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Abstract
Strict-Tolerant Logic (ST) underpins naïve theories of truth and vagueness (respec-
tively including a fully disquotational truth predicate and an unrestricted tolerance
principle) without jettisoning any classically valid laws. The classical sequent calcu-
lus without Cut is sometimes advocated as an appropriate proof-theoretic presentation
of ST. Unfortunately, there is only a partial correspondence between its derivability
relation and the relation of local metainferential ST-validity – these relations coincide
only upon the addition of elimination rules and only within the propositional fragment
of the calculus, due to the non-invertibility of the quantifier rules. In this paper, we
present two calculi for first-order ST with an eye to recapturing this correspondence
in full. The first calculus is close in spirit to the Epsilon calculus. The other calculus
includes rules for the discharge of sequent-assumptions; moreover, it is normalisable
and admits interpolation.

Keywords Strict-Tolerant logic · Sequent calculi · Metainferences · Epsilon calculus

1 Introduction

Strict-TolerantLogic (ST) [7–9, 25, 26] has been at the centre of thoroughgoingdebates
in philosophical logic over the last decade or so. In the intentions of its propounders,
a recourse to ST as a logical basis allows truth theorists to retain a fully disquotational
truth predicate without having to forswear classical logic (CL), and without incurring
the penalty of paradoxes. In a similar way, it is possible to build on top of ST a theory of
vagueness that includes an unrestricted tolerance principle – again, with no obligation
to give up any single classical tautology or classically valid argument schema.

Cobreros, Egré, Ripley, and van Rooij maintain that true sentences can be either
strictly or tolerantly true. Likewise, false sentences can be either strictly or tolerantly
false. An ST-valid argument is an argument that never leads from strictly true premises
to a strictly false conclusion – it may lead, though, from strictly true premises to a toler-
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antly false conclusion. These informal remarks can be recast into a rigorous semantic
frameworkby recourse tofirst-order 3-valued strongKleenemodels (see below),where
a strictly (tolerantly) true sentence is assigned a value that is equal to 1 (greater than 0),
and a strictly (tolerantly) false sentence is assigned a value that is equal to 0 (smaller
than 1). Importantly, ST-valid sequents (viewed as argument forms) are no more and
no less than the classically valid sequents – hence the contention that CL is not being
maimed. Despite this, the transitivity of consequence is not valid without restriction
(see e.g. [8]): it may be the case that a strictly true premiss ϕ entails a tolerantly true
conclusion ψ , which in turn entails a strictly false sentence χ , while ϕ fails to entail
χ . Due to this failure of transitivity, the addition of principles for disquotational truth
to first-order ST does not lead to triviality. For instance, although the Liar sentence
is a theorem of the resulting theory, and although any formula follows from the Liar
sentence in ST, one cannot concatenate these derivations. Similar considerations hold
for the possibility of a classically-based theory of vagueness containing a principle of
tolerance for vague predicates.

In a nutshell, Cobreros and colleagues hold that ST can solve the paradoxes without
having, likemany of its rivals, to pay the price ofmutilatingCL in the process.Whether
they are actually in a position to keep these generous promises is a matter of some
controversy (see e.g. [3, 5, 11, 20, 23] for some critical views), into which we will
not enter here, although some brief remarks on the issue will be reserved for the next
section.

Depending on the occasion, ST is presented via models or via proof systems. Rip-
ley, in particular, against the backdrop of his bilateralist (hence inferentialist) views,
tends to favour a formulation of first-order ST in terms of a sequent calculus – indeed,
the classical sequent calculus minus the rule of Cut [26]. Due to Gentzen’s Cut Elim-
ination theorem, the provable sequents of this calculus are precisely the classically
valid sequents, which, by the above, are none other than the ST-valid ones. Due to
the absence of Cut, moreover, one can safely supplement it with rules for, say, dis-
quotational truth while eschewing the paradoxical derivations, because transitivity is
blocked at the appropriate places.

We will see in the next section that the adequacy of this Gentzen-style rendition
of ST is problematic. In point of fact, a version of the classical propositional sequent
calculus can yield a system that is strongly complete with respect to the above seman-
tics, in a substantive sense that we will render precise in due course. Crucially, to
attain completeness, one must augment the standard classical calculus, whose oper-
ational part consists in introduction rules only, with elimination rules that invert the
introductions. This is a feasible goal, because all the sentential connectives can be
given invertible rules. The first-order calculus, though, is quite another matter. The
left rule for the universal quantifier and the right rule for the existential quantifier are
anything but invertible. The above strategy cannot be straightforwardly carried over
to the first-order level.

In this paper, we present some suggestions to overcome this problem. After provid-
ing some basic information on the proof theory and semantics of ST (§ 2), we introduce
two sequent calculi that are sound and complete for first-order ST, based on different
ideas. The first calculus, ST H, requires an expansion of the chosen first-order signa-
ture by denumerably many individual constants, the Henkin constants, whose role is
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to act as “witnesses” for the different existential and universal formulas expressible
in the language, as in the construction of the canonical model of the Henkin-style
completeness theorem for first-order logic (§ 3). Using this device, it is possible to
formulate introduction rules for quantifiers that are both invertible and free from any
eigenvariable restriction. This approach has obvious similarities withHilbert’s Epsilon
calculus [30], which we will try to elucidate (along with the existing differences). As
far as we could see, this calculus lacks interesting proof-theoretical properties. In par-
ticular, it is not clear what type of normal form would be appropriate for derivations
in this calculus.

The other calculus,MQST (§§ 4 and 5), is metainferential in character. It is based
on the idea that introduction and elimination rules can discharge sequent-assumptions,
exactly like formula-assumptions can be discharged in natural deduction calculi. This
leads to a formulation of the problematic elimination rules (the left universal and
the right existential ones) fashioned after Schroeder-Heister’s generalised elimination
rules in natural deduction [27]. In particular, MQST behaves better than ST H: we
provide a normal form theorem and derive an interpolation theorem that, in so far
as we are working in a system whose deductive strength is intermediate between the
classical sequent calculus with Cut and its counterpart without Cut, can hopefully be
viewed with interest also by classically-minded logicians.

2 Strict-Tolerant Logic: Its Semantics and Proof Theory

As hinted above, the whole project of Strict-Tolerant Logic rests on the idea that
there are two modes of truth and falsity: a strict and a tolerant mode. No strictly true
sentence can be strictly false at the same time. However, there are sentences that are
both tolerantly true and tolerantly false. Pertinent examples are paradoxical sentences
like the Liar, or sentences that ascribe a vague predicate to one of its borderline cases
of application.

To cash out this insight in formal terms, Cobreros and colleagues [7–9, 25, 26]
provide a 3-valued semantics for the language of classical first-order logic, where the
Boolean values 1 and 0 correspond, respectively, to strict truth and strict falsity, while
tolerant truth and tolerant falsity find a home in the semantics thanks to the presence
of the non-classical value 1

2 . Namely, a sentence is tolerantly true in a model if it is
assigned therein either the value 1 or the value 1

2 , and it is tolerantly false in a model
if it is assigned therein either the value 1

2 or the value 0. The evaluation clauses for the
connectives and the quantifiers are the familiar clauses of the strong Kleene semantics
for a first-order language, well-known in the literature on paradox for its use e.g. in
Kripke’s theory of truth [18].

More precisely, let L be a signature for classical first-order logic, consisting of
relation symbols and function symbols of finite (possibly zero) arity. L-formulas are
defined as usual – quantifier-free formulas are referred to as L-P-formulas. ϕ,ψ, ...

are used as variables for L-(P-)formulas, and �,�, ... as variables for sets of L-(P-
)formulas. An L-(P)-sequent is an ordered pair of finite sets of L-(P)-formulas, noted
� � �. The set of all L-sequents will be sometimes denoted by SeqL.
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An ST-model for L is a pair M = 〈D, I 〉 such that:

• I (Pn) : Dn → {0, 1
2 , 1}, for any n-ary relation symbol Pn ;

• I (x) ∈ D, for any variable x ;
• I ( f n) : Dn → D, for any n-ary function symbol f n ;
• for any atomic L-formula Pn(t1, ..., tn),

I (Pn(t1, ..., tn)) = I (Pn)(I (t1), ..., I (tn));

• for any L-formulas ϕ,ψ , I (¬ϕ) = 1 − I (ϕ), I (ϕ ∧ ψ) = min(I (ϕ), I (ψ)) and
I (ϕ ∨ ψ) = max(I (ϕ), I (ψ));

• I (∀x ϕ(x)) = min(I ′(ϕ(x))), for all x-variants I ′ of I ;
• I (∃x ϕ(x)) = max(I ′(ϕ(x))), for all x-variants I ′ of I .

So much for the semantics. The next task in the ST-theorist’s agenda is to define
a concept of logical consequence. For reasons on which we will not dwell, Cobreros,
Egré, Ripley and van Rooj adopt a multiple-conclusion notion. The guiding intuition
is clear – a set of conclusions follows from a certain set of premisses if there is no way
for the premisses to be all strictly true while the conclusions are all strictly false. In
other words, this happens if every model where all the premisses are stricty true is a
model where at least one conclusion is tolerantly true.

Since we deal with sequent calculi in this paper, the formal definition of multiple-
conclusion consequence in ST will be recast in terms of a definition of validity for
L-sequents. We say that an ST-model (for L) M = 〈D, I 〉 ST-satisfies an L-sequent
� � � (in symbols, M |�ST � � �) if either there is ϕ ∈ � such that I (ϕ) ∈ {0, 1

2 }
or there is ψ ∈ � such that I (ψ) ∈ {1, 1

2 }. We also say that an L-sequent � � � is
ST-valid (in symbols, |�ST � � �) if for all ST-modelsM,M |�ST � � �. Denoting
by |�CL � � � the usual notion of validity for classical sequents, one can establish
that:

Lemma 1 ([7]; see also [14]) |�ST � � � iff |�CL � � �.

