1)K1 (α2 − α2

2)K2

(α2 − α2
3)K3 (α2 − α2

4)K4

)

︸ ︷︷ ︸
=:A

(
D
C

)
= 0. (A.17c)

Since Eq. (A.17c) is a homogeneous system of linear equations, the rows must depend on each other, which is
fulfilled if the determinant of A vanishes. Otherwise, the solution to the linear equation system would be the
trivial solution, i.e., C = D = 0. Hence, the solution to the homogeneous system of differential equations is
found by adding the two linear independent solutions

Grz(r) = C1 I1(αr) + C2 I1(βr), (A.18a)

Gzr (r) = D1 I1(αr) + D2 I1(βr), (A.18b)

where α and β can be obtained from solving

det(A) = (λ21/2 − α2
1)(λ

2
1/2 − α2

4)K1K4 − (λ21/2 − α2
2)(λ

2
1/2 − α2

3)K2K3
!= 0

Finally, after plugging Eqs. (A.18) into Eq. (A.8a), one obtains the following relations between Ci and Di :

f1 := D1

C1
= − (α2 − α2

2)

(α2 − α2
1)

K2

K1
, f2 := D2

C2
= − (β2 − α2

2)

(β2 − α2
1)

K2

K1
. (A.19)
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A.3.2 Inhomogeneous solution

Since the right-hand side of Eqs. (A.8) also contains an inhomogeneous part, the inhomogeneous problemmust
be solved as well. The solution of the inhomogeneous problem is called particular solution, in the following
denoted by the subscript p, whereas the homogeneous solution is denoted by the subscript h. The final solution
is obtained by adding the homogeneous and particular solutions:

Grz = Grz,h + Grz,p, Gzr = Gzr,h + Gzr,p.

By inspecting this inhomogeneous part of Eqs. (A.8), it can be deduced that linear terms in Grz,p = Ar and
Gzr,p = Br solve the inhomogeneous PDEs, because the second derivatives vanish, while the first derivatives
are eliminated. This leaves the following system of equations to be solved:

−K1α
2
1 Ar − K2α

2
2Br = 0,

−K3α
2
3 Ar − K4α

2
4Br = − κr P

2μ + κ
.

As a consequence of the definitions of α2
i (Eqs. (A.10)), the following equations are obtained to solve the

inhomogeneous BVP:

Grz(r) = C1 I1(αr) + C2 I1(βr) − P

4μ
r, (A.20a)

Gzr (r) = f1C1 I1(αr) + f2C2 I1(βr) + P

4μ
r. (A.20b)

A.3.3 Specific solution

To find the specific solution of the system of PDEs (A.8), one needs to substitute the boundary conditions into
Eqs. (A.20) and solve them for C1,C2. Hence, the equality

Grz(R) + Gzr (R)

2
= λ2

v′(R)

2
,

Grz(R) − Gzr (R)

2
= −λ3

v′(R)

2
(A.21)

must hold. Note that there is a deviation toward [22], where a mix-up regarding both signs within the boundary
conditions seems to have happened. Furthermore, in [22] the right-hand side is missing the factor 1/2, because
it is contained in λ2, λ3. Substituting these relations in Eq. (A.3) yields

v′(R) = RP

2
/

(
μ + κ

2
+ λ2ζ1

2
− λ3κ

2

)
, (A.22)

which corresponds to a Neumann boundary for v and thereby to a Dirichlet boundary for Grz and Gzr . Now
define L:=αR, M := βR and evaluate Eqs. (A.20):

Grz(R) + Gzr (R) = C1 (1 + f1) I1(L)+
+ C2 (1 + f2) I1(M) = λ2v

′(R),

Grz(R) − Gzr (R) = C1 (1 − f1) I1(L)+
+ C2 (1 − f2) I1(M) − PR

2μ
= −λ3v

′(R)

(A.23)

Again, the equations can be transformed into a system of linear equations
(

(1 + f1) (1 + f2)
(1 − f1) (1 − f2)

) (
C1 I1(L)
C2 I1(M)

)
=

(
λ2v

′(R)

−λ3v
′(R) + PR

2μ

)
,

which is solved by inverting the system matrix:
(
C1 I1(L)
C2 I1(M)

)
= 1

2( f1 − f2)

(
(1 − f2) −(1 + f2)

−(1 − f1) (1 + f1)

)(
λ2v

′(R)

−λ3v
′(R) + PR

2μ

)
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This inversion is only possible if f1 �= f2, thus, if K1 �= K2. The constants C1,C2 can therefore be expressed
as

C1 = (1 − f2)λ2v′(R) + (1 + f2)λ3v′(R) − 2(1 + f2)
PR
4μ

2I1(L)( f1 − f2)
, (A.24a)

C2 = ( f1 − 1)λ2v′(R) − (1 + f1)λ3v′(R) + 2(1 + f1)
PR
4μ

2I1(M)( f1 − f2)
. (A.24b)

In order to obtain a dimensionless solution, the constants can also be rewritten in terms of the normalization
velocity v0:= − PR2/(4μ), as suggested in [22]:

