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Abstract
Assuming that the subject of each scientific publication can be identified by one or more
classification entities, we address the problem of determining a similarity function (distance)
between classification entities based on how often two classification entities are used in
the same publication. This similarity function is then used to obtain a representation of the
classification entities as points of an Euclidean space of a suitable dimension by means
of optimization and dimensionality reduction algorithms. This procedure allows us also to
represent the researchers as points in the same Euclidean space and to determine the distance
between researchers according to their scientific production. As a case study, we consider as
classification entities the codes of the AmericanMathematical Society Classification System.

Keywords Bibliometrics · Dimensionality reduction · Linear programming

1 Introduction

The use of bibliometric indicators is becoming more and more pervasive in academic and
scientific life. Despite various standpoints from scientific associations and institutions —
one over all, the DORA declaration (see Cagan, 2013) — nowadays bibliometrics plays a
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central role both for university rankings and for the careers of individual researchers. For
instance, the Italian higher education system explicitly involves a rigid use of bibliometric
indicators both for allocating funding among universities and for regulating promotions to
associate/full professorships (see e.g., Abramo and D’Angelo, 2015; Baccini et al., 2019;
Cappelletti-Montano et al., 2021).

In order to apply correctly and properly a bibliometric indicator one has to ensure that the
object to which that bibliometric index is applied — a university, a department, or a single
researcher — is compared within similar entities. For instance, it makes no sense to compare
the h-index of a biologist with that of a physicist.

There have been several attempts at taking into account the appropriate context for “mea-
suring” bibliometric indicators associated to an article (and hence to a researcher or to an
aggregate of researchers) or at developing a new system of unbiased qualitative judgment of
research publications (Murtagh et al., 2018). The simplest choice is to consider the subject
categories associatedwith the journal where the article is published. In Ioannidis et al. (2019),
using SCOPUS, a database of top 2% authors for each scientific field and subfield has been
created (the database was recently updated in Ioannidis, 2022). Web of Sciences database
(http://webofscience.help.clarivate.com/en-us/Content/author-record.html) recently imple-
mented a new function, named Author Impact Beamplot, which shows, for each year, the
best citation percentile of the author’s articles with respect to all articles published in that
year in all the Journal Citation Reports (JCR) categories where the author’s articles are pub-
lished. This is based on early ideas from Bornmann and Marx (2014) (see also Bornmann
and Haunschild, 2018; Haunschild et al., 2019).

Although suggestive, these proposals have several limitations. The main issue is that the
“subject categories” are often too wide and they do not allow to compare correctly articles
and authors. For instance in the subject category “mathematics,” we can find disciplines
which have very different behaviors from the bibliometric point of view: there are articles
in abstract algebra, which usually gain few citations, and articles in applied/computational
mathematics which receive many more citations.

Another interesting proposal is to weight each citation received according to the average
number of bibliography lengths (actually, the number of active references) of the articles in
the journal in which the article, from which the citation came, is published (see for instance
Waltman and van Eck, 2013, and references therein).

In order to use bibliometric indicators for researchers’ careers, the Italian higher education
system required that each professor must belong to one among the 190 competition sectors
in which all disciplines were rigidly subdivided by Italian legislation. For each of such
competition sectors some thresholds for the number of articles, total citations, and h-index
were required as necessary conditions for becoming an associate or full professor. However,
also this practice did not prevent the occurrence of the same aforementioned problems. For
instance, the competition sector “01/B1 - Computer Sciences” includes professors working
on logic/theoretical computer science, who traditionally have low bibliometric indexes, and
professors working on machine learning or bioinformatics, who have, on average, very high
numbers of articles and citations (cf. Demetrescu et al., 2020). A common point in any of
the above proposals is to consider “close” and hence “comparable” any two authors whose
scientific activities fall in a pre-specified field. This intuitive idea of “closeness” can be
mathematically treated by using the notion of distance. In other terms, one should define a
distance function which associates to any couple of researchers A and B a positive number
telling how far A and B are. This problem is related to the topics of the delineation of scientific
fields and the classification of scholarly journals. We do not deal with these topics, and refer
the reader to the Glänzel et al. (2019) and Baccini et al. (2022), and references therein.
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In this article, we address the problem of defining the above distance function under the
assumption that to each scientific article, it is attached a code (or possibly more than one) that
classifies the article’s topics in a very detailed way. This condition may appear too restrictive,
however, there are several contexts where it holds: we can mention, for instance, the well-
known Mathematics Subject Classification (MSC), Physics and Astronomy Classification
Scheme (PACS), Computing Classification System (CCS), Journal of Economic Literature
(JEL) classification codes for the fields, respectively, of mathematics, physics/astronomy,
computer sciences, and economics. On the other hand, it is abstractly possible to define a
classification of scientific articles in any field using the title or the keywords. A proposal in
this direction, named SciVal Topic Prominence, was recently implemented in the SCOPUS
database (https://service.elsevier.com/app/answers/detail/a_id/27947/supporthub/scopus/).

Then, by means of an optimization and geometric deep learning process, we are able to
represent the codes as points of a 3-dimensional space endowed with a distance function.
This mathematical construction, which takes into account the frequency of articles sharing
the same code, allows us to give a quantitative measure of the distance of two codes. We
extend this procedure to authors, and in this way, we are able to consider a neighborhood of
a given author, i.e., the set of authors which are close (hence comparable) to him/her.

