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A B S T R A C T

Workplace safety is a prominent concern, motivating researchers across diverse disciplines to investigate
valuable ways to address its challenges. However, creating an efficient system to address this issue remains a
significant challenge. Since many accidents happen due to improper usage or complete removal of Personal
Protective Equipment (PPE), one straightforward method for enhancing workplace security involves monitoring
their usage This paper introduces an Operator Area Network (OAN) system which improves the existing
solutions by increasing portability across different users and environments, non-intrusiveness and privacy.
To enhance robustness in detecting the situations in which PPEs are not used correctly, we take advantage
of Machine Learning to analyse the received signal strength indicator (RSSI) between PPEs in the same OAN
The novelty of this work is that it does not exploit RSSI as a proxy of the distance but instead recognizes a
signature of the correct wearing of the PPE By employing this system, employers can effectively ensure the
proper usage of PPE devices at their worksites while also minimizing any adverse effects on workers’ comfort
and reducing the setup burden for employers. The system runs a Support Vector Machine (SVM) model several
times per second and employs a post-processing algorithm to enhance its initial accuracy further As a result,
the system effectively reduces false positives by about 80% and swiftly detects instances of improper usage of
the worker’s PPE, raising the alarm in less than seven seconds. Moreover, the post-processing algorithm can
be customized to meet the specific needs of different use cases, allowing for a flexible trade-off between the
detection time interval and the overall accuracy of the detection system.
1. Introduction

Ensuring workers’ well-being, health and work performance re-
quires appropriate working conditions and organizational structures
(Davidescu et al., 2020). Specifically, safe and hygienic working con-
ditions significantly impact both work quality and life outside the
workplace (Greubel et al., 2016; Haar et al., 2014). Various legislation
and initiatives reinforce these aspects, including the European Parlia-
ment Resolution of 10 March 2022 on a new EU strategic framework for
health and safety at work after 2020. Despite these efforts, workplace
safety remains a substantial challenge in modern society, as evidenced
by statistics on workplace accidents (Eurostat, 2022). Furthermore,
the study exploring disparities in working conditions among Euro-
pean Union member states, employing quantitative methodologies like
TOPSIS and K-means (Tutak et al., 2022), underscores the need to
focus on improving workplace safety. Addressing variations in working
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conditions, which encompass the effective utilization of PPE (Personal
Protective Equipment), represents a fundamental element of workplace
safety. Given the ongoing imperative to ensure workers’ health and
safety, a clear call exists to investigate novel approaches for monitor-
ing PPE compliance. Embracing advanced monitoring technologies for
PPE usage can offer valuable insights into safety protocol adherence,
thus empowering organizations and policymakers to make informed
decisions to elevate workplace safety standards and safeguard workers’
well-being.

Workers are required to wear appropriate PPE as a first line of
protection, in order to prevent workplace accidents from causing se-
vere physical harm (Ammad, Alaloul, Saad, & Qureshi, 2021). Despite
this, workers often do not comply with the use of PPE for various
reasons, such as feeling uncomfortable during activities and lack of
awareness (Li, Li, Luo, & Siebert, 2017; Wong, Man, & Chan, 2020).
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Manually monitoring the use of PPE is a complex task, and it
becomes increasingly difficult as the number of workers or the size
of the workspace increases. For these reasons, it is crucial to define
techniques for automatically monitoring PPE usage, alerting operators
whether they do not use the safety equipment correctly, and reporting
hazardous situations. Accordingly, in the last decades, academia and
industry proposed various methods and technologies to control the
observance of these security measures.

Early approaches proposed the usage of wired sensors to monitor
the PPEs (Barro-Torres, Fernández-Caramés, Pérez-Iglesias, & Escudero,
2012), which were not comfortable for the operators. More recent
works were based on less invasive solutions, such as checking PPE
correct wearing only at the entrance to the workplace (Hayward, van
Lopik, & West, 2022; Kelm et al., 2013). However this fails in providing
a continuous monitoring during all working hours and in specific
dangerous areas. More recent device-free methods exploit camera-based
solutions to reduce the impact on the operators work (Delhi, Sankarlal,
& Thomas, 2020; Gu, Xu, Wang, & Shi, 2019; Wu, Cai, Chen, Wang, &
Wang, 2019; Xiong et al., 2022). Nevertheless, this approach presents
some relevant drawbacks, like requiring an extensive setup on the
worksite in order to provide it with closed-circuit television.

In light of these aspects, to carry out automatic monitoring, it is nec-
essary to achieve numerous, often conflicting goals, such as reducing
the impact on workers, maximizing site independence, increasing accu-
racy in detecting hazardous events, and reducing the number of false
alarms. In addition, it is necessary to develop cost-effective technical
solutions compatible with current labour safety and privacy regulations
since most construction small and medium-sized enterprises face barri-
ers to the digital transformation of their processes due to budget con-
straints (Yilmaz, Salter, McFarlane, & Schönfuß, 2023). Consequently,
monitoring the use of PPE is still an open problem, as evidenced by the
growing number of published scientific works (Asadzadeh et al., 2020).

In this research paper, we address the following research questions
(RQ): RQ1 — Can the Received Signal Strength Indicator (RSSI) of
Bluetooth devices be effectively utilized in monitoring systems for
assessing the usage of Personal Protective Equipment (PPE)? RQ2 —
Is it feasible to develop a straightforward learning methodology that
can readily adapt to diverse application scenarios and detect anomalous
conditions in the relative distance between two devices based on the
RSSI signal? In order to answer these questions, we propose a cost-
effective approach for monitoring PPE usage, which improves the
existing solutions by increasing portability across different users and
environments, non-intrusiveness and privacy. To achieve this target,
we base our solution on an Operator Area Network (OAN) of PPEs
equipped with low-cost and low-power Bluetooth Low Energy (BLE)
devices. The objective is to detect the correct PPE usage by leveraging
the Received Signal Strength Indicator (RSSI). More specifically, we
exploit the correlation between the RSSI of all PPEs in the OAN by
identifying a signature of the correct wearing of PPEs. RSSI information
is directly used to perform detection rather than being used for distance
estimation.

To recognize this signature, we use machine learning (ML) to pro-
cess the input RSSI from PPEs in the same OAN. While an ML approach
requires an initial training procedure, it provides the following advan-
tages: (i) It efficiently combines the information from multiple PPEs
to recognize not only the proximity of PPE but also its correct usage;
(ii) It makes our approach more robust to environmental and operator
conditions (e.g. body shape, position, etc.), as well as transceiver
orientation.

We explored different machine learning algorithms (i.e. support
vector machine, isolation forest, and support vector machine with
stochastic gradient descent) deployed to the gateway node (in 3.2 we
refer to it as ‘‘primary device’’) that, in the current implementation,
is embedded in the operator belt. The processing is thus local to
overcome connectivity problems that may be frequent in workplaces
and to enforce privacy preservation.

In response to the aforementioned research questions, this article’s
2

primary contributions are as follows:
• We define the requirements for a PPE monitoring system that
overcomes open challenges in the state of the art, such as being
easily configured at the worksite and minimally impacting the
work of the operators. Accordingly, we design a system archi-
tecture that meets the requirements defined using two types of
devices composing the OAN, namely primary and secondary.

• We compare different ML algorithms for processing data of PPEs
in the OAN to detect PPE misuse. We find that SVM is the
best solution for the considered use case in terms of a trade-off
between false positives and false negatives. The resulting model
exhibits an accuracy of 88.1% with an F-measure equal to 90.2%.
It proved to be effective in various scenarios, such as the different
physical characteristics of the operators wearing the PPE devices
and different environments.

• We defined and implemented a strategy to let the system designer
tune the trade-off between two contrasting requirements: the ac-
ceptable number of false positives and the time delay for receiving
notifications following a detection event.

• We designed and tested the OAN by applying it to a specific
use case involving monitoring the operator’s helmet and shoes.
Through experimentation, we demonstrated that the method ef-
fectively minimizes false positives by accepting a 6-second delay
between the operator’s helmet removal and the event detection.

• We released a dataset containing data from the RSSI measure-
ments taken from the testing of our subjects placed in the same
environmental conditions while performing regular movements.
In addition, we release the dataset we use to test the machine
learning algorithm (Firmware and dataset repository).

• We released the firmware’s source code developed for executing
the proposed task on the target IoT devices (Firmware and dataset
repository).

The rest of this paper is organized as follows: Section 2 overviews
the methods and technologies exploited in the paper and introduces re-
lated works. Section 3 presents the system’s design. Section 4 describes
data collection and processing to implement the proposed algorithms.
Section 5 presents the experimental findings. Section 6 discusses the
results. Finally, Section 7 concludes the work and discusses future
developments for improving our framework.

2. Background and related work

In this section, we present the technical background helpful in
understanding the article’s content (Section 2.1) and provide an intro-
duction to literature related to our work (Section 2.2).