Thus, the ST-valid sequents are precisely the classically valid ones. ST and CL,
though, do not validate the same sequent-to-sequent inferences, also called meta-
inferences. Transitivity is a case in point. In a theory of truth based on ST, the Liar λ

is such that for allM = 〈D, I 〉 we have I (λ) = 1
2 . Then for atomic ϕ,ψ we will have

|�ST ϕ � λ and |�ST λ � ψ , yet it won’t be the case that |�ST ϕ � ψ . In CL, on
the other hand, transitivity holds without restrictions. Therefore, it has been claimed
that the identification of ST and CL is questionable [3, 5, 11, 20, 23]. Interestingly,
there are logics that validate the same inferences and metainferences as CL, but differ
from it at the level of inferences among metainferences. Examples like these pose
many technical and philosophical questions, addressed in the flourishing literature on
metainferential logics (see [3–5, 20]).

Capitalising on the co-extensivity of ST-valid and classically valid sequents,
Ripley [26] invites us to view the classical sequent calculus without Cut as a proof-
theoretically adequate presentation of first-order ST. Indeed, because of Gentzen’s Cut
Elimination result, the provable sequents of this calculus are precisely the classically
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valid sequents – hence, by Lemma 1, the ST-valid ones. Due to the absence of Cut,
moreover, one can safely supplement it with rules for, say, disquotational truth while
still eschewing the paradoxical derivations.

A possible objection to the plausibility of this suggestion is that the derivability
relation of such a calculus, arguably its distinctive earmark (as opposed to the set of its
theorems,which canbe sharedwith other calculi, crucially including the fully transitive
classical calculus), does not correspond to any significant relation among sequents
definable in terms of the ST semantics. In particular, let us say that an L-sequent S
ST-follows from a set X of L-sequents (in symbols, X |�ST S) in case for any ST-
modelM, ifM |�ST S′ for any S′ ∈ X , thenM |�ST S. This relation, sometimes called
local metainferential validity, is considered by many practicioners of metainferential
logics as themost appropriate notion of sequent-to-sequent consequence in the context
of the above semantics (although the debate is lively: See e.g. [9–13, 15, 26, 28]). This
relation is, however, strictly larger than the derivability relation of the classical sequent
calculus without Cut.

This shortcoming is readily mended at the propositional level, using a calculus
introduced by Pynko [24] which augments classical propositional sequent calculus
without Cut with elimination rules for all logical connectives. Indeed, in [11] it is
shown that the derivability relation in this calculus coincides with local metainferential
validity. This is a viable move because all the connectives can be given invertible
introduction rules, in such a way that the attendant eliminations are precisely the
inverses of the respective introductions. This sort of “harmony” is crucial for the
completeness proof: the canonical valuation would not be a valuation at all in absence
of this property.

The propositional calculus ST P with invertible rules is defined in Fig. 1, where
ϕ,ψ, ... denote L-P-formulas and �,�, ... denote sets of L-P-formulas. Note that all
logical rules are bidirectional, i.e., they can be applied top-down as well as bottom-up.
Namely,ST P contains the inverses of all the rules for the sentential connectives,where
it is understood that a 2-premise rule S1,S2

S has two inverses, S
S1

and S
S2
. Bymeans of the

bottom-up elimination rules one can restore in ST P some of the classical derivations
that are impeded by the absence of Cut. Hence, as anticipated:

Theorem 2 ([11]) If X ∪{S} is any set of L-P-sequents, then X 
ST P S iff X |�ST S.

Recall that the external consequence relation of a sequent calculus C, of signature
LC , holds between a set� ofLC-formulas and anLC-formula ϕ when� ϕ is derivable
in C from {� ψ | ψ ∈ �} [2]. Interestingly, this consequence relation coincides with
a familiar logic:

Theorem 3 ([24], see also [5, 22]) The external consequence relation of ST P coin-
cides with the consequence relation of (propositional) LP.

This approach is ineffective for the full first-order calculus, because not all the
usual rules for the universal and the existential quantifiers are invertible. For future
reference, however, let us introduce here an appropriate version of the sequent calculus
for classical first order logic minus the rule of Cut, a slight variant of the one in [26].
The calculus ST Q differs from ST P in the following aspects:

123



F. Paoli and A. Přenosil

Fig. 1 Rules of ST P

• its syntactic units are L-sequents (possibly containing quantifiers) as opposed to
L-P-sequents;

• it contains introduction rules only, i.e., the bottom-up directions of the logical rules
in ST P are deleted;

• it contains the additional rules

ϕ[x �→ t], � � �
(∀L)∀x ϕ(x), � � �

� � �,ϕ[x �→ t]
(∀R)

� � �,∀x ϕ(x)

(and dual rules for the existential quantifier), where in both rules the notation
ϕ[x �→ t] denotes the result of substituting t for x in ϕ. This notation assumes
that the substitution does not result in the capture of any variables which occur in
t ; in the right introduction rule, moreover, x does not occur in � ∪ � and thus the
eigenvariable condition has to be respected.

Due to the non-invertibility of the left introduction for the universal quantifier,
and dually, of the right introduction for the existential quantifier, ST Q cannot be
supplemented with elimination rules and so its derivability relation does not match
local metainferential validity.

In the rest of this paper, we will aim at upgrading ST Q to a strongly complete
calculus for ST.
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3 The CalculusST H

For a start, let us bring into sharper focus the non-invertibility issue for the quantifier
rules in ST Q . By way of example, consider the left rule for the universal quantifier:

ϕ[x �→ t], � � �
(∀L)∀x ϕ(x), � � �

Were the rule invertible, this would license the inference of, say, ψ from ϕ[x �→ t]
on the assumption that ψ is inferrable from ∀x ϕ(x) – which doesn’t work in general,
as we are trading a stronger hypothesis for a weaker one. Things would be different if
in the upper sequent, instead of a generic term t , we substituted for the free variable
x a term that witnesses the availability of the universal sentence ∀x ϕ(x). Thus, a
way to get over the hump is to expand L to a language where there are enough such
terms – i.e., where all universal and existential sentences are witnessed, like in the
Henkin-style construction of the canonical model for classical first-order logic. We
will explore this avenue in the present section.

3.1 Presentation of the Calculus

Consider a first-order signature L which consists of relation symbols and function
symbols of finite (possibly zero) arity. We assume that the signature contains at least
one relation symbol (otherwise the set of formulas is empty). The immediate Henkin
expansion of L is the signature that expands L by a new constant w

(∀x ϕ) for each
universalL-formula1 ∀x ϕ (called a universal Henkin constant), and by a new constant

w

(∃x ϕ) for each existential L-formula ∃x ϕ (called an existential Henkin constant).
IfLi for i ∈ ω is a sequence of signatures such thatL0 = L andLi+1 is the immediate
Henkin expansion ofLi , we call HenL := ⋃

i∈ω Li theHenkin expansion ofL. Terms
and formulas of HenLwill be calledL-Henkin terms and formulas. The interpretation
of the Henkin constants is subject to the following constraints.

Definition 4 Let M = 〈D, I 〉 be an ST-model for L. A Henkin expansion of M is an
ST-model MH = 〈D, I H 〉 for HenL, where I H (ϕ) = I (ϕ) for each L-formula ϕ,
and moreover for each L-Henkin formula ψ :

I (ψ[x �→ w

(∀x ψ)]) = I (∀x ψ), I (ψ[x �→ w

(∃x ψ)]) = I (∃x ψ).

AnL-Henkin model is an ST-model for HenLwhich is the Henkin expansion of some
ST-model for L.

Since formulas are interpreted in an ST-model by elements of a finite linearly
ordered algebra, every ST-model has a Henkin expansion. In general, this expansion
need not be unique.

Sequents in the signature HenL will be called L-Henkin sequents.

1 For the benefit of readers familiar with Henkin’s completeness proof for first-order logic, we emphasize
that w

(∀x ϕ) and w

(∃x ϕ) are added even for formulas ϕ which contain free variables other than x .
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Definition 5 Let � � � be an L-Henkin sequent, where we fix enumerations
〈γ1, ..., γn〉 of � and 〈δ1, ..., δm〉 of �. The formula translation τ (� � �) of � � �

is defined as follows (all disjunctions are associated to the left):

• ¬γ1 ∨ ... ∨ ¬γn ∨ δ1 ∨ ... ∨ δm , if n,m ≥ 1;
• ¬γ1 ∨ ... ∨ ¬γn , if n ≥ 1,m = 0;
• δ1 ∨ ... ∨ δm , if n = 0,m ≥ 1;
• ϕ0 ∧ ¬ϕ0, where ϕ0 is a fixed atomic L-formula, if n,m = 0.

Throughout the following, sets of L-Henkin sequents will be denoted by X , Y , ...

and individual L-Henkin sequents by S, S′... It is not hard to prove that:

Lemma 6 The sequents S and ∅ � τ (S) are interderivable in ST H .

Definition 7 An L-Henkin sequent S is an STH -consequence of a set X of L-Henkin
sequents, in symbols X |�STH S, in case for eachL-Henkin modelMH , ifMH |�ST S′
for all S′ ∈ X , then MH |�ST S.

We capture this consequence relation between L-Henkin sequents by means of the
calculus ST H , which extends the calculus ST P by the rules listed in Fig. 2. Observe
that these rules do not require any eigenvariable restriction. We merely require, as
usual, that in ϕ[x �→ t] the term t can be substituted for x . We abbreviate the claim
that S is derivable from X in the calculus ST H by X 
ST H S, and in the names of
rules we distinguish the direction (top-down vs bottom-up) in which logical rules are
applied by means of arrows pointing downwards or upwards.