We test this construction for the field of mathematics, using the database “Zentralblatt
Math” where the MSC classification is used for each article.

2 Representation of Classification Entities and Authors

In this section with classification code, we mean an alphanumeric string used in a scientific
database to identify a subject in a given discipline. For instance, in the MSC a classification
code is of type 12A26, while in the PACS is typically written as 02.40.Hw.

The aim of this paragraph is to find a good way to represent a set of classification codes
as a set of points in an Euclidean space Rn , for some suitable dimension n. With good, we
indicate that similar codes, in some sense that we will explain soon, are represented as close
points in R

n .

2.1 The Similarity Function for Classification Entities

Let C be a set containing N classification codes and let A be the set of all scientific articles
in a given database to which at least one of the codes in C has been assigned. If c ∈ C and
a ∈ A, we shall write c ∈ a meaning that the article a is assigned to the scientific code c.

We can then define a matrix F = (Fi, j ) ∈ R
N×N such that:

Fi, j = F(ci , c j ) = #{a ∈ A : ci , c j ∈ a} i �= j

Fi,i = F(ci , ci ) = #{a ∈ A : ci ∈ a} (1)

Thus, for i �= j , Fi, j represents the number of articles that share at least the codes ci and c j ,
while Fi,i the number of articles that have at least the code ci .

Our goal is to establish a meaningful distance between two codes, ci and c j , capable of
discerning the extent of their relationship. Specifically, when codes ci and c j exhibit a close
association, meaning the presence of one in articles almost invariably coincides with the
presence of the other and vice versa, the resulting distance should be zero. Conversely, when
the two codes are unrelated, and almost never concurrently featured in articles, the distance
should be maximal. To formalize this notion, we propose the adoption of the following
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function where to ensure values fall within the [0, 1] interval, we assign a distance of 1 when
the codes are unrelated.

In details, using the matrix F , we can then define a similarity function d : C × C → R
+

as follows:

d(ci , c j ) := 1 − min

{
Fi j

Fii
,

Fi j

Fj j

}
. (2)

We observe that the quantity di j := d(ci , c j ) is close to zero when the number of articles
containing ci and c j is close to the number of articles containing only ci or only c j . On the
other hand, di j is close to 1 when the number of articles containing ci and c j is small with
respect to the number of articles containing ci .

While the similarity function provides insights into the relationships between codes, it
falls short in revealing the frequency of a single code, ci . To address this limitation, we
introduce a conceptual universal code, denoted by O , as described below. This universal
code is postulated to be present in all articles under consideration. Then, the distance d ,
between a code ci and the universal code O should gauge the frequency Fii in the following
manner: when d(O, ci ) approaches zero, it indicates that ci is present in almost all articles;
conversely, if ci is infrequently present in an article, the distance value should converge
toward 1, signifying its rarity in the dataset.

We thus define the universal code O by the condition F(O, O) = ∑
Fii . The formula

d(O, c j ) = 1 − min

{
F(O, c j )

F(O, O)
,

F(O, c j )

Fj j

}
= 1 − min

{
Fj j∑
i Fii

,
Fj j

Fj j

}
= 1 − Fj j∑

i Fii
,

guarantees that the universal code O precisely fullfill the intended purpose within the scope
we have introduced.

To simplify the notation, we denotewith C̃ the set C∪{O} andwith D̃ the (N +1)×(N +1)
matrix with entries D̃i j := d(ci , c j ) when i, j ∈ {1, . . . , N } and D̃i(N+1) = D̃(N+1)i :=
d(O, ci ), j ∈ {1, . . . , N }.

2.2 Representation of Classification Entities as Vectors

Using the similarity matrix D̃ defined in the previous section, we want to define a represen-
tation map R : C̃ → R

k for some k ∈ N, so that the Euclidean distance between any two
points R(ci ) and R(c j ) is equal to the similarity value D̃i j .

Finding the position of elements knowing their relative distances is often referred to as the
distance geometry problem (DGP). The DGP arises in different contexts depending on the
dimension k of the representation considered. Some of the most common applications are
wireless sensor networks for k = 1, 2, or 3 (Singer, 2011), determination of protein structure
from nuclear magnetic resonance experiments for k = 3 (Bahr et al., 2009; Tabaghi et al.,
2019), controlling fleets of underwater autonomous vehicles for k = 3 (Wüthrich, 1989)
(more details on how to solve the DGP are given in Appendix A).

In order to apply the distance geometry approaches, described so far in general, to our
situation, we first need to define a simple undirected graph G. We let the vertices set V be
equal to the classification entities set C̃, the edges set E = {(i, j) | D̃i j �= 1 or D̃i j �=
0, i, j ≤ N + 1} and the weight function given by the values of the matrix D̃.

By factorizing the solution of the DGP, we obtain a representation of the classification
entities C̃ in R

N+1 which we will denote with C̃N+1. Since N + 1 can be very large, we
apply a dimensionality reduction algorithm to C̃N+1 as described in Appendix A to obtain a
representation C̃k of the classification entities inRk with k � N +1. In the following, wewill
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describe a first attempt to use the representation C̃k to obtain a representation of researchers
based on their scientific production so that researchers publishing in the same field are close
to each other.