2.1. Background

Bluetooth Low Energy (BLE) (Heydon & Hunn, 2012) is a Wireless
Personal Area Network (WPAN) technology that aims to define a ver-
sion of Bluetooth that can operate with low energy consumption and
detect small amounts of data. In this work, we exploit BLE to decide
whether PPEs are realistically worn. More specifically, we exploit the
Received Signal Strength Indicator (RSSI) (Wu, Lee, Tseng, Jan, &
Chuang, 2008), a measure of radio signal strength calculated in dBm.
Since the power varies depending on the proximity to the signal source,
the closer the RSSI value is to 0, the smaller the distance between the
two devices.

Despite the fact that several factors influence the value of RSSI
(such as the multipath effects caused by the reflection and dispersion
of radio signals in the environment) (Pu & Chung, 2008), various
works develop formulas and techniques for translating RSSI values
into distance measurements (Kumar, Reddy, & Varma, 2009; Pascacio,
Casteleyn, & Torres-Sospedra, 2021). The state-of-art shows that BLE
is widely used for tracking and localization tasks by leveraging the
RSSI (for instance, Ji, Li, Zhu, and Liu (2022), Thaljaoui, Val, Nasri,
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and Brulin (2015), Wang, Yang, Zhao, Liu, and Cuthbert (2013)). Such
works often focus on static conditions, e.g., continually operating in
the same indoor environment and using fixed landmarks (anchors), and
the combination of body area networks and anchors has already been
successfully employed in other industrial use cases, such as studying
human processes in manual manufacturing (Pilati & Sbaragli, 2023).

However, in the use case of PPE usage monitoring, many additional
dynamic factors affect the RSSI value. The first one, since we are
constructing a body area network, is the different physical characteris-
tics of human bodies (Parmar, Kelly, & Berry, 2022). Another factor
is the movements performed during work activities (Booranawong,
Jindapetch, & Saito, 2018). Finally, various workplaces have different
configuration of the environment (walls, physical obstacles, etc.) that
affects signal refraction differently.

Consequently, in our context, the RSSI value alone between two
IoT devices is insufficient to accurately calculate the distance between
them. In order to develop an effective method of evaluating PPE use,
it is necessary to construct an approach that considers all the factors
mentioned and adjusts for their changes in real time. Obtaining a
heuristic that exactly solves the problem is challenging. Accordingly,
in this paper, we use machine learning to develop an algorithm able
to analyse simultaneously all RSSI values of the same OAN and to
determine the correct use of PPE. Other work has already successfully
employed artificial intelligence in the RSSI processing (Singh, Choe, &
Punmiya, 2021).

2.2. Related work

The scientific literature on PPE monitoring covers different methods
and techniques. Earlier, IoT solutions for PPE monitoring used a Body
Area Network (BAN) with RFID or cables. For instance, Barro-Torres
et al. (2012) required workers to wear a BAN with RFID sensors,
ensuring real-time PPE positioning. But this system had cables that
hindered mobility. In contrast, our approach allows free movement
with BLE communication, removing the need for cables. Sole, Musu,
Boi, Giusto, and Popescu (2013) proposed a two-network architecture:
a BAN with RFID-tagged PPE and fixed nodes using RFID readers. How-
ever, this setup increased costs and time for larger workplaces. Kelm
et al. (2013) and Hayward et al. (2022) introduced a smart portal at
workplace entrances using RFID tags on PPEs. However, this approach
cannot be considered continuous monitoring. Recent developments
use real-time cameras and computer vision to detect PPE use. For
example, Gu et al. (2019) and Delhi et al. (2020) improved the accuracy
of safety-helmet and safety-vests detection using transfer learning and
Region-Based Convolutional Neural Networks. These camera-based so-
lutions require prior setup and are susceptible to occlusions and adverse
weather. Other works suggest BANs using wireless technology like WiFi
and BLE, aligning with our BLE-based approach. Abbasianjahromi and
Sohrab Ghazvini (2021) used magnetic sensors, Yang, Yu, Shirowzhan,
sepasgozar, and Li (2020) automated PPE-tool coupling alerts, Kim,
Wang, Min, and Lee (2018) focused on safety-helmet detection with ac-
celerometers, and Booranawong et al. (2018) tracked humans with RSSI
indoors. Some recent works like Campero-Jurado, Márquez-Sánchez,
Quintanar-Gómez, Rodríguez, and Corchado (2020) introduced smart
helmets for environmental monitoring but did not verify PPE use. In a
similar way, Rescio et al. (2023) proposed a wearable system to monitor
worker stress, but not PPE use. In the category of active monitoring and
personal instrumentation, our approach excels in adaptability, noise
handling, scalability, and simplicity. It does not need specialized sen-
sors or complex remote systems and maintains user privacy. Although
a quantitative comparison of these works is not possible, we provide a
3

more detailed analysis in Section 6.6. c
3. Our proposal

This section describes the solution we propose. First, Section 3.1
identifies the problem requirements. Then, Section 3.2 presents the
system design we carry out per the specified requirements. Section 3.3
delves into the design of IoT devices. Finally, Section 3.4 discusses the
implementation of our solution.

The architecture as a whole adheres to the principles of the comput-
ing continuum, encompassing both cloud and edge components. This
design offers notable benefits in terms of enhancing safety measures.
By effectively utilizing the computing continuum, the system enables
intelligent analysis, thereby facilitating the identification of workplaces
or scenarios with a higher frequency of improper PPE usage. This
valuable insight empowers organizations to develop targeted safety
improvement interventions, effectively mitigating risks and cultivating
a safer working environment.

3.1. System requirements

The paper seeks to present a solution for the automated monitor-
ing of Personal Protective Equipment (PPE) usage while minimizing
disruption to operators’ daily activities and regular work processes.
Specifically, we have chosen to focus on monitoring the usage of safety
helmets and safety shoes. To attain the stated goal, the solution needs
to meet the following specified requirements:

Efficacy The system must be able to recognize when the target PPEs
are being worn or not. Achieving this goal requires determining
what metrics should be used to assess whether the system can
correctly identify usage.

Usability The solution must minimize workers’ hindrances; for in-
stance, avoid wearing devices connected through wire networks
or large devices that impede workers’ movements while per-
forming activities.

Portability The solution must be workplace independent, i.e. it must
avoid the need for initial workplace configuration. Workers
should have a plug-and-play tool without requiring additional
expensive operations that depend on the workplace, such as
installing a network of cameras or configuring a network of
anchor devices.

Scalability The solution must be able to adapt as the data grows, for
example, as the number of operators constituting a work team
increases or as the number of teams in the same workplace
grows.

Traceability When an alarm occurs, such as failure to use PPE, the
system must notify the operator and record the event to allow
future analysis of the work session.

Privacy-preserving The solution should be limited to collecting the
minimum data essential to achieve the project goal (i.e., verify-
ing PPE use) without collecting additional data on the worker.
It is crucial to find the balance between security supervision and
respect for the worker’s privacy.

.2. System architecture

This section describes the system design process: Fig. 1 and shows
he general architecture of our system: we detail each architecture

omponent below.



Expert Systems With Applications 238 (2024) 122285A. Pisu et al.
Fig. 1. Hierarchical Architecture of the IoT System. This diagram illustrates a layered
structure wherein the base consists of numerous sensors responsible for collecting and
transmitting substantial volumes of data. These data are then forwarded to the layer
above, which represents edge devices. The edge devices, in turn, process the data and
transmit a refined dataset to the subsequent layer: fog layer. The latter is responsible
for orchestrating the operations of the edge devices and transmits only essential data
to the apex of the hierarchy, symbolizing the cloud.

Sensors Layer The bottom layer of our architecture is responsible for
identifying workers’ PPEs and collecting the necessary data for
monitoring. This layer comprises some IoT devices we develop,
which we define as secondary devices and are placed on each
PPE. Each worker wears three secondary devices (thus three
sensors), which are placed, respectively, on the helmet and on
each shoe. These devices are connected by means of Bluetooth
Low-Energy to a device of the edge level. Cable-free communi-
cation and small devices contribute to achieving our Usability
requirement.

Edge Layer The goals of the edge layer are to process data from the
sensors layer, calculate whether PPEs are being worn correctly,
and communicate related events both to the operator and re-
motely. This layer comprises an IoT device we develop, which
we define as primary device and is placed on the worker’s belt.
We decided to set the primary device on the belt for several
reasons. First, the workers are more likely to remove their hel-
mets or shoes than their work belts. In addition, the belt is more
suitable for hosting a bigger edge device than other PPEs and,
due to its position in the human body, can easily accommodate
user interaction tools such as displays or buzzers. The primary
device collects RSSI values that measure the signal strength of its
associated secondary devices (i.e., helmet and operator’s shoes).
Then, through our algorithm, it determines whether the devices
are worn correctly. More specifically, in order to achieve our
first requirement, Efficacy, we develop an AI-based algorithm
that mitigates signal errors and processes the signals of all
secondary devices in a combined manner. We deeply describe
our algorithm in Section 3.4. The primary device continuously
detects secondary ones, thus producing the system’s raw data.
At the same time, it runs the system’s business logic locally,
producing an output that requires much less bandwidth to be
transmitted rather than transmitting raw data. It is worth noting
that the reduction of the amount of data propagated through
the different layers also lowers the burden on communication
modules, reducing their power consumption. While reducing
the amount of data exchanged between upper layers, the edge
layer also prevents propagating privacy-sensitive data from the
secondary nodes upwards. Our design choices aim to meet the
requirements of Scalability and Privacy-preserving.