To give a flavour of how this calculus works, we choose to present the proof of a
first-order logical truth that is often brought as an example in the context of calculi

Fig. 2 Additional rules for ST H
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that, like the Epsilon calculus, in general allow more efficient proofs than standard
sequent proofs (see e.g. [1, 21] for a more precise description of this speed-up). Here is
a proof of � ∃x(P(x) → ∀x P(x)) in ST Q, where ϕ → ψ is shorthand for ¬ϕ ∨ ψ :

P(x) � P(x)
P(y), P(x) � P(x),∀x P(x)

P(y) � P(x), P(x) → ∀x P(x)
P(y) � P(x), ∃x (P(x) → ∀x P(x))
P(y) � ∀x P(x), ∃x(P(x) → ∀x P(x))

� P(y) → ∀x P(x), ∃x(P(x) → ∀x P(x))
� ∃x(P(x) → ∀x P(x)), ∃x(P(x) → ∀x P(x))
� ∃x(P(x) → ∀x P(x))

Compare this to a proof of the same sequent in ST H , where the third inference is an
application of (EWI):

P(

w

(∀x P(x))) � P(

w

(∀x P(x)))
P(

w

(∀x P(x))) � ∀x P(x)
� P(

w

(∀x P(x))) → ∀x P(x)
� P(

w

(∃x (P(x) → ∀x P(x)))) → ∀x P(x)
� ∃x(P(x) → ∀x P(x))

3.2 Soundness and Completeness

It is not difficult to show, by induction on the length of derivations, that our calculus
is sound.

Theorem 8 Let X ∪ {S} be a set of L-sequents. If X 
ST H S, then X |�STH S.

The converse direction requires the construction of a canonical model along the
lines of the completeness proof for ST P given in [11]. The cumbersome construction
employed on that occasion will be considerably streamlined, though. In order to do
so, let us first recapitulate some elementary concepts and facts from lattice theory.

Recall that a lattice L is complete if meets and joins of arbitrary subsets of L exist
in L. If L is a complete lattice, then a ∈ L is said to be compact if for any subset
S ⊆ L satisfying a ≤ ∨

S, there exists a finite subset S′ ⊆ S such that a ≤ ∨
S′. A

complete lattice L is algebraic if each of its elements is a join of compact elements.
An element a of a lattice L is said to be meet-irreducible if

∧
X = a, where X is

a finite subset of L , implies a ∈ X , and meet-prime if
∧

X ≤ a, where X is a finite
subset of L implies x ≤ a, for some x ∈ X . It is easily proved that every meet-prime
element is meet-irreducible, and that if L is distributive, the converse also holds.

An element a of a complete lattice L is said to be completely meet-irreducible if∧
X = a, where X ⊆ L , implies a ∈ X , and completely meet-prime if

∧
X ≤ a,

where X ⊆ L , implies x ≤ a, for some x ∈ X . Again, it is easily proved that every
(completely) meet-prime element is (completely) meet-irreducible, and that if binary
joins distribute over binary (arbitrary) meets in L, then the converse also holds.
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Algebraic lattices are especially well-behaved from many viewpoints. In particu-
lar, we will use below the following result, which can be established via a standard
application of Zorn’s lemma:

Lemma 9 ([6]) Let L be an algebraic lattice. Furthermore, let a ∈ L and let c be a
compact element of L such that c � a. Then there is a completely meet-irreducible
element b ∈ L such that a ≤ b and c � b.

Now for the construction of the canonical model. We start by adapting some defi-
nitions from [11, Def. 18.15].

Definition 10 An L-Henkin theory is a set T of L-Henkin sequents which contains all
the provable sequents of ST H and is closed with respect to all the rules of ST H .

A set of L-Henkin sequents T is thus an L-Henkin theory if and only if it is
deductively closed, i.e., T 
ST H S implies S ∈ T . The L-Henkin theory generated
by X will be denoted by Th(X). The set T of all L-Henkin theories is the universe of
an algebraic lattice whose compact elements have the form Th(X), for X a finite set
of L-Henkin sequents. When this is not prejudicial to comprehension, we abbreviate
“L-Henkin theory” by “theory”.

Definition 11 A theory T is:

• S-consistent, if S /∈ T ;
• prime, if � � � ∈ T implies that either γ � ∅ ∈ T for some γ ∈ � or ∅ � δ ∈ T
for some δ ∈ �, unless � ∪ � = ∅;

• complete, if for all formulas ϕ, either ∅ � ϕ ∈ T or ϕ � ∅ ∈ T ;
• consistent, if for all formulas ϕ, not both ∅ � ϕ ∈ T and ϕ � ∅ ∈ T .

Observe that every prime theory T is complete, because ϕ � ϕ ∈ T for each ϕ. It
will be convenient to introduce the following notation:

(�1 � �1) � (�2 � �2) := �1, �2 � �1,�2, X � S′ := {S � S′ | S ∈ X}.

Lemma 12 Let T be a theory. The following are equivalent:

(1) T is prime;
(2) S1 � S2 ∈ T implies that either S1 ∈ T or S2 ∈ T ;
(3) ∅ � ϕ ∨ ψ ∈ T implies that either ∅ � ϕ or ∅ � ψ .

Proof (1) implies (2). Let S1 = � � � and S2 = � � �. If S1 � S2 ∈ T , then
because T is prime either γ � ∅ ∈ T or ∅ � δ or π � ∅ or ∅ � σ for some γ ∈ �,
δ ∈ �, π ∈ �, or σ ∈ �. Therefore by (WL), (WR) either � � � ∈ T (in the first
two cases) or � � � ∈ T (in the last two cases).

(2) implies (3). Let ∅ � ϕ ∨ ψ ∈ T . Then ∅ � ϕ,ψ ∈ T . But (∅ � ϕ,ψ) = (∅ �
ϕ) � (∅ � ψ), so either ∅ � ϕ ∈ T or ∅ � ψ ∈ T .

(3) implies (1): Suppose that � � � ∈ T , with � ∪ � �= ∅. By Lemma 6,
∅ � τ(� � �) ∈ T . Since (3) holds, either there is γ ∈ � such that ∅ � ¬γ ∈ T , or
there is δ ∈ � such that ∅ � δ ∈ T . Applying (¬L), (¬R) if necessary, we obtain that
T is prime. ��
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Lemma 13 Th(X , S1 � S2) = Th(X , S1) ∩ Th(X , S2). More explicitly,

X , S1 � S2 
ST H S ⇐⇒ X , S1 
ST H S and X , S2 
ST H S.

Proof The left-to-right implication holds because Si 
 S1 � S2 for i ∈ {1, 2}.
Conversely, consider derivations D1 and D2 witnessing that X , S1 
ST H S and
X , S2 
ST H S. Changing each sequent ofD1 from S′ to S′ � S2 yields a derivationD′

1
witnessing that X � S2, S1� S2 
ST H S� S2. Changing each sequent ofD2 from S′ to
S� S′ yields a derivationD′

2 witnessing that S�X , S� S2 
ST H S� S. Concatenating
D′

1 andD′
2 yields a derivationwitnessing that S�X , X�S2, S1�S2 
ST H S�S. Since

X 
ST H S�X and X 
ST H X�S2,while S�S is S, it follows that X , S1�S2 
ST H S.
��
Lemma 14 Let T be a theory. The following are equivalent:

(1) T is prime;
(2) T is a meet-prime element of T;
(3) T is a meet-irreducible element of T.

Proof (1) implies (2). Suppose T is prime, and suppose ex absurdo that T1 ∩ T2 ⊆ T
but T1 � T and T2 � T . So there exist S1 ∈ T1 − T and S2 ∈ T2 − T , hence
S1 � S2 ∈ T1 ∩ T2 ⊆ T . But because T is prime, by Lemma 12 either S1 ∈ T or
S2 ∈ T , contradicting S1 ∈ T1 − T and S2 ∈ T2 − T .

(2) implies (3) trivially. (3) implies (1). We use Lemma 12 again. Suppose that T
is a meet-irreducible theory and consider S1 � S2 ∈ T . Then T = Th(T , S1 � S2) =
Th(T , S1) ∩ Th(T , S2) by Lemma 13, hence either T = Th(T , S1) and S1 ∈ T or
T = Th(T , S2) and S2 ∈ T . ��

The following is a simplified proof of Corollary 18.23 in [11].

Theorem 15 If T is an S-consistent theory, then there exists a prime and S-consistent
theory T ′ such that T ⊆ T ′.

Proof We apply Lemma 9 to the lattice T of all L-Henkin theories. Let T be an S-
consistent theory. Then Th (S) is a compact element of T such that Th (S) � T . By
Lemma 9, there exists a meet-irreducible and S-consistent T ′ such that T ⊆ T ′. By
Lemma 14, T ′ is a prime theory. ��

The last ingredient of our completeness results is a technical lemma giving us the
liberty to rename variables whenever it is convenient to do so throughout the proof.

Lemma 16 Suppose that S′ is obtained from S by renaming some bound variables in
some formulas. Then S and S′ are interderivable in ST H .

Proof Induction on the complexity of the formula ϕ where the bound variables are
renamed. We exemplify the inductive step supposing that ϕ has the form ∃x ψ(x), and
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that y is a variable not occurring anywhere in S := � � �, ∃x ψ(x):

� � �, ∃x ψ(x)
� � �,ψ[x �→ y �→ w

(∃x ψ(x))]
� � �,ψ[x �→ y �→ w

(∃y ψ[x �→ y])]
� � �, ∃y ψ[x �→ y]

The previous inferential steps are justified as follows. The uppermost one is an
application of (∃RW↑), which yieldsψ[x �→ y �→ w

(∃x ψ(x))] as a principal formula
because y does not occur in ψ . Next, we have an application of (EWI). Finally, we
apply (∃RW↓).