2.3 Representation of Researchers

Given a representation C̃k of the considered classification entities in Rk , for some dimension
k, we consider a set R of researchers and we assume that it is possible to associate to every
element r ∈ R a subset C̃k

r ⊆ C̃k according to the scientific production of the researcher; for
example, if C̃ is the set of the American Mathematical Society (AMS) classification codes,
we associates to a researcher every code that has ever been used in all the articles published
by the researcher.

For any r ∈ R, we would like to obtain a representation r of r as an element of Rk , i.e.,
the same space where the classification entities are represented. Perhaps, one of the most
intuitive approaches is to consider the following weighted sum

r :=
∑
c∈Ck

r

wc c, (3)

where the weights wc allow to give more importance to the classification entities that better
represent the researcher. For example, wc can be equal to the number of scientific articles
published by the researcher under the classification entity c.

The idea is that given two researchers r1 and r2, the corresponding points r1 and r2 in Rk

are as close to each other as the scientific production of r1 and r2 are similar according to the
classification system given by C̃. Therefore, it seems reasonable to evaluate the publications
of a researcher r by comparing r with only the researchers whose representation in R

k is
closest (in some sense) to the representation of r .

For example, one could find the smallest ball around r which contains an appropriate
number of classification entities, and compare the researcher r only with the researchers
whose representation in R

k lies inside this ball. We test this approach in the case study of
Section 3 proving that in some fields it provides good results.

3 Case Study: The AmericanMathematical Society Mathematics
Subject Classification

In order to validate our theoretical approach, we considered the American Mathematical
Society mathematics subject classification system as a classification dictionary for research
articles.

The MSC consists in a set of alphanumerical codes representing several (almost all)
mathematical fields. Each code is divided into three hierarchical layers:

(i) the first level is represented by a 2-digit number, one for each mathematical discipline,
e.g., 53 for differential geometry, 23 for real function analysis;

(ii) the second level is represented by a Latin letter which indicates a specific area covered
by the first level discipline, e.g., 53A for classical differential geometry;

(iii) the third level is represented by a 2-digit number, one for each specific kind of mathe-
matical object, well-known problem, or research area in the field identified by the first
two levels, e.g., 53A05 is the code representing surfaces in Euclidean or related space.
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Usually, every article submitted to a journal indexed by the AMS is classified by one or
more MSC codes (either chosen by the authors or by the editors and validated by the AMS
reviewers). This classification system is available in both the AMS (https://mathscinet.ams.
org/mathscinet/) and Zentralblatt (https://zbmath.org) repositories.

Since the latter offers open-API (Petrera et al., 2021) to collect information on the articles
contained in the repository, we used a small Python script to retrieve the number of articles
classified by one or two MSC elements. In order to maintain the computational cost of the
DGP instance acceptable, we considered the 1863 codes representing mathematical analysis
or geometry subjects. This choice is also justified by the consideration that researchers dealing
with mathematical analysis and geometry represent the vast majority of those dealing with
puremathematics.Moreover, there are several researcherswith a research production between
these two areas, a fact that will be important to test our analysis.

In accordancewith the notation used in Section 2, we denote with C the set of classification
codes under consideration, with F the N × N matrix such that Fi j = #{articles with codes
ci , c j} (with N=1863) and with D the matrix containing the similarity values between codes
as defined by Eq. 2.

As in Section 2, we denote with C̃ the set obtained by adding the universal code O to C
and D̃ the matrix obtained by adding a row and a column to D to include the similarity values
between O and the other elements in C.

We then solve the DGP instance with input data N and D̃ using the linear reformulation
(9) to obtain a representation of the MSC codes Y in R

N . Since N is quite large, we have
applied several dimensionality reduction algorithms to obtain a representation of the codes
in R

3. Since we are also interested in visualizing the representations of the AMS codes and
the researchers, we tested our approach with k = 2, 3. However, the quality of the results
obtained with k = 2 was significantly poorer than the one obtained using k = 3 in terms of
the clustering of the researchers, while the AMS codes representations for k = 2 and k = 3
are not particularly different. We have reported the results obtained for k = 2 in Appendix 2.
Therefore, in the rest of the article, we will only consider representations in R3.

In our analysis, we have considered the following dimensionality reduction algorithms
(we refer to Appendix A and the references therein for more details): principal component
analysis (PCA), random projections (RP), linear discriminant analysis (LDA), isometric
feature mapping (ISOMAP), uniform manifold approximation and projection (UMAP),
multi-dimensional scaling (MDS) having as input the solutionY of theDGP problem (MDS1)
and the dissimilarity matrix D̃ (MDS2).

Since we solve the DGP in an approximate way (see Appendix A for more details), it is
important to evaluate the solution obtained with respect to the distances encoded in D̃. Two
scores to evaluate the quality of the DGP solution are given by the maximum deviation error
(MDE) and largest deviation error (LDE) defined by

MDE := 1

|E |
∑

{i, j}∈E

| ‖yi − y j‖2 − D̃i j |
D̃i j

LDE := max{i, j}∈E

| ‖yi − y j‖2 − D̃i j |
D̃i j

, (4)

where E is the set of edges of the graph G used as input for the DGP instance.
Table 1 shows the values of MDE and LDE for the representation of C̃ in R

N and the
representations in R

3 obtained using different dimensionality reduction algorithms.
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Table 1 The table shows the
values of MDE and LDE
computed on the original
representation in R