Fog Layer Since a workplace generally involves several workers, the
goal of the layer is to act as a bridge between the workers
4

Fig. 2. Schematic of the primary node device prototype.

and the cloud. The fog layer is responsible for collecting the
messages it receives from each worker’s primary device and
sending them to the cloud. This layer comprises a device we
define as a central unit placed in the work site. In this way, the
primary devices do not have a load of transmitting data to the
cloud, so it is possible to reduce their components, consumption
and size. Each edge device communicates with the central unit
by means of a WiFi connection, avoiding cabled communication
in the worksite and achieving the Portability requirement.

Cloud Layer The cloud layer aims to collect field-generated events
and save them permanently, providing a comprehensive view
of workplace data as required by the Traceability requirement.
In this way, the system enables intelligent analysis aimed at
improving safety. For example, it is possible to identify whether
there are any workplaces or situations where there is a higher
frequency of incorrect PPE use and design safety improvement
interventions.

3.3. Device design

Within the designed architecture, this work also designs, develops,
and tests the primary and secondary devices and the AI algorithm. In
this section, we focus on presenting the design of the primary nodes
(Edge layer) and secondary nodes (Sensors layer).

We design two types of IoT devices which we call, respectively,
primary and secondary devices. The secondary devices are low-power
devices attached to the PPEs to be monitored: precisely, we mount one
IoT device to each PPE. The primary device collects information from
the secondary devices, processes it, communicates with the operator,
and shares it with the remote components. Accordingly, there is only
one primary device for each operator. We deploy our primary device on
the safety belt and the secondary devices on the helmet and protective
shoes. In particular, the selected PPEs become IoT nodes by means
of the application of an IoT device on top of them. As a result, four
IoT nodes form the Body Area Network (BAN) of each worker. Given
the peculiarities of primary and secondary devices, they differ both in
hardware and software components.

Hardware We design two slightly different prototypes for the two
types of nodes. Each prototype has a lithium battery with a
charging circuit, so it can be recharged when the device is
not worn and ensure sufficient autonomy of use. Moreover, we
select small devices so they are light enough and do not cause
problems in daily tasks. Both prototypes use TinyS3, a develop-
ment board incorporating the ESP32-S3, a Bluetooth 5 module
with Bluetooth Low Energy + Mesh, a 2.4 GHz WiFi module,
a USB-C connector and a low-power RGB LED. Considering the
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test scenario of operators at work, the two prototypes differ in
achieving different purposes in the BAN. The primary node must
be capable of communicating messages to the worker wearing
it to warn him of situations in which he is not wearing the
protective equipment correctly. For this reason, the prototype of
the primary node, which we illustrate in Fig. 2, includes a small
OLED display and a buzzer that can easily communicate visually
and audibly with the user. Although our use case does not
involve the operator using hearing-restrictive PPE, we highlight
that alarms are currently notified by sound and as a visual mes-
sage on the OLED screen. Moreover, extending the IoT device
to include alternative signalling mechanisms is possible. These
alternatives may include vibrators, vibrating bracelets, or more
conspicuous flashing lights to ensure effective communication.
In addition, it must have a button to switch off the alarm
that warns of a dangerous situation. On the other hand, the
secondary device prototype is more basic and only possesses the
battery, charging circuit and TinyS3. Indeed, since this type of
device must be applied to PPEs, we minimize its size to reduce
its impact on operators.

Firmware We evaluate different protocols and processors for design
and prototype development to identify which suits the specific
project requirements best. In order to realize this vision, we
choose two communication protocols: WiFi and BLE. We choose
BLE for the detection of secondary devices by the primary node.
This technology saves energy while providing enough range and
a good broadcasting frequency. We exploit WiFi for sending data
from the primary node to the backend, allowing sending data
efficiently and with a more extensive range than others. There-
fore, the hardware we choose simultaneously allows the use of
BLE and WiFi while running the business logic that governs the
generation of events. On the other hand, the backend can be any
system able to act as a WiFi gateway for receiving data from
primary nodes.

AI Software As previously explained, the business logic behind the
emission of PPE-related events relies on the RSSI signals ac-
quired from secondary nodes by the primary node. We integrate
machine learning algorithms because it is challenging to predict
all situations in which a device is worn incorrectly or not at all,
as RSSI values can vary due to different factors. In the system we
propose, the execution of machine learning algorithms occurs
in the primary device (thus at the edge level), which calculates
the RSSI value of all secondary devices. Moreover, running the
algorithm at that level avoids transmitting real-time data to the
higher layers, mitigating problems such as poor connectivity,
service delays, and privacy leakage vulnerabilities.

3.4. Implementation

In this section, we discuss the hardware and software components
developed to implement the proposed system.

In order to meet all the PPE nodes requirements, we choose to
use the Unexpected Maker’s TinyS3 development board, which is built
around the ESP32-S3 System On Chip (SoC) (ESP, 2023). The ESP32-S3
SoC supports Bluetooth Low Energy 5.0 (BLE) and implements a high-
gain 3D ceramic antenna. Thanks to its characteristics, our hardware
can transmit Bluetooth packets with an advertisement interval of only
20 ms, with a throughput of 50 packets per second. Fig. 4 represents
the prototypes we develop: on the right is shown the primary node, and
on the left is the secondary one.

The software environment on top of which we build the firmware
is MicroPython (mic, 2023). MicroPython is a Python interpreter and
runtime that runs bare-metal on different supported families of micro-
5

controllers. As a consequence, the source code written for MicroPython
Algorithm 1 Primary device loop
𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0
𝑎𝑙𝑎𝑟𝑚𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 10
loop

ℎ𝑒 ← RSSI signal from helmet device
𝑙𝑠 ← RSSI signal from right shoe device
𝑟𝑠 ← RSSI signal from left shoe device
𝑖𝑛𝑝𝑢𝑡_𝑎𝑟𝑟𝑎𝑦 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑖𝑛𝑝𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(ℎ𝑒, 𝑙𝑠, 𝑟𝑠)
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑢𝑛_𝑚𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
if 𝑟𝑒𝑠𝑢𝑙𝑡 is False & 𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 ≥ 0 then

𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 = 𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
if 𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 ≥ 𝑎𝑙𝑎𝑟𝑚𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

emit an alarm towards the user interface
emit an alarm towards the central unit
wait for user input
𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0
continue

end if
else if 𝑟𝑒𝑠𝑢𝑙𝑡 is True & 𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 = 0 then

continue
else if 𝑟𝑒𝑠𝑢𝑙𝑡 is True & 𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 > 0 then

𝑎𝑙𝑎𝑟𝑚𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0
continue

end if
end loop

can be interpreted by any supported hardware platform. Our strategy
for designing the firmware is based on the concurrent execution of
coroutines. At a higher level, the primary node works by looping
between the following steps: (i) acquire broadcast data, (ii) estimate the
RSSI of secondary node links, (iii) process this data to generate alerts
when a PPE removal event occurs. Algorithm 1 illustrates the process
that is performed within the primary node.

The algorithm combines a machine learning algorithm and a control
mechanism. First, the RSSI values of the secondary nodes (helmet, right
shoe and left shoe) are estimated and stored in raw buffers. Next,
they are pre-processed to provide the equivalent of 5-second moving
windows of meaningful aggregated objects (shoes, helmet). The result-
ing data is used in the processing phase to feed the machine learning
algorithm, which is responsible for detecting whether the situation in
which the operator finds himself is anomalous or not. Afterwards, the
post-processing algorithm checks whether the abnormal condition is
long enough to determine an actual moment of danger to the worker
using a threshold. If the situation is dangerous, an alarm is sent towards
the user interface (i.e. display message, buzzer) and to the fog layer.

The MicroPython ecosystem includes a standard library, which
implements compatible versions of modules from the Python Standard
Library, and specific packages that do not have equivalents in other
Python environments. The latter include drivers for hardware periph-
erals and libraries to enable embedded functionalities such as Bluetooth
communication.

It is worth noting that the Bluetooth functionalities needed to
build this project are provided by the aioble library, an object-oriented
asynchronous wrapper for the Bluetooth API. At the time of writing this
paper, the main ESP32-S3 MicroPython build uses the Espressif ESP-
IDF framework to run MicroPython as a task under FreeRTOS. More in
detail, MicroPython is run as a task pinned to Core 1, while the WiFi
and Bluetooth controllers are run as tasks pinned to Core 0. This allows
the aioble library to work parallel to the user application. From our
perspective as firmware developers, the result is that the BLE scanner
can be coded as an asynchronous generator that yields the scan results
and that is constantly populated in the background. Therefore, we can
make use of all the CPU time to execute application tasks rather than
having to leave CPU time to execute the BLE controller.

