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Thermomagnetic behavior of a semiconductor material
heated by pulsed excitation based on the fourth-order MGT
photothermal model

Abstract This article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of 
semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and 
excess carrier density. The proposed model is developed to account for the optical heating that occurs 
through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order 
serves as the theoretical framework to establish the photothermal model. It is well-known that the optical and 
heat transfer properties of such materials behave as random functions of photoexcited-carrier density; 
therefore, the current model is remarkably more reliable compared to the earlier closed-form theories which 
are limited to a single form. The constructed theoretical framework is able to investigate the magneto-photo-
thermoelastic problems in a semiconductor medium due to laser pulse excitation as a case study. Some 
parametric studies are used to exhibit the impact of thermal parameters, electromagnetic fields, laser pulses 
and thermoelectric coupling factors on the thermomagnetic behavior of physical variables. Finally, several 
numerical examples have been presented to draw the distributions of the examined field variables.

Keywords MGT thermoelasticity · Photoexcited · Semiconductor · Laser pulse

1 Introduction

A semiconductor material is a substance that possesses the electrical conductivity properties somewhere 
between a conductor and non-conductor or insulator materials. This indicates that semiconductors can switch
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between conducting and insulating behavior depending on the environmental circumstances. Silicon is themost
well-known pure semiconductor whereas the gallium arsenide is an example of a compound semiconductor
element. Semiconductor gainmechanismswith ultrafast time scales have emerged as a hot topic in the scientific
community during the past few decades. To this end, several experimental procedures have been conducted to
examine the behavior of semiconductor laser amplifiers in response to ultrashort (picosecond or shorter time
scales) light pulses in this area. Complexity in gain, measured as a timescale in the order of a picosecond,
has been revealed in the empirical tests. Mathematical computations support the assumption that the peculiar
behavior of carrier ensemble on short time scales, particularly the conduction of dynamic carrier heating, is
responsible for this form of gain responses [1].

Research into the characteristics of semiconductors began around the end of the nineteenth century. Semi-
conductors had extraordinary use across many sectors in the 20th century as a result of technological and
industrial advancements including incorporating anything from medical equipment to electrical circuits and
even solar cells that generate renewable energy. Researchers who worked on semiconductor implants realized
that the internal systems of these substances may change with temperature, particularly when subjected to light
or a laser beam [2]. Heat generation is a common side effect of irradiating a semiconductor with a powerful
laser beam. Since the most of the light energy that a semiconductor receives first goes to free electrons and
hole systems, the way that free carriers move back and forth together is also essential to understand how
well the material absorbs the laser energy [3]. As they relate to device quality and performance, heat transfer
characteristics are very important features in semiconductor laser interactions. Semiconductor is widely used
in optical communication systems and energy pumping, where the laser must operate with pulsed excitations.
In the case of lasers excited by periodic pulses, heat buildup in the active area can develop if the temperature of
the active region does not drop to the temperature of the heat sink before when another cycle begins. To make
the optimum use of laser diode’s power output, the characteristics of thermodynamic responses especially the
thermal time constant are necessary [4].

The primary application of semiconductors is to fabricate semiconductor devices, which are fundamental
to a wide range of electronic products. Electrons used to be able to move around freely in a vacuum and
semiconductor devices are currently used almost everywhere. The diode is a semiconductor component that
works as a one-way valve in a circuit, permitting only the flowof electricity in one direction. Instead, conductors
are conductive in both ways. Transistors are built with semiconductors and are utilized for quick switching
and current amplification. Most semiconductors are MOSFETs, which stands for metal-oxide-semiconductor
field-effect transistor [5]. The applications of semiconductors in electronics is ubiquitous. Semiconductor
components like integrated circuits, diodes and transistors are essential for the operation of many common
household appliances, including mobile phones, computers, gaming consoles, microwaves and refrigerators.
Embedded systems are little computers designed to function within a larger system. They have the power
to operate the gadget and make it possible for the user to have input. The majority of technology we are
daily relying on are embedded devices, from our thermostats and central heating to our digital watches and
navigation systems to our fitness trackers and even televisions and automobile engine control units. Depending
on the corresponding application, semiconductors with high thermal conductivity can be employed as a cooling
agent due to their ability to dissipate heat. Some semiconductors, typically those that are accessible in liquid
or amorphous form as a thin-coated film, may create light and are utilized in LEDs and OLEDs. Silicon is the
most commonly utilized semiconductor in manufacturing solar panel cells. As one can see, semiconductors
play a crucial part in the electrical gadgets we use or come into contact with daily, making them essential to
our contemporary ways of life [6–9].

It is important to note that while researching the properties of semiconductors, it was discovered that the
excited electrons are scattered toward the surface of the semiconductor and move around, causing an electron
cloud known as carrier density (plasma). This electron cloud is responsible for the diffusion treats that lead to
the flow of electric current, and this discovery is important in this context. In addition, when electrons flow
through a material, they leave holes behind as they behave as part of the recombination process; this can also
apply to the time when the electrons are moving in the form of a cloud. In recent years, thermo-optical theory
has become a useful tool to describe the system of equations in such circumstances, which often occur during
the hole diffusion processes. Furthermore, the concept of thermoelasticity can be implemented and introduced
in this field to describe the thermoelastic deformation processes for such kind of semiconducting materials
[10]. Despite the interest in examining the effect of carrier heating on gain dynamics, the dynamic behavior of
carrier temperature is rarely studied. Generally, carrier temperature is only mentioned when trying to provide
a makeshift justification for the gain’s nonlinear nature. However, the gain determines how well an external
signal may heat the carriers, and variations in the improvement also affect the carrier temperature.



Neither of the two phenomena predicted by the conventional uncoupled theory of thermoelasticity are
consistent with the experimental results. To begin with, there are no elastic factors in the heat equation of the
mentioned hypothesis. Second, according to the parabolic heat equation, heat waves are expected to travel at
limitless speeds. For this reason, Biot [11] established the concept of coupled thermoelasticity to resolve the
seeming inconsistency between the uncoupled classical theory and the experimental findings, which describes
that variations in elastic properties have no discernable impact on the temperature. Contrary to the empirical
evidences, limitless speeds of heat wave transmission are predicted by heat equations of diffusion type models.
The generalized thermoelastic theories have been propounded by Lord and Shulman [12] and Green and
Lindsay [13], who created the foundation of the dynamically coupled concepts of thermoelasticity. These
models consider the propagation of heat in terms of waves rather than diffusion, making possible the prediction
of heat transfer rate.

In the context of modifying the models of thermoelasticity, three developed theories with or without
energy dissipation were suggested by Green and Naghdi [14–16]. The second and third types of Green and
Naghdi theory are the most relevant ones in recent studies. The second type of Green and Naghdi theory
is slightly different from previous models where they do not account for the thermal energy dissipation but
rather incorporates the isothermal displacement gradients as independent constituent quantities. Microscopic
couplings between phonons and electrons are described as inhibitory sources in the dual-phase lag (DPL)
version [17,18], which results in a delayed reaction at the macroscopic scale. If someone would like to look
at how the microstructure affects the macroscopic heat transfer pattern, the DPL thermoelastic mode would
be an appropriate model. Empirical results confirm the material implications and integrity of the DPL model
[19].