N using the
DGP approach and the
representations in R

3 obtained
using dimensionality reduction
algorithms

Representation MDE LDE

Original 0.0079 5.39 × 10−6

PCA 0.0065 3.39 × 10−6

RP 0.0019 5.19 × 10−6

ISOMAP 0.0061 8.03 × 10−6

MDS1 0.0018 3.23 × 10−6

MDS2 0.0017 3.22 × 10−6

UMAP 0.0051 3.37 × 10−6

LDA 0.0060 3.4 × 10−6

We observe that the dimensionality reduction algorithms help to improve the quality of the
representation due to the fact that the high number of dimensions of the original representation
has a lot of misleading information. We remark that better values of MDE and LDE do not
necessarily imply that the representation is the best one for every purpose. In fact, looking at
the results, we obtained, theMDSalgorithm is the best one, but by looking at the configuration
obtained by MDS (see Fig. 1d), we observe that if one is interested in understanding the
clusters of mathematical fields this configuration gives very poor information with respect
to, for example, the configuration obtained by the UMAP algorithm (see Fig. 1f) which
obtained the worst score in terms of MDE and LDE.

Figure 1 shows the configurations of the classification codes we considered inR3 obtained
with different dimensionality reduction algorithms.

In Table 2, we reported three different clustering indicators to evaluate the AMS codes
classification representations in R

3 obtained using different dimensionality reduction algo-
rithms. The indicators we considered are the following (for more details, we refer to Davies
and Bouldin, 1979; Rousseeuw, 1987):

a) thewithin-cluster sumof squares (WCSS)whichmeasures, for each clusterC , the average
distance between a point in C and its centroid;

b) the mean silhouette score, with values in the interval [−1,+1], which evaluates, on
average, the similarity of a point to its cluster compared to other clusters;

c) the Davies-Bouldin index which evaluates both the separation between different clusters
and the variation within the same cluster (lower value the better).

While WCSS highlights the quality of each cluster individually, silhouette and DB index
point out the quality of the whole partition obtained using different dimensionality reduction
algorithms. For this reason, in Table 2, we have reported the first metric for each cluster and
the other two at a global clustering level.

The results reported in the table above show that the Umap algorithm seems to have the
better performances on average on the different metrics we have considered. This behavior
is also noticeable by looking at the graphic representations of the clustering in Fig. 1.

Once we obtained the representation of MCS codes as element in R
3, we made a first

attempt in representing researchers using the approach described in Section 2.
We considered the researchers which are members of the Italian association “Istituto

Nazionale di Alta Matematica” (INDAM) belonging to the mathematical analysis and geom-
etry subgroups which are named GNAMPA and GNSAGA respectively. For each researchers
considered, we collected the MCS codes used in every published articles and the number of
times the same code as been used by the researcher. We denote with r the researcher, with
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Fig. 1 The figure shows the representation of the AMS classification codes as point in R
3 obtained using

different dimensionality algorithms, colored according to their first hierarchical level. The pictures in this
figure are produced with Cinolib (Livesu, 2019) and Py3DViewer (Cherchi et al., 2019) libraries

{cr
1, . . . , cr

nr
} the codes used by r and with tr

i the number of times the code cr
i has been used

by the researcher. Then, a representation in R
3 of r is obtained as the weighted centroid of

the codes used by the researcher:

r =
nr∑

i=1

cr
i tr

i , (5)

where cr
i is the representation in R

3 of the code cr
i .

In Fig. 2,wehave inserted the distribution of the researchers according to the representation
obtained using different dimensionality reduction algorithms. We are aware that a static
figure of points inR3 can be hard to analyze. Therefore, we have provided two animations as
additional material to this article, the first shows the representation of the AMS codes while
the second the representation of researchers. Both animations are obtained by changing the
point of view.

In order to evaluate the quality of the representation of the researchers,we computed appro-
priate balls around each of their representation inR3 andwe checked howmany researchers of
the same area were lying inside the ball. In fact, both the subgroup GNAMPA and GNSAGA
are divided into clusters according to different research areas in mathematical analysis and
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Table 2 Details on the clustering obtained for the AMS classification codes using different dimensionality
reduction algorithm

Dim. red. Category Cluster WCSS Silhouette DB index

PCA

Geometry

Combinatorics 0.15

−0.07 2.67

Algebraic geometry 0.02

Geometry 0.04

Convex and discrete geometry 0.02

Differential geometry 0.02

General topology 0.07

Algebraic topology 0.04

Manifolds and cell complexes 0.03

Global analysis, analysis on man-
ifolds

0.02

Analysis

Functions of complex variables 0.06

Several complex variables 0.03

Ordinary differential equations 0.10

Partial differential equations 0.03

Difference and functional equa-
tions

0.13

Harmonic analysis 0.02

Integral equations 0.04

Functional analysis 0.04

RP

Geometry

Combinatorics 48.69

−0.18 36.99

Algebraic geometry 51.69

Geometry 52.43

Convex and discrete geometry 46.90

Differential geometry 47.88

General topology 54.71

Algebraic topology 50.71

Manifolds and cell complexes 49.72

Global analysis, analysis on man-
ifolds

47.77

Analysis

Functions of complex variables 45.46

Several complex variables 50.33

Ordinary differential equations 44.44

Partial differential equations 50.09

Difference and functional equa-
tions

45.42

Harmonic analysis 43.26

Integral equations 34.27

Functional analysis 48.33
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Table 2 continued

