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INTERPRETING THE OUTCOMES OF RESEARCH ASSESSMENTS:

A GEOMETRICAL APPROACH

BENIAMINO CAPPELLETTI-MONTANO, SILVIA COLUMBU, STEFANO MONTALDO,
AND MONICA MUSIO

Abstract. Research evaluations and comparison of the assessments of academic insti-
tutions (scientific areas, departments, universities etc.) are among the major issues in
recent years in higher education systems. One method, followed by some national eval-
uation agencies, is to assess the research quality by the evaluation of a limited number
of publications in a way that each publication is rated among n classes. This method
produces, for each institution, a distribution of the publications in the n classes. In this
paper we introduce a natural geometric way to compare these assessments by introducing
an ad hoc distance from the performance of an institution to the best possible achievable
assessment. Moreover, to avoid the methodological error of comparing non-homogeneous
institutions, we introduce a geometric score based on such a distance. The latter repre-
sents the probability that an ideal institution, with the same configuration as the one
under evaluation, performs worst. We apply our method, based on the geometric score,
to rank, in two specific scientific areas, the Italian universities using the results of the
evaluation exercise VQR 2011-2014.

1. Introduction

Assessing the quality and/or impact of research of a given institution (university or
research center) and assessing the corresponding improvement over time is one of the
most difficult tasks in modern quality assurance systems. On the other hand, the growing
development of university rankings shows that research performance is perceived to be
related to the reputation of universities and, in some countries, the allocation of funds in
the higher education system is linked to the research performance of institutions.
Several methods for assessing research performances of universities have been adopted.

The most controversial is the use of bibliometric indicators, such as the number of publica-
tions, total citations and/or journals impact factor. In this regard, it should be mentioned
that various scientific associations have signed the so-called DORA declaration [5], which
states the contrariety to the automatic use of bibliometrics in order to allocate funding
for research and /or evaluate the careers of individual researchers.
Another one, much more expensive, is the method followed by some national evaluation

agencies, which assess the quality of a limited number of publications for each university,
using peer-review, informed peer-review, bibliometrics methods or both, according to the
scientific area. The final aim of these methods is to rate each publication among n classes
of quality (usually, n is taken to be 4 or 5). For instance, in the last call of UK Research
Excellence Framework (REF 2021) and Italian Quality Research Evaluation (VQR 2015-
2019) are suggested, respectively, 4 (1*, 2*, 3*, 4*, apart of unclassified) and 5 (A -
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excellent and extremely relevant, B - excellent, C - standard, D - sufficiently relevant, E
- poor or not acceptable) classes.
There is a lively debate on the procedures, criteria and methods used in these exercises

(see for instance [1], [4], [6], [7], [11], [12]). However, in this paper we do not want to go into
the substance of the methodology and effectiveness of such evaluation exercises. Our aim
is to consider the more subtle question of how researchers, policy makers, citizens could /
should interpret the output data. Namely, any university and any department receive an
evaluation in terms of the percentage of the submitted publications evaluated in each of
the classes stated in the call. Here there are two main issues. First, the assessment, given
in this way, appears to be absolute and there is the dangerous temptation to compare
directly the performances of two universities and/or departments whose composition could
be very different from each other. For instance, since the number of required publications
is the same for any scientific area, it is likely that a Department of Physics will obtain,
on average, better evaluations than, for instance, a Department of Law, just because of
the very high average number of articles per researcher in Physics. Second, even assuming
to compare two homogeneous aggregations (for instance the Departments of Physics of
two universities, or the same Department of Physics along two or more editions of the
evaluation exercise), it could not be a trivial task to understand if one assessment is better
or not than the other. Of course, if the two assessments compared are those represented
in the following table

Institution A B C D E
Department 1 100% 0% 0% 0% 0%
Department 2 0% 100% 0% 0% 0%

then it is easy to say that the assessment of Department 1 is better than that one of
Department 2. But if the two assessments are, for instance, the following ones

Institution A B C D E
Department 1 20% 20% 20% 20% 20%
Department 2 15% 25% 21% 21% 18%

then it is not straightforward to decide which department got the best evaluation. A fur-
ther complication is the usual presence of departments composed by different scientific
areas, which could lead the political decision-maker to misleading analyses of the output
data arising from the evaluation exercise: taking inspiration from some real cases in Italian
universities, how to compare the performances of a “Department of Mathematics, Com-
puter Science and Economics” and a “Department of Mathematics and Geosciences”?
And how to compare the performances of all departments in the same university?
In this paper we try to address all these questions. Of course there is not just one

answer, since several methods for interpreting data can be defined. However, we show
that the above are essentially geometric questions and that there is a natural geometric
way to treat this topic.
Our first observation is that the outcomes in an evaluation exercise (for instance the

data in the above tables) can be geometrically represented as points of the standard
simplex ∆n, where n+1 is the number of attributes involved in the call. Then the overall
assessment of a department can be “measured” as the “distance” between the point P0

in ∆n, representing the evaluation of the department, and the vertex P1 = (1, 0, . . . , 0) of
the simplex, which corresponds to the best possible assessment. We define such distance
δ(P0) as the length of a natural path joining P0 to P1, corresponding to improving the
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assessment of the department in the slowest smooth possible way (see Section 3 for details).
By the application of the beautiful geometric properties of the simplex, we find an iterative
method to determine this path, obtaining a general formula for δ(P0).
This procedure permits to associate a real number to any assessment expressed by

ordinal variables. However, δ can not be used directly for comparing different departments,
unless they are reasonably homogeneous. At least they should have the same size and the
same internal structure in terms of research areas. In fact, random variations are larger for
small samples, so that evaluation results tend to be “funnel-shaped”: for mega-universities
it is difficult to deviate much from the average (narrow part of the funnel) while among
the small ones (large part) it is frequent to see exceptional results, both for positive
and negative performances. Furthermore, each scientific area has its own peculiarities,
citational trends and editorial practices, making meaningless to compare any two different
scientific areas. Depending on the availability of data and on the aims of the evaluation,
one can consider other possible homogeneity criteria, such as teaching duties of professors,
salary, age, gender, and so on. Let C denote the set of all the homogeneity criteria chosen.
We can consider the set of all (ideal) departments, whose members are randomly selected
from all the universities participating to the call, so that they have the same size as a given
Department D and satisfy the same homogeneity criteria C when compared to D. Then
we can define the geometric score of D as the proportion SC(D) of such ideal departments
D′ for which δ(D′) > δ(D). In other words, SC(D) represents the probability that an ideal
department D′, with the same configuration as D (hence comparable with D), performs
worst than D. As we shall show in the article, it has also a nice geometric interpretation.
In this way one compares any department - and, more in general, any “aggregate”,

including a whole university itself - with its similars only (in fact with all their possible
similars). This procedure avoids the methodological error, very frequent in several research
assessment exercises as well as in many university rankings, of comparing universities,
departments and scientific areas which, in principle, cannot be compared directly.
One issue related to the geometric score is its computability. Even in the case of a small

department, the cardinality of the set of all ideal departments is a very large number,
and the exact calculation of the geometric score is not practicable. However, we can
approximate the geometric score using Monte Carlo techniques that guarantee the almost
sure convergence of the estimate to the geometric score. In the last part of the paper
we use a simple algorithm for the calculation of the geometric score for some aggregates
of the Italian VQR 2011-2014. Namely we deal with the areas of “Mathematics” and of
“Statistics and Mathematical Methods for Decisions”, which are composed, respectively,
of more than 2000 and 1000 professors in Italy. We show an easily implementable way to
compute good approximations of the geometric score, and, interestingly, we find that the
geometric score ranking is very different from the official ANVUR ranking which is still
in use to allocate conspicuous public fundings to Italian universities.