C1� := C1R

v0
= ( f2 − 1)μ/aλ2 − (1 + f2)μ/aλ3 + (1 + f2)

I1(L)( f1 − f2)
, (A.25a)

C2� := C2R

v0
= (1 − f1)μ/aλ2 + (1 + f1)λ3μ/a − (1 + f1)

I1(M)( f1 − f2)
, (A.25b)

where the dimensionless wall velocity gradient can be expressed using

Rv′(R)

v0
= −2μ/a, a:=μ + κ

2
+ λ2ζ1

2
− λ3κ

2
. (A.26)

Hence, the normalized microrotation and microshearing are expressed as

R

v0
G(r z)(ρ) = C1�

2
(1 + f1)I1(Lρ) + C2�

2
(1 + f2)I1(Mρ), (A.27a)

R

v0
G[r z](ρ) = ρ + C1�

2
(1 − f1)I1(Lρ) + C2�

2
(1 − f2)I1(Mρ), (A.27b)

where ρ = r/R is the normalized spatial coordinate, whileG(i j) andG[i j] denote the i j-component of sym(G)
and skw(G), respectively. These equations are now substituted in Eq. (A.4) to obtain the solution of the velocity
field.

A.4 Solution for the velocity field

The derived solutions for the micro-motion Grz and Gzr are substituted in Eq. (A.4). This yields the velocity
gradient:

v′(r) = 1

μ + κ/2

[
r P

2

(
1 + κ

2μ

)
− C1

2
I1(αr)

(
ζ1(1 + f1) + κ(1 − f1)

)

−C2

2
I1(βr)

(
ζ1(1 + f2) + κ(1 − f2)

)]
.

(A.28)

This expression can be integrated, which yields the general solution for the velocity field

v(r) = 1

μ + κ/2

[
r2P

4μ

(
μ + κ

2

)
− C1(I0(αr) − 1)

2α

(
ζ1(1 + f1) + κ(1 − f1)

)

− C2(I0(βr) − 1)

2β

(
ζ1(1 + f2) + κ(1 − f2)

)]
+ C4,

(A.29)

whereC4 is a constant of integration. Using the homogeneous Dirichlet boundary condition onΓ1, the constant
C4 is found:

C4 = − R2P

4μ
+ 1

μ + κ/2

[
C1(I0(L) − 1)

2α

(
ζ1(1 + f1) + κ(1 − f1)

)



F. Massing et al.

+ C2(I0(M) − 1)

2β

(
ζ1(1 + f2) + κ(1 − f2)

)]
.

Finally, C4 is substituted in Eq. (A.29), and the velocity field for a micromorphic pipe flow reads

v(ρ)

v0
= 1 − ρ2

+ 1

μ + κ/2

[
C1�(I0(L) − I0(Lρ))

2L

(
ζ1(1 + f1) + κ(1 − f1)

)

+ C2�(I0(M) − I0(Mρ))

2M

(
ζ1(1 + f2) + κ(1 − f2)

)]
.

(A.30)

B Investigation of experimental data from Bugliarello and Sevilla [4]

The experimental data from Bugliarello and Sevilla originates from a pressure-driven flow, and therefore, the
characteristic diagram linking the pressure gradient to the volume flow rate were published in [4]. With the

Fig. 17 Comparison of different micromorphic velocity profiles and experimental data from [4] at R = 20 × 10−6m and with
vm = 1.53 × 10−2ms−1

Fig. 18 Comparison of different micromorphic velocity profiles and experimental data from [4] at R = 35 × 10−6m with
vm = 4.2 × 10−3ms−1
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help of the volumetric velocity vm = Q/(πR2), the volume flow rate can be computed, and the corresponding
pressure gradient can be extracted from said plots. The knowledge of Q and P enables the computation of v0
and with it a proper normalization of the velocity profiles. In order to verify that the experimental data matches
the volumetric velocity, a micromorphic fluid was fitted to the data and vm was computed for different v0, see
Figs. 17 and 18. For both R = 20µm and R = 35µm, the normalization term v0 was chosen such that a) vm
corresponds to the published value (dotted line), b) the error between velocity profile and data is minimal (solid
line), and c) the velocity profilematches the data better and there exists a data point in the characteristic diagram
(dashed line). In the end, the reference velocity v0 was computed using the pressure gradient yielded by the
dashed velocity profiles. This corresponds to the data points at (5.25 × 105kgm−2s−2, 1.17 × 10−2mm3s−1)
and (7 × 104kgm−2s−2, 1.45 × 10−2mm3s−1) for R = 20µm and R = 35µm, respectively. The viscosity
coefficient μ in v0 corresponds to the asymptotic viscosity for large radius taken from [19], because the test
conditions of the two studies were alike: Both [19] and [4] investigated the behavior of RBCs suspended in
ACD at approximately 25 ◦C. It should be noted that due to the inconsistency within the experimental data,
it cannot be assured that this normalization reflects the actual experimental results accurately. However, since
the Fåhræus–Lindqvist effect is satisfactorily reproduced by the micromorphic fluid model, it is also assumed
that the micromorphic fluid exhibits a similar volume flow rate as an actual RBC suspension in pressure-driven
pipe flows at large shear rates.
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