If the existentially quantified formula appears on the left-hand side, we proceed
similarly. ��
Theorem 17 Let X ∪{S} be a set of L-Henkin sequents. If X |�ST H S, then X 
ST H

S.

Proof We proceed contrapositively. Suppose that X �STH S. Then Th(X) is S-
consistent, and by Theorem 15 there exists a prime and S-consistent theory T such
that Th(X) ⊆ T . We want to construct a canonical Henkin model M = 〈D, I 〉 such
that M |�ST S′ for all S′ ∈ T , but it is not the case that M |�ST S. Let thus:

• D be the set of all L-Henkin terms;
• for any variable x , I (x) = x ;
• for any n-ary function symbol f n , I ( f n) is the map

I ( f n) : 〈t1, . . . , tn〉 �→ f n(t1, . . . , tn);

• for any n-ary relation symbol Pn ,

I (Pn)(t1, . . . , tn) =

⎧
⎪⎨

⎪⎩

1 if ∅ � Pn(t1, ..., tn) ∈ T , Pn(t1, ..., tn) � ∅ /∈ T ;
1
2 if ∅ � Pn(t1, ..., tn) ∈ T , Pn(t1, ..., tn) � ∅ ∈ T ;
0 if ∅ � Pn(t1, ..., tn) /∈ T , Pn(t1, ..., tn) � ∅ ∈ T .

I (Pn) iswell-defined because T is prime.Also, observe that I( w

(∀x ϕ)) = w

(∀x ϕ)

and I ( w

(∃x ϕ)) = w

(∃x ϕ). More generally, I (t) = t for any HenL-term t . Hence,
for atomic formulas,

I (Pn(t1, . . . , tn)) =

⎧
⎪⎨

⎪⎩

1 if ∅ � Pn(t1, ..., tn) ∈ T , Pn(t1, ..., tn) � ∅ /∈ T ;
1
2 if ∅ � Pn(t1, ..., tn) ∈ T , Pn(t1, ..., tn) � ∅ ∈ T ;
0 if ∅ � Pn(t1, ..., tn) /∈ T , Pn(t1, ..., tn) � ∅ ∈ T .

Now we prove, by induction on the complexity of ϕ, that the same condition holds
for any formula ϕ:

I (ϕ) =

⎧
⎪⎨

⎪⎩

1 if ∅ � ϕ ∈ T , ϕ � ∅ /∈ T ;
1
2 if ∅ � ϕ ∈ T , ϕ � ∅ ∈ T ;
0 if ∅ � ϕ /∈ T , ϕ � ∅ ∈ T .
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The cases of propositional connectives are handled as in [11, Thm. 18.24]. Let
us consider the universal quantifier. (The case of the existential quantifier is treated
similarly.)

From left to right, suppose that I (∀x ϕ(x)) = 1, whence for any x-variant I ′ of
I , I ′(ϕ(x)) = 1. This holds in particular when I ′(x) = w

(∀x ϕ). By the inductive
hypothesis, ∅ � ϕ[x �→ w

(∀x ϕ)] ∈ T and ϕ[x �→ w

(∀x ϕ)] � ∅ /∈ T . By (∀RW↓),
∅ � ∀x ϕ(x) ∈ T . Suppose ex absurdo that ∀x ϕ(x) � ∅ ∈ T . Then by (∀LW↑),
ϕ[x �→ w

(∀x ϕ)] � ∅ ∈ T , a contradiction.
Let I (∀x ϕ(x)) = 0, whence for some x-variant I ′ of I , I ′(ϕ(x)) = 0. Let t =

I ′(x). Because t might not be substitutable for x in ϕ, letψ be a formula obtained from
ϕ by renaming all bound variables to variables which occur in neither ϕ nor t . Then
I ′(ψ(x)) = I ′(ϕ(x)) = 0. Because ψ has the same complexity as ϕ, by the inductive
hypothesis ∅ � ψ[x �→ t] /∈ T and ψ[x �→ t] � ∅ ∈ T . By (UWI), ψ[x �→

w

(∀x ψ)] � ∅ ∈ T , whence by (∀LW↓), ∀x ψ(x) � ∅ ∈ T . By Lemma 16 also
∀x ϕ(x) � ∅ ∈ T . Suppose ex absurdo that ∅ � ∀x ϕ(x) ∈ T . Then ∅ � ∀x ψ(x) ∈
T , so by (∀RW↑) ∅ � ϕ[x �→ w

(∀x ϕ)] ∈ T and by (UWE), ∅ � ϕ[x �→ t] ∈ T , a
contradiction.

Let I (∀x ϕ(x)) = 1
2 , whence for no x-variant I ′ of I , I ′(ϕ(x)) = 0, and for

some x-variant I ′′ of I , I ′′(ϕ(x)) = 1
2 . Let t = I ′′(x). Again, let ψ be a formula

obtained from ϕ by renaming all bound variables to variables which occur in neither
ϕ nor t . By inductive hypothesis, ∅ � ψ[x �→ t] ∈ T and ψ[x �→ t] � ∅ ∈ T .
Reasoning as above, ∀x ψ(x) � ∅ ∈ T and ∀x ϕ(x) � ∅ ∈ T . Were it the case that
∅ � ∀x ϕ(x) /∈ T , then also ∅ � ∀x ψ(x) /∈ T , so by (∀RW↓) we would have that
∅ � ψ[x �→ w

(∀x ψ)] /∈ T , and for I ′(x) = w

(∀x ψ) we would have I ′(ψ(x)) = 0,
a contradiction.

From right to left, suppose first that ∅ � ∀x ϕ(x) ∈ T and that ∀x ϕ(x) � ∅ /∈ T .
By (∀RW↑), ∅ � ϕ[x �→ w

(∀x ϕ)] ∈ T , whence by (UWE), for any t we have that
∅ � ϕ[x �→ t] ∈ T . By (∀LW↓), ϕ[x �→ w

(∀x ϕ)] � ∅ /∈ T , and by (UWI), for any
t we have ϕ[x �→ t] � ∅ /∈ T . By induction this means that for any x-variants I ′ of I
we have that I ′(ϕ(x)) = 1, which means I (∀x ϕ(x)) = 1.

If ∅ � ∀x ϕ(x) /∈ T and ∀x ϕ(x) � ∅ ∈ T , by (∀RW↓) ∅ � ϕ[x �→ w

(∀x ϕ)] /∈ T .
So, if I ′ is such that I ′(x) = w

(∀x ϕ), by induction there exists an x-variant of I s.t.
I ′(ϕ(x)) = 0, i.e. I (∀x ϕ(x)) = 0.

Finally, if ∅ � ∀x ϕ(x) ∈ T and ∀x ϕ(x) � ∅ ∈ T , by (∀RW↑) ∅ � ϕ[x �→

w

(∀x ϕ)] ∈ T , and by (UWE), ∅ � ϕ[x �→ t] ∈ T . By induction, for all x-variants
I ′ of I we have that I ′(ϕ(x)) ≥ 1

2 . However, since ∀x ϕ(x) � ∅ ∈ T , by (∀LW↑)
ϕ[x �→ w

(∀x ϕ)] � ∅ ∈ T , hence there is an x-variant I ′′ of I such that I ′′(ϕ(x)) = 1
2 .

So I (∀x ϕ(x)) = 1
2 .

Having established our claim, it readily follows that our Henkin modelM does not
ST-satisfy S = � � �: if it did, there would be either γ ∈ � such that γ � ∅ ∈ T
or δ ∈ � such that ∅ � � ∈ T ; in both cases, S would belong to T , a contradiction.
Since T is a prime theory containing X , M ST-satisfies all members of X , and our
theorem is proved. ��
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3.3 Relationship with the Epsilon Calculus

In this subsection we aim at making explicit the relationship between ST H and the
Epsilon calculus, already mentioned in our introduction. More precisely, we will
present a sequent version E of the Epsilon calculus and provide two mutually inverse
translations from ST H , extended with two extra rules (including a Cut rule), to E , and
vice versa.

Let L be a non-empty signature for first-order classical logic, consisting of relation
symbols and function symbols of finite (possibly zero) arity, and expand its attendant
alphabet by the addition of a new logical symbol ε. Terms and formulas are defined
by mutual recursion, by adding to the standard formation clauses the following one: if
ϕ is a formula where x has a free occurrence, then εxϕ is a term whose free variables
are the free variables in ϕ minus x . Informally, εxϕ denotes an x that has the property
ϕ if any such object exists, and an arbitrary object otherwise. With a slight notational
abuse, we refer toL-terms andL-formulas obtained bymeans of this expanded logical
vocabulary as LE -terms and LE -formulas, respectively.

The sequent calculus E is a two-sided version of the one-sided calculus due to
Leisenring [19]. Its sequents have the form � � �, where �,� are sets of LE -
formulas. Its structural and propositional logical introduction rules are the same as in
ST P , with the addition of the following Cut rule:

� � �,ϕ ϕ,� � �
(CUT)

�,� � �,�

Its rules involving quantifiers are listed in Fig. 3. Crucially, Leisenring’s calculus is
not cut-free completewith respect to the Epsilon calculus, in its traditional presentation
as a Hilbert-style calculus. Therefore, no implication as to the direct relationship
between ST H and the Epsilon calculus immediately follows from the results below.

We now define by simultaneous induction a translation of L-Henkin terms to LE -
terms, and of L-Henkin formulas to LE -formulas.