Many research works have been conducted to examine the benefits of Moore–Gibson–Thompson (MGT)
equation and its interpretations in recent years. The third-order differential equations, which are ubiquitous in
fluid dynamics, form the theoretical basis [20]. Recently, Quintanilla [21,22] developed a new thermoelastic
framework for MGT heat transport. By incorporating the relaxation parameters into the GN-III framework,
Abouelregal et al. [23–26] created a modified heat transfer equation utilizing the energy equation. In the ideal
situations, the thermal shock issue is deterministic, while in the real cases, some noises are present in the con-
text of photo-excitation processes. Lotfy [27] investigated a theoretical method to study the distortion exposed
by skewed loads. Sharma and Kumar [28] constructed a dynamic mathematical model for a semiconductor
medium. By employing the potential functions, the system of equations for the photo-thermoelastic with dual-
phase delay concept was rewritten for two-dimensional cases. Photo-thermoelastic interactions were studied
by Kaur et al. [29] in a revolving, infinite, semiconducting solid cylinder subjected to a strong magnetic field
operating along its axis. The surface at its border was exposed to a laser pulse with an exponentially vary-
ing heat flow. A new generalized theory of Moore–Gibson–Thompson photothermal (MGTPT) model for a
semiconductor material was used to express the governing equations. On the other hand, the investigation of
photo-thermoelastic interaction in an unbounded semiconductor medium with a spherical cavity was demon-
strated by Alzahrani and Abbas [30]. The recently developed hyperbolic two-temperature model addresses
this issue well. Using both classical (CT) theory and dual-phase-lag (DPL) model, Gafel [31] calculated how
much the starting stress, magnetic field, and fractional parameters, impact the reflection wave within a semi-
conductor photothermal diffusion medium. In order to characterize the issue at hand, one has to first look at the
fundamental sciences, including plasma, thermoelastic waves and the thermomechanical reaction of reflecting
photothermal diffusion in the semiconductor components. Within the context of generalized thermodynamics,
Ahmed et al. [32] introduced and evaluated a two-dimensional first-order linear system of differential equations
for planar strain thermoelasticity. The system comprises the Cattaneo evolution equation for heat transfer and
the traditional thermoelastic equations, which uses speeds instead of deformations.

Recently, several studies have been established to deal with the thermoelastic behavior of materials and
structures using the modified theories and models by considering different environmental circumstances [33–
40]. The contribution of this study is to present a new system of thermo-optical equations that characterize the
propagation behavior of photo- and thermal carriers in semiconductors under the intense femtosecond laser
pulse excitation. The proposed formulation (4MGT-PTE) is a modified model of Green and Naghdi theory of
the third type [14–16] which includes the fourth-orderMoore–Gibson–Thompson (MGT) concept. This model
allows for limited velocity of wave propagation due to the presence of thermal relaxation. This paper provides
some key ideas for extending the thermoelastic theory of homogeneous and isotropic materials. Despite the
theoretical nature of the conclusions given in this study, their physical and technical applicability cannot be
denied. The fourth-order of 4MGT-PTEmodel has not been used before to examine the transmissionmechanism
of thermo-optical waves in semiconductor materials. Moreover, a pulsed laser current would be sent through



the medium results in generating heat and raising the surface temperature. Such models that incorporate the
pulsed lasers have superior advantages in various scientific and industrial applications, including the excitation
and processing of materials, laser burning, laser cutting, laser engraving, spectroscopy of optical materials as
well as dynamic combustion processes.

2 Theoretical model and governing equations

The governing equations of plasma transport coupling under the assumption that the material is homogenous,
isotropic, thermoelastic, and photothermal semiconductor can be expressed as [41,42]:

(λ + μ)∇ (∇ · �u) + μ∇2�u − γ∇θ − dn∇N + �F = ρ �̈u (1)

DE∇2N = ρ
∂N

∂t
+ 1

τB
N + κθ (2)

ei j = 1

2

(
ui, j + u j,i

)
(3)

σ = λ (∇ · �u) I + μ
(
∇�u + ∇

(
�uTr
))

− (γ θ + dnN ) I (4)

where �u is displacement vector, N is carrier density, θ = T −T0 represents the thermodynamical temperature,
T0 is the reference temperature, δi j stands for the Kronecker’s delta, ρ is mass density, �F denotes the Lorentz

force, σ is the stress tensor, I is the identity tensor, DE symbolizes the ambipolar diffusion coefficient, Eg
is semiconductor gap energy, dn is the difference in deformation potential of the conduction, κ represents the
thermal activation coupling parameter, τB shows the bulk free carrier lifetime, γ = (3λ + 2μ)αt stands for
the volume coefficient of thermal expansion, αt is the factor of thermal expansion, λ,μ are Lamés constants
and ei j is the strain tensor.

According to Fourier’s law, the heat flow �H [W/m2] at each point within a solid is determined by direction
and magnitude of heat gradient. The following equation describes the simplest scenario that can explain the
behavior of heat flow:

�H
( �X , t

)
= −K �∇θ

( �X , t
)

(5)

where K [W/mK] denotes the thermal conductivity coefficient and �X stands for the position vector.
Here, the following heat-balance equation represents the principle of energy conservation:

ρCE
∂θ

∂t
+ γ T0

∂

∂t
(∇ · �u) = −�∇ · �H + Q (6)

where CE [J/kgK] is the specific heat and Q [W/m3] denotes the heat supply.
The extended Fourier’s law can be defined using GN-III concept as follows [15]:

�H
( �X , t

)
= −K �∇θ − K ∗ �∇ϑ (7)

where the variable ϑ [1/Ks] characterizes the thermal displacement
(
ϑ̇ = θ

)
and K ∗ [W/mKs] indicates the

rate of thermal conductivity.
Wewill consider the scenario inwhich the external light rays excite free electrons in aflexible semiconductor

medium, resulting in a carrier-free variation density with energy Eg , which is the gap of the semiconductor.
The absorbed optical energy causes a variation in deformation and elastic waves. On the other hand, the
thermal-elastic-plasma waves will alter the general form of heat equation. It has been shown that the quantity
of light energy absorbed is proportional to the amount of electron-hole recombination occurs. Following is a
statement of the modified Fourier’s law which is appropriate for semiconductor materials experiencing plasma
effects:

�H
( �X , t

)
= −K �∇θ − K ∗ �∇ϑ −

∫
Eg

τB
Nd �X (8)



When the energy equation (8) is used in conjunction with the extended Fourier’s law of Green and Naghdi
framework (GN-III), as described by Eq. (7), it is clear that the hypothesis that considers the heat conduction
waves move at a limited speed is implausible. As a consequence, it makes sense to adjust this theory by adding
delay or relaxation factors to the traditional equations. When the heat flux’s phase lag (relaxation time) is
included, the Taylor series approximation may be utilized to derive the approximation of the vector’s direction
as:

�H
( �X , t + τq

)
≈
(
1 + τq

∂

∂t
+ 1

2
τ 2q

∂2

∂t2

)
�H
( �X , t

)
(9)

By substituting Eq. (9) into Eq. (8), one obtains the following fourth-order MGT photothermal model:
(
1 + τq

∂

∂t
+ 1

2
τ 2q

∂2

∂t2

)
�H = −K �∇θ − K ∗ �∇ϑ −

∫
Eg

τB
Nd �X (10)

For the rest of this paper, we will assume the following conditions for the constitutive constants:

CE > 0, τq > 0, K > 0, K ∗ > 0, K > τq K
∗

A positive values of CE is easy to understand. The stability of solutions for type II/III of Green and Naghdi
theories is connected to the assumptions on K and K ∗, which are the natural ones. Additionally, it is supposed
that τq is positive and thought to be small compared to the other constants. The stability of solutions of the
MGT problem is often ensured by applying the condition (K > τq K ∗). The axioms of thermodynamics and
the results of experiments are consistent with these hypotheses.

A derivative of the above equation with respect to the coordinate vector �X and time t yields
(
1 + τq

∂

∂t
+ 1

2
τ 2q

∂2

∂t2

)
∂

∂t

(
∇. �H

( �X , t
))

= −∇.