If the BLE scan was a task pinned to the same core of the application,
we would have needed to maximize its execution time in order to
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Fig. 3. Graph representing the worst-case scheduling of coroutines on Core 1. The number inside each scheduled coroutine represent its execution cardinality inside the processing
execution interval 𝑡𝑥.
maximize the probability of intercepting the broadcast messages of the
PPE devices in advertising mode.

The uasyncio library that we used to manage concurrent coroutines
will therefore run these coroutines on the Core 1. Then, their execution
times must fit the firmware’s timing to run the data processing. The
pre-processing task described earlier must be run every time new RAW
data is collected because the data structures are designed to avoid
storing long data sequences. Its execution frequency will then be, in
the WCS (Worst Case Scenario), equal to the RAW data acquisition
frequency. The processing task must be run according to the frequency
at which the AI model has to be run. The post-processing will follow
the processing task.

In our case, we recall that the PPE devices are three, 𝑁dev = 3, and
they are configured to provide an advertising interval equal to 𝑡adv =
100 ms. The incoming data from these devices must always be pre-
processed. Our tests demonstrated that the pre-processing time of any
PPE device, when considering 𝑡w = 5 s time windows, requires at most
𝑡pre,WCS = 4.2 ms. On the other hand, the processing and post-processing
WCS times are respectively: 𝑡𝑝,𝑊 𝐶𝑆 = 14.5 ms and 𝑡pp,WCS = 0.4 ms. The
time required to acquire RAW data from the BLE buffer is always lower
than 7 ms, thus 𝑡raw,WCS = 7 ms.

Given a wanted processing execution interval 𝑡𝑥, the free CPU
time that remains between the intervals is given by the following
mathematical expression:

𝑡f ree = 𝑡x −
𝑡x
𝑡adv

⋅ (𝑡raw,WCS +𝑁dev ⋅ 𝑡pre,WCS + 𝑡p,WCS + 𝑡pp,WCS) (1)

and it is depicted in Fig. 3.
If its value becomes negative, then the system will not be able to

process the coroutines in time, leading to an increasing delay in data
acquisition. In our case, the wanted processing interval is 𝑡𝑥 = 200 ms,
thus the formula can be resolved as follows:

𝑡f ree = 200 − 200
100

⋅ (7 + 3 ⋅ 4.2 + 14.5 + 0.4) (2)

= 131 ms

Being 𝑡𝑓𝑟𝑒𝑒 > 0, we can state that our system is able to correctly run
the defined tasks without leading to any loss of RAW data. It is worth
underlying that the parameters that implicitly affect this formula are
the advertising interval of the PPE devices and the length of the time
window considered to build the data structures. Any increase in one of
them will have a negative impact on the remaining free CPU time.

It is also worth noting that, at the time of writing this paper, the
MicroPython Bluetooth API does not allow getting an estimated RSSI
from a BLE connection. In contrast, it will enable getting this measure
from a broadcast reading.

We assembled a prototype employing commercially available com-
ponents that were not specifically engineered for deployment in ex-
treme environmental conditions, such as extreme temperatures, high
humidity, or intense physical stress. According to the proposed mon-
itoring use case, we leveraged plastic housing to make our devices
resistant to moderate rain. Moreover, the evaluation boards are built on
top of an ESP32-S3R8 chip that operates within ambient temperature
ranging from −40 to 65 ◦C. It is imperative to recognize that the
6

Fig. 4. Picture depicting the primary node device (right) and secondary node device
(left), with a ballpoint pen adjacent for size scale reference.

suitability of these components may be contingent upon the specific
use case. Therefore, a comprehensive evaluation of these components’
resilience to extreme environmental factors and physical stress on
the IoT devices is essential to ensure their reliability in challenging
operational scenarios. This evaluation entails a careful review of the
components’ datasheets and may necessitate additional measures, such
as the potential sealing of device casings, to bolster their performance
and longevity under harsh conditions.

4. Experimental setup

This section presents the strategies used for data collection and
processing, as well as the metrics used to evaluate the algorithms.
Section 4.1 presents our tests to check the hardware used in data
collection; Section 4.2 describes the data collection methodologies.
Next, in Section 4.3, we present the method for processing data for
the AI algorithm. In Section 4.4 presents the algorithms that we test
for the novelty detection approach. Finally, Section 4.5 discusses the
evaluation metrics of the selected algorithms.

4.1. Hardware performance

In this section, we present the methodologies we use to validate the
performance of our hardware devices. We hereby present several tests
we propose to evaluate the behaviour of the chosen hardware devices
thoroughly. Indeed, Bluetooth devices’ behaviour heavily differs from
device to device based on the combination of radio module and an-
tenna. The former implies the support for a certain Bluetooth protocol,
thus the support for a set of functionalities and communication proto-
cols, while the latter implies a particular spatial signal coverage and
range.
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Fig. 5. Distribution of RSSI measurements versus distance between central and pe-
ripheral devices. Each boxplot is obtained by averaging 10 min of recorded measures
recorded with different instances of the reference board, TinyS3.

The first experiment aims at estimating the RSSI signal variation
with respect to the distance between the advertiser and the central.
As clarified earlier, our algorithm will not calculate a distance be-
tween two objects from their RSSI value because of the many signal
disturbance factors that will arise in our use case. However, at this
stage, we perform tests on a noise-free plane to understand the basic
behaviour of the RSSI signal and make sure that all the devices do
not show anomalies. In this regard, we set up a device to act as a
Bluetooth advertiser with a 20 ms advertising interval, i.e. sending
packets with 50 Hz frequency, and another device to act as a Bluetooth
central, which intercepts the broadcast packets and gives an estimation
of the signal’s RSSI. The two peripherals are always put on the same
horizontal plane, with a fixed orientation, in an indoor environment,
without obstacles between them. We allow the central device to acquire
data for 10 min at each different distance (0.5, 1, 1.5, 3 m) and average
it.

Fig. 5 presents the results. The devices present consistent individual
behaviours and slight differences between their trends from these data.
This experiment leads to the intuition that, since the absolute values
of RSSI significantly differ from one device to another, it is convenient
for the scopes of this work to consider relative measures, such as the
variation from the average of RSSI values detected in a time window.

4.2. Data collection and setup

Once we have tested the proper operation of the devices without
interference, as the next step, we organize a data acquisition phase
where the devices are worn.

These tests allow us to verify the strength of the intuitions presented
in the paper and to develop a system capable of addressing the issues
arising from the interference of the human body and the person’s
surroundings. First, we performed an outdoor test. Then, we repeated
the same test in an indoor environment. Below, we describe the test
steps, the two settings, and the participants involved.

We design a circuit as a precise set of movements and operations
nd let different people wear our IoT devices in the circuit. In this
xperiment, we place the devices in the following PPEs: left and right
hoes, helmet and work belt. To recognize and be able to distinguish the
ignature of RSSI values obtained in both conditions of PPEs correctly
orn and not, we ask operators at some point in the experiment to put
ff the helmet.

Each data collection experiment can be split into two main phases:

1. the user wears all the devices correctly;
7

2. the user removes the helmet and moves away from it;
During the tests, the users are asked to move naturally. Therefore, in
each phase, there are moments in which the subject is moving and
moments in which he is stationary. As part of the second stage, each
participant walks approximately 10 to 20 metres away from the helmet
and then continues to move spontaneously. Spontaneous movement
is critical because it guarantees the presence of signal variations that
would be compatible with a working activity and a realistic example of
actual device use, ensuring a representative signature. The data collec-
tion sample consisted of thirteen individuals: seven participated in the
outdoor experiments, and six participated in the indoor experiments.
The experiment’s subjects have different physical characteristics, such
as height or build, in order to have a more representative sample of
people for the test, as shown in Fig. 6.

Operators’ survey duration and steps are identical in both the out-
door and indoor tests. The environment and the sample of participants
vary between the two tests.

Test 1: Outdoor. The outdoor environment contained side walls
nd slight radio interference.
Test 2: Indoor. The indoor environment consisted of a room con-

aining numerous sources of noise: more than 15 devices connected
sing WiFi and BLE; 8 people not involved in the experiment were
eated at desks; thick walls, tables, closets, and other furniture.

.3. Data preprocessing

As a result of the previous experiments, we obtain the RSSI value
f each secondary node, which indicates its distance from the primary
ode. Generally, the higher the RSSI value is, the shorter the distance is.
he signal’s intensity depends upon the environment in which it is de-
ected, so this information alone cannot be used to determine distance
ccurately. Consequently, as a next step, we perform preprocessing of
he signal data, as described below.

