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Nonlinear strain gradient and micromorphic one-dimensional elastic continua:
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e strong ellipticity (SE) conditions for strain gradient and micromorphic continua considering the
of a simple nonlinearly elastic material called in the following primary material. Recently both
ed for description of material behavior of beam-lattice metamaterials which may possess various

abilities. We analyze how a possible loss of SE results in the behaviour of enhanced models. We sho
s for a micromorphic medium is more restrictive than for its gradient counterpart. On the other
lation of SE for a primary material affects solutions within enhanced models even if the SE condi
em.

trong ellipticity, strain gradient elasticity, micromorphic medium, nonlinear elasticity, material in

tion

such enhanced models of continuum as the
c medium and the strain gradient elasticity
s applications in description of material be-
mposites and metamaterials with essential

mechanical properties [1, 2, 3, 4, 5]. In fact,
could be obtained as a result of homogeniza-
gly inhomogeneous materials such as beam-
ams [4, 6, 7]. The model of micromorphic
as proposed in original works by Mindlin [8]
en and Suhubi [9], see also [10, 11, 12]. For
c micromorphic medium there exists a strain
y given as a function of strain and microde-
sors. The microdeformations play a role of
kinematical descriptor of the model. On the

within the strain gradient elasticity a strain
ty depends on strains and higher-order gra-
cement vector [4, 13]. Considering the his-
pment of these models it is worth to mention
here further references in the field could be

see that the both approaches may success-
ome inhomogeneous materials such as open-
other beam-lattice materials. Moreover, con-
inematics within these two models, it is easy
imilarities between them. Indeed, replacing

ormation tensor in the constitutive relations
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of the micromorphic continuum by the deformatio
ent, we immediately come to the constitutive re
strain gradient elasticity. So the form of the strai30

densities within the both models are similar, in
On the other hand, the mathematical structure
librium equations is different for these models.
for the strain gradient elasticity we have a system
scalar partial differential equations (PDEs) of four35

whereas for the micromorphic medium the corres
system consists of six PDEs of second order. In
ular, the strong ellipticity condition for both mo
also different. Let us note that the strong elliptic
condition plays a role of so-called constitutive in40

in nonlinear elasticity, i.e. for simple elastic mat
sense of W. Noll [17, 18], which may guarantee so
ural” properties of the static problem under consid
For example, violation of the SE condition may
a certain material instabilities in solids [19, 20, 245

Since beam-lattice and some other architecte
rials undergo large deformations, various kinds
bilities may occur. These instabilities could be
at both micro- and macroscales. So an effective
model has to capture these phenomena, in gene50

example, for open-cell foams made of elastomer
buckling of cell struts results in a plateau in a stre
curve similar to plasticity, see [22]. Studying s
crete structures and their strain gradient and m
phic counterparts, the comparison of these models55

vided through description of material instabilitie
A stability analysis of nonlinear boundary-value p
(BVPs) could be rather complex, see e.g. [19, 20
simple materials or [25] for micropolar media. In

tted to Mechanics Research Communications Apri
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t still could provide some information about
abilities [26].
of this paper is to discuss the SE conditions
strain gradient and micromorphic media in
ulate corresponding constitutive inequalities
e the difference between these models. The
nized as follows. In Section 2 we briefly re-
relations within the strain gradient elasticity
rphic continuum. For the both media the SE
e formulated. Section 3 is devoted to an one-
1D) case, i.e. to a stretching of an elastic 1D
n this case one can easily see the difference
els. In particular, we prove that the SE con-
micromorphic continuum is more restrictive

ain gradient bar. Then, in Section 4 we com-
models and discuss the difference in related

nequalities.
ollows we use the direct (index-free) tensor
defined in [19, 27, 28].

r continua and strong ellipticity

lowing we briefly recall the basic equations
hic and strain gradient mechanics for solids
nite deformations.

rphic continuum

an elastic body. Deformation of B could be
an invertible mapping from a reference place-
current placement χ. For any material parti-
characterize its positions in κ and χ through
d x, respectively. So for a static deformation

x = x(X).

morphic media we introduce a second-order
rodeformations [10] as an additional kinemat-
r associated to the same material particle z

H = H(X).

strain energy density could be introduced as
the deformation gradient F = ∇x, H, and

W = W (F,H,∇H),

he 3D nabla-operator defined as in [19, 27,
plication of the material frame indifference
18] we came to the following form

W = W (C,H · F−1,L), (1)

· FT is the Cauchy–Green strain tensor, “·”
e dot product, L = ∇H ·F−1 is a third-order
.g., [29, 30] for more details. Note that for
keep the same notation for W .