(
K

∂

∂t
�∇θ

)
− ∇

(
K ∗ �∇θ

)
− Eg

τB

∂N

∂t
(11)

By substituting Eq. (11) for the energy conservation equation (6), we obtain the modified fourth-order MGT
heat equation that explains the interaction of the thermal-plasma-elastic waves:

(
1 + τq

∂

∂t
+ 1

2
τ 2q

∂2

∂t2

)
∂

∂t

[
ρCE

∂θ

∂t
+ T0

∂

∂t

(
βi j ei j

)− Q

]

= ∇.
(
K∇ θ̇

)+ ∇.
(
K ∗∇θ

)+ Eg

τB

∂N

∂t
(12)

3 Electromagnetic field equations

Maxwell’s Equations are a set of fundamental relationships that regulate the dynamics of electric and magnetic
fields and their interactions. The equations characterize the evolution of charge and current, as well as the birth
and development of these fields and their interactions with one another. As a result of the presence of primary
magnetic field �H , the induced electric field �E as well as magnetic field �h will appear in the fundamental
equations. The linear simplification of Maxwell’s equations that describe the electromagnetic field used in the
electrodynamics of an elastic, homogeneously conductive solid, ideally thermally and electrically, is given by
the following formulas (ignoring the charge density):

�J = ∇ × �h − ε0
∂ �E
∂t

, ∇ × �E = −μ0
∂ �h
∂t

, �E = −μ0

(
∂ �u
∂t

× �H
)

, ∇ · �h = 0 (13)

where ∇ represents the nabla operator, �J denotes the current density, μ0 represents the magnetic permeability,
and ε0 characterizes the electric permeability.

The equation that describes the Maxwell’s stress Mi j is denoted by:

Mi j = μ0
[
Hih j + Hjhi − Hkhkδi j

]
(14)

To calculate the Lorentz force �F caused by the primary magnetic field �H , one can use the following formula:

�F = μ0

(
∇ × �H

)
(15)



Fig. 1 Schematic representation of a photothermal half-space solid

4 Description of the problem

The problem considered in this work is a two-dimensional thermoelastic solid (half-space) in the region (x ≥ 0)
in which the x-axis is perpendicular to the free surface pointing inside the medium (See Fig. 1). It is assumed
that there is a sudden laser pulse that heats the local boundary regions at the free surface x = 0 at time t = 0.
It will also be taken into account that half of the area is affected by a force perpendicular to the boundary
surface (x = 0) which is variable depending on time and Cartesian coordinates. Since the heating from the
laser pulses occurs in a direction perpendicular to the oxz plane, one may treat the proposed problem as a
plain strain problem in which all variables depend only on x , z, and t and are independent of y. Finally, the
regularity condition are taken into account in the sense that all field variables are constrained away from the
surface when x approaches to infinity.

The component of displacement that only affects the x and z directions may be expressed by:

�u ≡ (u(x, z, t), 0, w(x, z, t)) (16)

As a result of this equation, one can calculate the dilatation e = div (�u) as:

e(xzt) = ∂u

∂x
+ ∂w

∂z
(17)

The elements of Lorentz force �F will have the following components when the primary magnetic field �H0 =
(0, H0, 0) is applied:

Fx = μ0H
2
0

(
∂e

∂x
− μ0ε0

∂2u

∂t2

)
, Fy = 0, Fz = μ0H

2
0

(
∂e

∂z
− μ0ε0

∂2w

∂t2

)
(18)

When the Lorentz force is considered, the equations of motion (1) in x and z directions have the following
formulae, respectively:

(
λ + μ + μ0H

2
0

) ∂e

∂x
+ μ∇2u − γ

∂θ

∂x
− dn

∂N

∂x
= (

ρ + ε0μ
2
0H

2
0

) ∂2u

∂t2
(19)

(
λ + μ + μ0H

2
0

) ∂e

∂z
+ μ∇2w − γ

∂θ

∂z
− dn

∂N

∂z
= (

ρ + ε0μ
2
0H

2
0

) ∂2w

∂t2
(20)

Using Eq. (17) and removing u and w from Eqs. (19) and (20), results in:

(
λ + 2μ + μ0H

2
0

)∇2e − γ∇2θ − dn∇2N = (
ρ + ε0μ

2
0H

2
0

) ∂2e

∂t2
(21)



In the x–z plane, the coupled plasma wave equation (2) may be expressed as:

DE

(
∂2N

∂x2
+ ∂2N

∂z2

)
= ρ

∂N

∂t
+ 1

τB
N + κθ (22)

In addition, the heat equation in the modified fourth-order MGT model can be rewritten in the absence of any
heat source as

(
1 + τq

∂

∂t
+ 1

2
τ 2q

∂2

∂t2

)(
ρCE

∂2θ

∂t2
+ γ T0

∂2e

∂t2

)
=
(
K ∗ + K

∂

∂t

)(
∂2θ

∂x2
+ ∂2θ

∂z2

)
+ Eg

τB

∂N

∂t
(23)

The constitutive equations (4) can be then expressed by:

σxx = λ∂w
∂z + (λ + 2μ) ∂u

∂x − (γ θ + dnN )

σzz = λ∂u
∂x + (λ + 2μ) ∂w

∂z − γ (γ θ + dnN )

σxz = μ∂u
∂z + μ∂w

∂x

(24)

To generalize the numerical simulations, it is useful to consider the nondimensional quantities stated as:

{
x

′
, z

′
, u

′
, w

′} = η0
c0

{x, z, u, w} , t
′ = η0t,

{
θ

′
, N

′} = 1
ρc20

{γ θ, dnN } ,

σ
′
i j = σi j

γ T0
, η0 = ρCEc20

K , c20 = c21 + a20, c
2
1 = λ+2μ

ρ
, c22 = μ

ρ
, a

2

0
= μ

0
H2
0

(25)

After removing the prime symbols, the dominant equations (21)–(23) take the following form by inserting the
above-mentioned dimensionless variables:

∇2e − ∇2θ − ∇2N = (
1 + ε0μ0a

2
0

) ∂2e

∂t2
(26)

(
K̄ ∗ + ∂

∂t

)(
∂2θ

∂x2
+ ∂2θ

∂z2

)
=
(
1 + τq

∂

∂t
+ 1

2
τ 2q

∂2

∂t2

)(
∂θ

∂t
+ ε1

∂e

∂t

)
− ε2

∂N

∂t
(27)

(
∂2N

∂x2
+ ∂2N

∂z2

)
= g1

∂N

∂t
+ g2N + g3θ (28)

where

ε1 = γ 2T0
ρ2c20CE

, ε2 = γ Eg
ρCE τBdn

, K̄ ∗ = K ∗
Kρc20

g1 = ρc20
DEη0

, g2 = c20
DE τB

, g3 = κdnc20
DEη20

(29)

And for Eq. (24) one gets:

σxx = C11
∂u
∂x + C12

∂w
∂z − θ − N

σzz = C11
∂w
∂z + C12

∂u
∂x − θ − N

σxz = C13

(
∂u
∂z + ∂w

∂x

)
(30)

where

C11 = c21
c20

, C12 = c21 − 2c22
c20

C13 = c22
c20

(31)



5 Normal mode technique

The physical variables under consideration have solutions that may be expressed in terms of normal modes
using the following formula:

{
u, w, θ, e,N , σi j

}
(x, z, t) = e(ωt+iaz)

{
u∗, w∗, θ∗, e∗, N∗, σ ∗

i j

}
(x) (32)

where the variables u∗ (x),w∗ (x), θ∗ (x), e∗ (x), N∗ (x), and σ ∗
i j (x) are the amplitudes of the studied physical

fields.Moreover, i = √−1,ω symbolizes the frequency,a symbolizes thewavenumber in z direction.Applying
the normal mode technique to Eqs. (26)–(30) yields:

(
D2 − ζ1

)
e∗ = (

D2 − a2
)
θ∗ + (

D2 − a2
)
N∗ (33)

(
D2 − ζ2

)
θ∗ = ωqε1e

∗ − ε2ωN∗ (34)
(
D2 − ζ3

)
N∗ = g3θ

∗ (35)

σ ∗
xx = C11Du∗ + iaC12w

∗ − θ∗ − N∗
σ ∗
zz = iaC11w

∗ + C12Du∗ − θ∗ − N∗
σ ∗
xz = C13 (iau∗ + Dw∗)

(36)

where

ζ1 = a2 + ω2
(
1 + ε0μ0a20

)
, q =

(
1+τqω+ 1

2 τ 2q ω2
)

(K̄ ∗+ω)
, ζ2 = a2 + qω,

ζ3 = a2 + g1ω + g2 , D = du
dx

(37)

When the functions θ∗ (x) and N∗ (x) are removed from Eqs. (33)-(35), the resulting equation is
(
D6 − AD4 + BD2 − C

)
e∗ = 0, (38)

with

A = ζ1 + g7 + g6
g3

, B = ζ1g7 + g8 + a2 + g5, C = a2g5g6
g3

,

g5 = ζ1 − g3, g6 = ε1ω
2g3, g7 = ζ2 + ζ3, g8 = ζ2ζ3 + ε2ω

2g3.
(39)

It is convenient to simplify Eq. (38) by
(
D2 − k21

) (
D2 − k22

) (
D2 − k23

)
e∗ = 0, (40)

where k2n , n = 1, 2, 3 are the solutions of the following polynomial equation

k6 − Ak4 + Bk2 − C = 0. (41)

The condition of regularity will be considered by ignoring the positive exponent in the physical problem so
that the solutions are not infinite when the position approach to infinity. The solution of Eq. (40), which has
constraint at x → ∞, may be written as

e∗ (x) =
3∑

n=1

Cne
−knx (42)

In the same way, one can get

{
N∗, θ∗} (x) =

3∑

n=1

{
C

′
n,C

′′
n

}
e−knx (43)

where C
′
n and C

′′
n are two distinct parameters. When Eqs. (42) and (43) are substituted into Eqs. (34) and (35),

one gets:

C
′
n (a, ω) = HnCn, C

′′
n (a, ω) = LnCn (a, ω) (44)



where

Hn = qε1ω
(
k2n − ζ3

)

(
k2n − ζ1

) (
k2n − ζ3

)+ qε2ωg3
, Ln = qε1ωg3(

k2n − ζ1
) (
k2n − ζ3

)+ qε2ωg3
(45)

Using Eqs. (42) and (43), and incorporating the nondimensional parameters, one obtains:

(
D2 − k24

)
u∗ =

3∑

n=1

MnCne
−knx (46)

where

k24 = a2 + ω2 (1 + ε0μ0a
2
0

)
, Mn = kn (1 − Hn − Ln) (47)

Given the regularity criterion, it is concluded that

u∗ (x) = C4e
−k4x +

3∑

n=1

Mn

k2n − k24
Cne

−knx (48)

Substituting from (25), (42), and (48) into (17), and after using nondimensional parameters, leads to:

w∗ (x) = k4
ia C4e−k4x + 1

ia

3∑

n=1

(
knMn
k2n−k24

+ 1

)
Cne−knx (49)

By substituting the above solution into Eq. (36), which stands for the functions u∗ w∗, N∗ and θ∗, one gets
the following:

σ ∗
xx = C4R4e−k4x +

3∑

n=1
RnCne

−knx

σ ∗
zz (x) = C4Q4e−k4x +

3∑

n=1
QnCne

−knx

σ ∗
xz (x) =

3∑

n=1
PnCne−knx + P4C4e−k4x

(50)

where

Rn = C12

(
knMn
k2n−k24

+ 1

)
− C11

(
knMn
k2n−k24

)
− (Hn + Ln) , R4 = k4 (C12 − C11) ,

Qn = C11

(
knMn
k2n−k24

+ 1

)
− C12

(
knMn
k2n−k24

)
− (Hn + Ln) , Q4 = k4 (C11 − C12) ,

Pn = −C13
ia

((
a2+k2n

)
Mn

k2n−k24
− k2n

)
, P4 = −C13

ia

(
a2 + k24

)

(51)

6 Applications

In this part of the article, we will set the unknown parameters C j , where j = 1, 2, 3, 4. It will be taken into
account that the initial conditions of the proposed problem is when the half-space is initially at rest. It is
assumed that the half-space is affected by a force P perpendicular to the surrounding surface (x = 0), which
depends on time as well as the spatial coordinate z.

Pulsed laser stimulation causes the temperature to increase or decrease very quickly, or at least in a short
time, so very little heat escapes into the surrounding area. As a result, absorption measurements can benefit
from pulsed laser excitation. It is also known that when a laser beam illuminates a solid surface, a variety of
physical processes may occur, some of which depend on energy. When a medium receives laser radiation, part
of the energy is converted into heat. This type of heat generation causes heat waves to propagate through the
material with distinct effects (e.g., photothermal effects).



It is also taken into account that the surrounding plane (x = 0) of the medium is exposed to laser pulses.
In this case, the following thermal condition can be considered:

θ (0, z, t) = F (z, t) = Ê γ̂
(
1 − R̂

)
f (z) g(t), (52)

with f (z) = 2
RG

1√
2π

e−2z2/RG and g (t) = 8t3

v2
e−2t2/v2 .

For laser heating of materials, it is useful to assume a surface source, as shown in Eq. (52), where Ê is
the energy of laser pulse per unit length, R̂ is the surface reflectivity, RG is the radius of the Gaussian beam,
v is the rise-time of laser pulse and γ̂ denotes the extinction coefficient. It is worth mentioning that Ê is the
highest amount of light energy that can be produced by a laser during one of its pulses.

On the surface x = 0, the mechanical boundary conditions are as follows:

σzz (0, z, t) = −P, σxz (0, z, t) = 0. (53)

As the carriers diffuse, they eventually make it to the sample’s surface, where they can undergo recombination
with a certain probability. Therefore, the carrier density boundary condition may be stated as follows:

DE
∂N

∂x

∣∣∣∣
x=0

= s f N (0, z, t) (54)

where s f is the recombination speed near to the surface.
The following equations must be satisfied by parameters C j ( j = 1, 2, 3, 4) are easily obtained by substi-

tuting the solutions of variables under consideration into the boundary conditions:

L1C1 + L2C2 + L3C3 = F (z, t) e−(ωt+iaz) = P1 (55)

R4C4 + R1C1 + R2C2 + R3C3 = −Pe−(ωt+iaz) = −P0 (56)

P4C4 + P1C1 + P2C2 + P3C3 = 0 (57)

G1C1 + G2C2 + G3C3 = 0 (58)

where Gn = Hn
(
DEkn + s f

)

The matrix form presented below can be used to express the previous set of equations:

⎧
⎪⎨

⎪⎩

C1
C2
C3
C4

⎫
⎪⎬

⎪⎭
=
⎡

⎢
⎣

R1 R2
P1 P2

R3 R4
P3 P4

G1 G2
L1 L2

G3 0
L3 0

⎤

⎥
⎦

−1⎧
⎪⎨

⎪⎩

−P0
0
0
P1

⎫
⎪⎬

⎪⎭
(59)

After implementing the matrix inverse procedure, the values of four unknown constantsC j , j = 1, 2, 3, 4j can
be obtained. As a result, the solutions are available for deformations, temperature field and any other physical
variables of the medium.