Considering the significant variability of the signal and its suscep-
ibility to interference, we choose to use moving windows for data
rouping. The optimal window length can be defined by experimen-
ation, and in our case, we find that a 5-second window makes it
ossible to eliminate some outliers without losing significant behaviour.
t is possible to extrapolate more helpful information for each time
indow to improve the accuracy of the data. The variance and standard
eviation are calculated to represent other useful information. The
ariance enables us to understand the variability of the data, allowing
s to investigate the movement of the mean values. The standard
eviation will enable us to summarize the variations from the mean.
n general, as distance increases, the number of detections lowers, so
e also calculate the number of detections occurring over time. Then,

or each temporal window, we compute the following parameters:

ount helmet The number of detections obtained in the current time
window. This data is significant because as the distance in-
creases, the number of detections decreases since the signal
fades.

verage helmet The moving average of the data collected by the
helmet in the current window. This average is made by ignoring
null values in order to avoid having drastic variations towards
zero each time data is not collected. It is deemed more efficient
to encode the information on the empty window by defining the
value of the count variable as zero.

ariance helmet The variance is calculated using the moving average
of the helmet in the current period.

tandard deviation helmet The standard deviation is calculated on
the moving average of the helmet in the current temporal win-
dow.

ount shoes The minimum number of detections obtained from a

shoe. In this way, significant changes in shoes can be displayed.
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Fig. 6. Physical characteristics of the subjects involved in the experiments.
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Average shoes The moving average of the current window is relative
to the average values of the two shoes. The average is collected
in the same way as the helmet but is calculated from the moving
averages of the two shoes.

ariance shoes The variance is determined by the overall moving av-
erage of the two shoes relative to the current temporal window.

tandard deviation The standard deviation is calculated on the over-
all moving average of the two shoes based on the current time
frame.

As previously mentioned, we use a single 5s time window to group
ata and filter out interference caused by the external environment.

We then separate the data collected on the same person so that we
an build training and test set. The training set consists of approxi-
ately the first minute and a half, while the test set contains roughly

he next three minutes of experimentation. In this way, the training set
ontains only phase 1 and, therefore, only moments where the devices
ere worn correctly, while the test set consists of part of phase 1 and
hase 2, having a combination of moments where the helmet was worn
orrectly and in a wrong way. We manually label the test set indicating:
1) instances in which the subject is correctly wearing all devices, (−1)
nstances considered abnormal, indicating times when the helmet is not
orrectly worn.

.4. Novelty detection algorithms

Once we have created the datasets, we apply machine learning
lgorithms. In particular, to address the research problem, we decided
o adopt novelty detection algorithms. Novelty detection or outlier
etection is a mechanism that identifies events that differ from the
est. Such a model is trained on a set of data that it recognizes as
ormal behaviour and learns its peculiarities. Afterwards, it is able to
istinguish events that are not similar to those on which it is trained.
t is particularly effective in domains like the detection of fraudulent
ank transactions, anomalous behaviours, etc.

Our approach consists of creating an ad-hoc model for each operator
sing the devices. By modelling the correct behaviour, which is reached
hen the operator is wearing every device, we can identify moments
f incorrect usage by exploiting a novelty detection approach. This
trategy assumes that normal patterns are available in the training set,
hile abnormal patterns are relatively few and present only in the test

et.
We selected three different algorithms: OneClassSVM, Isolation For-

st and SGDOneClassSVM. One Class Support Vector Machine (SVM)
s a variation of the SVM used for binary classification and novelty
8

etection approaches. It calculates a boundary using the training data,
and the new data that lies outside that boundary is classified as an
anomaly. OneClassSGDSVM is a Stochastic Gradient Descent (SGD)
version of the OneClassSVM. Isolation Forest is a popular algorithm,
an ensemble of binary decision trees. It describes the observations with
decision trees and assumes that outliers can be found in short paths to
leaves, making them easier to isolate.

4.5. Evaluation metrics

This section presents the evaluation metrics used to assess the
quality of the results obtained from the artificial intelligence algorithm
used to identify events where personal protective equipment is not
correctly worn. To evaluate the realized algorithm, we use several
metrics to understand better how the algorithm performs. The algo-
rithm recognizes two classes of data: (i) devices are worn correctly; (ii)
devices are not worn correctly.

Confusion matrix: the confusion matrix (CM) contains the values of
True Positives (TP), False Positives (FP), True Negatives (TN) and False
Negative (FN).

CM =
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

(3)

Accuracy : it represents how many correct predictions were made
by the algorithm in relation to the total number of predictions. It is
expressed by the following formula:

𝑎 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

(4)

Precision: it represents how many of the positive predictions are
ruly positive. It is calculated as:

= 𝑇𝑃
𝐹𝑃 + 𝑇𝑃

(5)

Recall: it indicates how many of the positive values were predicted
correctly. It is calculated in the following way:

𝑟 = 𝑇𝑃
𝐹𝑁 + 𝑇𝑃

(6)

F1-Score: it consists of the harmonic mean between precision and
recall. It is expressed by the following formula:

𝐹1 =
(

1
𝑝
+ 1

𝑟

)−1
(7)

MCC: it is equivalent to the chi-square statistic for a 2 𝑥 2 contin-
ency table. It is calculated as follows:

𝐶𝐶 = 𝑇𝑁 × 𝑇𝑃 − 𝐹𝑁 × 𝐹𝑃
√

(8)

(𝑇𝑃 + 𝐹𝑃 )(𝐹𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
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Table 1
Comparison of results obtained with different novelty detection algorithms. The table
columns report respectively: Type of Algorithm, Accuracy, Precision, Recall, F1 Score,
Matthews Correlation Coefficient.

Algorithm Acc Precision Rec F1 MCC

Isolation Forest 82.90 83.73 92.72 87.32 0.6
SGDSVM 73.93 72.54 99.94 83.43 0.3
OneClassSVM 88.1 92.3 88.3 89.0 0.7

Table 2
Table of Results Obtained with OneClassSVM. Each row represents a different experi-
ment conducted with a subject. The table columns report the following: ID, Accuracy,
Precision, Recall, F1 Score, Matthews Correlation Coefficient, Type of Environment.

Id Acc Prec Rec F1 MCC Env

1 97.8 97.2 99.9 98.6 0.9 Out
2 96.6 98.9 97.2 98.0 0.9 Out
3 92.8 92.2 99.5 95.7 0.8 Out
4 74.3 64.8 84.0 73.2 0.5 Out
5 76.6 96.7 69.7 81.0 0.6 Out
6 77.6 92.1 76.5 83.6 0.5 Out
7 90.9 98.6 91.2 94.7 0.6 Out
8 96.8 95.8 99.8 97.8 0.9 In
9 84.9 93.2 84.0 88.3 0.7 In

10 87.8 92.1 86.0 88.9 0.8 In
11 89.2 93.1 89.7 91.4 0.8 In
12 94.3 100 92.2 95.9 0.9 In
13 85.6 84.9 87.2 86.1 0.7 In

Mean 88.1 92.3 89.0 90.2 0.7

5. Experimental findings

In this section, we present the results of our experimentation.
Our system mainly consists of a module for preprocessing data and

a machine learning algorithm that can detect whether or not we are
in an anomalous situation at that precise moment. Then, based on
control criteria, the primary device sends messages to the worker to
warn him of the dangerous condition and the lack of protective device
usage. Therefore, we conduct several experiments to verify the correct
functioning and check our system’s usability.

5.1. Comparison of novelty detection algorithms

In order to choose the best machine learning algorithm to use, we
test all three novelty detection algorithms we presented in Section 4.4.
We train these algorithms on a dataset representing a single class since
the generated model aims to learn to recognize the known class and
identify anomalies with respect to that class. For the evaluation, we
exploit the datasets we described in Section 4.3. Since the Isolation
Forest, the OneClassSGDSVM and the OneClassSVM have several pa-
rameters to be set; we perform a parameter tuning approach to find
the best way to optimize them according to the nature of the problem.
The results obtained from the tests made with optimal parameters
are shown in Table 1. The OneClassSGDSVM and the Isolation Forest
perform rather well, but among the three algorithms, the OneClassSVM
obtains the best results. Considering the results, the machine learning
algorithm we chose is the OneClassSVM.

5.2. Machine learning algorithm results

Table 2 illustrates the results we obtain from the OneClassSVM
experiments. The table describes for each row the results obtained
by the algorithm when trained and tested on a single individual.
The final row represents the average of the metrics calculated on the
thirteen subjects. The average accuracy of the several experiments is
about 88%, and the average precision is about 92%. This positive
result indicates that the algorithm correctly recognizes the signal and
9

identifies anomalous events. For example, if we focus on subject #2,
they obtain an F-Measure of 98% and an Accuracy of 96.6%. Fig. 9
shows the training dataset collected from the experiment involving
subject #2. Fig. 9(a) represents the helmet data, including raw values
and the moving average calculated over a 5-second window. Fig. 9(b)
shows the data from the shoes. The unprocessed data exhibit peaks and
noticeable outliers, but with the moving average processing, they are
considerably reduced, and the signal is improved. Fig. 10(a) represents
the testing set. The figure shows in detail the result obtained from
collecting helmet data and shows RSSI values. The peak in the graph
around the second minute and a half represents the moment when the
dangerous situation begins, and it corresponds to the movement with
which the helmet is removed. In both Figs. 9 and 10(a) the colour
intensity represents the value of the Count field, in blue for the helmet
and green for the shoes, respectively. Therefore, the more intense the
colour of a point, the more detections of that node there were in the
time window. In the graph in Fig. 10(a), it can be noticed that there
is an area where the colour related to the helmet is very light as it is
far away from the subject, and due to the distance, devices make fewer
detections. Notably, the shoe average throughout the duration of the ex-
periment remains fairly constant, with few variations. This agrees that
the operator constantly wears both shoes throughout the experiment,
and the primary device effectively recognizes the difference between
near (shoes) and far devices (helmet).