∇ ·P + ρf = 0, ∇ · S− ∂W

∂H
+ ρc = 0,

where P and S are the first Piola–Kirchhoff st
hyper-stress tensors, respectively, ρ is a referent
density, and f and c are mass force vector and hy
tensor. P and S are expressed through W as foll

P =
∂W

∂F
, S =

∂W

∂∇H .

2.2. Strain gradient elastic continuum90

Within the strain gradient elasticity approach
energy density V depends of F and its gradient G
[13, 31]:

V = V (F,G).

Applying again the principle of material frame ind
we came to the following form of V [26, 32]

V = V (C,K),

where K = ∇F · FT is a third-order tensor.
The Lagrangian equations of statics have the

∇ ·T + ρf = 0, T = P−∇ ·M,

where T is the total stress, P is the stress, and M
hyper-stress tensors, all are of the first Piola–K
type. They are defined as follows

P =
∂V

∂F
, M =

∂V

∂G
.

2.3. Strong ellipticity conditions

Let us formulate the strong ellipticity (SE) con
terms of strain energy density for the both model
case of the micromorphic continuum the SE condit
cides with the positive definiteness of the followin
with tensor-valued elements

Q =




∂2W

∂F2

∂2W

∂F∂∇H
∂2W

∂∇H∂F
∂2W

∂∇H2


 ,

which could be written as follows [29]

(k⊗ a) :
∂2W

∂F2
: (k⊗ a) + (k⊗ a) :

∂2W

∂F∂∇H
...(k

+ (k⊗A)
...
∂2W

∂∇H∂F : (k⊗ a)

+ (k⊗A)
...
∂2W

∂∇H2

...(k⊗A)

≥ C1|k|2
(
|a|2 + |A|2

)
,

where k and a are arbitrary vectors, A is an a

second-order tensor, “⊗” is the dyadic product, “:”
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are the double dot and triple dot products, respectively,95

|a| and |A| are Euclidean norms for vectors and second-
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, and C1 is a positive constant independent
A.
rain gradient elasticity the SE condition takes
33]

⊗ a)
...
∂2V

∂G2

...(k⊗ k⊗ a) ≥ C2|k|4|a|2, (8)

k and a are arbitrary vectors, and C2 is a
tant independent on k and a.

ensional case

o illustrate difference between SE conditions
ne-dimensional (1D) counterparts of consid-
In other words, we restrict ourselves to so-

orld”, which is similar but not the same as a
m of for an elastic bar under tension, as here
one dimension. Indeed, now our elastic body
epresented as a segment [0, a] in a reference
o a position of a material particle z in κ is
scalar Lagrangian coordinate X ∈ [0, a]. We
B is clamped at x = 0, whereas an exter-
applied at x = a. For simplicity we neglect
The problem under consideration could be
an uniaxial strain state, whereas an elastic

g corresponds to uniaxial tension. First, let
hypothetic model with ellipticity loss within

sticity.

aterial

sider 1D model for a nonlinear elastic mate-
lso as a simple or Cauchy material. In what
sume the following 1D strain energy density

U = U(ε), ε = uX , (9)

− X = u(X) is a displacement field. For
note derivatives with respect to X as follows

X =
du

dX
, uXX =

d2u

dX2
, etc.

equation takes the form

σX = 0, σ =
dU

dε
, (10)

matic and static boundary conditions

u(0) = 0, σ(a) = p. (11)

iola (nominal or engineering) stress.
D continuum the SE condition takes simple

dσ

dε
≡ d2U

dε2
> 0. (12)

In order to demonstrate the loss of strong e
we consider the following strain energy density
the form of Morse potential [34]

U =
1

2
E [1− exp(−ε/`)]2 ,

where E is an elastic modulus and ` is a chara
size of the energy well. Typical graphs of U an
given in Fig. 1 a) and b), respectively. Here the
U has a horizontal asymptote at ε → ∞, so σ125

zero at ε → ∞. We have the non-ellipticity ran
the inflexion point at ε = ε∗ in Fig. 1 a) and for th
branch of σ− ε curve in Fig. 1 b). In this range t
energy is non-convex and the tangent elastic mo
negative. This situation could be treated as a130

instability, see [35].

0

U

���
non-ellipticity range

a)

���
non-ellipticity range

0

��p

p

�
p

��p
max

max

�� ��

b)

Figure 1: Simple material: a) strain energy vs. strain; b)
strain. For (13) ε∗ = ln(2)/`.

Equations (10) and (11) result in an affine defo

u = ε0X,

where ε0 is a solution of σ(ε) = p. Obviously, such
exists if p ≤ pmax as for p > pmax this equation
have any solution. Moreover, for p ∈ (0, pmax)
two solutions ε = ε1 and ε = ε2. So we see that135

of the SE condition results in non-uniqueness of s
as well as in certain material instabilities.