7 Discussions on the numerical results

By obtaining the mathematical solutions of different physical quantities, their responses will be determined
based on the considered assumptions. The properties of Silicon (Si)material are utilized to illustrate a polymeric
semiconductor element for numerical computations. The following value at T0 = 298K is provided by [43]:

λ = 2.696 × 1010 kgm−1s−2, μ = 1.639 × 1010 kgm−1s−2, ρ = 1740 kgm−3,

K = 2.510Wm−1 K−1, CE = 1.04 × 103 J kgK−1, dn = −9 × 10−31 m3, ω = 2 rad s−1

Eg = 1.5077 eV, DE = 2.5 × 10−3 m2 s−1, s f = 2m s−1, τ = 5 × 10−5 s.

The values of the remaining magnetic parameters are assumed to be:

ε0 = 10−9

36π
Fm−1, μ0 = 4π

107
Hm−1 , H0 = 107

4π
Am−1



and it is also supposed that:

RG = 0.45mm, v = 10 ns , R̂ = 91%, γ̂ = 0.001m−1, Ê = 10 J

Numerical calculationswill be donewithin a very short time, t = 0.2 s.The abovephysical constants canbeused
to describe the distribution of all thermo-optical domains within the semiconducting materials. Furthermore,
at plane z = 0.2, the profiles of the real part of temperature change � (θ) = θ̂ , carrier density � (N ) = N̂ ,
longitudinal displacement � (u) = û and transverse (tangential) displacement � (w) = ŵ, thermal stress
(� (σzz) = σ̂zz and � (σxz) = σ̂xz) are measured as a function of distance x toward the medium’s depth.

7.1 Influence of the laser pulse rise-time parameter

It is known that the rise-time of the picosecond laser pulses is related to both the pulse energy and the spot size,
but it is also related to the maximum laser energy density at the silicon surface. The first set of graphs (1-6)
shows the effect of the laser pulse rise-time parameter v on the studied system variables versus location x for
three different values of v equal to 0.1, 0.2, and 0.3. Boundary requirements are met for all physical quantities,
and all curves coincide as x approaches infinity, as seen in the figures. For the range of distances x between
0 and 10, we find that the rise-time parameter v of the laser pulse has a considerable impact (photothermal
influence).

The numerical results show that the maximum temperature of the structure is constantly located near the
front of the heat wave and gradually declines with rising depth within the medium. The femtosecond laser
creates a strange kind of mechanical force. In contrast to continuous or long-pulse laser heat generation, where
most of the damage comes from the heat treatment process, femtosecond lasers can make high-quality surfaces
with very little damage to other parts. This is because of howmechanical forces are generated and how ultrafast
deformation of lattices works. It is clear from this that the photothermal mechanical model, which takes into
account all these effects, can explain the ultrafast photothermal response over a range of about three orders of
size, from tens of femtoseconds, where electron-to-phonon interactions predominate. Not only that, but it can
also explain such behavior down to tens of picoseconds, where phonon-to-phonon interactions predominate.

Figure 2 displays the fluctuation of the temperature change field θ̂ with distance x for the three examples of
the rise-time of the laser pulse v. This figure exhibits that the change in temperature θ̂ begins with a maximum
positive value at the free surface where the laser pulse is applied and then decreases monotonously, reaching
its minimum value at x = 7, before gradually decreasing to zero. Regarding the effect of the laser pulse time
v on the temperature variation θ̂ , it is noted that the laser pulse rises time factor has a very strong influence
on the temperature behavior. It is obvious from the Figure that by increasing the parameter v, the size of the
temperature field θ̂ becomes larger.

Figure 3 displays the carrier density variation N̂ as a function of space x and the pulse rise-time factor
v. In each scenario, the carrier density N̂ begins with positive values and rises steadily until it reaches its
maximum value. The value then declines until it hits zero. The plasma wave propagation, as calculated by the
recombination processes, is found to begin with positive values for all three situations of v, as assumed at the
surface. Because of this, photo-excitation transport mechanisms make the plasma waves stronger, reaching
their peak close to the surface. As you can see in Fig. 2, the laser pulse rise-time parameter v has a big influence
on the patterns of carrier density N̂ . It is detected that the distribution of carrier density N̂ declines with the
rise of pulse rise-time factor v in the case of the modified 4MGT-PTE photo-thermoelastic theory.

In Fig. 4, we see that the horizontal displacement û starts at a maximum and diminishes with increasing
distance x and time t . As seen in the figure, the rising time of the laser pulse v has an effect on the amplitude
of the component of the displacement û. Several examples of how the tangential component of displacement
ŵ varies with the vertical distance x are shown in Fig. 5. For the values v = 0.101 and v = 0.102, the
displacement ŵ is noticeably larger than it was for v = 0.1, and this is attributed to the existence of the laser
pulse rise-time factor v.

The thermal stress aspects σ̂zz and σ̂xz , and their changes as a function of x , are shown in Figs. 6 and 7,
respectively. For all three values of the pulse rise-time factor v, the response is qualitatively nearly identical.
As the rise-time v of the laser pulse increases, the thermal stress σ̂zz and σ̂xz components grow in absolute
value. In accordance with the boundary criteria, the thermal stress σ̂xz component variation always starts with
zero. In all three scenarios, the stress σ̂zz field first climbs substantially in the early range before gradually
decreasing to zero over time. Also, the initial value of stress σ̂xz is negative and subsequently declines to the



Fig. 2 Variation of temperature θ̂ versus distance x and the laser pulse rise-time v

Fig. 3 Carrier charge density N̂ versus distance x and the laser pulse rise-time v

minimum value. As can be seen in the graph, the rise-time parameter v of the laser pulse has also resulted in
a notable variation in thermal stresses.

It has been shown that valence band electrons in silicon may absorb photon energy and quickly respond
to the transition to the conduction band, resulting in the generation of free electrons [44]. This is achieved
by using a nanosecond laser with an extremely high-power density. We increased the maximum number of
free electrons by using a stronger laser peak power density and shortening the pulse length [45,46]. Silicon
absorbs a lot of laser energy, so its intensity gradually decreases as it goes deeper. The narrower pulse width
is preferred for more effective silicone treatment with a nanosecond laser. This is because a narrower pulse
width results in a larger surface lattice temperature. This numerical analysis can extract important theoretical
considerations for selecting a nanosecond laser.

7.2 Analysis of different models of photothermal

A comparative analysis of the various photo-thermoelastic flexible models will be done in this section. The
second section developed a new framework based on the fourth-order Moore–Gibson–Thomson (MGT) equa-



Fig. 4 Variation of displacement û versus distance x and the laser pulse rise-time v

Fig. 5 The tangential displacement ŵ versus distance x and the laser pulse rise-time v

tion. The following photothermal frameworks can be derived as special cases from the current developed
framework:

• when τq = 0 and K ∗ = 0, the usual photo-thermoelasticity model (CTE-PTE) can be obtained.
• Generalized Lord and Shulman photo-thermoelasticity model (LS-PTE).
• When the part incorporating K in the heat equation (12) is omitted, the photothermal model using the
Green and Naghdi type II (GNII-PTE) can be derived.

• By setting τq = 0 in the heat equation (12), we have the photo-thermoelasticity model using Green and
Naghdi’s theory of type III (GNIII-PTE).

• In the heat equation (12), when τq ,K ∗ > 0 and the second degree of the coefficient τq is neglected, the
third-order MGT photo-thermoelastic model (3MGT-PTE) can be derived.

• When τq ,K ∗ > 0, one has achieved the generalized fourth-order MGT photo-thermoelasticity model
(4MGT-PTE).

