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ABSTRACT: Enterobactin (ENT) is a tris-catechol siderophore
used to acquire iron by multiple bacterial species. These ENT-
dependent iron uptake systems have often been considered as
potential gates in the bacterial envelope through which one can
shuttle antibiotics (Trojan horse strategy). In practice, siderophore
analogues containing catechol moieties have shown promise as
vectors to which antibiotics may be attached. Bis- and tris-catechol
vectors (BCVs and TCVs, respectively) were shown using
structural biology and molecular modeling to mimic ENT binding
to the outer membrane transporter PfeA in Pseudomonas aeruginosa.
TCV but not BCV appears to cross the outer membrane via PfeA
when linked to an antibiotic (linezolid). TCV is therefore a promising vector for Trojan horse strategies against P. aeruginosa,
confirming the ENT-dependent iron uptake system as a gate to transport antibiotics into P. aeruginosa cells.
KEYWORDS: enterobactin, siderophore, linezolid, Trojan horse strategy, iron uptake, Pseudomonas aeruginosa

Pathogenic bacteria remain a potent threat to humans
despite the discovery of antibiotics which had appeared to

promise the end of bacteria as the cause of human diseases.
This is because the accumulated use and misuse of antibiotics
has led to the evolution of antibiotic-resistant bacterial strains.
Continuing development of new antibiotic compounds and
antibacterial strategies is crucial to avoid a return to the pre-
antibiotic world, and there is particular concern over Gram-
negative bacteria due to the paucity of new approaches.
Pseudomonas aeruginosa is an opportunistic Gram-negative
bacterium responsible for severe pulmonary infections affecting
patients with cystic fibrosis and chronic obstructive pulmonary
diseases.1,2 This pathogen is also common in infections of
severe burns and often occurs in clinical HIV and other
immunocompromised patients.3,4 P. aeruginosa is naturally
resistant to many classes of antibiotics due to the low
permeability of the outer membrane.5 The outer membrane
in Gram-negative bacteria in general is a selective barrier that
restricts the penetration of many xenobiotic compounds, not
just antibiotics. The nutrient uptake systems act as selective
openings in the bacterial envelope and have long been thought
as a possible route for antibiotic uptake. This so-called Trojan
horse strategy should ideally utilize an essential and
metabolically unsubstitutable nutrient to have a significant

impact on bacterial proliferation. Iron is the best nutrient that
meets these criteria.
The concentration of free Fe(III) in normal human fluids is

estimated to be around 10−24 M, reflecting the inherent lack of
bioavailability of the element. This presents a challenge for
pathogenic bacteria where an Fe(III) concentration in the
micromolar range was estimated to be optimal for bacterial
proliferation.6,7 To surmount this challenge, bacteria have
evolved with efficient uptake systems that are able to give them
access to iron from their environment.8 One example is the
ubiquitous siderophore-dependent iron transport systems.
Siderophores are small Fe(III) chelating secondary metabolites
secreted by bacteria, with diverse chemical structures and
metal-to-ligand stoichiometries.9,10 The ferric complexes are
next recognized by specific bacterial outer membrane trans-
porters and imported back into the bacteria.11,12 The energy
necessary for this active uptake through the outer membrane is
provided by the TonB machinery and inner membrane proton-
motive force.11−14 Some siderophores release iron in the
bacterial periplasm, whereas other siderophores cross the inner
membrane before delivering the iron. In both scenarios, iron
release from siderophores involves a reductive process
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sometimes coupled to a chemical modification or hydrolysis of
the siderophore.15,16