Definition 18 If t is an L-Henkin term, then t E is the LE -term defined as follows:

(1) t E := t if t is a variable or a constant in L;
(2) t E := εxϕ

E if t is w

(∃x ϕ);
(3) t E := εx¬ϕE if t is w

(∀x ϕ);
(4) t E := f n(t E1 , ..., t En ) if t is f n(t1, ..., tn).

If ϕ is a L-Henkin formula, then ϕE is the LE -formula defined as follows:

Fig. 3 Quantifier rules in E
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(1) ϕE := Pn(t E1 , ..., t En ) if ϕ is Pn(t1, ..., tn);
(2) ϕE := ¬(ψ E ) if ϕ is ¬ψ ;
(3) ϕE := ψ E ◦ χ E if ϕ is ψ ◦ χ (◦ ∈ {∧,∨});
(4) ϕE := Qx(ψ E ) if ϕ is Qxψ (Q ∈ {∃,∀}).

Henceforth, for � a set of L-Henkin formulas, we use the abbreviation �E to
denote {ϕE | ϕ ∈ �} and for X a set of L-Henkin sequents, we use XE to denote
{�E � �E | � � � ∈ X}.

Lemma 19 For any L-Henkin formula ϕ(x1, ..., xn), we have that

(ϕ[x1 �→ t1, ..., xn �→ tn])E = ϕE [x1 �→ t E1 , ..., xn �→ t En ].

Proof By induction on the construction of ϕ. ��

Let ST HC be the calculus obtained from ST H by:

• removing all the elimination rules (including (UWE) and (EWE));
• adding (CUT);
• adding the following bidirectional rules:

ϕ[x �→ w

(∀x ψ)], � � �
(WEXCHL)

ϕ[x �→ w
(∃x ¬ψ)], � � �

� � �,ϕ[x �→ w

(∀x ψ)]
(WEXCHR)

� � �,ϕ[x �→ w

(∃x ¬ψ)]

Lemma 20 The elimination rules of ST H are derivable in ST HC.

Proof We confine ourselves to the witness elimination rules. The following proof trees
derive the conclusions of (UWE) and (EWE) from their respective premises:

� � �,ϕ(

w

(∀x ϕ))

ϕ(t) � ϕ(t)
(UWI)

ϕ(

w

(∀x ϕ)) � ϕ(t)
(CUT)

� � �,ϕ(t)

ϕ(

w

(∃x ϕ)), � � �

ϕ(t) � ϕ(t)
(EWI)

ϕ(t) � ϕ(

w

(∃x ϕ))
(CUT)

ϕ(t), � � �

��

In view of the foregoing lemma, we can view ST HC as an extension of ST H .

Theorem 21 If X 
ST HC � � �, then X E 
E �E � �E .
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Proof We proceed by induction on the size of a smallest derivation D of � � � from
X in ST HC .

Base. Suppose that 
ST HC ϕ � ϕ. By Definition 18, ϕE is a LE -formula, whence

E ϕE � ϕE . Similarly, if � � � ∈ X , �E � �E ∈ XE and thus XE 
E �E �
�E .

Inductive step. Observe that the cases of (WEXCHL) and (WEXCHR) are trivial.
We check two of all the non-trivial remaining cases, the other ones being similar to
either the former or the latter.

As regards (EWI), by inductive hypothesis XE 
E �E � �E , (ϕ[x �→ t])E . By
Lemma 19, (ϕ[x �→ t])E = ϕE [x �→ t E ]. Consider the following derivation from
XE in E :

...

�E � �E , ϕE [x �→ t E ]
(∃Rε)

�E � �E , ∃x ϕE

ϕE [x �→ εxϕ
E ] � ϕE [x �→ εxϕ

E ]
(∃Lε)∃x ϕE � ϕE [x �→ εxϕ

E ]
(CUT)

�E � �E , ϕE [x �→ εxϕ
E ]

By definition ϕE [x �→ εxϕ
E ] is ϕE [x �→ w

(∃x ϕ)E ] = (ϕ[x �→ w

(∃x ϕ)])E ,
whence our conclusion follows.

We now proceed to the case of (∃LW↓). Applying again the IH, Lemma 19, and
Definition 18, we obtain that XE 
E ϕE (εxϕ

E ), �E � �E , and by (∃Lε), XE 
E
∃x ϕE , �E � �E . ��

In the opposite direction, we define by simultaneous induction a translation of
LE -terms to L-Henkin terms, and of LE -formulas to L-Henkin-formulas.

Definition 22 If t is a LE -term and ϕ is a LE -formula, then tW is the L-Henkin term
defined as follows:

(1) tW := t if t is a variable or a constant in L;
(2) tW := w

(∃x ψW ) if t is εxψ ;
(3) tW := f n(tW1 , ..., tWn ) if t is f n(t1, ..., tn).

If ϕ is a LE -formula, then ϕE is the L-Henkin formula defined as follows:

(1) ϕW := Pn(tW1 , ..., tWn ) if ϕ is Pn(t1, ..., tn);
(2) ϕW := ¬(ψW ) if ϕ is ¬ψ ;
(3) ϕW := ψW ◦ χW if ϕ is ψ ◦ χ (◦ ∈ {∧,∨});
(4) ϕW := Qx(ψW ) if ϕ is Qxψ (Q ∈ {∃,∀}).

Again, we will use the abbreviation �W to denote {ϕW | ϕ ∈ �} and XW to denote
{�W � �W | � � � ∈ X}.
Lemma 23 For any LE -formula ϕ(x1, ..., xn), we have that

(ϕ[x1 �→ t1, ..., xn �→ tn])W = ϕW [x1 �→ tW1 , ..., xn �→ tWn ].

Theorem 24 If X 
E � � �, then XW 
ST HC �W � �W .

123



Sequent Calculi for First-order ST

Proof Following the footsteps of Theorem 21, we proceed by induction on the size
of a smallest derivation D of � � � from X in E . Our presentation of the different
cases will be even more streamlined, in so far as we present only two subcases of the
inductive step.

As regards the rule (∃Rε), by inductive hypothesis XW 
ST HC �W �
�W , (ϕ[x �→ t])W . By Lemma 23, XW 
ST HC �W � �W , ϕW [x �→ tW ]. Con-
sider the following derivation from XW :

...

�W � �W , ϕW [x �→ tW ]
(EWI)

�W � �W , ϕW [x �→ w

(∃x ϕW )]
(∃RW)

�W � �W , ∃x ϕW

By Definition 24, ∃x ϕW is (∃x ϕ)W , whence the conclusion of (∃Rε) has been
established.

As regards the rule (∃Lε), XW 
ST HC (ϕ[x �→ εxϕ(x)])W , �W � �W holds by
the inductive hypothesis, i.e. XW 
ST HC ϕW [x �→ w

(∃x ϕW )], �W � �W . Hence
by (∃LW) XW 
ST HC ∃x ϕW , �W � �W , which is again enough for our conclusion.
��
Theorem 25 Let ϕ be aL-Henkin formula andψ be aLE -formula. Then 
ST HC ϕ �
ϕEW and 
ST HC ϕEW � ϕ, and likewise 
E ψ � ψWE and 
E ψWE � ψ .

Proof We confine ourselves to showing that 
ST HC ϕ � ϕEW for any L-Henkin
formula ϕ. This claim is proved by induction on the number n of universal Henkin
constants occurring in ϕ.

If n = 0, then ϕ is the same as ϕEW , and the claim follows from (ID). If n > 0, pick
some w

(∀x ψ) occurring in ϕ. The inductive hypothesis and Lemmas 19 and 23 give
us a proof of the sequent ϕ[x �→ w

(∃x ¬ψ)] � ϕEW [x �→ w

(∃x ¬ψ)EW ]. Applying
the Cut rule to this sequent and to the result of the derivation

ϕ[x �→ w

(∀x ψ)] � ϕ[x �→ w

(∀x ψ)]
(WEXCHR)

ϕ[x �→ w

(∀x ψ)] � ϕ[x �→ w

(∃x ¬ψ)]
yields a proof of the sequent ϕ[x �→ w

(∀x ψ)] � ϕEW [x �→ w

(∃x ¬ψ)EW ].
However, since w

(∃x ¬ψ)EW is the same as w

(∀x ψ)EW , our conclusion follows
by Lemmas 19 and 23. ��

4 The CalculusMQST

The proof theory of the calculus ST H does not appear to be very well-behaved, at
least in so far as it is difficult to pin down a definition of a normal proof in the calculus,
and consequently it is not clear what a normalisation theorem would have to look
like. We now introduce a calculus which avoids the use of Henkin constants. This
calculus includes rules that allow for the discharge of premise-sequents. This is not
unprecedented in the literature: see [16, 17].
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It is well known that calculi whose sequents are ordered pairs of sets of formulas are
not very amenable to an effective proof-theoretical analysis. With an eye to obtaining
normalisation and interpolation theorems for our calculus, therefore, it is convenient
to use a multiset calculus.

A (finite) multiset of L-formulas is, formally speaking, a function � : FmL → N
(where FmL is the set of all L-formulas) such that �(ϕ) = 0 for all but finitely many
formulas ϕ.We think of�(ϕ) as themultiplicity of the formula ϕ in themultiset�. If�
is amultiset ofL-formulas, wewrite�, ϕ for themultiset� such that�(ϕ) = �(ϕ)+1
and otherwise �(ψ) = �(ψ). We denote by |�| the set {ϕ | �(ϕ) > 0}.