Dim. red. Category Cluster WCSS Silhouette DB index

ISOMAP

Geometry

Combinatorics 1.79

−0.66 13.58

Algebraic geometry 7.42

Geometry 10.71

Convex and discrete geometry 4.52

Differential geometry 0.98

General topology 1.48

Algebraic topology 2.07

Manifolds and cell complexes 3.17

Global analysis, analysis on man-
ifolds

1.29

Analysis

Functions of complex variables 2.10

Several complex variables 1.79

Ordinary differential equations 1.49

Partial differential equations 0.74

Difference and functional equa-
tions

2.96

Harmonic analysis 1.28

Integral equations 1.41

Functional analysis 1.47

MDS1

Geometry

Combinatorics 44.50

−0.19 35.66

Algebraic geometry 44.34

Geometry 41.39

Convex and discrete geometry 41.10

Differential geometry 44.48

General topology 43.33

Algebraic topology 45.14

Manifolds and cell complexes 42.28

Global analysis, analysis on man-
ifolds

41.51

Analysis

Functions of complex variables 45.68

Several complex variables 45.46

Ordinary differential equations 43.77

Partial differential equations 45.35

Difference and functional equa-
tions

39.56

Harmonic analysis 41.46

Integral equations 43.82

Functional analysis 44.75
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Table 2 continued

Dim. red. Category Cluster WCSS Silhouette DB index

MDS2

Geometry

Combinatorics 44.15

−0.20 34.12

Algebraic geometry 43.21

Geometry 43.95

Convex and discrete geometry 44.54

Differential geometry 42.91

General topology 43.61

Algebraic topology 43.66

Manifolds and cell complexes 44.07

Global analysis, analysis on man-
ifolds

44.28

Analysis

Functions of complex variables 44.50

Several complex variables 44.24

Ordinary differential equations 43.99

Partial differential equations 44.34

Difference and functional equa-
tions

44.10

Harmonic analysis 44.21

Integral equations 41.27

Functional analysis 44.23

UMAP

Geometry

Combinatorics 0.26

0.13 2.14

Algebraic geometry 0.43

Geometry 0.43

Convex and discrete geometry 0.25

Differential geometry 0.31

General topology 0.23

Algebraic topology 0.30

Manifolds and cell complexes 0.27

Global analysis, analysis on man-
ifolds

0.33

Analysis

Functions of complex variables 1.52

Several complex variables 0.60

Ordinary differential equations 0.48

Partial differential equations 0.50

Difference and functional equa-
tions

0.95

Harmonic analysis 0.17

Integral equations 0.47

Functional analysis 0.58
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Table 2 continued

Dim. red. Category Cluster WCSS Silhouette DB index

LDA

Geometry

Combinatorics 4.37

−0.32 12.78

Algebraic geometry 0.40

Geometry 18.63

Convex and discrete geometry 14.37

Differential geometry 1.51

General topology 3.15

Algebraic topology 0.77

Manifolds and cell complexes 1.08

Global analysis, analysis on man-
ifolds

1.12

Analysis

Functions of complex variables 1.13

Several complex variables 0.60

Ordinary differential equations 6.05

Partial differential equations 0.32

Difference and functional equa-
tions

2.61

Harmonic analysis 0.29

Integral equations 2.67

Functional analysis 4.14

Fig. 2 The figure shows the representation of the researchers of the GNAMPA and GNSAGA clusters of
INDAM as point in R

3 obtained using different dimensionality algorithms colored according to their sub-
cluster. The pictures in this figure are produced with Cinolib (Livesu, 2019) and Py3DViewer (Cherchi et al.,
2019) libraries
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geometry. To validate our approach, we considered “similar” two researchers belonging to
the same cluster.

In details, given a researcher r and its representation r, we considered themr closest codes
around it, where mr is equal to 0.75 times the number of codes used by the researcher r . The
factor 0.75 has been chosen in order to flatten the distribution of the number of codes used
by different researchers. Then, we considered the smallest ball containing the closest codes
and we used this neighborhood of r to check how many similar researchers were close to it.
In order to compute an accuracy score for the researchers’ representation, we considered the
neighborhood U of r given by the smallest ball around it containing the mr closest codes to
it and then we considered the number of other researchers contained in U belonging to the
same INDAM subgroup as r .

In Table 3, we reported the average accuracy for each INDAM subgroup, computed as
described above, together with the three clustering indicators WCSS, silhouette, and DB
index, we introduced before in order to evaluate the clustering obtained by the different
dimensionality reduction algorithms.

As for Table 2, we have reported the first two metrics for each cluster and the other two
at a global clustering level.

Similarly to Table 2, the results reported in the table show that the Umap algorithm seems
to have the better performances on average on the different metrics we have considered. This
behavior is also noticeable by looking at the graphic representations of the clustering in Fig. 2.

We remark that we could have computed the researchers representation using the non
projected codes data Y . However, we have observed that the high-dimensional representation
produces poorer results than the representations obtained by first applying a dimensionality
reduction algorithm.