Conjugates between siderophores and antibiotics were
shown to hijack these uptake systems, leading to the
accumulation of the drug in the bacterial inner compart-
ments.17 In many cases, these sideromycins behave similarly to
Trojan horses and have a significantly higher antibacterial
activity compared to the unconjugated drug.17−31 Catechol
siderophores are attractive vectors because of their (1) high
affinity for iron(III), (2) occurrence in multiple bacterial
species and strains,9 and (3) versatile chemical syn-
thesis.18,23,32,33 The archetypal catechol siderophore enter-
obactin (ENT) 1 is a cyclic trimer of N-2,3-dihydroxybenzoyl-
serine (DHBS) used by many pathogenic bacteria,34 even
those that do not produce this metabolite (iron piracy). For
example, P. aeruginosa, which produces two siderophores
pyoverdine 2 and pyochelin 3 (Figure 1),35,36 will operate on
ENT secreted by other microorganisms through a specific
TonB-dependent outer membrane transporter (TBDT),
PfeA.37,38 PfeA transports the ferric ENT from the bacterial
environment into the periplasm.39 In the absence of PfeA, the
TBDT PirA transports ferric ENT complexes across the outer
membrane in P. aeruginosa cells.40 In the bacterial periplasm,
the trilactone ring of the ferric ENT is hydrolyzed by the
esterase PfeE into the Fe(III)-(DHBS)3 complex.

16,41 Iron
release from this complex probably requires a reduction step by
a yet non-identified reductase. In vitro studies have shown that
only the hydrolysis of ENT by PfeE is not enough to dissociate
iron from DHBS, but a reduction of iron is also needed.16,41

This has been confirmed in Escherichia coli where the
dissociation of iron from ENT involves a NADPH-dependent
reductase YdjH and the esterase Fes.42−44 How iron is then
transported further across the inner membrane into the

bacterial cytoplasm remains unknown. The expression of
PfeA and PfeE is induced by the presence of ferric ENT by a
two-component regulation system PfeS/PfeR, where PfeS is
the inner membrane sensor and PfeR the transcriptional
activator (Figure 2).37,45,46 The 3D structure of PfeA has been
recently reported.38 The PfeA protein harbors a TBDT fold
with a barrel composed of 22 transmembrane ß strands
obstructed by the N-terminal plug domain. The structure of
PfeA loaded with ferric ENT has confirmed a biphasic
recognition process, with a first binding site located in the

Figure 1. Structures of siderophores ENT 1, pyoverdine 2, and pyochelin 3 and of ENT-inspired vectors BCV 4 and TCV 5 and their respective
protected forms 6 and 7.

Figure 2. ENT-dependent iron uptake pathway in P. aeruginosa. For
more details, see Introduction.
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extremity of the extracellular loops and a second deeper in the
barrel located on the top of the plug domain.38 The
mechanism of translocation of ferric siderophore complexes
through TBDT is still unclear, but the current model suggests
that the binding of ferric ENT to PfeA triggers the interaction
between the PfeA “TonB box” and the inner membrane TonB
complex, which provides the energy needed for the
conformation change of the plug domain and the translocation
of the ferric siderophore complex through the transporter.
Such a mechanism has been proposed for other TonB-
dependent siderophore transporters.47,48

Catechol vectors linked to oxazolidinones have shown
activity against Gram-negative pathogens including P.
aeruginosa.49,50 An improved knowledge of the molecular
mechanisms involved in the uptake of catechol type side-
rophore−antibiotic conjugates across the outer membrane will
enhance further development of next-generation conjugates.
We report here how PfeA interacts with different synthetic
catechol siderophore−antibiotic conjugates, BCV 4 and TCV
5 (bis- and tris catechol vectors, respectively)51 coupled to
linezolid (inactive againstP. aeruginosawhen unconjugated ).
We have previously shown39 that BCV 4 and TCV 5 both
induce the expression of the proteins of the ENT-dependent
iron uptake pathway (PfeA and PfeE) in P. aeruginosa cells.39,51

Here, BCV- and TCV-conjugates proved to be invaluable
molecular tools to investigate, for the first time, the molecular

basis of the interaction of siderophore−antibiotic conjugates
with the outer membrane transporter.

■ RESULTS AND DISCUSSION
BCV and TCV Interaction with the PfeA Transporter.