Fig. 10(b) shows the model’s results when trained on subject #2.
In particular, the figure distinguishes with different colours the points
labelled correctly or incorrectly by the model. The different colours
represent true negatives in green, true positives in light green, false
positives in red and false negatives in orange. In this way, it is possible
to observe the points where the algorithm made mistakes and thus
better analyse the results obtained. During the peak that happens when
the subject removes its helmet, the algorithm classifies the ascent phase
incorrectly, as it does not recognize it as abnormal. The classification
went very well throughout the entire dangerous situation, with only
one small area where the alarm failed around the 3:40 min mark.

5.3. Postprocessing algorithm results

The machine learning algorithm’s results identify the situation we
are in at any given moment of device use: the velocity at which the de-
vices detect dangerous behaviour is significant. In our use case, we can
tolerate the absence of signal for brief moments in which the devices
are not worn correctly, for example, when a user momentarily shifts
their helmet to drink or other temporary harmless activity. Indeed, if
the system reported every little abnormal situation (including small
false alarms), users would not be inclined towards using the device as
they would be annoyed by the continuous warnings.

For these reasons, in addition to machine learning, we define a
postprocessing algorithm that acts as a final control mechanism to
detect threats. While the machine learning algorithm detects whether
we are in an abnormal situation, the control mechanism calculates if we
are in the abnormal situation for a reasonable amount of time. In that
case, the control mechanism states there is a danger, and it is necessary
to signal the warning to the user.

We have conducted several experiments to determine the ideal
threshold of anomalous situation detections to wait for to identify true
dangerous situations while avoiding overproducing false positives ac-
curately. We selected possible threshold values from 10 to 80. For each
threshold value 𝑛, we decide to give an alarm only if the SVM algorithm
has classified 𝑛 consecutive instants as anomalous. The graph in Fig. 7
describes two DET (Detection error tradeoff) curves calculated using
the different thresholds. The ‘‘overall’’ curve is generated by combining
data from all experiments and calculating metrics as if they belong to a
single test. In contrast, the ‘‘average’’ curve is created by calculating
each experiment’s metrics and then averaging the results. The DET
curve is a variation of the ROC curve that uses the False Positive Rate

(FPR) and the False Negative Rate (FNR). In this figure, each point is a
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Fig. 7. DET Curve of results plotting the False Negative Rate (FNR) vs. False Positive Rate (FPR). The curve labelled ‘‘overall’’ is constructed by aggregating all the data from all
sers as if they belong to a single experiment. The curve labelled ‘‘average’’ is obtained by performing calculations on each individual test participant and averaging the results
-posteriori.
Fig. 8. PR curve representing the relationship between Precision and Recall values using different window sizes. The curve labelled ‘‘overall’’ is constructed by aggregating all the
data from all users as if they belong to a single experiment. The curve labelled ‘‘average’’ is obtained by performing calculations on each individual test participant and averaging
the results a-posteriori. The green dots are labelled with the delay with which our algorithm sends an alert after an operator has removed a device, expressed in seconds.
result obtained from a particular threshold. When we reach a low FPR,
it is clear that we have to suffer a higher FNR. Remarkably, the FPR
can achieve extremely low values, and the corresponding FNR is not
critically high in respect of our case study.

To identify the proper threshold, it was also necessary to calculate
the seconds that, on average, you wait to identify a dangerous situation
correctly. Such a period is essential to estimate the effectiveness of
our solution because it calculates the time in which there is a danger,
and the alarm was not triggered. Fig. 8 shows two PR (Precision–
Recall) curves, which represent the performance of our algorithm on
the positive class, that is, the anomalous one. In the same way as the
DET curve, the two curves are calculated differently to abstract from
the characteristic elements of the subjects. In order to show the seconds
of delay with which our algorithm sends an alert after an operator
has removed a device, the curves show the latency with the shortest
window of 10 (1.41 s) and the largest window of 80 (6.40 s). In our
approach, we have the ability of fine-tuning the threshold based on
the specific use case’s requirements, considering the trade-off between
false alarms, false negatives and the system latency in detecting critical
situations. The size and quality of the dataset has major consequences
on the performance of the system, thus the evaluation of the threshold
should be made ad-hoc based on the particular use-case. Based on the
data collected during our experiments for our use case, we made the
decision to set the threshold at 80. With this threshold, we achieve a
Precision rate of 98% with a latency of approximately 6 s. This result is
10
aligned with our requirements, as it is critical for us to minimize false
positives while maintaining a reasonable response time.

6. Discussion

In this section, we discuss our work. We delve more deeply into
its general operation (Section 6.1), analyse how it behaves in different
environments (Section 6.2), conduct a usability test (Section 6.3),
develop a cost analysis (Section 6.4), investigate privacy and ethics
(Section 6.5), compare with related work (Section 6.6) and presents
the main limitations (Section 6.7).

6.1. Usage peculiarities

In order to simplify the demonstration of the effectiveness of the
proposed solution and algorithms, we focused on the simplest use
case in the previous sections. More specifically, the use case involves
the regular use of the devices by an operator wearing a helmet and
safety shoes and the subsequent removal of the helmet, resulting in
the activation of the alarm. However, more varied situations can occur,
and the current section explores how the system would behave in such
cases.

Work break management. Since the current system monitors the use
of PPE, if the operator accidentally removes a device, then the alarm
sounds. However, there may be cases where removing PPE is not a
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Fig. 9. Scatter Plot Representing Data for Subject #2 collected within the experiments and stored in the dataset attached to this paper. Both the subfigures represent the time
series of the measured RSSI values against the acquisition time. The subfigure (a) depicts data collected by the secondary node mounted on the subject’s helmet, while the subfigure
(b) illustrates data collected by secondary nodes attached to the subject’s shoes, and in particular the averaged values of right and left shoes.
hazard. An example of such a case is a work break. To distinguish
these cases, we designed a specific programmable pushbutton on our
prototype device, which can be configured to accept both short and
long presses. In the first case, the device resets the alarm state, while in
the second case, the device temporarily deactivates to allow the worker
to take a break. This feature not only enhances the safety of our system
but also promotes worker well-being by giving them the flexibility to
pause their monitoring when needed.

Noise protection equipment. Our device includes an OLED display
and an acoustic buzzer. Therefore, an operator is capable of receiv-
ing the alarm notification unless they have limitations in hearing or
vision. This implementation aligns well with our specific use case.
In situations where other Personal Protective Equipment (PPE) might
limit a worker’s senses, it may be prudent to consider additional
alerting mechanisms such as vibrators or flashing lights. These potential
enhancements could be part of future work proposals.

Potential fault cases. It is crucial to take into account some solutions
to address edge use cases that may negatively impact the system’s
robustness. Generally, both primary and secondary devices provide an
intuitive visual signalling to the operator through the status LED, which
turns red whenever the device detects an issue. Since our architecture
is composed of components of different types, our analysis of potential
failures must consider and distinguish different cases, and we analyse
them below. It is possible to identify three potential fault cases, and
for each of them, we define what can happen and how the problem
is mitigated. Secondary node fault: Since secondary nodes work with
a broadcast strategy, only the workers can detect their faults. At the
beginning of each work shift, each worker has to execute a functional
check to evaluate the proper functioning of the devices. For example,
during the training phase, the entire functioning of the system can
be checked in order to prevent the use of malfunctioning devices.
Moreover, the primary device displays a message on the LCD to indicate
that it is receiving messages from the secondary devices, thus providing
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a visual signal that the device is functioning correctly. In addition, it
is possible to add a LED status on the secondary devices that alerts
when they send messages in broadcast correctly to provide another
visual signal of failures. Primary node fault: Primary node faults can
be detected at the worksite’s central unit level. The central unit is
responsible for collecting the messages from each worker’s primary
device and sending them to the cloud. In addition, it is possible to
implement a continuous exchange of keep-alive signals that can ensure
that the connection between the primary device and the central unit
has not been interrupted. When the central unit does not receive this
signal from a primary device in a certain amount of time, a proactive
alert can be triggered and the worksite supervisor will be informed of
the malfunctioning device. Central unit fault: Thanks to the exchange of
keep-alive signals, the primary devices can detect central unit failures
as they no longer receive such signals. The primary devices can report
the problem to the worker and start internal logging of anomalies. The
monitoring data may be recovered from the primary device or can be
sent to the central unit after the communication is restored. Finally,
operators can cancel the alarm by pressing the dedicated button to
maintain control in cases of false alarms, offering a streamlined and
user-friendly approach to managing potential false positives.