A sequent in the calculus MQST is a pair of multisets of L-formulas, written as
� � �. The structural rules of MQST are the axiom of Generalised Identity:

(GID)
ϕ, � � �,ϕ

and the rule of Contraction:

� � �,ϕ, ϕ
(CR)

� � �,ϕ

ϕ, ϕ, � � �
(CL)

ϕ, � � �

The introduction and elimination rules for the propositional connectives are listed
in Fig. 1. That is, they are shared with the calculus ST H , except for the fact that we
now interpret sequents as pairs of multisets. Finally, the introduction and elimination
rules for the quantifiers are listed in Fig. 4. These are subject to the usual eigenvariable
restrictions familiar from the natural deduction calculi for classical and intuitionistic
predicate logic. That is, in the rules (∃LI) and (∀RI) the variable ymust not occur freely
in any of the undischarged premises of D or in � � �. Similarly, in the rules (∃RE)
and (∀LE) the variable y must not occur freely in any of the undischarged premises

Fig. 4 Quantifier rules inMQST
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ofD2 or in � � � or � � �. These last two rules discharge any number of instances
of the premise � � �,ϕ[x �→ y] and ϕ[x �→ y], � � �, respectively (as indicated
by the outer brackets in Fig. 4.)

An atomic instance of (GID) is a sequent of the form ϕ, � � �,ϕ where ϕ is an
atomic formula. A weakening of a sequent � � � is a sequent of the form �,�′ �
�,�′. A derivation of S from a set of sequents X in MQST is an appropriately
labelled proof tree where the conclusion is S and each undischarged assumption is a
sequent in X . The following two lemmas are straightforward to prove by induction
over the complexity of proofs.

Lemma 26 Every instance of (GID) is derivable in MQST using only atomic
instances of (GID) and introduction rules.

Lemma 27 Let D be a derivation of S from X, and let z be a variable which does
not occur anywhere in D. Then substituting all free occurrences of a variable x by z
throughout D yields a derivation of S[x �→ z] from X [x �→ z].
Lemma 28 The rule of Weakening is admissible inMQST :

� � �
(WL)

ϕ, � � �

� � �
(WR)

� � �,ϕ

In particular, if S is derivable from X, then so is every weakening of S.

Proof This is a straightforward induction on the depth of the derivation of S from X ,
using Lemma 27 to rename variables in the case of rules with eigenvariable conditions.
For example, if S is the sequent � � �,∀x ϕ and the last step of the proof infers S
from � � �,ϕ[x �→ z], fix multisets of formulas �′,�′ and consider a variable z′
which occurs neither in S nor in X , |�|, |�′|, |�|, |�′|. Then by Lemma 27 there is
a derivation of � � �,ϕ[x �→ z′] from X , so by the inductive hypothesis there is a
derivation of �,�′ � �,�′, ϕ[x �→ z′], and we can now infer �,�′ � �,�′,∀x ϕ

from this sequent. ��
The proof of the soundness theorem is a straightforward induction on the complexity

of a proof entirely analogous to the soundness theorem for classical or intuitionistic
logic. In its statement we use the following notation: given a sequent S := � � �

and a set of sequents X , we define |S| as |�| � |�| and |X | as {|S| | S ∈ X}.
Theorem 29 If X 
MQST S, then |X | |�ST |S|.

Hereafter, we use the notation

�[x �→ t] := {γ [x �→ t] | γ ∈ �},
(� � �)[x �→ t] := �[x �→ t] � �[x �→ t],

X [x �→ t] := {S[x �→ t] | S ∈ X}.

In particular, the notation X [x �→ t] assumes that in each formula in each sequent
in X the term t can be substituted for x .
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Lemma 30 If X 
MQST S, then X [x �→ t] 
MQST S[x �→ t].
Proof Consider a derivation D of S from X and pick a topmost application (if any
such exists) of one of the rules involving the eigenvariable condition, say the inference
from � � �,ϕ[x �→ y] to � � �,∀x ϕ. Since the variable y does not occur among
the premises of the proof, we may uniformly substitute a fresh variable z not occurring
in either D or t for y throughout the subderivation which ends with that application.
Repeating this process results in a derivation of S from X where the eigenvariable
restrictions only apply to variables which do not occur in t . We may now substitute t
for x throughout this derivation. ��

The following lemma states that the sequent counterpart of the standard rule of
disjunction elimination is derivable in MQST . We again use the notation

(�1 � �1) � (�2 � �2) := �1, �2 � �1,�2, X � S := {S′ � S | S′ ∈ X}.

Lemma 31 Suppose that

X , S1 
MQST S and X , S2 
MQST S.

Then
X , S1 � S2 
MQST S.

Proof Consider derivations D1 and D2 of S from X , S1 and X , S2, respectively. Let
S′
1 (S

′
2, S

′) be obtained from S1 (from S2, from S) by replacing distinct variables in S1
by distinct fresh variables which do not occur anywhere in D1 and D2.

Prefacing every premise of D1 with instances of (WL),(WR) yields a derivation
X � S′

2, S1 � S′
2 
MQST S � S′

2. (Because the free variables on S′
2 do not occur

anywhere inD1, this does not interfere with any of the quantifier rules.) By Lemma 30
we have X � S2, S1 � S2 
MQST S � S2. Similarly, prefacing D2 with instances of
(WL),(WR) yields a derivation X � S′, S2 � S′ 
MQST S � S′. By Lemma 30 we
have X � S, S2 � S 
MQST S � S. Concatenating these one obtains a derivation
X � S, X � S2, S1 � S2 
MQST S � S. Since X 
MQST S′ for each S′ ∈ X � S, and
X 
MQST S′′ for each S′′ ∈ X�S2, and S�S is S, we obtain that X , S1�S2 
MQST
S. ��

In order to obtain completeness via a canonical model, we have to patiently reor-
ganise the entire apparatus of theories we used in the first part of this paper, for now
we no longer have Henkin constants at our disposal. For a start, we inductively define
the notion of a witness for an L-sequent S.

Definition 32 An L-theory (for short, a theory, when no confusion is likely to arise)
is a set of L-sequents closed under derivability inMQST .

Since all the definitions contained in Definition 11 are unaffected by the change of
language, we will freely use them in what follows. Moreover, we add the following
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Definition 33 A theory T is witnessed if

(1) � � �, ∃x ϕ ∈ T implies � � �,ϕ[x �→ t] ∈ T for some term t , and
(2) ∀x ϕ, � � � ∈ T implies ϕ[x �→ t], � � � ∈ T for some term t .

Hereafter, the set of all L-variables will be denoted by VarL. The set of variables
which occur (whether free or bound) in a set of sequents X will be denoted by Var(X).
We say that X contains few variables if |Var(X)| < |VarL|. (Although we have
previously used |�| to denote the underlying set of a multiset �, here we use |X | to
denote the cardinality of the set X .)

Theorem 34 Suppose that |VarL| = |SeqL| is a regular cardinal. If T is an S-
consistent theory that contains few variables, then there exists a prime, witnessed and
S-consistent theory T ′ such that T ⊆ T ′.

Proof Suppose that T is S-consistent and contains few variables. We put the set of L-
sequents SeqL in correspondence with some cardinal κ , i.e. we consider a sequence of
L-sequents Sα with α ∈ κ which contains everyL-sequent. We now define a sequence
of sets of sequents Yα with α ∈ κ such that each Yα is S-consistent and each Yα

contains few variables.
We take Y0 := T . If Yα, Sα 
MQST S, we take Yα+1 := Yα . Otherwise,

Yα, Sα �MQST S. If Sα does not have the form � � �, ∃x ϕ or ∀x ϕ, � � �,
we take Yα+1 := Yα ∪{Sα}. Otherwise, for each of the finitely many ways of writing S
as either � � �, ∃x ϕ or ∀x ϕ, � � � we pick a distinct fresh variable y which does
not occur in Yα ∪ {Sα, S} and we take Wα to be the non-empty finite set consisting
of the sequents � � �,ϕ[x �→ y] and ϕ[x �→ y], � � � obtained in this way.
(Such fresh variables exist because Yα contains few variables and |VarL| = |SeqL|.)
By (∃RE) and (∀LE), Yα, Sα �MQST S implies Yα, Sα,Wα �MQST S. Taking
Yα+1 := Yα ∪ {Sα} ∪Wα therefore yields an S-consistent set. Because we only added
finitely many sequents to Yα , the set Yα+1 still contains few variables.

If α is a limit ordinal, we take Yα := ⋃{Yβ | β < α}. Because 
MQST is
a finitary relation, Yα is an S-consistent set. Yα still contains few variables, since
Var(Yα) = ⋃{Var(Yβ) | β < α} where α < |VarL| and Var(Yβ) < |VarL| for
each β < α. (This relies on the regularity of |VarL|.)

Finally, we take T ′ := ⋃{Yα | α ∈ κ}. Again, because 
MQST is a finitary
relation, T ′ �MQST S. The set T ′ is a theory: if T ′ 
MQST Sα , then clearly
Yα, Sα �MQST S, so Sα ∈ Yα+1 ⊆ T ′. It is a witnessed theory by construction.
Finally, T ′ is a prime theory by Lemma 31. ��
Theorem 35 Let X ∪ {S} be a set of L-sequents. If |X | |�ST |S|, then X 
MQST S.

Proof Observe that we can always expand our set of variables VarL to some larger set
of variables Var ′

L ⊇ VarL which satisfies the assumption of the previous theorem.
Expanding the set of variables in this way changes neither the relation |�ST nor the
relation 
MQST . We may therefore assume without loss of generality that indeed
|VarL| = |SeqL| and that this cardinal is regular.

Because expanding L by new object variables yields a consequence relation |�′
ST

and a provability relation 
′
MQST which are conservative extensions of |�ST and
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MQST , it suffices to prove the required implication in some extension of L by
new variables. We may therefore assume without loss of generality that X , and hence
Th(X), contain few variables.