2. Preliminary notions: the geometry of the n-simplex

Let P1, . . . , Pn+1 ∈ R
n+1 be n+1 points of Rn+1 which are affinely independent, i.e. the

vectors P2 − P1, . . . , Pn+1 − P1 are linearly independent. Then, the n-simplex determined
by P1, . . . , Pn+1 is the subset of Rn+1 given by

∆P1,...,Pn+1 :=

{

x1P1 + · · ·+ xn+1Pn+1 : xi > 0 for all i = 1, . . . , n+ 1 and

n+1
∑

i=1

xi = 1

}

.
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The convex hull of any non-empty subset of cardinality m + 1 of {P1, . . . , Pn+1} is, in
turn, a simplex, called m-face. In particular 0-faces, i.e. the defining points P1, . . . , Pn+1

of the simplex, are called the vertices, 1-faces are called the edges, and n-faces are called
the facets.
If one takes the points P1 = (1, 0, . . . , 0), P2 = (0, 1, . . . , 0), . . . , Pn+1 = (0, 0, . . . , 1) of

the canonical basis of Rn+1, the corresponding simplex

∆n := ∆P1,...,Pn+1

=

{

(x1, x2, . . . , xn+1) ∈ R
n+1 : xi > 0 for all i = 1, . . . , n+ 1 and

n+1
∑

i=1

xi = 1

}

is called the standard n-simplex and is denoted by ∆n. Any n-simplex ∆P1,...,Pn+1 can be
canonically identified with the standard n-simplex through the bijective mapping

(x1, . . . , xn+1) ∈ ∆n 7→
n+1
∑

i=1

xiPi ∈ ∆P1,...,Pn+1.

Thus, from now on we shall deal only with the standard n-simplex. Notice that ∆0 is
just the point 1 ∈ R, ∆1 the line segment in R

2 joining (1, 0) to (0, 1), ∆2 the equilateral
triangle in R

3 whose vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1), and ∆3 the regular tetrahedron
in R

4 with vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).
We point out that ∆n is bijective to the set of ordered (n+ 1)-tuples

∆∗
n :=

{

(s1, . . . , sn, sn+1) ∈ R
n+1 : 0 6 s1 6 · · · 6 sn 6 sn+1 = 1

}

.

Indeed, the map

ϕ : ∆n −→ ∆∗
n(1)

(x1, . . . , xn+1) 7→ (x1, x1 + x2, . . . , x1 + x2 + · · ·+ xn, x1 + x2 + · · ·+ xn+1 = 1)

is clearly injective and surjective. The facets of ∆n, which are given by the equation xi = 0,
under this bijection correspond to successive coordinates being equal, si = si−1.

3. A natural path toward the best assessment

Let us consider a typical evaluation research call, where each institution is due to submit
a certain number of publications depending on its size. Let us fix a hypothetical university
department which has to submit N products. According to the call’s rules at the end of the
evaluation each product is assigned to a class of a predefined ordinal qualitative variable,
with n+1 attributes, ranging between the possible best assessment (usually “excellent”)
and the worst one (usually “poor”).
Let xi be the relative frequency of the number of publications assigned to the ith class.

Since, for each i ∈ {1, . . . , n + 1}, xi > 0 and
∑n+1

i=1 xi = 1, the global assessment of
the department can be naturally identified with a point (x1, . . . , xn+1) in the standard
n−dimensional simplex ∆n. Notice that the best evaluation that the department can
achieve is represented in the simplex by the point P1 = (1, 0, . . . , 0), corresponding to
the ideal situation in which all the submitted publications are assessed in the best class.
The remaining points in ∆n represent intermediate assessments, starting from P1 until
the worst evaluation represented by Pn+1. Thus, while, from a geometrical point of view,
the simplex is a highly symmetric object, in our context the order of the vertices is very
important.
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Suppose that the final evaluation of the department is represented by the point P0 =
(x0

1, . . . , x
0
n+1). Then in this geometrical framework it is natural to try to measure how

“far” is the point P0 in the simplex from the vertex P1 corresponding to the best possible
assessment (see Figure 1).

P0

P2

P3 P4

P1

Figure 1. The final evaluation of the department is represented by the
point P0 = (x0

1, . . . , x
0
n+1) of the simplex. In the figure the case n = 3.

Being the simplex a subset of the Euclidean space R
n+1, in principle a natural choice

would be to use the Euclidean distance. However in this way it could happen that de-
partments with very different evaluations have the same distance from P1 (for instance
two distinct vertices Pi and Pj have the same Euclidean distance from P1). Thus, since
we are dealing with ordinal categorical variables, the way in which such measurement is
done should take into account the ordering of the vertices of the simplex. Any possible
choice of such a “distance” between P0 and P1 should be defined in such a way to respect
the order described above. Our idea is to construct a path from the point P0 to P1 so that
the evaluation changes continuously through this path as slow as possible.
For exposition purposes we begin with the description of the 1-dimensional case, in

which only two categories are considered (the best and the worst assessments). Here the
simplex degenerates into the line segment from the point P1 = (1, 0) to P2 = (0, 1). We
express by a positive real number a the “effort” for going from the worst evaluation P2

to the best evaluation P1. From a mathematical point of view we are declaring that the
length of the vector P2 − P1 is a. Then, given a point P0 = (x0

1, x
0
2) = (x0

1, 1− x0
1) in such

segment, a measurement δ(P0) of the distance of P0 from the best possible outcome P1 is
just given by the length of the segment from P0 to P1, that is (see Figure 2 (a))

(2) δ(P0) = a(1− x0
1).

In the previous formula the choice a =
√
2 gives the standard Euclidean distance, while

for a = 1 (2) simplifies to δ(P0) = 1− x0
1.

Let us consider now the 2-dimensional case, represented in Figure 2 (b), corresponding
to the case in which each publication can be evaluated in 3 possible ways: the “best”,
the “intermediate” and the “worst” ones. Unlike the 1-dimensional case, here there is
no natural order relation which can be used for giving an immediate measurement of
how far δ(P0) is from the best possible evaluation P1. We proceed in the following way.
As before, let us express by two positive real numbers a and b the “effort” for going
from P2 to P1 and from P3 to P2, respectively. If O denotes the origin in R

3, the vectors
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v1 := P1 − O = (1, 0, 0), v2 := P2 − P1 = (−1, 1, 0) and v3 := P3 − P2 = (0,−1, 1) are
linearly independent and thus they form a basis of R3. Let us consider the scalar product
g on R

3, represented by the matrix

MB(g) =





1 0 0
0 a2 0
0 0 b2





with respect to the basis B = {v1,v2,v3}. This scalar product induces a distance function
dg on R

3 in the usual way

dg(P,Q) = ‖P −Q‖g =
√

g (P −Q,P −Q).

The restriction of dg to ∆2 provides the simplex with a distance, that will be still denoted
by dg. Let P ′

0 be the intersection of the edge ℓ12 of the simplex through the points P1

and P2 with the line ℓ through P0 = (x0
1, x

0
2, x

0
3) with direction v3 (see Figure 2). If

we restrict our attention to the line ℓ, we recover the natural order relation in the 1-
dimensional case previously considered. More precisely, as one moves from P0 to P ′

0 along
ℓ, the corresponding outcome is “improving” in a natural way, as if we were continuously
transferring part of publications that received the worst evaluation to the intermediate
class. Once arrived at P ′

0, we recover again the natural order provided by the geometry of
the line ℓ12 connecting P1 to P2. Here, moving from P ′

0 to P1 corresponds to an increase of
the frequency of publications in the best class and a consequent decrease of the frequency
in the intermediate class. In this way we are able to find a “natural” path connecting P0

to P1 (the red path in Figure 2). Thus we can measure the “distance” δ(P0) from P0 to
P1 by the length of this path:

δ(P0) = dg(P0, P
′
0) + dg(P

′
0, P1).