6.2. Complex environments

As shown in the previous section, we tested the system both in an
outdoor (and interference-free) environment and an indoor (and noisy)
environment. This section investigates how the system may behave in
other environments, what possible challenges may emerge, and how
they can be addressed.

Large workplaces and scalability. Our proposed approach has good
scalability characteristics, thanks to its foundation on an inherently
scalable IoT architecture based on Fog computing (Dastjerdi, Gupta,
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Fig. 10. Scatter Plot Representing Data for Subject #2 collected within the experiments and stored in the dataset attached to this paper. Both the subfigures represent the averaged
time series of the measured RSSI values against the acquisition time. The subfigure (a) depicts averaged data collected by the secondary nodes mounted on the subject’s helmet
and shoes versus the acquisition time, while the subfigure (b) illustrates the results of executing the SVM model versus the same time scale. The colour scale allows understanding
the data density and the performance of the algorithm.
Calheiros, Ghosh, & Buyya, 2016). Our architecture enables the re-
duction of data transfer to the cloud, optimizing the performance and
latencies of IoT solutions. Consequently, adding an arbitrary number of
devices and workplaces to the monitoring platform becomes possible,
and the system will scale accordingly. This feature has good sustain-
ability in that adding more workers or workplaces does not require any
modification to the cloud system, as we can also discuss in Section 6.4.
From a workplace perspective, unlike the architectures examined in
the literature review, our solution does not require the installation of
cameras or dedicated devices. It only necessitates ensuring solid WiFi
signal coverage throughout the construction site, which needs proper
distribution of routers on-site.

Small and noisy workplaces. When assessing the applicability of our
solution within specific industries, it is crucial to consider whether
the environment permits the unimpeded propagation of BLE and WiFi
signals to ensure seamless device communication. In some specific
scenarios, such as underground mining, where the advancing excava-
tion process may challenge signal propagation, robust electromagnetic
interference can disrupt BLE communication and compromise the body
area network viability. Among the possible solutions, we suggest im-
plementing mesh-based networks with synchronous flooding or using
resilient radio technologies such as narrowband IoT to maintain reliable
communication. Considerations must also be given to the robustness of
the AI model in the face of external disruptions. We conducted tests
under varying conditions, encompassing both indoor and outdoor set-
tings, and observed successful performance. However, it is important to
acknowledge that unique environmental circumstances may necessitate
retraining of the AI models.

6.3. System usability

While in the first outdoor test, we worked on validating the idea
and algorithms, starting with the second test we gave more attention
12
to the system’s usability. For this reason, we subjected all participants
in the indoor testing phase to a usability test, the System Usability
Scale (SUS) (Brooke, 1996). The test consists of ten questions answered
by a grade from 1 to 5 based on how much each participant agrees
or disagrees with the proposed statement. The statements are the
following.

• I think that I would like to use this system frequently.
• I found the system unnecessarily complex.
• I thought the system was easy to use.
• I think that I would need the support of a technical person to be

able to use this system.
• I found the various functions in this system were well integrated.
• I thought there was too much inconsistency in this system.
• I would imagine that most people would learn to use this system

very quickly.
• I found the system very cumbersome to use.
• I felt very confident using the system.
• I needed to learn a lot of things before I could get going with this

system.

The SUS provides formulas by which the votes entered by users
are converted into a score from 0 to 100. The average user rating was
86.67, a very good score. We highlight that the system we developed is
a prototype for which, in this paper, we focus more on validating the
scientific part related to the algorithms. Moreover, the system can be
further miniaturized to improve its usability even more.

6.4. Cost analysis

To tackle the problem of estimating the costs of our solution, we
provide a contribution by estimating the cost of a setup for a single



Expert Systems With Applications 238 (2024) 122285A. Pisu et al.
Table 3
Cost analysis based on the bill of materials of the proposed prototype solution.

Price (EUR)

Architecture layer Component Cost type 1 worker
1 worksite

5 workers
1 worksite

10 workers
2 worksites

TinyS3 One-off 100 5000 1000
OLED display One-off 20 100 200

Sensors and Buzzer One-off 3 15 30
Edge Layers Push Button One-off 3 15 30

Battery One-off 65 325 650
Housing and cables One-off 9 45 90

Fog Layer Wireless router One-off 100 100 200
Central Unit One-off 80 80 160

Cloud Layer Cloud Infrastructure Monthly 100 100 100

Deployment cost One-off 480 1280 2560
Maintenance costs Monthly 100 100 100
body area network, and then extend the evaluation to a workplace
characterized by a particular number of workers. Each worker needs
three secondary devices and a primary device. The worksite needs
to be provided with enough WiFi routers to cover the area and a
central unit to collect data from the primary devices. Also, in a real-
world application, a cloud service must be up and running to serve the
cloud-based platform.

Our devices are currently in the prototype stage, and it is important
to note that the associated costs are distinct from those of large-
scale production. The costs of our prototype solution is represented in
Table 3. The expenses related to engineering and manufacturing the de-
vices at scale, without relying on development boards and commercial
products, would inherently differ significantly. Given that the firmware
is released open-source, the price threshold that we can identify as
a lower bound for each device is EUR 1.70, which is the price of
an ESP32-S3 System-on-Chip. Also, the environmental conditions of
the worksite may require to utilization of particular components, such
as electronic devices with resistance to high temperature or strong
vibrations, or particularly effective wireless access points, which may
increase the price of devices.

To evaluate the benefit of implementing such a solution with respect
to its cost, the employer has to consider performing an economic evalu-
ation of investments for workplace safety, such as the one introduced by
the scientific paper (Bianchini, Pellegrini, Peta, Saccani, et al., 2014).
According to the latter paper, the average cost of a single accident in
the country of Italy is about EUR 27000, much higher than the cost of
investing in our solution. However, each employer has to conduct its
own evaluation based on the return on the investment, also considering
the social impact of having a safer work environment.

6.5. Privacy and ethical considerations

Regarding the ethics in work monitoring, it is necessary to inform
operators fully about the ongoing monitoring, enabling them to receive
training on interacting correctly with the system. Also, ensuring that
the system cannot be used for purposes other than monitoring the
devices is crucial.

We have designed our system to minimize the impact on operators’
privacy. Indeed, the data collected during monitoring measures the
intensity of the communication signal between the devices worn. No
photographic data, video or information on the movements performed
by the worker is collected. Since the type of data we handle is very
generic and abstract concerning the user’s activities, the operator is
not controlled in their movements but only by the correct use of any
device worn. We highlight that this factor is one of the strengths of our
approach, allowing us to differentiate ourselves from all other work
that instead saves explicit data on operator behaviour (such as all the
‘‘device-free’’ works that, although they do not use IoT devices but only
use cameras, have a significant impact on privacy because they are
13

constantly filming operators).
In addition, we designed the system architecture so that the signal
from the operator’s devices is not saved outside the workplace (e.g., in
a cloud platform). The IoT devices compute the signal and immediately
remove it to process subsequent signals. Indeed, this signal strength
information is collected internally in the primary device (the belt),
which, after processing it and determining whether the user is using
the devices, only outputs messages indicating whether the PPEs are
worn correctly. The system only sends this intensity data towards the
fog layer during training, but the operator must be aware of collecting
this data at this stage.

The ethical framework within which the system operates is defined
by a strict focus on device usage verification without data collection
from the user, except for the signal strength used in the model’s
training. Our architectural choice allows us to protect the operator’s
privacy and simultaneously reduce the resource consumption of IoT
devices (energy, bandwidth) with numerous benefits in terms of privacy
and usability.

6.6. Comparison with related work

The scientific literature on PPE monitoring encompasses various
approaches and techniques. In this section, we will examine some
of these methods, as outlined in Table 4, and propose a qualitative
comparison using the metrics detailed in Section 3.1. Additionally,
we have introduced two additional criteria for categorization: (i) the
methodology of analysis and (ii) the type of instrumentation employed.
With the first criterion, we distinguish between works that implement
analysis as a one-shot solution (e.g., by introducing an instrumented
gate) and those that perform continuous, always-on analysis. With the
second criterion, we categorize works based on the type of instru-
mentation used, whether it is applied to the environment, directly on
individuals, or on the instruments they use and wear.

Each metric is assessed in the table by assigning points to the
works using empty, half-full, or full circles. For the efficacy metric,
we evaluate the presence of any conditions that may introduce noise
in the values and, if such conditions exist, the system’s ability to
mitigate their effects. Regarding the usability metric, we assess how
seamlessly the user can adapt to using the proposed solution, assigning
the highest score to solutions that are transparent to the user and the
lowest score to those that may impede the user’s movements. For the
portability metric, we evaluate how easily the proposed solution can be
adapted to new working contexts. The scalability metric assesses the
complexity of implementing the proposed solution and its suitability
for accommodating a large number of users. Traceability and privacy
preservation are binary metrics that evaluate the system’s capability to
track transactions for future audits and maintain user privacy.