Let us note that 1D problems with non-conv
lems strain energy density are studied in nonlinea
ity in order to model phase transformations, see140

and the references therein. Ericksen [37] consid
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elastic bar with two-well potential, see also [38, 39]. We
also underline that the SE condition analysis for uniax-
ial tension w
see e.g. [40].145
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ithin 3D theory is more complex, in general,
In particular, the ellipticity range does not

o the fading branch as observed for some pa-
gden’s model of material [40].

radient 1D continuum

in gradient model of B a strain energy density
atic boundary conditions take the form

V = V (ε, εX), (14)

u(0) = 0, uX(0) ≡ ε(0) = 0. (15)

nal equilibrium equation and static bound-
s are given by

− τXX = 0, σ =
∂V

∂ε
, τ =

∂V

∂εX
, (16)

)− τX(a) = p, τ(a) = 0, (17)

τ are 1D Piola-type stress and hyper stress
s), respectively.
E condition takes the form

dτ

dεX
≡ d2V

dε2X
> 0. (18)

q. (18) is different from (12) as it does not
nstraint on the dependence on ε.
sider a particular form of (14) given by

V = U(ε) +
1

2
αε2X , (19)

efined as for simple material, and α is an
stic modulus. In fact, (19) could be treated
ation of (9). In this case (18) transforms into

α > 0. (20)

equality (20) results in the positive definite-
ow the 1D boundary-value problem has the

= 0, σ =
dU

dε
, (21)

(0) = 0, σ(a)− εXX(a) = p, εX(a) = 0,
(22)

1) and (22)2,3,4 constitute a BVP with re-
hich could be solved as follows. Integrating
ng into account (22)3, we get a new BVP

σ(ε)− αεXX = p, (23)

ε(0) = 0, εX(a) = 0. (24)

ndard technique for ordinary differential equa-
of second-order [41] we come to the first in-

α

2
ε2X = U(ε)− pε+ C, (25)

dependence

ε∫

0

dε√
2 [U(ε)− pε+ C]

= ±X.

Finally, u has the form u(X) =
X∫
0

ε(X) dX.

3.3. Micromorphic approach

Let us now consider an extension of the 1D sim
terial using micromorphic approach. For the 1D
morphic continuum a strain energy density is giv

W = W (ε, η, ηX),

where η = η(X) is a scalar microdeformation field155

for 1D case we have a model with a scalar micros
as defined by Capriz [42], such as for example N
Cowin poroelasticity [43].

For 1D micromorphic body B the BVP consist
librium equations

σX = 0, µX −
∂W

∂η
= 0; σ =

∂W

∂ε
, µ =

∂W

∂η

and the following boundary conditions

u(0) = 0, η(0) = 0; σ(a) = p, µ(a) = 0.

The SE conditions coincide with the positive
ness of the matrix

Q =




∂2W

∂ε2
∂2W

∂ε∂ηX
∂2W

∂ηX∂ε

∂2W

∂η2X


 .

In what follows similar to (19) we restrict our
the micromorphic extension of (9)

W = U(ε) +
γ

2
η2X +

β

2
(ε− η)2,

where γ and β are new elastic moduli. In this
positive definiteness of Q is equivalent to the ineq

γ > 0,
d2U

dε2
+ β > 0.

So the SE conditions are determined by both par
strain energy density, i.e. by nonlinearly elastic160

cromorphic parts. Note, that positive definitene
requires more strong inequalities: γ > 0, β ≥
case β = 0 corresponds to a decoupled problem
assume that β > 0. For U given by (13) we h
d2U/dε2 ≥ −E/8`2. So Eq. (32)2 results in the in165

β > β∗, where β∗ = E/8`2.
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The corresponding 1D BVP has the form
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β(ε− η)]X = 0, σ0 =
∂U

∂ε
, (33)

β(ε− η) = 0; (34)

, η(0) = 0; (35)

+ β(ε(a)− η(a)) = p, ηX(a) = 0. (36)

d (36)1 we get that

σ0(ε) + β(ε− η) = p (37)

, a]. Extracting η from (37) and substituting
to (34), (35)2, and (36)2 we get again the
P with respect to ε

β

]
εXX +

γ

β

d2σ0
dε2

ε2X − σ0(ε) + p = 0, (38)

β

)
εX

] ∣∣∣∣
X=a

= 0, (39)

ε]

∣∣∣∣
X=0

= p. (40)

e latter BVP differs essentially from (21) and
ave not a solution in a form similar to (26).