4 Discussion

As shown in Fig. 1 the borders between scientific disciplines are often blurred and their
boundaries extend along different geometric shapes according to the scientific field. In this
way, it can happen that a researcher working in geometry is closer to a colleague working
in mathematical analysis than another one working in geometry. We have found several exa-
mples of Italian researchers for whom this situation happens. The same conclusions drawn
from this empirical application to some important sectors of mathematics can be extended
a fortiori to even bigger, rough classifications, such as ASJC or that used for evaluating
the highly cited researchers. Indeed in these classifications, any two articles/researchers
belonging to the same class (e.g., mathematics) are assumed to have distance 0 each other.
However, in this paper, we found a formula for deriving the true distance (or at least a
distance closer to the real distance) between articles/researchers and proved that, at least for
mathematical disciplines, distances between articles/researchers may rather be variable.

On the other hand, our approach can be useful for avoiding uncorrected comparisonswhich
might led to disastrous consequences even at the individual career level. This is the case of
the “National Scientific Qualification”, i.e., the procedure for obtaining the full or associate
professorship in Italy. We recall that, according to the Italian legislation, each professor
belongs to one among the 190 scientific fields (competition sectors) in which all disciplines
are rigidly classified. For each competition sector, ANVUR (the Italian research evaluation
agency) calculates some thresholds for the total citations and the h-index to be overcomed as
necessary condition for being admitted to the calls for the full professorship (calculations are
done for the last 15 years) and associated professorship (calculations are done for the last 10
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years). Such thresholds are computed as the median value of all scientific papers published
by researchers belonging to that competition sector, irrespective of the scientific subfields

Table 4 Citations received by the
top 10% and the top 25% articles
published in the macro-code 46A
(upper table) and 35A (bottom
table), and calculations of
bibliometric indicators for full
professorship (15 years) and
associated professorship (10
years) according the Italian
National Scientific Qualification
rules

Year top 10% top 25%

2023 0 0

2022 1 0

2021 3 1

2020 4 2

2019 6 2

2018 6 4

2017 8 4

2016 7 3

2015 10 5

2014 10 4

2013 9 4

2012 10 5

2011 14 4

2010 13 5

2009 13 4

Citations last 15 years 114 47

h-index last 15 years 7 4

Citations last 10 years 64 29

h-index last 10 years 6 4

2023 0 0

2022 1 0

2021 4 2

2020 7 4

2019 12 6

2018 16 6

2017 21 9

2016 21 11

2015 27 12

2014 25 12

2013 27 11

2012 27 12

2011 31 13

2010 28 12

2009 29 13

Citations last 15 years 276 123

h-index last 15 years 11 9

Citations last 10 years 134 73

h-index last 10 years 7 6
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Table 5 Thresholds stated in the Italian National Scientific Qualification procedure for the competition sector
“01/A3 −Mathematical Analysis, Probability, and Mathematical Statistics”

Incl. into the Committee Full Prof. Associate Prof.

Total citations last 10 years − − 56

h-index last 10 years − − 5

Total citations last 15 years 167 84 −
h-index last 15 years 8 6 −

where they work. Further, higher thresholds are to be overcomed by full professors who want
to stay in the evaluation committees (for more details see Cappelletti-Montano et al., 2021;
Marzolla, 2016).

Now, let us consider a researcher belonging to the competition sector “01/A3-
Mathematical Analysis, Probability, and Mathematical Statistics” and working on functional
analysis. We may then assume that his/her articles belongs to the codes 46A-XX. Let us
assume that he/she published one article per year, which is customary in pure mathematics.
In Table 4 (upper table), we have reported, for each year, the number of citations received
among the top 10% and the top 25% articles in the fields belonging to 46A-XX. It follows
that even if the researcher in consideration published each of his/her articles in the top 25% of
46A-XX, he/she still does not surpass the thresholds (listed in Table 5) and consequently can
not obtain the national scientific qualification for becoming full professor or even associate

Table 6 Citations received by the
top 10% and the top 25% articles
published in the macro-code 54A,
and calculations of bibliometric
indicators for full professorship
(15 years) and associated
professorship (10 years)
according the Italian National
Scientific Qualification rules

Year top 10% top 25%

2023 0 0

2022 0 0

2021 2 0

2020 0 1

2019 3 2

2018 5 2

2017 6 2

2016 5 2

2015 3 2

2014 7 3

2013 7 2

2012 8 2

2011 9 3

2010 8 2

2009 7 2

Citations last 15 years 70 25

h-index last 15 years 6 2

Citations last 10 years 38 16

h-index last 10 years 4 2
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Table 7 Thresholds stated in the Italian National Scientific Qualification procedure for the competition sector
“01/A2 −Geometry and Algebra”

Inc. into the Committee Full Prof. Associate Prof.

Total citations last 10 years − − 20

h-index last 10 years − − 3

Total citations last 15 years 93 35 −
h-index last 15 years 6 4 −

professor. Furthermore, senior professors dealing with the topics stated in 46A-XX, who
published in the top 10% of their field, still can not be member of the evaluation committee.

On the other hand, as shown in Table 4 (bottom table) if one publishes on topics of partial
differential equations inside 35R-XX, which still pertains mathematical analysis, he/she will
receive much more citations, so surpassing easily the above thresholds.

Similar situations occur also for other sectors. For instance, let us consider a researcher
belonging to the competition sector “01/A2 − Geometry and Algebra” and working on
general topology. We may then assume that his/her articles belongs to the codes 54A-XX.
Also in this case, let us assume that he/she published one article per year. In Table 6, we have
reported, for each year, the number of citations received among the top 10% and the top 25%
articles in the fields belonging to 54A-XX. It follows that even if a researcher published each
of his/her articles in the top 25% of 54A-XX, he/she still does not surpass the thresholds
(listed in Table 7) and consequently his/her career as a full professor or even as associate
professor will always be precluded. Furthermore, also in this case senior professors, who
published in the top 10% in the field 54A-XX, still can not be member of the evaluation
committee.