P2 = (0, 1)

P1 = (1, 0)

P0 = (x0
1, x

0
2)

(a)

P2 P3

P1

P0P
′

0

ℓ12

ℓ

(b)

Figure 2. Picture (a) represents the 1-dimensional case: the length of the
red segment is δ(P0). Picture (b) represents the 2-dimensional case: here
δ(P0) is the sum of the length of the two red segments
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Since the line ℓ can be represented by the parametric equations










x1 = x0
1

x2 = x0
2 − t

x3 = x0
3 − t

and the line ℓ12 has Cartesian equations
{

x1 + x2 = 1

x3 = 0

the point P ′
0 has coordinate (x0

1, 1− x0
1, 0) and so we find

δ(P0) = ‖P ′
0 − P0‖g + ‖P1 − P ′

0‖g
=

∥

∥−x0
3v3

∥

∥

g
+
∥

∥−(1− x0
1)v2

∥

∥

g

= x0
3

√

g(v3,v3) + (1− x0
1)
√

g(v2,v2)

= (1− x0
1 − x0

2)b+ (1− x0
1)a

= (a+ b)− (a+ b)x0
1 − bx0

2.

If the evaluation call contemplates four different assessment classes, our model is en-
coded by the geometry of the 3-dimensional simplex ∆3. Let P0 = (x0

1, x
0
2, x

0
3, x

0
4) ∈ ∆3

be the evaluation of the department. Then, generalising the above constructions, we are
going to define a natural path joining P0 to the best possible evaluation P1. Here the
“naturality” of such a path means that: (i) for any i, j ∈ {2, 3, 4} such that i > j the path
from Pi to P1 should be longer than the path from Pj to P1; (ii) this property should be
satisfied also by the vertices of any 2-dimensional simplex given by the intersection of ∆3

with a plane whose direction is spanned by P3−P2 and P4−P2. Let a, b, c denote positive
real numbers expressing the “effort” for going from P2 to P1, from P3 to P2, and from P4

to P3, respectively. As in the previous case the vectors v1 := P1 −O and vi := Pi+1 − Pi,
i = 1, 2, 3, form a basis B of R4 and we consider the scalar product g on R

4, represented
by the matrix

MB(g) =









1 0 0 0
0 a2 0 0
0 0 b2 0
0 0 0 c2









.

This scalar product induces a distance function dg on R
4 and ∆3 becomes a metric space

with distance the restriction of dg to ∆3. Let π denote the plane through P0 and parallel
to the plane containing the points P2, P3, P4 (i.e. all the vertices of the simplex except the
one corresponding to the best evaluation). Notice that π has parametric equations



















x1 = x0
1

x2 = x0
2 − t− s

x3 = x0
3 + t

x4 = x0
4 + s

The intersection of π with the simplex ∆3 is a 2-dimensional simplex, the equilateral tri-
angle with vertices P ′

1, P
′
2, P

′
3. From the triangle obtained we can recover the 2-dimensional

construction. The path from P0 to P1 is now determined by the union of 3 segments (see
Figure 3). Since the line ℓij joining Pi with Pj, i, j ∈ {1, 2, 3}, has equations
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P
′

2

P
′

3

P
′

1

P0

P
′

0

P2

P3 P4

P1

ℓ12

ℓ14
ℓ13

Figure 3. Representation of the 3-dimensional case: here δ(P0) is the sum
of the length of the three red segments

{

xi + xj = 1

xk = 0 for any k /∈ {i, j}
we find that the coordinates of the vertices of the 2-dimensional simplex are P ′

1 = (x0
1, 1−

x0
1, 0, 0), P

′
2 = (x0

1, 0, 1− x0
1, 0), P

′
3 = (x0

1, 0, 0, 1− x0
1). In order to find the coordinates of

P ′
0, let ℓ

′
12 and ℓ denote, respectively, the line joining P ′

1 with P ′
2 and the line through P0

with direction P ′
3 − P ′

2. Such two coplanar lines have equations

ℓ′12 :











x1 = x0
1

x2 + x3 = 1− x0
1

x4 = 0

ℓ :



















x1 = x0
1

x2 = x0
2

x3 = x0
3 − (1− x0

1)t

x4 = x0
4 + (1− x0

1)t

Thus P ′
0 = ℓ′12 ∩ ℓ = (x0

1, x
0
2, 1− x0

1 − x0
2, 0). Hence

δ(P0) = dg(P0, P
′
0) + dg(P

′
0, P

′
1) + dg(P

′
1, P1)

= ‖P ′
0 − P0‖g + ‖P ′

1 − P ′
0‖g + ‖P1 − P ′

1‖g
=

∥

∥−x0
4v4

∥

∥

g
+
∥

∥−(1− x0
1 − x0

2)v3

∥

∥

g
+
∥

∥−(1− x0
1)v2

∥

∥

g

= x0
4

√

g(v4,v4) + (1− x0
1 − x0

2)
√

g(v3,v3) + (1− x0
1)
√

g(v2,v2)

= (1− x0
1 − x0

2 − x0
3)c+ (1− x0

1 − x0
2)b+ (1− x0

1)a

= (a + b+ c)− (a+ b+ c)x0
1 − (b+ c)x0

2 − cx0
3 .

In the general case, when one has n + 1 categories, iterating the above constructions,
the defined path joining P0 = (x0

1, . . . , x
0
n+1) with P1 can be obtained as the union of n

line segments, each of which lying in an (n− 1)-dimensional simplex. Thus we we finally
obtain the following formula

(3) δ(P0) = a1+· · ·+an−(a1+· · ·+an)x
0
1−(a2+· · ·+an)x

0
2−· · ·−(an−1+an)x

0
n−1−anx

0
n

where, for each i ∈ {1, . . . , n}, ai is a positive real number expressing the “effort” for
going from the vertex Pi+1 to Pi.
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A rigorous proof of (3) can be done by induction and it is reported in the Appendix.

Remark 1. The constants ai in (3), i.e. the quantification of the effort for going from
a category to that one immediately higher, should be explicated in the call. The most
frequent situation is when all such efforts are considered equivalent, so that the constants
can be taken all equal to 1. In this case (3) simplifies to

(4) δ(P0) = n− nx0
1 − (n− 1)x0

2 − · · · − 2x0
n−1 − x0

n.

In this particular case, δ(P0) can be expressed also in terms of the Minkowski distance
dM , often applied in measuring dissimilarity of ordinal data - some recent application in
this direction can be found in [13] and [14]. In this regard, using the bijection (1), we have

δ(P0) = n− nx0
1 − (n− 1)x0

2 − · · · − 2x0
n−1 − x0

n

= (1− x0
1) + (1− x0

1 − x0
2) + · · ·+ (1− x0

1 − x0
2 − · · · − x0

n)

= |x0
1 − 1|+ |x0

1 + x0
2 − 1|+ · · ·+ |x0

1 + x0
2 + · · ·+ x0

n − 1|
= dM((x0

1, x
0
1 + x0

2, . . . , x
0
1 + x0

2 + · · ·+ x0
n, 1), (1, 1, . . . , 1, 1))

= dM(ϕ(x0
1, x

0
2, . . . , x

0
n, x

0
n+1), ϕ(1, 0, . . . , 0, 0))

= dM(ϕ(P0), ϕ(P1)) .

However, there could be - and actually there were - situations when the assumption
a1 = · · · an = 1 can not be necessarily taken. One example is the VQR 2011-14 which will
be discussed in Section 5.

4. Geometric score function

Starting from δ(P0), see equation (3), we can naturally define a map

d : ∆n ×∆n −→ R

such that for any P0, Q0 ∈ ∆n

d(P0, Q0) :=| δ(P0)− δ(Q0) | .
In other words, we are comparing the evaluations P0 and Q0 of two departments, mea-
suring how “far” is each one from P1. Note that d is clearly non-negative and symmetric.
Moreover, it satisfies the triangular inequality, since

d(P, P ′′) =| δ(P )− δ(P ′′) |
=| δ(P )− δ(P ′) + δ(P ′)− δ(P ′′) |
6| δ(P )− δ(P ′) | + | δ(P ′)− δ(P ′′) |
= d(P, P ′) + d(P ′, P ′′).