Earlier works introduced IoT solutions for monitoring PPEs using a
Body Area Network (BAN) where devices communicate via RFID tech-
nology or, in some cases, cables. For instance, Barro-Torres et al. (2012)
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Table 4
Qualitative comparison of related works. Abbreviations list: Instrumentation (Inst.), Computer Vision (CV), Personal (per.), Environmental (env.), Accelerometers (Acc.)

Work Year Method Inst. Efficacy Usability Portability Scalability Traceability Privacy Technology

Kelm et al. (2013)
2013 one-shot per. RFID

Hayward et al.
(2022)

2022 one-shot per. RFID

Barro-Torres et al.
(2012)

2012 always-on env. RFID

Sole et al. (2013) 2013 always-on env. RFID
Gu et al. (2019) 2019 always-on env. CV
Delhi et al. (2020) 2020 always-on env. CV
Wu et al. (2019) 2020 always-on env. CV
Xiong et al. (2022) 2022 always-on env. CV

Kim et al. (2018) 2018 always-on per. Acc.
Yang et al. (2020) 2020 always-on per. Ad-hoc
Abbasianjahromi
and
Sohrab Ghazvini
(2021)

2022 always-on per. Magnets

This work always-on per. BLE RSSI
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eveloped a system that necessitates each worker to wear a BAN, with
FID sensors embedded in the PPEs. The BAN of sensors detects each
PE at specific body points, ensuring correct device positioning in real
ime. However, this system requires cables connecting BAN devices,
hich can significantly impact worker mobility, as they must wear a
etwork of wires connecting their shoes, vests, and helmets. In contrast,
he approach we propose ensures unrestricted operator movement as
ommunication between nodes occurs via BLE, eliminating the need
or cables.

Authors of Sole et al. (2013) suggest the usage of an architecture
ased on two networks. The first is a BAN, where each PPE contains
device integrating an RFID tag, while other devices include sensor

nits. The second network consists of fixed nodes at strategic control
oints in the working environment. Each node uses stationary RFID
eaders to detect tags within a one-metre range, transmitting status
ags to a data processing system. However, the setup required for the
orkplace to support RFID tag detection leads to increased time and

osts for PPE monitoring, limiting its efficiency in larger workplaces.
Kelm et al. (2013) and, more recently, Hayward et al. (2022),

ropose a system utilizing a smart portal equipped with antennas at
orkplace entrances. Workers are provided with RFID tags associated
ith their PPE, and the portal verifies proper usage as workers pass

hrough. However, this approach only verifies compliance at the begin-
ing and at the end of a work activity, lacking continuous monitoring
uring tasks.

More recent developments employ real-time image acquisition
hrough cameras to identify PPE usage and assess whether they are
orrectly worn. Specifically, this approach involves installing cameras
n the workplace, continuously filming workers, and sending images to

remote system that employs computer vision algorithms to identify
orkers not wearing PPEs. For example, Gu et al. (2019) employs
n improved Faster RCNN to determine if workers are wearing safety
elmets, achieving improved detection accuracy, especially in low-
ight conditions and with occluded images. Delhi et al. (2020) applies
onvolutional neural networks through transfer learning to a simplified
ersion of the YOLOv3 deep learning network for detecting safety
elmets and safety vests on construction sites. An alarm is triggered
hen the model detects the absence of PPEs. Xiong et al. (2022)
mbeds the YOLOv3 algorithm into IoT devices and employs coordi-
ated recognition to obtain results from multiple angles. Similarly, Wu
t al. (2019) proposes a CNN-based method using cameras for real-
ime monitoring of helmet usage. However, these computer vision
pproaches differ from our approach as they share the limitation of
equiring prior workplace setup (installation of cameras), increasing
oth time and costs. Additionally, they are susceptible to occlusions
nd adverse weather conditions.
14
Other works suggest a BAN of devices communicating through
ireless technologies like Wi-Fi and BLE, which aligns closely with our
pproach using a BAN of BLE devices. For instance, Abbasianjahromi
nd Sohrab Ghazvini (2021) applies wearable devices with magnetic
ensors to each PPE. These devices transmit information to a central
evice located in the operator’s jacket, which in turn relays operator
tatus to a smartphone application via Wi-Fi. Yang et al. (2020) devel-
ps an automated control system for coupling PPE with tools, alerting
afety officers and triggering alarms when individuals are not wearing
he required PPE while using tools. This system equips both tools and
PE with sensors, with tools receiving information via Wi-Fi to verify
roper usage.

Kim et al. (2018) focuses on safety-helmet detection using a three-
xis accelerometer sensor, achieving a high level of accuracy in de-
ecting proper use, improper use, and non-use of protective headgear.
dditionally, Booranawong et al. (2018) presents a device-free system

or tracking and detecting humans indoors using RSSI, successfully
etecting human movements in various experiments.

Finally, some recent works, such as Campero-Jurado et al. (2020),
ntroduce smart helmets equipped with instrumentation for monitoring
nvironmental conditions and alerting workers to hazardous situations,
uch as the presence of harmful gases. Although these works employ
oT for workplace safety, they differ from our approach as they do not
rimarily focus on verifying PPE or helmet usage but rather concentrate
n monitoring environmental parameters. In a similar way, Rescio
t al. (2023) proposes a wearable system to monitor workers’ stress
evels, primarily concerned with monitoring workers’ health rather
han verifying PPE use.

In the context of works categorized as active monitoring and per-
onal instrumentation, our approach distinguishes itself by its adapt-
bility to different environments and its capacity to handle noisy data.
urthermore, it stands out for its excellent scalability and straight-
orward implementation, as it does not require specific sensors or

complex remote data analysis system. The remote system remains
treamlined while maintaining the ability to trace system operations
nd safeguard user privacy.

.7. Limitations

The effectiveness of our system relies on workers using PPE
quipped with BLE-enabled IoT devices. Compatibility issues may
rise when integrating these devices into existing PPE or ensuring
ll workers have access to them. Although our solution demonstrates
esilience to environmental factors, extreme conditions, such as dense
lectromagnetic interference or severe weather, could affect the sys-
em’s performance. The implementation of real-time monitoring raises
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privacy considerations. Balancing safety with worker privacy rights
requires careful planning and ethical considerations.

Workers’ acceptance and adaptation to continuous monitoring may
vary. Some individuals may be resistant to the idea of being constantly
monitored, necessitating strategies for user education and engagement.
Scaling the system to larger workplaces or industrial settings may
present challenges in terms of network management and data pro-
cessing, which should be carefully addressed. The accuracy of our
anomaly detection algorithm may be influenced by factors not explored
in this study. Further research is needed to fine-tune the system’s
sensitivity. Ongoing ethical considerations surround the monitoring
of workers, requiring a well-defined ethical framework and potential
regulatory compliance. These limitations should be taken into account
when considering the implementation of our proposed solution and
provide directions for future research and development efforts.

7. Conclusions and future work

Our work aims to address the research questions introduced in
Section 1, showing that the answer for both questions is yes, (RQ1)
it is possible to use the RSSI signal and (RQ2) it is possible to build a
simple and adaptable learning system for different application scenarios
that can identify anomalies in the use of common personal protective
equipment.

First, we have defined the requirements for a system to overcome
current limitations and designed an architecture to reflect the identi-
fied requirements. Then, we exploited commercial electronic devices
provided with Bluetooth Low Energy (BLE) technology to build IoT
devices able to communicate within the OAN to detect if the worker is
properly wearing its PPEs. We developed and tested different machine
learning algorithms to be embedded within the primary device, the
OAN’s central node. The algorithm in the primary device processes the
Receive Signal Strength Indicator (RSSI) signals from the secondary
devices to detect whether the PPEs are used correctly by identifying
an RSSI signature. ML allows the detection of the correct wearing of
the PPE and makes the approach robust concerning environmental and
operator conditions.

We evaluated the effectiveness of our solution by detecting the
correct position of a helmet. We show that our algorithm achieves
88% accuracy, which we further improve by playing with the trade-off
between false alarms and detection delay. We have shown that overall,
the system reports the abnormal helmet removal event within a little
more than 6 s of the event.

Experimental tests support the feasibility of BLE technology as a
low-cost and low-power monitoring solution for PPE usage. The result-
ing devices to be mounted on PPEs are economically accessible and
easy to set up. They are also non-invasive in not interfering with the
workers’ common movements and activities.

Future works may include extensions like designing similar systems
applied to different PPEs; testing our current approach to entirely
different use cases; extending the system to support near-miss detec-
tion; and combining information from our sensors with other data to
create an increasingly refined digital twin of the workplace (Lugaresi,
Gangemi, Gazzoni, & Matta, 2023); designing the presented devices
for harsh environments; exploring appropriate signalling mechanisms
when workers are equipped with PPEs that impair their ability to see,
hear, or sense their surroundings effectively. Moreover, in future work,
we would like to explore the application of our architecture in other use
cases related to occupational safety and other domains. For instance,
control the distance between workers and hazardous machinery to
ensure that workers do not get closer than necessary and thus prevent
potential hazards. Another possible use case is to expand the system by
adding environmental sensors to monitor the environment surrounding
the worker and ensure that the workplace is in the best condition.
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