This subsection presents a list of numerical results in tables to simplify comparisons between different
thermoelastic models. The tables could be useful in the future for comparisons in subsequent studies. The
results of the differences in the physical photothermal fields will be presented in Tables 1, 2, 3, 4, 5 and 6 and



Fig. 6 The normal stress variation σ̂zz versus distance x and the laser pulse rise-time v

Fig. 7 Variation of tangential stress σ̂xz versus distance x and the laser pulse rise-time v

Table 1 The change in temperature θ̂ versus various photothermal models

x CTE-PTE LS-PTE GNII-PTE GNIII-PTE 3MGT-PTE 4MGT-PTE

0 0.0789221 0.0710299 0.0789221 0.0947065 0.0631377 0.0591916
1 1.31519 0.967239 1.08592 1.42889 0.859764 0.806029
2 0.603624 0.405843 0.458429 0.632967 0.360748 0.338201
3 0.277041 0.170287 0.193528 0.28039 0.151366 0.141905
4 0.127151 0.0714505 0.0816992 0.124206 0.0635114 0.0595419
5 0.0583577 0.0299799 0.0344898 0.0550204 0.0266487 0.0249831
6 0.026784 0.0125792 0.0145601 0.0243728 0.0111815 0.0104827
7 0.0122929 0.0052781 0.0061466 0.0107966 0.0046916 0.00439841
8 0.00564196 0.0022146 0.0025948 0.00478263 0.0019686 0.00184552
9 0.00258945 0.0009292 0.0010954 0.00211859 0.000826 0.00077436
10 0.00118846 0.0003899 0.0004624 0.00093849 0.0003466 0.00032491



Table 2 The variation of displacement û versus various photothermal models

x CTE-PTE LS-PTE GNII-PTE GNIII-PTE 3MGT-PTE 4MGT-PTE

0 0.308286 0.264245 0.286265 0.330306 0.220204 0.198184
1 0.152182 0.130441 0.141312 0.163052 0.108701 0.0978311
2 0.0629635 0.0539687 0.0584661 0.0674609 0.0449739 0.0404765
3 0.0220361 0.0188881 0.0204621 0.0236101 0.01574 0.014166
4 0.00634394 0.0054377 0.0058908 0.00679707 0.0045314 0.00407824
5 0.00141562 0.0012134 0.0013145 0.00151674 0.0010112 0.00091004
6 0.00027984 0.0002399 0.0002599 0.00029983 0.0001999 0.0001799
7 0.00018435 0.000158 0.0001712 0.00019752 0.0001317 0.00011851
8 0.00025531 0.0002188 0.0002371 0.00027355 0.0001824 0.00016413
9 0.00029863 0.000256 0.0002773 0.00031996 0.0002133 0.00019198
10 0.00030777 0.0002638 0.0002858 0.00032975 0.0002198 0.00019785

Table 3 The variation of displacement ŵ versus various photothermal models

x CTE-PTE LS-PTE GNII-PTE GNIII-PTE 3MGT-PTE 4MGT-PTE

0 − 0.02243 − 0.0199373 − 0.0211834 − 0.0249216 −0.0174451 −0.0161991
1 0.766372 0.6812190 0.7237960 0.8515240 0.59606700 0.55349100
2 0.489953 0.4355140 0.4627340 0.5443930 0.38107500 0.35385500
3 0.185277 0.1646900 0.1749830 0.2058630 0.14410400 0.13381100
4 0.032793 0.0291493 0.0309711 0.0364366 0.02550560 0.02368380
5 − 0.01255 − 0.011154 − 0.0118511 − 0.0139425 −0.00975974 −0.00906261
6 − 0.01451 − 0.0128945 − 0.0137005 − 0.0161182 −0.01128270 −0.01047680
7 − 0.00737 − 0.00655484 − 0.00696451 − 0.0081935 −0.00573548 −0.00532580
8 − 0.00224 − 0.00198682 − 0.00211100 − 0.0024835 −0.00173847 −0.00161429
9 − 0.00012 − 0.00010943 − 0.000116273 − 0.0001368 −9.57539E−05 −8.89144E−05
10 0.000334 0.000296709 0.0003152540 0.00037090 0.000259621 0.000241076

Table 4 The values of thermal stress σ̂zz versus different photothermal frameworks

x CTE-PTE LS-PTE GNII-PTE GNIII-PTE 3MGT-PTE 4MGT-PTE

0 −0.1197519 −0.0897303 −0.109142528 −0.1352601 −0.08296117 −0.0762132
1 −0.102853 −0.0857108 −0.0914248 −0.114281 −0.0799967 −0.0742827
2 −0.0093782 −0.00781514 −0.00833615 −0.0104202 −0.00729413 −0.00677312
3 0.0128743 0.0107286 0.0114439 0.0143048 0.0100134 0.00929814
4 0.0103646 0.00863717 0.00921298 0.0115162 0.00806136 0.00748555
5 0.0045409 0.00378409 0.00403636 0.00504545 0.00353181 0.00327954
6 0.00110976 0.000924801 0.000986454 0.00123307 0.000863147 0.00080149
7 −0.0001027 −8.55582E−05 −9.12621E−05 −0.000114078 −7.98544E−05 −7.4151E−05
8 −0.0002754 −0.000229481 −0.00024478 −0.000305975 −0.000214182 −0.00019888
9 −0.0001652 −0.000137687 −0.000146866 −0.000183582 −0.000128508 −0.00011933
10 −5.933E−05 −0.000049438 −5.27338E−05 −6.59173E−05 −4.61421E−05 −4.2846E−05

Table 5 The values of thermal stress σ̂xz versus different photothermal frameworks

x CTE-PTE LS-PTE GNII-PTE GNIII-PTE 3MGT-PTE 4MGT-PTE

0 0 0 0 0 0 0
1 −0.0370219 −0.0308516 −0.0329083 −0.0411354 −0.0287948 −0.026738
2 −0.226204 −0.188503 −0.20107 −0.251337 −0.175936 −0.163369
3 −0.14453 −0.120442 −0.128472 −0.160589 −0.112413 −0.104383
4 −0.0546297 −0.0455247 −0.0485597 −0.0606996 −0.0424897 −0.0394548
5 −0.00965697 −0.00804748 −0.00858397 −0.01073 −0.00751098 −0.00697448
6 0.00370806 0.00309005 0.00329605 0.00412007 0.00288405 0.00267804
7 0.00428046 0.00356705 0.00380485 0.00475607 0.00332925 0.00309144
8 0.00217493 0.00181244 0.00193327 0.00241659 0.00169161 0.00157078
9 0.00065887 0.000549058 0.000585662 0.000732078 0.000512454 0.00047585
10 3.60641E−05 3.00535E−05 0.000032057 4.00713E−05 2.80499E−05 2.60463E−05



Table 6 Carrier charge density N̂ versus various photothermal frameworks

x CTE-PTE LS-PTE GNII-PTE GNIII-PTE 3MGT-PTE 4MGT-PTE

0 0.249642 0.185501 0.2117 0.311908 0.159001 0.145751
1 0.071088 0.0435663 0.0500977 0.079569 0.0373425 0.0342306
2 0.05805 0.034469 0.0396769 0.0638185 0.0295448 0.0270828
3 0.046211 0.0263525 0.0303639 0.0495672 0.0225878 0.0207055
4 0.035821 0.0194163 0.0223921 0.0371912 0.0166426 0.0152557
5 0.026968 0.0137043 0.0158163 0.0268151 0.0117465 0.0107677
6 0.019621 0.00915889 0.0105749 0.0183927 0.00785048 0.00719627
7 0.013679 0.00566304 0.00653723 0.0117702 0.00485404 0.00444953
8 0.008994 0.00307023 0.00353767 0.0067337 0.00263163 0.00241233
9 0.005401 0.0012256 0.0014002 0.0030442 0.00105051 0.000962972
10 0.002728 −2.0225E−05 −4.57167E−05 0.0004611 −1.73353E−05 −1.58907E−05

Fig. 8 The variation of temperature θ̂ versus photo-thermoelasticity systems

the curves in Figs. 8, 9, 10, 11, 12 and 13 with the change of vertical distances if the variable z is held at 0.5
and time at t = 0.12.