Note that d is a pseudo-distance, since it does not satisfies the identity of indiscernibles

condition. In fact d(P, P ′) = 0 does not necessarily imply that P = P ′. For instance,
in the 2-dimensional case, the points P = (1

4
, 3
4
, 0) and P ′ = (1

2
, 1
4
, 1
4
) are such that

δ(P ) = δ(P ′) = 3
√
2

4
, so that d(P, P ′) = 0.

In the applications, in order to compare the assessments of different departments or
other aggregates, it is important to consider the locus of points of the simplex ∆n that
are at distance 0 from each other. Geometrically, in view of (3), such a set can be described
by the sheaf of parallel hyperplanes of equation

(5) (a1 + · · ·+ an)x
0
1 + (a2 + · · ·+ an)x

0
2 + · · ·+ (an−1 + an)x

0
n−1 + anx

0
n = const.
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This allows us to divide the aggregates under study in equivalent classes, corresponding
to such loci. More formally, one can consider the relation ∼ on ∆n that identifies any two
points P and P ′ such that d(P, P ′) = 0. It can be easily proved that ∼ is an equivalence
relation and then d turns out to be a distance on the quotient set ∆n/ ∼. Thus ∆n can
be partitioned into equivalence classes, which correspond to the points of the simplex
belonging to each hypeplane (5) (see Figure 4 (a)).

We introduce a score function for the evaluation of an aggregate A (a department, a
scientific area, etc.) in the following way: the assessment of A can be realized as a point
PA of ∆n, to which we can associate the number δ(PA). This is, of course, an “absolute”
index, in the sense that it can be used for comparing evaluations among homogenous
aggregates. For instance, it can be used to assign research fundings or to compare the
quality of research of different candidates in a competition within the same scientific
discipline. More in general, its usage can go beyond the context of this paper, i.e. research
evaluation, since in principle it can be used whenever one deals with a situation where
there are ordinal assessments.
However, the above index can not in principle be appropriate to compare two inhomo-

geneous situations, and in particular the evaluations of departments, which are usually
composed of researchers working in different scientific areas. In order to overcome this
problem, we propose the following general approach. Let us fix an aggregate A within a
certain research evaluation call. We denote by I(A, C) the set of all “ideal” aggregates
whose size and configuration (with respect to some prefixed criteria C) are the same of A,
and whose members are randomly selected from the set of all researchers that satisfy C,
working in any other university partecipating to the same assessment call. To any element
of I(A, C) it can be associated a point in the simplex. Then we define the geometric score

of A as

(6) SC(A) =
|I−(A, C)|
|I(A, C)|

where |I(A, C)| denotes the cardinality of the set I(A, C) and |I−(A, C)| denotes the
number of ideal aggregates in I(A, C) that are represented geometrically as the points of
the simplex which are lying below the hyperplane (5) determined by A (see Figure 4 (b)).

P2 P3

P1

(a)

P2 P3

P1

(b)

Figure 4. In Picture (a) a line of the pencil represents points with the
same score function. In Picture (b) a geometric interpretation of SC(A)
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SC(A) represents the probability that an “ideal” aggregate A′, with the same configuration
as A (hence comparable with A), performs worse than A.
The choice of the conditions C depends on the availability of the data and should be

aimed to make the evaluation as homogeneous as possibile. For instance, C may consist in
the requirements that an ideal element of I(A, C) must be composed of the same number
as A of researchers belonging to a given scientific area, and/or by the same number as
A of full / associate / assistant professors and/or the same proportion as A of male and
female researchers. Other examples for C may involve further information on researchers
working in A, like teaching duties, salary, age, as well as description of the social and
economic context where A operates. In principle, the more the possible choices for C are
various and precise, the more the evaluation is accurate and non-misleading. However,
even in the extreme case when C = ∅ the geometric score (6) is still informative, since it
avoids comparisons between aggregates of different size.
From the definition (6) and the above considerations, it is clear that the geometric

score of A strongly depends on C. This reflects mathematically the fact that there does
not exist “the” evaluation of A, but in fact there are many possible evaluations, each of
them depending on the contextual aspects and on the possible refinements that the user
(the policy maker, the academician, the future student, the citizen, etc.) is interested to.
Operatively, the institution responsible of the evaluation (in most cases the national

evaluation agency) should make available a wide range of information regarding the re-
searchers involved in the evaluation as well as the universities where they work. The
utopia could consist in having access to a web-site where the user, according to his/her
objectives, may select the most appropriate information that form the criteria C, and
consequently compute the corresponding geometric score.

5. A case study: Italian research assessment VQR 2011-14

As an application, we consider the outcomes of the Italian Research Assessment VQR
2011-2014 within two scientific areas, the area of Mathematics and the area of Statistics
and Mathematical Methods for Decisions (coded, respectively, 01/A and 13/D according
to the Italian scientific disciplines codification). These two areas are made of a number of
smaller aggregates known in the Italian system as Disciplinary Scientific Sectors (SSDs),
as described in Table 1 and Table 2.

Table 1. Composition of the area 01/A - Mathematics according to Italian
Higher Education legislation

SSD Code Description

MAT/01 Mathematical logic
MAT/02 Algebra
MAT/03 Geometry
MAT/04 Mathematics education and history of mathematics
MAT/05 Mathematical analysis
MAT/06 Probability and mathematical statistics
MAT/07 Mathematical physics
MAT/08 Numerical analysis
MAT/09 Operational research

The choice of these two areas is due to the different criteria adopted by the respective
committees for the evaluation of the publications.
We recall that in the 2011-2014 VQR edition each researcher was expected to submit

a given number of products (in most cases 2). The submitted scientific products were
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Table 2. Composition of the area 13/D - Statistics and Mathematical
Methods for Decisions according to Italian Higher Education legislation

SSD Code Description

SECS-S/01 Statistics
SECS-S/02 Statistics for experimental and technological research
SECS-S/03 Economic statistics
SECS-S/04 Demography
SECS-S/05 Social statistics
SECS-S/06 Mathematical methods for economics, actuarial and financial sciences

classified by a committee in one among the following classes, each one associated to a
score: Excellent - A (score: 1), Good - B (score: 0.7), Fair - C (score: 0.4), Acceptable -
D (score: 0.1), Limited or not assessable - E (score: 0).
Then to each university a so-called “normalized average score”, denoted by R, was

associated and was used by ANVUR to draw up a ranking. We recall that the R score was
computed as the ratio between the average score of the researchers of a given university in
a given area / SSD and the average score of all the Italian researchers in that area / SSD
(see [3]). A R score greater than 1 indicates that, in a given area / SSD, the university
under consideration performs better than the average of the all Italian universities. The
final ranking, for all scientific areas, is available on the ANVUR’s web-site ([3]).
Notice that the value of R for each university, and hence the corresponding ANVUR

ranking, is strongly linked to the score associated to each class, which even when reason-
able, it is still arbitrary. Moreover, R depends on the internal composition of the aggregate
inside each university, which can considerably differ among universities. For instance, as
for the 13/D area, the percentage repartition in the 6 SSDs described in Table 2 is 40, 4,
13, 7, 4, 33 for Roma “La Sapienza”, while it is 53, 0, 0, 0, 0, 47 for the Milano Politecnico.
Last, R is sensible to the size of the aggregate. This can generate some bias due to the
so-called “funnel effect” ([10]).