These considerations point out the fallacy of starting with predefined, poorly constructed,
wide-meshed classifications used in current bibliometric analyses. In this paper, we stated
the necessity of changing stand-point, and center all bibliometric analyses on the scientific
interests of the individual researcher, who should be compared only with those belonging to
a neighborhood of him/her, i.e., all the points at distance less than ε from him/her, where ε

is a predefined positive number. The point is then to calculate such distance. The procedure
illustrated in Section 2 is a first proposal in this direction.

Appendix A: Algorithmic Approach

In this section, we will illustrate in more details the mathematical approach used to obtain
a representation of classification entities based on a similarity function defined on the set of
entities considered.

Let G = (V , E) be a graph with vertices V and edges E . A graph G is undirected if
it does not contain duplicate edges and loops and it is weighted if it is defined a function
d : E → R.

In order to understand the structure of a given undirected weighted graph G = (V , E, d)

a crucial step is to define a representation map R : V → R
k for some k ∈ N, so that the

Euclidean distance between R(i) and R( j) is equal to d(i, j). Application of this approach
are given by wireless sensor networks for k = 1, 2 or 3 (Singer, 2011), determination of
proteins structure from nuclear magnetic resonance experiments for k = 3 (Bahr et al.,
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2009; Tabaghi et al., 2019), controlling fleets of underwater autonomous vehicles for k = 3
(Wüthrich, 1989).

Often, the above problem is called the distance geometry problem, which can be stated as
follows:

Distance Geometry Problem Given an integer k > 0 and a simple undirected graph
G = (V , E) with an edge weight function d : E → R

+, determine whether there exists
a realization R : V → R

k such that

‖R(i) − R( j)‖ = d(i, j) ∀{i, j} ∈ E . (6)

Clearly, not all graphs G admit a realization inRk which satisfies (6), in fact it is sufficient
that the distances relative to three vertices do not satisfies the triangular inequality. Therefore,
it is necessary to consider approximate solution to the DGP.

One of the standard tools used to obtain such approximate solution is mathematical pro-
gramming (for more details, we refer to Liberti, 2020). Consider the following semi-definite
optimization problem:⎧⎨

⎩
min
X�0

∑
(i, j)∈E

Xii + X j j − 2Xi j

s.t . Xii + X j j − 2Xi j ≥ d2
i j ∀(i, j) ∈ E

(7)

More precisely, we are looking for the positive semi-definite symmetric matrix X which
minimizes the quantity

∑
(i, j)∈E Xii + X j j − 2Xi j and satisfies the condition Xii + X j j −

2Xi j ≥ d2
i j for every (i, j) ∈ E .

A solution X∗ ofEq. 7 is a symmetric positive semi-definitematrix,which canbe factorized
as X∗ = Y Y �. If we denote with yi the i-th row of Y �, we have that

‖yi − y j‖2 = 〈yi , yi 〉 + 〈y j , y j 〉 − 2〈yi , y j 〉 = Xii + X j j − 2Xi j = d2
i j . (8)

Therefore, we can consider the rows of Y � as a representation of the vertices of the graph
G. This gives a representation of G in R

n , where n is the order of the matrix X∗ and thus
coincide with the number of vertices of G.

It is well-known that solving a semi-definite program like Eq. 7 in a reasonable amount of
time can be difficult when the number of vertices and edges of the graph G are large. To avoid
this issue, we consider the following linear approximating reformulation, i.e., a mathematical
program whose solution are also solution to the program (7) up to some error:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
X ,T

∑
(i, j)∈E

Xii + X j j − 2Xi j

s.t . Xii + X j j − 2Xi j ≥ d2
i j ∀(i, j) ∈ E∑

j �=i

Ti j ≤ Xii ∀i ≤ n

−T ≤ X ≤ T

(9)

We observe that, in program (9), the variables are two matrices X and T , but we do not
require them to be positive semi-definite, which in practice reduce the complexity of the
program and allows to obtain a solution in a much faster time.

A solution X̃ of Eq. 9 is not necessarily a positive semi-definite matrix, hence it cannot be
factorized as X̃ = Ỹ Ỹ �. However, we can consider the closest positive semi-definite matrix
X̂ to X̃ , obtained by zeroing the negative eigenvalues of X̃ and its factorization X̂ = Ŷ Ŷ �
which approximately satisfies the corresponding condition (8).
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We observe that both programs Eqs. 7 and 9 give a realization of the graph G inRn , where
n is the number of vertices of G, which can be very large. If one is interested in a realization of
G in a certain dimension k < n, one possible solution is to apply a dimensionality reduction
algorithm to the points in Rn . Clearly, such algorithm should preserves the mutual distances
between points, so that points in R

n which are close (resp. far) to each other are mapped
to points in R

k close (resp. far) to each other. There exist several standard dimensionality
reduction algorithms attempting to satisfy this condition, which can be subdivide in linear and
non-linear algorithms: linear algorithms performs the projection onto a lower-dimensional
space using a linear mapping, which has the advantage to be computationally efficient, but
can be less accurate. Non-linear algorithms, on the other hand, are computationally more
expensive but try to infer non-linear relations between points (e.g., the fact that the points lie
on a differentiable manifold) and use them to project them onto a lower-dimensional space
with more accuracy.