Suppose contrapositively that X �MQST S. Then Th(X) is S-consistent and con-
tains few variables. By Theorem 34, there exists a prime, witnessed and S-consistent
theory T such that Th(X) ⊆ T . We want to construct a canonical model M = 〈D, I 〉
such that M |�ST S′ for all S′ ∈ T , but it is not the case that M |�ST S. Let thus:

• D be the set of all terms;
• I (x) = x for every variable x ;
• I ( f n), for any n-ary function symbol f n , be the free operation associated with

f n :

f M : 〈t1, . . . , tn〉 �→ f n(t1, . . . , tn);

• for any n-ary relation symbol Pn ,

I (Pn)(t1, . . . , tn) =

⎧
⎪⎨

⎪⎩

1 if ∅ � Pn(t1, ..., tn) ∈ T , Pn(t1, ..., tn) � ∅ /∈ T ;
1
2 if ∅ � Pn(t1, ..., tn) ∈ T , Pn(t1, ..., tn) � ∅ ∈ T ;
0 if ∅ � Pn(t1, ..., tn) /∈ T , Pn(t1, ..., tn) � ∅ ∈ T .

Observe that, according to the previous definition, I (t) = t for any L-term t .
Using the same strategy as in Theorem 17 we show that, for any L-sequent S′, M

ST-satisfies S′ if and only if S′ ∈ T . HenceM ST-satisfies X , but it does not ST-satisfy
S, which means that |X | �ST |S|. ��

5 Normalisation and Interpolation forMQST

Our goal is now to prove a normalisation theorem for MQST and then deduce the
interpolation theorem as a corollary. Our argument is a slightly adapted version of the
normalisation proof for natural deduction by Troelstra & Schwichtenberg [29].

There are four main differences between their argument and ours. First, the rules
that need to be discussed separately in the definition of a segment in MQST are
the right existential and left universal elimination rules, rather than the disjunction
and existential elimination rules. In MQST the disjunction and conjunction elimi-
nation rules behave entirely symmetrically. Second, the definition of a track in fact
simplifies in MQST because there is no analogue of the elimination rule for impli-
cation (where the minor premise and the conclusion may be unrelated formulas). This
means that every track ends at the root of the derivation. Third, sinceMQST operates
on sequents, it may happen that an introduction rule is immediately followed by an
elimination rule but these rules operate on different principal formulas. This does not
introduce any substantial difficulty, but it does mean that an additional case needs to
be discussed. Last, in addition to segments which start with an introduction and end
with an elimination, we also count segments which start with an instance of (GID)
and end with an elimination as cut segments.
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Let us use the term sidetrack rules to refer to the rules (∃RE) and (∀LE). These are
the only elimination rules where the conclusion is not obtained from the premises by
peeling off the principal logical operator. In a sidetrack rule, the premise containing the
formula whose principal operator is being eliminated will be called themajor premise
and the other premise (which consists of the same sequent as the conclusion of the
rule) will be called the minor premise. In all other elimination rules both premises
count as major premises.

Definition 36 A segment in a derivation is a non-empty sequence S1, . . . , Sn of sequent
occurrences such that

(1) for 1 ≤ i ≤ n − 1 either Si is the minor premise and Si+1 is the conclusion of a
sidetrack rule, or Si is the premise and Si+1 is the conclusion of a contraction,

(2) S1 is not the conclusion of a sidetrack rule or a contraction,
(3) Sn is not the minor premise of a sidetrack rule or the premise of a contraction.

The rank of a segment is the number of logical symbols that occur in its first sequent.

Each sequent in a derivation belongs to some segment, possibly one of length 1.
Up to contraction, a segment contains only instances of the same sequent.

Definition 37 Let:

(1) a cut segment be a segment where S1 is either the conclusion of an introduction
rule or an instance of (GID) and where Sn is the premise (necessarily a major
premise) of an elimination rule;

(2) a cut-free derivation be a derivation with no cut segment;
(3) a normal derivation be a cut-free derivation where every instance of a sidetrack

rule discharges at least one assumption, and every instance of (GID) is atomic.

Theorem 38 If there is a derivation of a sequent S from a set of sequents X inMQST ,
then there is a normal derivation of S from X in MQST .

Proof We have already seen (Lemma 26) that (GID) can be restricted to atomic
instances.Moreover, each (normal) derivation is easily transformed into (a normal) one
where moreover every instance of a sidetrack rule discharges at least one assumption:
it suffices to omit all instances of sidetrack rules which discharge no assumption. To
prove the theorem, it thus suffices to show that each such derivation can be transformed
into a cut-free derivation (a derivation with no cut segments).

We prove this claim by double induction over the maximal rank r of cut segments
in the derivation and the sum m of the lengths of all cut segments of maximal rank.

Given a derivation with a cut segment, pick a topmost cut segment σ of maximal
rank. If this segment has length n ≥ 2, we can obtain a derivation with the same r but
smaller m by permuting the elimination rule immediately following σ above the last
sidetrack rule of σ . If necessary, we rename the variable involved in the sidetrack rule
using Lemma 27. (This corresponds to the “permutation contractions” of [29, 6.1.3].)
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For example, the following derivation (where the term t might contain the variable y):

D1

� � �, ∃x ϕ

[� � �,ϕ[x �→ y]]
D2

� � �,∀u ϕ

� � �,∀u ϕ

� � �,ϕ[u �→ t]
is transformed into the following derivation (where z does not occur in D2)

D1

� � �, ∃x ϕ

[� � �,ϕ[x �→ z]]
D′

2

� � �,∀u ϕ

� � �,ϕ[u �→ t]
� � �,ϕ[u �→ t]

Because we now have (CL) and (CR), there is one additional type of permutation
contraction. For example

D
� � �,ϕ ∧ ψ, ϕ ∧ ψ

� � �,ϕ ∧ ψ

� � �,ϕ

is transformed into

D
� � �,ϕ ∧ ψ, ϕ ∧ ψ

� � �,ϕ, ϕ ∧ ψ

� � �,ϕ, ϕ

� � �,ϕ

which again decreases m.
If the segment σ has length 1 and is preceded by an instance ϕ, � � �,ϕ of (GID),

then the elimination rule following σ can be eliminated entirely: because all instances
of (GID) are assumed to be atomic, this elimination rule must operate on � or �, so
we can simply use a different instance of (GID).

If the segment σ has length 1 and the principal formula of the introduction rule
preceding σ is different (or on a different side) than the principal formula of the
elimination rule following σ , we permute the elimination rule above the introduction
rule. For example, the derivation

D1

¬χ, � � �,ϕ

D2

¬χ, � � �,ψ

¬χ, � � �,ϕ ∧ ψ

� � �,ϕ ∧ ψ, χ
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is replaced by

D1

¬χ, � � �,ϕ

� � �,ϕ, χ

D2

¬χ, � � �,ψ

� � �,ψ, χ

� � �,ϕ ∧ ψ, χ

Observe that the sequents¬χ, � � �,ϕ and¬χ, � � �,ψ and � � �,ϕ∧ψ, χ

may be part of new cut segments, but these cut segments all have strictly lower rank.
If ¬χ, � � �,ϕ ∧ ψ was the only cut segment of maximal rank, this transformation
therefore decreases r . Otherwise, it decreases m.

Finally, it remains to deal with cut segments of length 1 where the principal formula
of the introduction rule preceding the sequent is the same (and on the same side) as
the principal formula of the elimination rule following the sequent. For example, with
(∧R), the derivation

D1

� � �,ϕ

D2

� � �,ψ

� � �,ϕ ∧ ψ

� � �,ϕ

is transformed into the derivation

D1

� � �,ϕ

Again, if � � �,ϕ ∧ ψ was the only cut segment of maximal rank, this trans-
formation decreases r . Otherwise, it decreases m. ��
Definition 39 A track in a normal derivationD is a sequenceof occurrences of sequents
S1, . . . , Sn such that S1 is either an instanceof (GID)or a top assumptionnot discharged
by any application of a sidetrack rule, Sn is the conclusion ofD, and for 1 ≤ i ≤ n−1
either (i) Si is not the major premise of a sidetrack rule and Si+1 is the sequent
occurrence below Si or (ii) Si is the major premise of a sidetrack rule and Si+1 is an
assumption discharged by this rule.

Observe that the existence of an assumption discharged by each application of a
sidetrack rule is part of the definition of a normal derivation.

Lemma 40 Each sequent in a normal derivation belongs to some track.

Proof Given a sequent S, the next sequent in any track involving S is uniquely deter-
mined by conditions (i) and (ii) in Definition 39. The previous sequent may not be
uniquely determined, but either S is a premise discharged by an application of a side-
track rule, in which case the previous sequent is the major premise of that rule, or it is
the conclusion of a rule, in which case at least one of the premises of S can play the
role of the previous sequent in a track, or it is (GID) or an undischarged assumption,
in which case the track starts with S. ��
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Lemma 41 For each track of a normal derivation consisting of segments σ1, . . . , σn in
this order there is a segment σi , called themidsegment of the track, such that (i) the last
sequent of each of the segments σ1, . . . , σi−1 is the major premise of an elimination
rule, (ii) the last sequent of each of the segments σi , . . . , σn−1 is the premise of an
introduction rule, (iii) if the midsegment is not σ1, then the first sequent of σ1 is not
the conclusion of (GID).

Proof If no such midsegment exists, then there is by definition a cut segment on this
track. ��
Lemma 42 Each finite set of sequents X is interderivable in MQST with a sequent
of the form ∅ � ϕ such that ϕ contains the same free variables and the same relation
symbols as X.