We have done a parallel ranking using our geometric score.
In order to apply the methods discussed in the previous sections, we need to understand

how to choose, in this circumstance, the constants ai of formula (3). Such positive numbers
should correspond to the effort for moving from one category to the upper one, and should
be known by the evaluating committee / referees. Unfortunately in this case there is not a
univocal answer. A first option is to take into account the description of each class in the
VQR call1, which we have summarised in Table 3. Indeed the call states that a publication
should be considered excellent if, ideally, it falls in the highest 10% of the distribution of
the international scientific research production of the Area in the period 2011-2014, good
if it is in the 10-30% segment, fair if it is in the 30-50% segment, acceptable if it is in the
50-80% segment, limited or not assessable if it is in the 80-100% segment. Then a possible
choice for ai could be to consider the effort for an upgrade to the higher class, measured
as the distance between the lowest limit of each segment and the lowest limit of the next
upper category. Namely, if we put a4 = 1, since the length of the interval corresponding
to the class D is 1.5-times longer than the ones of the classes B and C, one should have
a1 = a2 = a4 = 1 and a3 = 1.5.
On the other hand, one can argue that a referee is aware of the scores assigned by

ANVUR to each publication falling in a certain class and used for computing the R

1https://www.anvur.it/attivita/vqr/vqr-2011-2014/riferimenti-normativi-e-regolamentari/

https://www.anvur.it/attivita/vqr/vqr-2011-2014/riferimenti-normativi-e-regolamentari/
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Table 3. Description of each category in the VQR 2011-14 call and scores
assigned by ANVUR to each class

Category Percentile in the distribution of worldwide publications in the area ANVUR scores

A (Excellent) 90–100 1
B (Good) 70–90 0.7
C (Fair) 50–70 0.4
D (Aceptable) 20–50 0.1
E (Limited or not assessable) 0–20 0

score. Thus another way for determining ai is to consider the difference between any two
consecutive of such scores, obtaining a1 = a2 = a3 = 3, a4 = 1.
Finally, according to the codification and qualitative description used by ANVUR for

the assessment of the scientific products, the referee may perceive the classes as “equidis-
tant”. In this case we can assume ai = 1 for each i ∈ {1, . . . , 4}.
It is then interesting to test our geometric score in all these three situations and to com-

pare the results with the official ANVUR outcomes. We fix as C the property “each ideal
aggregate should have the same composition, with respect to each SSD, as the university
under consideration” . Since for privacy reasons we can not associate the assessment of a
research product to its author, we can not proceed by sampling directly from the set of all
researchers in the area under consideration. Then, starting from the internal composition
of the areas 01/A and 13/D, for a given university U we have simulated an ideal aggregate
with the same number of expected products in each SSD as U and we have computed the
corresponding score function. In principle one should compute the score function δ for
all possible ideal aggregates that one can construct. However, the number of such ideal
aggregates can be quite huge. For instance, for the 01/A Area of Roma “La Sapienza”
(the biggest Italian university), this number is 43.65× 10401.
To avoid to consider the enormous number of all possible combinations, we calculate

the geometric score for each university in the two scientific areas by means of Monte Carlo
simulations.
The algorithm used follows a simple scheme. Once fixed the university U , we denote

with mi the number of product of the SSDs MAT/0i, i = 1, . . . , 9 (or alternatively, for
the 13/D Area, SECS-S/0i, i = 1, . . . , 6).
We start with simulating mi products for the SSD MAT/0i belonging to one of the 5

categories (from A to E) as a sample from a multivariate hypergeometric distribution with
parameters mij , j = 1, . . . , 5, the number of publications of Italian researchers in the SSD
MAT/0i belonging to the category j (see Tables 6–6). We then obtain the configuration of
an “ideal aggregate” for which we can compute the value of δ. We repeat such procedure N
times and we obtain N values of the indexes δl, l = 1, . . . , N . We then compare all values
obtained with that of the university U . This allows us to calculate the proportions of ideal
aggregates performing worse than U . Since for each l the random variable I{δl>δ(U)} (IA
being the indicator function of the set A) follows a Bernoulli distribution with probability
of success equal to SC(U), by the strong law of large numbers we can then approximate

the value of our geometric score with
∑N

l=1 I{δl>δ(U)}

N
. Then we can determine N imposing

that P
(∑N

l=1 I{δl>δ(U)}

N
− SC(U) > 0.005

)

is very small (for instance of the order of 10−5).

Using the Hoeffding’s inequality ([8]) we have

P
(

∑N

l=1 I{δl>δ(U)}
N

− SC(U) > 0.005
)

6 e−2N ·0.0052 .
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For N = 200000, that we fix as the number of simulations in all cases considered, we have
e−2N ·0.0052 = 4.539993 · 10−5.
We repeat such procedure for all universities in the area 01/A and then in the area

13/D.
The rankings obtained for the areas of Mathematics (01/A) and Statistics and Mathe-

matical Methods for Decisions (13/D) are reported in Table 4 and in Table 5, respectively.
We have reported the official results of VQR 2011-2014 evaluation and compared it with
the results arising by the application of the new method proposed considering the calcu-
lation of δ with the aforementioned three ways of choices of the constant ai.
From the tables we can see how the rankings obtained with our score are quite different

to that obtained from the R score used by ANVUR for the VQR assessment. In order
to verify the magnitude of the differences obtained, we applied a Kruskal-Wallis non-
parametric test to globally compare the four rankings. It emerged that the rankings were
statistically different (p-value = 4.627 · 10−13 for the area of Mathematics, and p-value
= 1.377·10−9 for the area of Statistics and Mathematical Methods for Decision). A pairwise
comparison, through a post-hoc statistical test based on Wilcoxon statistic, confirmed
that there is a difference between the ranking based on R score and each of the rankings
determined through SC (p-values were of order 10−10 when considering the scientific area
01/A and of order 10−7 for the area 13/D). On the other hand there are no relevant
differences when comparing between them the rankings obtained from the three versions
of SC (p-values above 0.94 in both scientific areas).

6. Conclusions and remarks

As shown in Section 5, the results obtained applying the procedures developed in the
present paper can be very different from the ranking obtained by ANVUR and used for
funding Italian universities. The more one area is heterogeneous, either with respect to
the numerousness either relatively to the specific research domains, the more the ANVUR
R score becomes rough and the corresponding results differ from ours. For instance, we
observe for the area of Mathematics (see Table 4) that the University of Pisa Normale
loses three positions if evaluated according to geometric score instead of considering the
ANVUR R score. For the University of Bergamo and for Milano Politecnico, the loss is
more evident with the first one losing on average 6 positions and the second losing on
average 8 positions, with a small variability depending on the ai constants chosen. On
the other hand there are universities for which there is an evident improvement in the
ranking, in some cases of even 10 positions, if the geometric score is used.
Similar considerations can be also done for the area of Statistics and Mathematical

Methods for Decisions (see Table 5).
In fact, as pointed out in Section 5 one can not in principle compare two aggregates of

different size without risking having a funnel effect. In order to overcome this issue, in some
areas ANVUR divided universities in three classes according to the number of researchers
of each aggregate (big, medium and small) and, for such areas, only the ranking within
these three dimensional classes was given (but in any case the computation of the R score,
used for funding allocations, was made regardless the dimensional class to which each
university was belonging). However, while this remedy could mitigate some perverse effect,
it can not prevent the appareance of funnel effects in each dimensional class. Moreover,
in this way the analysis is inevitably less informative, since each aggregate is compared
with a fewer number of other aggregates. We stress that to calculate the geometric score
there is no need to make distinctions on the base of universities’ dimensions as, according
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(A) (B) (C)

University R Rank SC(U) Rank δ(U) SC(U) Rank δ(U) SC(U) Rank δ(U)