In the following, we will briefly describe some of the most used dimensionality reduction
algorithms of both linear and non-linear case (for more details, we will refer to Hotelling,
1933; Jackson, 2005; Jolliffe, 2002; Xie et al., 2017).

Linear Dimensionality Reduction Algorithms Principal component analysis (Hotelling,
1933) is one of the most famous linear dimensionality reduction algorithm and it performs
a linear mapping of the data to a lower-dimensional space so that the variance of the data
in the low-dimensional representation is maximized. The algorithm is based on the search
of orthogonal directions explaining as much variance of the data as possible. PCA has been
used with good results in several field, e.g., face recognition (Turk & Pentland, 1991) and
reconstruction 3-D objects from their appearance (Murase & Nayar, 1995).

Another linear algorithm to reduce the dimensionality of data which performs good in
different situations is given by random projections. Given a matrix A ∈ R

m×n representing
m vectors in R

n , a random projection consists in a randomly sampled matrix T ∈ R
n×k

which satisfies the following property (known as the Johson-Lindenstrauss Lemma Johnson,
1984): with arbitrarily high probability the following holds

(1 − ε)‖Ai − A j‖22 ≤ ‖ATi − ATj‖22 ≤ (1 + ε)‖Ai − A j‖22 (10)

where Ai denotes the i-th row of the matrix A, ε ∈ (0, 1) is a constant. Therefore, the
rows of the matrix AT ∈ R

m×k represent m vectors in R
k whose mutually distances are

approximately the same as the distances of the points in Rn .
Random projections has been used with good results in different dimensionality reduction

tasks such has pre-processing of text data (Kurimo, 1999), nearest-neighbor search (Indyk
& Motwani, 1998), learning high-dimensional Gaussian mixture models (Dasgupta, 1999).

Non-Linear Dimensionality ReductionAlgorithms As stated above, non-linear dimension-
ality reduction algorithms try to understand relations between the data points considered in
order to obtain a more accurate projection. One of the strategy to obtain such information
is the so-called kernel trick, which consists in mapping the points into a higher dimensional
space, called the feature space, using a non-linear map, so that it is possible to apply a linear
algorithm to the points in the feature space and obtain amore accurate projection. An example
of this algorithm is given by the kernel PCA, where after mapping the points into a higher
dimensional space a standard PCA is applied.

More sophisticated algorithms, like MDS, ISOMAP, and UMAP try to understand the
structure of Riemannian manifold embedded in the ambient space which best approximate
the data points considered. This structure allows to define a distance between data points
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considered which is more accurate than the standard Euclidean one, especially if the Rie-
mannian manifold considered is far from being linear (flat) and it is curved (e.g., a paraboloid
or a swiss roll surface). We are not going to describe in details how these algorithms work,
we just say that MDS, ISOMAP, and UMAP try to approximate the Riemannian distance
between points with different methods, so that it is possible to use this distance to perform a
dimensionality reduction of the data points in a lower-dimensional space. For more details,
we refer to Cox and Cox (2000); McInnes et al. (2018); Tenenbaum et al. (2000).

A.1 Implementation

We have ran the numerical experiments on an Intel i5-4460 3.00 GHz 4-core with 132 GB
of RAM under a i686 GNU/Linux operating system. For the implementation, we have used
the Python language with the following packages and modules:

– PCA: sklearn.decomposition.PCA;
– RP: sklearn.random projection.GaussianRandomProjection;
– Isomap: sklearn.manifold.Isomap;
– MDS: sklearn.manifold.MDS;
– Umap: umap-learn.umap
– LDA: sklearn.discriminant analysis.LinearDiscriminantAnalysis.

For the DGP, we have implemented the optimization problem using the Python package
gurobipy which solves the problem via the Gurobi solver (Gurobi Optimization, LLC, 2024)
for linear programs. The problem is solved using a barrier method without crossover.

The figures in this article are produced with Cinolib (Livesu, 2019) and Py3DViewer
(Cherchi et al., 2019) libraries.

Appendix B: Detailed Results for k = 2

In this section, we report the results we have obtained by projecting the AMS codes and the
researchers in R

2. As stated in Section 3, the quality of the representations of AMS codes
for k = 2 is similar to the one obtained for k = 3, but significantly poorer for the clustering
of the researchers. Tables 8 and 9 show, respectively, the values for the MDE and LDE

Table 8 The table shows the
values of MDE and LDE
computed on the original
representation in R

N using the
DGP approach and the
representations in R

2 obtained
using dimensionality reduction
algorithms

Representation MDE LDE

Original 0.0079 5.39 · 10−6

PCA
R
2 0.0063 3.40 · 10−6

RP
R
2 0.0023 4.60 · 10−6

Isomap
R
2 0.0059 8.03 · 10−6

MDS1
R
2 0.0022 3.37 · 10−6

MDS2
R
2 0.0023 3.32 · 10−6

Umap
R
2 0.0048 3.39 · 10−6

LDA
R
2 0.0060 3.41 · 10−6
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computed on the representations inRN andR2, and the details on the clustering obtained for
the researchers in the GNAMPA and GNSAGA subgroups in R

2.
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