From the tables and figures, the numerical results show that the different field quantity patterns are quite
sensitive to the values of the thermal parameters τq and K ∗ as they depend on position and time. Similar
behavior curves are obtained around the half-space surface where boundary conditions apply in the case of
paired and generalized models and theorems (CTE-PTE, LS-PTE, GNII-PTE, GNIII-PTE, 3MGT-PTE, and
4MGT-PTE). The response changes dramatically when we enter the medium’s turbulence region. In contrast
to the generalized versions of the propagation of heat waves, these waves move at an infinite speed in the
classical photothermal theory (CTE-PTE). This model depicts the interaction of a concentrated laser beam
with plasma, heat transfer, and elastic-mechanical waves. Starting with a third-order differential equation and
expanding into various concerns relevant to fluid mechanics, the 3MGT-PTE and 4MGT-PTE theories were
constructed. When a relaxation factor was taken into account in type III heat transfer, the resulting equation
was seen as a thermal conduction equation.

Table 1 and Fig. 8 represent the change in temperature θ̂ , we have a prominent contrast between the
generalized 3MGT-PTE and 4MGT-PTE theories and GNIII-PTE predictions. The numerical results show that
the values for the GNIII-PTE model are greater than for the 3MGT-PTE and 4MGT-PTE photo-thermoelastic
models. This proves that the proposed model is correct since it predicts that waves will have limited speeds,
while the GNIII-PTE photo-thermoelastic model predicts the opposite. It is also noted that the results of the
LS-PTE, 3MGT-PTE, and 4MGT-PTE photothermal models are similar. The reason for this is the introduction
of the thermal relaxation time τq into the heat conduction equation (12).



Fig. 9 Change in displacement û versus photo-thermoelasticity systems

Fig. 10 Change in displacement ŵ versus photo-thermoelasticity systems

From the numerical results given in Tables 1, 2, 3, 4, 5, and 6 and also Figs. 8, 9, 10, 11, 12 and 13. The
results of the GNIII-PTE generalized photo-thermoelasticity show that they are very different from the ones
employed in the GNII-PTE photo-thermoelasticity theory, which relies on a more conservative approach to
energy dissipation. Unlike other generalized photo-thermoelastic concepts, the results of the GNIII-PTEmodel
show convergence with the conventional thermoelastic framework CTE-PTE, which does not dissipate heat
quickly inside the body, inconsistent with physical phenomena. This is in good agreement with the predictions
made by Quintanilla [21,22]. If incorporated into LS-PTE, 3MGT-PTE and 4MGT-PTE photothermal models,
the relaxation coefficient might provide more evidence of a temperature reduction. This phenomenon was
verified through a series of papers presented by Abouelregal, for example, in [23–26].

It should be noted that the analysis of the third- and fourth-order equations is very different from the
analysis of the second-order equation (the traditional photothermal equation (τq = 0)), in which the positive
thermal relaxation coefficient provides a regulating effect. This is no longer true for quadratic equations of the
parabolic type, requiring a different type of analysis than for quadratic equations in thermodynamic equations.

Table 2 and Fig. 9 display the variation in the displacement û as a function of distance x . The displacement
starts at the lowest, rises to the highest, and finally falls back to zero. When comparing the MGTE conceptual



Fig. 11 Change in thermal stress σ̂zz versus photo-thermoelasticity systems

Fig. 12 Change in thermal stress σ̂xz versus photo-thermoelasticity systems

framework to the CTE-PTE photo-thermoelastic model, it is shown that the degradation of the displacement
occurs more quickly under the 3MGT-PTE and 4MGT-PTE photo-thermoelastic concepts. The GNIII-PTE
theory also has a larger displacement than the 3MGT-PTE and 4MGT-PTE frameworks. Also, it was found that
the GNIII-PTE, CTE-PTE, 3MGT-PTE, and 4MGT-PTE photo-thermoelastic systems had larger displacement
values than the GNII-PTE and LS-PTE systems.

For various photothermal systems, the dispersion behavior of the elastic wave of the displacement ŵ pattern
versus vertical distance is shown in Table 3 and Fig. 10. In the initial frequency band, the elastic waves are at
their highest point and drop dramatically. In contrast, in the second range, the elastic wave first decreases to
a minimum value within the photothermal semiconductor half-space before growing again and continuing in
this manner until it finds a steady state.

The thermal stress, σ̂zz , varies as a function of radial distance x as shown in Table 4 and Fig. 11. After
increasing it progressively from zero, the maximum negative value is obtained. The reason for this is due to the
light energy absorbed in the course of photo-excitation processes. Also, the GNIII-PTE photo-thermoelastic
model is demonstrated to have a bigger σ̂zz amplitude than any of the alternatives. It is evident from both the
table and the Figure that the stress σ̂zz profile will decrease when the relaxation constant is present. In the
case of the 3MGT-PTE and 4MGT-PTE systems, the generalized thermal elasticity shows that the waves travel



Fig. 13 Change in carrier charge density N̂ versus photo-thermoelasticity systems

at finite speeds (Fig. 11 and Table 4). In line with the dynamic stretching phenomenon described above, the
tensile stress zone may be observed to grow while the compressed area shrinks.

For an examination of the relationship between the collar stress σ̂xz and x for a variety of thermoelastic
models, see Table 5 and Fig. 12. From the numerical results, it can be seen that, according to the concept of
modified 3MGT-PTE and 4MGT-PTE photo-thermoelastic models, the mechanical waves of the transverse
stress σ̂xz field travel at finite velocity rates within the half-space in the case of a faster 4MGT-PTE photo-
thermoelastic model than in the case of other models. This mechanical wave pattern versus vertical distance
for various values of the normal stress distribution σ̂xz is depicted in Fig. 12. When applied to a semiconductor
surface, the photothermal thermal stress profile is shown to be in accordancewith the freemechanical condition.
However, in the case of photo-excitation mechanisms, the absorbed optical energy sets the stress distribution
to zero. The photothermal stress profile has a minimal value close to the surface and then steadily grows
and drops in the second range, eventually reaching a steady state deep into the semiconductor material. It is
consistent with physical assumptions that the wave propagations in the various modified photo-thermoelastic
models occur at limited speeds.

As shown in Fig. 13 and Table 6, the curves corresponding to different carrier densities N̂ show the
same behavior with different magnitudes. Based on this graph, the fourth-order Moore–Gibson–Thompson
photothermal model (4MGT-PTE) provides the most accurate description of wave propagation in terms of pho-
tothermal elastic theory. The carrier density profiles in the 4MGT-PTE photo-thermoelastic theory are much
lower in magnitude than those in the CTE-PTE, GNIII-PTE, CTE-PTE, and 3MGT-PTE photo-thermoelastic
models. Many contemporary physical issues have solutions that can be found in the MGPT model of the ther-
moelastic theory of images. On the other hand, the physical field distributions studied in thermo-photovoltaic
problems are highly dependent on the 3MGT-PTE and 4MGT-PTE frameworks. All photo-thermoelastic mod-
els assume positive values at the surface, as the recombination processes require. Hence, the dispersion of
plasma waves is also assumed to be positive, to begin with. Because of this, photo-excitation transport mech-
anisms make the plasma waves stronger, reaching their peak close to the surface.