Pisa Normale 1.4825 1 0.99995 3 0.37 0.99996 3 1.11 0.99997 3 0.37
Trieste SISSA 1.4747 2 1 1 0.42 1.00000 1 1.14 1.00000 1 0.47
Pavia 1.3733 3 1 1 0.59 1.00000 1 1.71 1.00000 1 0.61
Bergamo 1.3077 4 0.919075 10 0.75 0.91712 12 2.11 0.91378 10 0.79
Brescia 1.2778 5 0.99351 6 0.83 0.99514 6 2.33 0.99372 6 0.88
Cassino 1.2576 6 0.88475 13 0.81 0.86903 14 2.43 0.84009 15 0.95
Verona 1.2469 7 0.965495 9 0.91 0.97032 9 2.57 0.96872 9 0.95
Roma Tre 1.2342 8 0.999885 4 0.88 0.99977 5 2.56 0.99983 4 0.94
Roma Tor Vergata 1.1774 9 0.999605 5 1.05 0.99979 4 2.93 0.99939 5 1.13
Torino Politecnico 1.1554 10 0.976015 8 1.1 0.97803 8 3.1 0.97619 7 1.19
Bari Politecnico 1.1520 11 0.837835 15 1.1 0.83288 15 3.12 0.85786 14 1.16
Pisa 1.1204 12 0.977295 7 1.17 0.98849 7 3.23 0.97460 8 1.27
Trento 1.1197 13 0.91099 12 1.18 0.92043 11 3.3 0.90233 12 1.28
Napoli II 1.1156 14 0.913965 11 1.2 0.92258 10 3.34 0.90291 11 1.31
Milano Bicocca 1.1024 15 0.88101 14 1.21 0.87323 13 3.43 0.90208 13 1.29
Marche 1.0952 16 0.755735 18 1.19 0.73493 19 3.37 0.75044 20 1.28
Bologna 1.0680 17 0.74515 19 1.31 0.76815 18 3.65 0.75085 19 1.42
Salento 1.0618 18 0.66369 21 1.28 0.60666 21 3.64 0.68925 21 1.36
Milano 1.0510 19 0.761015 17 1.34 0.81407 16 3.7 0.75799 18 1.46
Padova 1.0483 20 0.729325 20 1.31 0.73434 20 3.67 0.77247 16 1.41
Ferrara 1.0392 21 0.7651 16 1.34 0.77155 17 3.74 0.77105 17 1.44
Udine 1.0301 22 0.616185 22 1.31 0.53283 22 3.77 0.59436 22 1.43
della Calabria 1.0052 23 0.159515 30 1.4 0.12672 33 3.94 0.17688 30 1.51
Roma La Sapienza 1.0047 24 0.13766 31 1.46 0.32741 28 3.92 0.12026 32 1.60
Milano Politecnico 0.9991 25 0.06818 34 1.46 0.12891 32 3.98 0.06040 35 1.60
Piemonte Orientale 0.9889 26 0.50371 23 1.38 0.43916 24 4.02 0.53354 24 1.45
Napoli Federico II 0.9783 27 0.46423 25 1.42 0.34901 26 4.04 0.45277 25 1.55
Sannio 0.9762 28 0.112775 32 1.58 0.15709 31 4.16 0.12287 31 1.73
Cagliari 0.9733 29 0.480355 24 1.48 0.46175 23 4.16 0.56943 23 1.57
Firenze 0.9644 30 0.404845 26 1.46 0.34262 27 4.1 0.43252 26 1.58
Parma 0.9608 31 0.33844 27 1.54 0.35131 25 4.26 0.30857 28 1.69

Urbino Carlo Bo 0.9444 32 0.218815 29 1.69 0.31418 29 4.39 0.22355 29 1.86
Salerno 0.9373 33 0.24665 28 1.53 0.17767 30 4.37 0.31840 27 1.63
Torino 0.9032 34 0.081775 33 1.63 0.06161 35 4.57 0.09362 33 1.77
L’Aquila 0.8862 35 0.01643 45 1.72 0.01884 44 4.72 0.01172 45 1.91
Siena 0.8804 36 0.06294 36 1.76 0.11009 34 4.72 0.04854 37 1.96
Perugia 0.8682 37 0.028165 42 1.75 0.03985 38 4.75 0.03183 41 1.91
Modena e Reggio Emilia 0.8644 38 0.06435 35 1.69 0.03189 40 4.81 0.06141 34 1.86
Bari 0.8514 39 0.010645 46 1.73 0.00500 46 4.87 0.01020 46 1.90
Camerino 0.8380 40 0.04613 38 1.75 0.03013 41 4.97 0.04830 38 1.92
Chieti e Pescara 0.8167 41 0.039 40 1.9 0.05355 36 5.1 0.04206 39 2.08
Catania 0.8158 42 0.002995 47 1.88 0.00346 47 5.14 0.00370 47 2.05
Venezia Ca Foscari 0.8056 43 0.0433 39 1.83 0.03373 39 5.15 0.02949 42 2.08
Basilicata 0.7963 44 0.024345 43 1.86 0.01782 45 5.16 0.03771 40 2.00
Genova 0.7937 45 4.00E-05 50 1.91 0.00002 50 5.27 0.00005 50 2.09
Reggio Calabria 0.7899 46 0.055945 37 1.86 0.03995 37 5.24 0.05411 36 2.06
Messina 0.7480 47 0.002355 48 1.95 0.00061 49 5.51 0.00201 48 2.15
Sassari 0.7143 48 0.023 44 2.15 0.02680 43 5.73 0.02723 43 2.33
Napoli Parthenope 0.7000 49 0.00131 49 2.06 0.00063 48 5.78 0.00140 49 2.28
Roma UNINETTUNO 0.5952 50 0.029 41 2.42 0.02956 42 6.4 0.02176 44 2.71

Table 4. Final rankings for the scientific area 01/A - Mathematics. We
have denoted with (A) the choice ai = 1, i = 1, . . . , 5, with (B) a1 = a2 =
a3 = 3, a4 = 1, a5 = 0, with (C) a1 = a2 = a4 = 1, a3 = 1.5, a5 = 0. For
each score calculated we report the associated rankings. Observations are
ordered according to the VQR ranking based on R values
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(A) (B) (C)

University R Rank SC(U) Rank δ(U) SC(U) Rank δ(U) SC(U) Rank δ(U)

Milano Politecnico 1.7647 1 0.99997 2 0.33 0.99999 3 1.00 0.99999 2 0.33
Ferrara 1.6667 2 0.97731 13 0.50 0.97776 13 1.50 0.97776 13 0.50
Roma LUISS 1.6667 2 0.99373 10 0.50 0.99380 9 1.50 0.99292 10 0.56
Milano 1.6373 3 0.99990 4 0.55 0.99990 4 1.65 0.99993 4 0.55
Macerata 1.6176 4 0.99792 8 0.58 0.99775 7 1.75 0.99821 8 0.58
Torino Politecnico 1.4951 5 0.91082 18 0.88 0.92918 18 2.38 0.90854 18 0.94
Milano Bocconi 1.4764 6 0.99997 2 0.94 1.00000 1 2.47 0.99996 3 1.03
Padova 1.4537 7 1.00000 1 0.91 1.00000 1 2.59 1.00000 1 0.96
Sassari 1.4461 8 0.99870 6 0.88 0.99833 6 2.63 0.99874 6 0.94
Perugia 1.3313 9 0.99818 7 1.11 0.99761 8 3.21 0.99848 7 1.17
Urbino Carlo Bo 1.3235 10 0.95960 15 1.08 0.94741 16 3.25 0.96497 15 1.12
Venezia Ca’ Foscari 1.3106 11 0.99974 5 1.11 0.99899 5 3.32 0.99980 5 1.16
Trento 1.2717 12 0.99497 9 1.23 0.99342 10 3.51 0.99640 9 1.29
Piemonte Orientale 1.2572 13 0.88657 19 1.35 0.92947 17 3.59 0.88162 19 1.47
Parma 1.2567 14 0.96847 14 1.23 0.95430 15 3.59 0.97370 14 1.30
Chieti e Pescara 1.2561 15 0.99164 11 1.19 0.99154 11 3.37 0.99207 11 1.27
Brescia 1.2255 16 0.92867 17 1.25 0.87394 19 3.75 0.94654 16 1.29
Modena e Reggio Emilia 1.1928 17 0.84874 20 1.42 0.87120 20 3.92 0.83820 20 1.54
Bologna 1.1596 18 0.98210 12 1.46 0.98041 12 4.12 0.98151 12 1.60
Firenze 1.1410 19 0.94837 16 1.51 0.95464 14 4.18 0.93483 17 1.66
Napoli II 1.1111 20 0.66715 25 1.44 0.54547 27 4.33 0.67541 25 1.56
Torino 1.1099 21 0.83949 21 1.55 0.83738 21 4.34 0.81922 21 1.70
Genova 1.0873 22 0.63533 27 1.55 0.56815 26 4.45 0.61895 27 1.70
Milano Bicocca 1.0565 23 0.77716 22 1.62 0.71746 23 4.61 0.79543 22 1.77
Bergamo 1.0407 24 0.72058 24 1.62 0.60872 25 4.69 0.76130 23 1.73
Marche 1.0392 25 0.73560 23 1.70 0.71927 22 4.70 0.73174 24 1.83
Salerno 1.0114 26 0.42971 30 1.74 0.41217 31 4.84 0.48007 30 1.87
Roma Tor Vergata 1.0076 27 0.66017 26 1.75 0.65762 24 4.86 0.63218 26 1.93
Udine 1.0074 28 0.52801 28 1.69 0.43525 28 4.86 0.53518 28 1.84
Pisa 0.9741 29 0.33328 32 1.87 0.41446 29 5.03 0.30913 32 2.08
Pavia 0.9617 30 0.50671 29 1.76 0.41242 30 5.10 0.50421 29 1.93