We determined the structure of PfeA−Fe3+−BCV and PfeA−
Fe3+−TCV to be of 2.7 and 2.6 Å resolutions, respectively
(Figures 3a,b , S1 and S2 and Table S1 in the Supporting
Information). Both BCV 4 and TCV 5 bind to the PfeA first
binding site located in the extracellular loops reported for ENT
(Figures 3c−e, S1 and S2 in the Supporting Information). Two
of the catecholate rings occupy the same position as rings 2
and 3 of ENT. Key hydrogen bonds involved in the
recognition between the catecholates of ENT and Gly325,
Ser479, Arg480, and Gln482 are conserved. In the Fe3+−TCV
complex, the third catecholate slightly shifts toward Arg480
(relative to ENT) to accommodate the propargyl arm. The
stacking interaction of Arg480 with catecholate 2 is preserved.
The two last atoms of the propargyl group were not clearly
defined in the electron density map and were assumed to be
disordered due to mobility. However, based on the well-
ordered portion, the propargyl group points to the surface of
the protein (Lys218 of L2), which is slightly displaced
compared to the Fe3+−ENT structure (Figure S1 in the
Supporting Information). In the Fe3+−BCV complex, the iron
coordination sphere is completed by interaction with a

Figure 3. Structure of Fe3+−BCV and Fe3+−TCV in complex with PfeA. (a,b) Final 2FO−FC electron density map contoured at a 1σ level around
Fe3+−BCV and Fe3+−TCV, respectively. Molecules are shown as sticks with carbon atoms colored in deep teal (BCV) or salmon (TCV), nitrogen
in dark blue, and oxygen in red. Fe3+ is represented as an orange sphere. In the PfeA−Fe3+−BCV complex, one ethylene glycol molecule (white
sticks) completes the coordination shell of the iron. (c−e) Comparison of the binding site of Fe3+−ENT (pink, from 6Q5E),38 Fe3+−BCV, and
Fe3+−TCV, respectively. Residues within 4.0 Å of the siderophores are displayed, and hydrogen bonds are shown as black broken lines.
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molecule of ethylene glycol from a buffer (seen in the PfeA−
Fe3+−azotochelin complex).38 In the BCV ferric complex, the
propargyl group also points to Lys218.
A previous thermodynamic analysis (isothermal titration

calorimetry, ITC) of ENT titrated into PfeA showed a biphasic
heat profile. Coupled to modeling studies, this was interpreted
as two cooperating binding sites, one high affinity site (∼30
nM) and one lower affinity site (∼190 μM), within PfeA.38
Titrations of both Fe3+−BCV and Fe3+−TCV into PfeA by
ITC were best fitted to a single site-binding model with a
much-reduced enthalpy (−50 to 60 kcal mol−1) and lower
affinity (19 μM for BCV and 21 μM for TCV) (Figures 4, S6
and S7, and Table S2 in the Supporting Information). ITC was
repeated with a PfeA double mutant (R480A-Q482A) and

showed no binding for Fe3+−TCV and considerably weaker
binding for Fe3+−BCV. These observations support the
structural biology data that both catecholates bind to the
first binding site of PfeA, which governs siderophore
recognition but does so with a significant reduction in affinity
compared to that of the native ligand.
Signaling through the Outer Membrane Promoted

by BCVs and TCVs. Molecular dynamics (MD) simulations
previously reported38 suggest that upon binding of Fe3+−ENT
to PfeA, a signal transmits from extracellular loops to the N-
terminal TonB box located in the periplasm.38 This signal was
indicated by means of a Cα correlation, a method that allows
the detection of correlated concerted motions between distant
sites in proteins,52,53 which was performed in the same way as

Figure 4. Comparison of the isothermal calorimetry titration of Fe3+−BCV (a), Fe3+−TCV (b), and Fe3+−ENT(c) (shown for comparison but
underlying data are previously reported38) with PfeA (cyan) and mutants R480A-Q482A (black) shows that Fe3+−BCV and Fe3+−TCV bind to
PfeA specifically. The heats of dilution measured from injection of the ligands into the buffer were subtracted and TCV and BCV titration have
been fitted with a one-site interaction model instead of two binding sites.