It was found that, except for the case of totally degenerate plasma waves at very high temperatures, the
relaxation time and the coupling term make the signal weaker and must be considered for accurate measure-
ments of lifetimes and electronic diffusivities. This model has several potential uses in mechanical engineering
and alternative energy. Insights gained from this study may help scientists greatly in their quest to improve
semiconductor production processes.

8 Concluding remarks

One of the most emerging areas in the field of thermoelasticity is the generalized theory of elasticity with
photothermal excitations. Only a few studies corresponding to this hypothesis can be found in the literature.



Since the laser source is limited in width and duration, a thermoelastic model was used to predict these
factors. The current study investigated the time-dependent behavior of semiconductor materials with long-
range thermoelastic properties and the laser pulse was used to heat the semiconductor material. Since the
earlier models somehow fail to predict such materials’ behavior appropriately, a new thermoelastic model
based on the fourth-order Moore–Gibson–Thompson equation was developed and examined. The proposed
thermomechanical model was integrated by combining a hyperbolic partial differential equation for a shift in
the displacement field and a similar differential equation for a temperature rise.

The above analysis helped us to conclude that there is a certain region in the semiconductor medium in
which all physical variables are non-zero. The numerical values also disappeared uniformly outside this region,
indicating no thermal disturbance. The behavior of all physical variables changed due to the presence of a
photothermal excitation. According to the temperature profiles, the heat in the medium traveled across it like
a wave. It was concluded that the extended thermoelastic theory without energy dissipation is extremely near
to the physical properties of elastic materials, confirming that the heat wave front advances at a finite rate in
the material as time progresses.

It was established that the rising time of the laser pulse is a crucial element that affects all other fields
in a meaningful way. Silicon absorbs a lot of laser energy, so its intensity gradually decreases as it goes
deeper. The narrower pulse width is preferred for a more effective silicone treatment with a nanosecond laser.
A narrower pulse width results in a larger surface lattice temperature. The reported numerical analysis can
extract important theoretical considerations for selecting a nanosecond laser. The distribution of heat stress in
the irradiated material is controlled by the amount of heat given in a single laser pulse and how this heat is
dispersed in time. Due to the presence of heat stresses, cracking in the material’s surface and depth can greatly
reduce its ability to tolerate the thermal environment appropriately. For material processing applications where
the localized microstructural changes are required at the surface, understanding the effect of heat stress field
in a laser irradiated material is crucial (as in laser hardening). Predicting a material’s heat stress profile can
help fine-tune the other important parameters, such as pulse repetition rate, pulse train duration, peak strength
per pulse and depth of focus.
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14. Chirilă, A., Marin, M., Montanaro, A.: Well-posedness for thermo-electro-viscoelasticity of Green–Naghdi type. Contin.

Mech. Thermodyn. 34, 39–60 (2022)
15. Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Gurtin’s variational principle in thermoelasticity without

energy dissipation of dipolar bodies. Contin. Mech. Thermodyn. 32, 1685–1694 (2020)
16. Del Piero, G.: A mechanical model for heat conduction. Contin. Mech. Thermodyn. 32, 1159–1172 (2020)
17. Abouelregal, A.E., et al.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with

varying heat flow based on non-local Moore–Gibson–Thompson approach. Contin. Mech. Thermodyn. 34, 1067–1085
(2022)

18. Jalaei, M.H., Thai, H.T., Civalek, Ö.: On viscoelastic transient response of magnetically imperfect functionally graded
nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)

19. Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 9, 686–693
(1995)

20. Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Differ. Equ.
259, 7610–7635 (2015)

21. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)
22. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)
23. Abouelregal, A.E., et al.: Thermoelastic processes by a continuous heat source line in an infinite solid via Moore–Gibson–

Thompson thermoelasticity. Materials 13, 4463 (2020)
24. Aboueregal, A.E., Sedighi, H.M.: The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular

cylinder under the Moore–Gibson–Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
235, 1004–1020 (2021)

25. Alfadil, H., et al.: Effect of the photothermal Moore–Gibson–Thomson model on a rotating viscoelastic continuum body
with a cylindrical hole due to the fractional Kelvin–Voigt model. Ind. J. Phys. (2022). https://doi.org/10.1007/s12648-022-
02434-9

26. Abouelregal, A.E., Ersoy, H., Civalek, O.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with
a cylindrical hole. Mathematics 9, 1536 (2021)

27. Lotfy, K., Ahmed, A., El-Bary, A., Tantawi, R.S.: A novel stochastic model of the photo-thermoelasticity theory of the
non-local excited semiconductor medium. Silicon (2022). https://doi.org/10.1007/s12633-022-02021-x

28. Sharma, N., Kumar, R.: Photo-thermoelastic investigation of semiconductor material due to distributed loads. J. Solid Mech.
13, 202–212 (2021)

29. Kaur, I., Singh, K., Craciun, E.-M.: A mathematical study of a semiconducting thermoelastic rotating solid cylinder with
modified Moore–Gibson–Thompson heat transfer under the Hall effect. Mathematics 10(14), 2386 (2022)

30. Alzahrani, F.S., Abbas, I.A.: Photothermal interactions in a semiconducting media with a spherical cavity under hyperbolic
two-temperature model. Mathematics 8(4), 585 (2020)

31. Gafel, H.S.: Fractional order study of the impact of a photo thermal wave on a semiconducting medium under magnetic field
and thermoplastic theories. Inf. Sci. Lett. 11, 629–638 (2022)

32. Ahmed, E.A.A., El-Dhaba, A.R., Abou-Dina, M.S., Ghaleb, A.F.: On a two-dimensional model of generalized thermoelas-
ticity with application. Sci. Rep. 12, 15562 (2022)

33. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H.: Temperature-dependent physical characteristics
of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Facta Univ. Ser. Mech. Eng. 19(4),
633–56 (2021)

34. Fahmy,M.A.:A novel BEM formodeling and simulation of 3T nonlinear generalized anisotropicmicropolar-thermoelasticity
theory with memory dependent derivative. Comput. Model. Eng. Sci. 126(1), 175–99 (2021)

35. He, C.H., Liu, C., He, J.H., Mohammad-Sedighi, H., Shokri, A., Gepreel, K.A.: A fractal model for the internal temperature
response of a porous concrete. Appl. Comput. Math. 21(1), 71–77 (2022)

36. Atta, D.: Thermal diffusion responses in an infinite medium with a spherical cavity using the Atangana-Baleanu fractional
operator. J. Appl. Comput. Mech. 8(4), 1358–1369 (2022)

37. Gu, B., He, T., Ma, Y.: Scale effects on thermoelastic coupling wave propagation of micro-beam resonator using nonlocal
stain gradient and generalized thermoelasticity. Int. J. Appl. Mech. 13(09), 2150103 (2021)

38. Sladek, J., Sladek, V., Repka, M.: The heat conduction in nanosized structures. Phys. Mesomech. 24, 611–617 (2021)
39. Govindarajan, S.G., Solbrekken, G.L.: Non-dimensional thermoelastic model of a compound annular cylinder in a stress-free

state with internal heat generation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(19), 4314–26 (2021)
40. Awwad, E., Abouelregal, A., Hassan,A.: Thermoelasticmemory-dependent responses to an infinitemediumwith a cylindrical

hole and temperature-dependent properties. J. Appl. Comput. Mech. 7(2), 870–882 (2021)
41. Chen, W., Ikehata, R.: The Cauchy problem for the Moore–Gibson–Thompson equation in the dissipative case. J. Differ.

Equ. 292, 176–219 (2021)
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