della Calabria 0.9447 31 0.16967 37 1.86 0.15948 35 5.18 0.16538 36 2.06
Cagliari 0.9276 32 0.35820 31 1.81 0.23802 32 5.27 0.39905 31 1.94
Palermo 0.8554 33 0.12075 40 2.01 0.09586 38 5.64 0.13415 39 2.21
Milano Cattolica 0.8507 34 0.05308 43 2.05 0.04405 42 5.66 0.06624 42 2.23
Napoli Federico II 0.8287 35 0.02121 44 2.01 0.00506 47 5.77 0.02201 44 2.22
L’Aquila 0.8088 36 0.20405 33 2.13 0.20193 33 5.88 0.19403 35 2.38
Insubria 0.7994 37 0.20072 34 2.08 0.14105 36 5.92 0.20839 33 2.27
Cassino 0.7843 38 0.15338 38 2.08 0.09103 40 6.00 0.14619 38 2.31
Salento 0.7608 39 0.01263 45 2.28 0.01751 44 6.12 0.01532 45 2.50
Foggia 0.7549 40 0.07633 41 2.15 0.04642 41 6.15 0.05961 43 2.43
Napoli Parthenope 0.7376 41 0.17628 35 2.19 0.09225 39 6.24 0.20028 34 2.40
Roma LUMSA 0.7190 42 0.17231 36 2.33 0.18438 34 6.33 0.15361 37 2.67
Roma La Sapienza 0.6790 43 0.00000 48 2.46 0.00000 48 6.54 0.00000 48 2.75
Sannio 0.6398 44 0.01121 46 2.42 0.00724 46 6.74 0.01463 46 2.66
Roma Europea 0.5229 45 0.13016 39 2.67 0.12068 37 7.33 0.12100 40 3.00
Napoli Orientale 0.4902 46 0.01111 47 2.83 0.01714 45 7.50 0.01295 47 3.17
Messina 0.4256 47 0.00000 48 2.95 0.00000 48 7.83 0.00000 48 3.28
Teramo 0.3676 48 0.05957 42 2.88 0.03435 43 8.13 0.06922 41 3.19
Bari 0.3650 49 0.00000 48 3.03 0.00000 48 8.14 0.00000 48 3.41

Table 5. Final rankings for the scientific area 13/D - Statistics and Math-
ematical Methods for Decisions. We have denoted with (A) the choice
ai = 1, i = 1, . . . , 5, with (B) a1 = a2 = a3 = 3, a4 = 1, a5 = 0, with
(C) a1 = a2 = a4 = 1, a3 = 1.5, a5 = 0. For each score calculated we report
the associated rankings. Observations are ordered according to the VQR
ranking based on R values
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to the definition of SC(U), each university U is compared to all ideal universities having
the same size as U .
On the other hand, the scientific homogeneity is another important feature which is

not considered in the ANVUR analysis but it is incapsulated in our geometric score.
The best example in this way is provided by the Mathematics area. Here we have very
different outcomes for each scientific discipline, reflecting the diverse publication customs
and trends for the various areas of Mathematics, as well as the different methods of
assessment which were used (the MCQ score for Pure Mathematics, Impact Factor for
Applied Mathematics, peer review for History of Mathematics). From Table 6 it is clear
that departments with higher number of professors dealing with History of Mathematics
are unfairly penalized by the ANVUR’s analysis methods. With this respect, we observe
that the three universities of Pisa Normale, Bergamo and Milano Politecnico, that we
have mentioned above among the ones rewarded from the VQR ranking, did not count
any professor or reasearcher in that scientific sector. On the contrary departments with
higher number of professors dealing with Applied Mathematics obtain, on average, better
results.

Table 6. Number of total expected products and their repartition in the
5 classes of VQR 2011-2014, for each scientific sector of the area 01/A -
Mathematics. The proportion of products in the 5 classes is also reported

scientific sector expected products A B C D E

MAT/01 72 25 20 7 12 8
0.347 0.278 0.097 0.167 0.167

MAT/02 319 67 97 59 32 64
0.21 0.304 0.185 0.10 0.345

MAT/03 800 246 190 106 82 176
0.308 0.238 0.133 0.103 0.385

MAT/04 132 18 45 28 20 21
0.136 0.311 0.212 0.152 0.227

MAT/05 1545 616 388 220 94 227
0.399 0.251 0.142 0.061 0.27

MAT/06 255 97 71 42 22 23
0.38 0.278 0.165 0.086 0.169

MAT/07 609 197 147 98 88 79
0.324 0.241 0.161 0.145 0.22

MAT/08 563 245 143 83 36 56
0.435 0.254 0.147 0.064 0.17

MAT/09 230 169 68 30 14 16
0.569 0.229 0.101 0.047 0.082

Somehow ANVUR itself was aware of the aforementioned limits of its methods, so that
for the program “Departments of Excellence” a different methodology, conceptually much
similar to ours, was introduced (see [9] and [2]). Without entering into details, we point out
that such methodology, which uses the Central Limit Theorem, assumes the independence
of the assessments received by each publication. Such independence assumption, however,
is unrealistic, especially for smaller sectors, as well as for areas with large numbers of
coauthors.

Appendix A. The proof of (3)

In this appendix we shall give a formal proof of (3). Let’s start with the precise
definition of δ(P0) = δ(P0, P1). For this, let ∆n be the n-dimensional simplex with
vertices P1 = (1, 0, . . . , 0), P2 = (0, 1, . . . , 0), . . . , Pn+1 = (0, 0, . . . , 1) ∈ R

n+1 and let
P0 = (x0

1, . . . , x
0
n+1) ∈ ∆n be a point of the simplex, so that we have

∑n+1
i=1 x0

i = 1. Let π1
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Table 7. Number of total expected products and their repartition in the
5 classes of VQR 2011-2014, for each scientific sector of the area 13/D
- Statistics and Mathematical Methods for Decisions. The proportion of
products in the 5 classes is also reported

scientific sector expected products A B C D E

SECS-S/01 794 241 209 94 91 109
0.325 0.281 0.126 0.122 0.146

SECS-S/02 45 11 10 5 5 11
0.267 0.244 0.111 0.111 0.267

SECS-S/03 281 44 61 41 45 67
0.171 0.235 0.160 0.174 0.260

SECS-S/04 131 28 24 14 29 27
0.229 0.198 0.115 0.237 0.221

SECS-S/05 130 20 22 33 27 21
0.162 0.177 0.269 0.223 0.169

SECS-S/06 776 152 208 85 89 142
0.224 0.308 0.126 0.132 0.21

be the hyperplane of Rn+1 through P0 and parallel to the plane containing the vertices
{P2, . . . , Pn+1} and let {P 1