Figure 5. Cα-correlation (>0.5) of distant residue pairs in (A) empty PfeA, (B) PfeA R480A-Q482A, (C) PfeA−Fe3+−ENT complex, (D) PfeA−
Fe3+−BCV complex, and (E) PfeA−Fe3+−TCV complex.
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described in the Materials and Methods section of this work.
The concerted motions between the binding site and the TonB
box region were confirmed by a detailed analysis of
crystallographic and simulation data where the chain of events
leading to signal propagation was identified.38 Here, judged by
the Cα correlation in the MD structures, both BCV 4 (Figure
5D) and TCV 5 (Figure 5E) mimic the ENT (Figure 5C)
signal transmission pathway, in that they showed strongly
correlated pairs of residues separated by an average distance of
at least 50 Å connected via red lines (Figure 5C). In the empty
transporter38 and double mutant, there is no such correlation
(Figure 5A,B, respectively).
The correlation between the different structures can be

visualized in full detail plotting the Cα-correlation among all
pairs of residues as a function of their separation (Figure S8A−
E in the Supporting Information). The long-distance signaling
across different systems manifested in the rise of correlation
above 50 Å, a distance comparable to the membrane thickness.
Finally, the data are summarized in the form of a cumulative
histogram (Figure S8F in the Supporting Information), which
allows for the quantification of the effect counting the pairs
with a correlation larger than 0.4 and with a separation larger
than 50 Å. We see a clear difference between systems with
weak signaling (empty and double mutant PfeA) and systems
with strong signaling (ferric ENT, ferric BCV 4, and ferric
TCV 5). Interestingly, the strongest signal is detected in the
PfeA−Fe3+−TCV 5 complex.
Conjugation of Oxazolidinones with BCVs and TCVs.

Since both 4 and 5 were bound by PfeA and appeared to
stimulate TonB signaling, we synthesized BCV− and TCV−
oxazolidinone compounds. Protected BCV 6 and TCV 7 were
reacted with oxazolidinone azides 8 and 954 using a copper(I)-

catalyzed alkyne−azide cycloaddition.55,56 Deprotection of the
catechol functions of the resulting compounds in the presence
of TFA led to the expected conjugates 10 to 13 isolated in,
respectively, 76, 83, 52, and 36% yield over two combined
synthetic steps. In conjugates 10 to 13, vectors and antibiotics
are connected through a 1,2,3-triazole moiety (Scheme 1). The
linkers were selected since the use of these conjugates as
molecular tools requires a stability of the conjugation all along
the uptake and signaling process. We also selected these
structures to investigate the effect of linkers of different sizes
on the recognition of the conjugates and proteins involved in
the uptake and signaling system.
Antibacterial Activity of Oxazolidinone Conjugates.

The oxazolidinone antibiotic family, of which linezolid serves
as an example,57 exerts its effect by binding to the ribosomal
50S subunit. In S. aureus, the conjugates 10 (MIC = 64 μM)
and 11 (MIC = 16 μM) retained some of the antibiotic activity
of linezolid (MIC = 4 μM), showing that (1) the conjugates
were transported into the S. aureus cytoplasm and (2)
oxazolidinone linked to the vector can still bind but with a
lower activity than the oxazolidinone alone presumably due to
the presence of the siderophore. Conjugates 10 to 13 had no
significant antibiotic activity on P. aeruginosa (MIC > 64 μM),
suggesting that these molecules are unable to interact with
their target and/or unable to reach the ribosome in this
pathogen (Table S3 in the Supporting Information).
Interaction of Catechol Vector−Oxazolidinone Con-

jugates with the PfeA Transporter. The X-ray structure
between PfeA and the linezolid conjugates 10, 11, 12, and 13
showed the presence in the transporter first binding site of
BCV and TCV moieties, but no density was observed for the
antibiotic conjugate (Figure S3 in the Supporting Informa-