Proof Each sequent ϕ1, . . . , ϕm � ψ1, . . . , ψn is interderivable with the sequent ∅ �
¬ϕ1 ∨ · · · ∨ ¬ϕm ∨ ψ1 ∨ · · · ∨ ψn . Moreover, each finite set of sequents of the form
∅ � ϕ1, . . . ,∅ � ϕn} is interderivable with the sequent ∅ � ϕ1 ∧ · · · ∧ ϕn . ��
Theorem 43 If X1, X2 
MQST S, then there is a finite set of sequents I such that
X1 
MQST I and I , X2 
MQST S and I only contains those relation symbols and
those free variables which occur in both X1 and in X2 ∪ {S}.
Proof In the course of the proof, we shall need to talk about universally (existentially)
quantifying with respect to a variable x in a sequent T . What we mean by this is that
we first replace T by an equivalent sequent of the form ∅ � ϕ using Lemma 42 and
then, if x occurs free in ϕ, we universally (existentially) quantify ϕ with respect to this
variable.

We prove the claim by induction on the size of a normal derivation D of S from
X := X1 ∪ X2. We shall call I an interpolating set for X1 | X2 
MQST S. If the
derivation does not contain any deductive steps, then S ∈ X1 or S ∈ X2. In the former
case, I := {S} is an interpolating set, while in the latter case I := ∅ is an interpolating
set. If the last step is an instance of (GID), then this is in fact the only step of the
proof and we can take I to be the empty set. If the last step of this derivation is a
contraction from S to S′, then each interpolating set I for X1 | X2 
MQST S is also
an interpolating set for X1 | X2 
MQST S′. The same holds if the last step is any of
(¬L↓), (¬R↓), (∧L↓) or (∨R↓), since these are invertible rules with a single premise.

It remains to deal with the cases where the last step is any of (∀LI), (∀RI), (∃LI),
(∃RI), (∧R↓) or (∨L↓). Using the inductive hypothesis, we only deal with three of
these last six cases, since the other three are entirely analogous:

(1) Let I1 and I2 be interpolating sets for X1 | X2 
MQST � � �,ϕ and X1 |
X2 
MQST � � �,ψ . Let I := I1 ∪ I2. Then I is an interpolating set for
X1 | X2 
MQST � � �,ϕ ∧ ψ . This is because the proofs I1, X2 
MQST
� � �,ϕ and I2, X2 
MQST � � �,ψ extend to a proof I1, I2, X2 
MQST
� � �,ϕ ∧ ψ , and moreover X1 
MQST I1 and X1 
MQST I2 imply that
X1 
MQST I .

(2) Let I be an interpolating set for X1 | X2 
MQST S for S = � � �,ϕ[x �→ y],
where y occurs free neither in X1, X2 nor in |�| or |�|. Let I ′ be obtained from
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I by universally quantifying with respect to all variables which do not occur free
in X1. Then X1 
MQST I and X2, I 
MQST S imply X1 
MQST I ′ and
X2, I ′ 
MQST S. Let I ′′ be obtained from I ′ by existentially quantifying with
respect to all variables which do not occur free in X2, S′ for S′ = � � �,∀x ϕ.
In particular, y does not occur free in I ′, since it does not occur free in X2, S′.
The set of sequents I ′′ therefore only contains free variables shared by X1 and
X2, S′. Moreover, X1 
MQST I ′′ and X2, I ′′ 
MQST S, using the fact that y
does not occur free in I ′′. Thus I ′′ is an interpolating set for X1 | X2 
MQST S′.

(3) Let I be an interpolating set for X1 | X2 
MQST S for S = � � �,ϕ[x �→ t].
Let I ′ and I ′′ be obtained from I in the same way as in the previous case. Then
X1 
MQST I ′′ as before, and moreover X2, I ′ 
MQST S, so X2, I ′ 
MQST
S′ for S′ = � � �, ∃x ϕ and X2, I ′′ 
MQST S′. Thus I ′′ is an interpolating set
for X1 | X2 
MQST S′.

Now suppose that the last step of the derivation is an elimination. As in the proof
of [29, Thm. 6.3.1], we define a main branch of a normal derivation to be a branch
of the derivation tree which goes from the root to one of the terminal nodes and in
doing so only passes through the premises of introduction rules, the major premises
of elimination rules, or the premises of contraction rules. It follows that the terminal
node of the branch is either an undischarged assumption of the proof or an instance of
(GID).

Each main branch forms a subsequence of a track, namely a subsequence where the
parts between the major premise of a sidetrack rule and the minor premise have been
removed. Since the last step is an elimination rule, it thus follows from Lemma 41
that there are no introduction rules on a main branch. In particular, because there are
no instances of either (∧R↓) or (∨L↓) on a main branch, there is in fact exactly one
main branch in the proof. Moreover, the terminal node of this main branch (possibly
followed by a sequence of contractions) is a major premise of an elimination rule.
This means that this terminal node cannot be an instance of (GID), otherwise it would
form a cut segment.

Using the inductive hypothesis, we obtain some trivial cases for the unary invertible
rules, plus twelve cases (depending on the division between X1 and X2) for the non-
invertible rules.

Let I be an interpolating set for S, X1 | X2 
MQST T . Let us deal with three of
the six cases which arise in this situation, since the other three are entirely analogous:

(1) Let S = � � �,ϕ and S′ = � � �,ϕ ∧ ψ . Then I is also an interpolating set
for S′, X1 | X2 
MQST T .

(2) Let S = � � �,ϕ[x �→ t] and S′ = � � �,∀x ϕ. Let I ′ be obtained from
I by universally quantifying over all variables which do not occur in S, X1.
Then S, X1 
MQST I , so S′, X1 
MQST I and S′, X1 
MQST I ′. Also,
X2, I ′ 
MQST T . Let I ′′ be obtained from I ′ by existentially quantifying over
all variables which do not occur in X2, T . Then X2, I ′′ 
MQST T , so I ′′ is an
interpolating set for S′, X1 | X2 
MQST T .

(3) Let S = � � �,ϕ[x �→ y] and S′ = � � �, ∃x ϕ. We may assume without
loss of generality, by renaming y if necessary, that y occurs free neither in S
nor in X1, X2, T . Let I ′ be obtained from I by existentially quantifying over
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y, and let I ′′ be obtained from I ′ by universally quantifying over all variables
which do not occur in S′, X1. Then S, X1 
MQST I implies S, X1 
MQST I ′
and thus S′, X1 
MQST I ′ and S′, X1 
MQST I ′′. Also, X2, I 
MQST T
implies X2, I ′ 
MQST T and X2, I ′′ 
MQST T . Let I ′′′ be obtained from I ′′
by existentially quantifying over all variables which do not occur in X2 and T .
Then S, X1 
MQST I ′′′ and X2, I ′′′ 
MQST T , so I ′′′ is an interpolating set
for S′, X1 | X2 
MQST T .

On the other hand, let I be an interpolating set for X1 | X2, S 
MQST T . Let us
again only deal with three of the six cases which arise in this situation:

(1) Let S = � � �,ϕ and S′ = � � �,ϕ ∧ ψ . Then I is also an interpolating set
for X1 | X2, S′ 
MQST T .

(2) Let S = � � �,ϕ[x �→ t] and S′ = � � �,∀x ϕ. Let I ′ be obtained from
I by universally quantifying over all variables which do not occur in X1. Then
X1 
MQST I ′ and X2, S, I ′ 
MQST T , so X2, S′, I ′ 
MQST T . Let I ′′
be obtained from I ′ by existentially quantifying over all variables which do not
occur in X2, S′, T . Then X1 
MQST I ′ and X2, S′, I ′′ 
MQST T , so I ′′ is an
interpolating set for X1 | X2, S′ 
MQST T .

(3) Let S = � � �,ϕ[x �→ y] and let S′ = � � �, ∃x ϕ. We may assume without
loss of generality, by renaming y if necessary, that y occurs free neither in S
nor in X1, X2, T . Let I ′ be obtained from I by existentially quantifying over
y and let I ′′ be obtained from I ′ by universally quantifying over all variables
which do not occur in X1. Then X1 
MQST I implies X1 
MQST I ′ and
X1 
MQST I ′′. Also, X2, S, I 
MQST T implies X2, S, I ′ 
MQST T and
X2, S, I ′′ 
MQST T . Let I ′′′ be obtained from I ′′ by existentially quantifying
over all variables which do not occur in X2, S, T . Then X1 
MQST I ′′′ and
X2, S, I ′′′ 
MQST T , so I ′′′ is an interpolating set for X1 | X2, S 
MQST T .

��

6 Conclusions and Open Problems

The problem of endowing first-order Strict-Tolerant Logic with an adequate Gentzen-
style proof theory is not the sort of problem that admits a unique solution, nor do we
claim to have solved it for good. Be that as it may, we believe that there is something to
be said for the systemswe have introduced. On the one hand, theymay help understand
what proof-theoretic features a calculus should possess tomirror somenatural semantic
relations arising out of ST-models. On a more general note – and this holds true
especially of MQST , we think – they may shed some light on possible ways to
recover some of the deductive power of Cut in the context of sequent calculi that do
not contain it, and whose operational rules are not all invertible.

Being a preliminary foray into the topic, this paper leaves many issues unaddressed.
At least the following problems remain open for future research:

• The paper [22] contains general split interpolation theorems for propositional
sequent calculi with elimination rules similar to ST P , where either Cut or Identity

123



Sequent Calculi for First-order ST

are missing or suitably restricted. The problem as to whether these results extend
to the first-order versions of such calculi is open at the time of writing.

• Tolerant-Strict Logic (TS) is the logic dual to ST [20]. First-order TS faces a
strong completeness issue similar to ST, but addressing it may require non-trivial
modifications of the toolbox deployed here. We think that this problem would
deserve some consideration.

• The relationships between ST H and the Epsilon calculus, in the absence of Cut,
have not been clarified. Shedding more light on this relation might help to under-
stand the potential and limits of calculi with Henkin constants, above and beyond
the specific proof system examined here.
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