1 , . . . , P
1
n} be the points defined by P 1

i = π1∩ℓ11,i+1, i = 1, . . . , n,

where ℓ11,j is the line trough P1 and Pj , j = 2, . . . , n + 1. Next, consider the hyperplane

π2 trough P0 and parallel to the plane containing the vertices P 1
2 , . . . , P

1
n and, as before,

define the points {P 2
1 , . . . , P

2
n−1} by P 2

i = π2 ∩ ℓ21,i+1, i = 1, . . . , n − 1, where ℓ21,j is the

line trough P 1
1 and P 1

j , j = 2, . . . , n. Applying this procedure fot n − 1 steps we ob-

tain a sequence of points P1, P
1
1 , . . . , P

n−1
1 . Now for a fixed set of positive real constants

a = {a1, . . . , an+1} we define

δ(P0) = δ(P0, P1)(7)

=
∥

∥P n−1
1 − P0

∥

∥

g
+
∥

∥P n−2
1 − P n−1

1

∥

∥

g
+
∥

∥P n−3
1 − P n−2

1

∥

∥

g
+ · · ·+

∥

∥P1 − P 1
1

∥

∥

g
.

Here ‖ · ‖g represents the norm with respect to the unique inner product 〈, 〉g in R
n+1

defined by

〈vi,vj〉g = δi,j aiaj

where, denoting by O the origin of Rn+1,

v1 = P1 − O , v2 = P2 − P1 , . . . ,vn+1 = Pn+1 − Pn .

Note that, as the origin does not belong to the simplex and P1, . . . , Pn+1 are affinely
independent, {v1, . . . ,vn+1} forms a basis of Rn+1.

Theorem 2. Let∆n be the canonical n-dimensional simplex and let P0 = (x0
1, . . . , x

0
n+1) ∈

∆n be a point of the simplex. Let a = {a1, . . . , an+1} be a set of positive real constants.

Then, with the above notation, we have

δ(P0) = a1 + · · ·+ an+1 − (a1 + · · ·+ an+1)x
0
1 − (a2 + · · ·+ an+1)x

0
2 − · · ·

−(an + an+1)x
0
n − an+1x

0
n+1(8)

Proof. We shall prove the theorem by induction on the dimension n of the simplex. If
n = 1, the simplex degenerates into the segment from the point P1 = (1, 0) to P2 = (0, 1).
Given a point P0 = (x0

1, x
0
2) = (x0

1, 1− x0
1) ∈ ∆1, from the definition (7) of δ(P0) we have

δ(P0) = dg(P0, P1) = a1(1− x0
1) which coincides with (8) for n = 1.

Let now assume that the (8) is true for any canonical simplex of dimension n and for any
set a of positive real constants with |a| = n+1. Let prove that it is valid for the canonical
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(n + 1)-dimensional simplex and for any set of a = {a1, . . . , an+2} of positive real con-
stants. Let ∆n+1 be the (n+1)-dimensional simplex with vertices P1 = (1, 0, . . . , 0), P2 =
(0, 1, . . . , 0), . . . , Pn+2 = (0, 0, . . . , 1) ∈ R

n+2 and let P0 = (x0
1, . . . , x

0
n+2) ∈ ∆n+1 be a

point of the simplex. Let’s first compute the coordinates of the points P 1
i , i = 1, . . . , n+1.

A straightforward computation shows that the hyperplane π1 has Cartesian equation

〈N1, P − P0〉 = 0

where N1 = (n + 1,−1,−1, . . . ,−1) is the normal vector to π1 while P = (x1, . . . , xn+2).
The line ℓ11,j is parametrised by

P = P1 + t(Pj − P1).

Substituting the latter in the equation of the plane π1 we obtain that the intersection
point correspond to the parameter t = 1− x0

1. We thus have

P 1
i = P1 + (1− x0

1)(Pi+1 − P1) = x0
1P1 + (1− x0

1)Pi+1, i = 1, . . . , n+ 1.

In coordinates we have






















P 1
1 = (x0

1, 1− x0
1, 0, 0, . . . , 0)

P 1
2 = (x0

1, 0, 1− x0
1, 0, . . . , 0)

...

P 1
n+1 = (x0

1, 0, . . . , 0, 1− x0
1)

and

P0 = (x0
1, . . . , x

0
n+2).

The points P 1
1 , . . . , P

1
n+1 and P0 lie in the hyperplane x1 = x0

1 and we can identify them
with the points































P 1
1 = (0, 1− x0

1, 0, 0, . . . , 0)

P 1
2 = (0, 0, 1− x0

1, 0, . . . , 0)
...

P 1
n+1 = (0, 0, . . . , 0, 1− x0

1)

P0 = (0, x0
2, . . . , x

0
n+2)

via the isometry between the hyperplane x1 = x0
1 and the hyperplane x1 = 0. If we now

apply the homothety

(9) P 7→ 1

1− x0
1

P

the points P 1
1 , . . . , P

1
n+1 and P0 are mapped to



































P̄ 1
1 = (0, 1, 0, 0, . . . , 0)

P̄ 1
2 = (0, 0, 1, 0, . . . , 0)
...

P̄ 1
n+1 = (0, 0, . . . , 0, 1)

P̄0 =
(

0,
x0
2

1−x0
1
, . . . ,

x0
n+2

1−x0
1

)

,
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which can be identified with the following points in R
n+1



































P̄ 1
1 = (1, 0, 0, . . . , 0)

P̄ 1
2 = (0, 1, 0, . . . , 0)
...

P̄ 1
n+1 = (0, . . . , 0, 1)

P̄0 =
(

x0
2

1−x0
1
, . . . ,

x0
n+2

1−x0
1

)

.

At this stage, we can apply the inductive hypothesis to the canonical n-dimensional sim-
plex with vertices P̄ 1

1 , . . . , P̄
1
n+1, with respect to the set of real constants ā = {a2, . . . , an+2},

and considering P̄0 =
(

x0
2

1−x0
1
, . . . ,

x0
n+2

1−x0
1

)

as a point of the simplex. We have

δ(P̄0, P̄
1
1 ) =

1

1− x0
1

(

(a2 + · · ·+ an+2)(1− x0
1)− (a2 + · · ·+ an+2)x

0
2 − · · ·

− (an+1 + an+2)x
0
n+1 − an+2x

0
n+2

)

.

Taking into account that the homothety (9) change the norm ‖ ‖g by the factor 1/(1−x0
1),

we find that

δ(P0, P
1
1 ) = (1− x0

1) δ(P̄0, P̄
1
1 ) =(a2 + · · ·+ an+2)(1− x0

1)− (a2 + · · ·+ an+2)x
0
2 − · · ·

− (an+1 + an+2)x
0
n+1 − an+2x

0
n+2

Finally

δ(P0, P1) = δ(P0, P
1
1 ) +

∥

∥P1 − P 1
1

∥

∥

g

= (a2 + · · ·+ an+2)(1− x0
1)− (a2 + · · ·+ an+2)x

0
2 − · · ·

−(an+1 + an+2)x
0
n+1 − an+2x

0
n+2 + (1− x0

1)a1

= (a1 + a2 + · · ·+ an+2)− (a1 + a2 + · · ·+ an+2)x
0
1 − (a2 + · · ·+ an+2)x

0
2 − · · ·

−(an+1 + an+2)x
0
n+1 − an+2x

0
n+2

which is exactly (8) for n + 1. �
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Ospedale 72, 09124 Cagliari, Italy


	1. Introduction
	2. Preliminary notions: the geometry of the n-simplex
	3. A natural path toward the best assessment
	4. Geometric score function
	5. A case study: Italian research assessment VQR 2011-14
	6. Conclusions and remarks
	Appendix A. The proof of (3)
	References