fference consists of a possible singularity in
0 + β before εXX , i.e when dσ0

dε + β = 0 or,
s, when (32)2 is violated. In addition, in this
omes degenerated and does not constitute a
ndition. Moreover, violation of (32)2 result
olutions of (40) for ε. The dependencies of
s. ε is shown in Fig. 2 for some values of
an see how the non-ellipticity of the simple
inherited by the micromorphic model.
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non-ellipticity range

iolation of the SE condition (32)2: σ0(ε) + βε vs.
ticity range is shown in red. Here β̄ = β/E.

son of the models through SE condi-

nsider these two 1D models in more details.
ll underline some obvious similarities between
nt and micromorphic approaches. In fact,
ε, from (27) we immediately get (14). So

see [44] for application of Lagrange multipliers te
Moreover, let us note that a static solutions coul
tained minimizing the total energy functionals, i
variational equations

δEG = 0, δEM = 0,

EG =

a∫

0

V dX − pu(a), EM =

a∫

0

W dX − pu(a

where in EG and EM the energy densities given by180

(31), respectively.
Using the penalty technique we can treat t

β(ε− η)2 with large enough value of β as a pena
tion. So a minimizer of EM should be close to a m
of EG when β →∞.185

0

�X

a)
�X

0

b)

Figure 3: Phase portraits for the strain gradient BVP
(0, pmax), two stationary points at (ε1, 0) and (ε2, 0) ar
red diamonds; b) p > pmax, no stationary points.
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s; b) p > pmax, no stationary points. Integral curves
ertical dashed line ε = εβ , β̄ = 0.15.

conditions phase portraits for the micromor-
given in Figs. 4 and 5. Now the behaviour

rves is more complex and depends not only
on β. For p ∈ (0, pmax) we again have saddle

oints (Figs. 4 and 5 a), whereas for p > pmax

ints do not exist. A solution of (38)–(40)
esented as an integral curve which starts on

ine ε = εβ and ends on the line εX = 0. Here
ion of (40). Obviously, εβ → 0 at β → ∞.
ely small values of β, i.e. β ∼ β∗, integral
milar only qualitatively as shown in Fig. 3,
elatively large values of β, i.e for β � β∗, the
gral curves are quite similar, see Fig. 3 and
alues β̄ ≡ β/E = 0.15 and β̄ = 10 are used

nd 5, respectively, whereas β̄∗ = 0.125. So

β →∞ and under assumption α = γ.
Note that a solution of (38)–(40) exists for any

for the primary material there a solution does not230

p > pmax. So we can also call Eq. (31) a micromor
ularization of the primary material.

�0 ��
��

�X � � �� �X � � ��

0

a) b)

Figure 5: Phase portraits for the micromorphic BVP: “la
p ∈ (0, pmax), two stationary points at (ε1, 0) and (ε2, 0) a
as red diamonds; b) p > pmax, no stationary points. Integ
begins on the vertical line ε = εβ , which is close to the l
β̄ = 10.

Conclusions

Considering gradient and micromorphic “regu
ons” of a primary nonlinear elastic simple mat235

have discussed the strong ellipticity conditions f
media, that could be related to a certain materi
bility. The considered primary material may loss
ity which results in non-existence of solutions und
loads. We can conclude that for a strain gradient240

the SE conditions are more simple and entirely
dent on the SE conditions for the primary materia
the SE conditions the strain gradient approach
considered as a regularization of constitutive equ
a simple material. Indeed, in this case one avoi245

existence issue as existence depends on the high
terms. Nevertheless, one can see that a solutio
BVP within gradient approach reflects some prop
a primary material including its ellipticity.

Instead, for a micromorphic material the SE co250

inherit SE conditions of the primary material.
words, a violation of the SE conditions for a the
material may result in the consequent violation o
conditions for micromorphic materials. But unde
conditions we again can solve the non-existence i255

So considering strain gradient and micromorp
tinua as models of some microstructured mater
as beam-lattice metamaterials, we see that the S
tions for micromorphic materials are more restric
may correspond to material instabilities at differen260

On the other hand, as we can see above, the bo
larizations could produce similar results, at least
cases.
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Finally, we can conclude that the strong ellipticity plays
an important role as constitutive inequality with enhanced265

models of co
tions may si
other hand, o
from one mo
For example,270

the strain gr
complemente
SE condition
such a compl
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“Nonlinear strain gradient and micromorphic one-dimensional elastic continua: 

comparison through strong ellipticity conditions”

by Victor A. Eremeyev and Emanuele Reccia

Strong ellipticity (SE) conditions are compared for nonlinear strain gradient (SG) and 

micromorphic (MM) elasticity.
Relations between SE of enhanced models and of simple nonlinear elastic (primary) 

material are clarified.
SE within SG approach is independent on SE of primary material, whereas SE of MM

model elasticity inherits it partially.
Both models regularize primary material behaviour, so non-existence of solutions is 

avoided.
SE conditions bring information on material instabilities within enhanced models of 

continua.
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