Scheme 1. Synthesis of TCV−Oxazolidinone Conjugates 10 and 11 and of BCV−Oxazolidinone Conjugates 12 and 13; (i) 6 or
7, CuSO4, Sodium Ascorbate, THF/H2O, 20 °C; (ii) TFA/CH2Cl2 20%, TIPS, EtOH, 20 °C
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tion). The entire conjugate was observed with good electron
density at the crystallographic interface between three
molecules of PfeA in the complex structure with 11 (Figure
S4 in the Supporting Information). This finding, consistent
with analytical data, suggests that the conjugate was not
degraded but rather disordered due to flexibility. Of course, the
molecule bound at the crystal interface is a crystallization
artifact and does not inform about transport. If the antibiotic is
disordered, then the conjugate does not alter the recognition
by PfeA (Figures S1, S2, and S5 in the Supporting
Information). In the TCV conjugates 10 and 11, a water
molecule has been identified between two of the catecholates
making hydrogen bonds with Arg480 and two amides of the
TCV backbone (Figure S5e,f in the Supporting Information).
A close inspection of the TCV complex map suggests that a
water molecule may occupy the same position in the structure
but was not included as this was ambiguous. The titrations of
Fe3+−TCV 5 and Fe3+−BCV 4 into PfeA by ITC show a much
weaker binding compared to that of Fe3+−ENT. The addition
of the linezolid connected by a short linker (TCV-L6 11 and
BCV-L6 13) has little additional effect (38 and 20 μM,
respectively), but a longer linker (TCV-L5 10 and BCV-L5
12) does further reduce binding (100 and 37 μM) (Figure S6
and Table S2 in the Supporting Information). MD simulations
of PfeA in complex with ferric TCV-L6 11 suggest that very
fast after the initial equilibration, TCV-L6 11 moves into the
second binding site (Figure S9 in the Supporting Information).
This suggests that when merged, the first and the second
binding sites could host molecules significantly larger than the
ENT if the initial interaction between PfeA and the molecule
induces a proper signal. By superimposing the poses of TCV-
L6 on PfeA sampled with MD simulations (Figure 6), we see

that the linezolid part fluctuates much more than the TCV
part. Thus, it can be considered disordered, explaining the
difficulties to catch it with X-ray diffraction (XRD).
Presence of the TCV−Oxazolidinone Conjugates in

the Growth Media of P. aeruginosa Efficiently Promotes
the Induction of the Expression of PfeA and PfeE.
Crystallography and ITC indicate that conjugates 10 to 13
bind their cognate outer membrane transporter PfeA.
However, we were unable to carry out radioactive iron
(55Fe) uptake assays with sufficiently strong signal-to-noise

ratio (SNR) to confirm transport. The SNR arises from
precipitation of iron-loaded conjugates. Consequently, we
investigated whether conjugates 12 and 13 activate the same
two-component system PfeS/PfeR as Fe-ENT.45,46 Periplasmic
ferric ENT binds to the PfeS sensor at the inner membrane,
activating the transcriptional regulator PfeR, which upregulates
the expression of the pfeA gene.45,46 Induction of pfeA
transcription in the presence of the conjugates implies that
the compounds have crossed the bacterial outer membrane
since they can interact with PfeS only in the periplasm.
Previous studies have shown that BCV 4 and TCV 5 vectors
induce the transcription and expression of pfeA and pfeE.16 In
the present work pfeA and pfeE transcriptions are stronger with
TCV than with BCV, suggesting that either more TCV is
transported than BCV or that the PfeS binding site has a
preference for the geometry of the Fe3+−TCV complex rather
than that of the Fe3+−BCV complex. RT-qPCR analysis
revealed that TCV conjugates 10 and 11 induced pfeA and
pfeE transcription, indicating transport (Figure 7). Thus, the

payload has not prevented transport into the periplasm or
binding to the sensor. The induction of pfeA and pfeE
transcription by TCV 5 and its conjugates 10 and 11 appeared
stronger than the induction by ENT itself, a fact we attribute to
the non-hydrolyzable TCV 5 scaffold by PfeE.16 Ferric
complexes of TCV 5 and of TCV−oxazolidinone conjugates
10 and 11 accumulate in the bacterial periplasm, leading to a
sustained stimulation of the sensor, but they do not cross the
inner membrane to inhibit the ribosome. In contrast, although
BCV 4 induces the expression of the main proteins of the ENT
pathway, it is weaker than the natural siderophore ENT and
the TCV.39 The BCV−oxazolidinone conjugates 12 and 13
show no induction of pfeA and pfeE and either are not
transported or do not bind to PfeS. Neither ENT, TCV, and
BCV nor their conjugates induced the expression of CirA and
PirA, two TBDTs previously described to be involved in the
uptake of catechol siderophore and related conjugates (Figure
7).40,58

Figure 6. Dynamics of TCV-L6 11 interaction with PfeA as extracted
from MD simulations. The linezolid part of the molecule is shown in
magenta, the TCV part is shown in cyan, and PfeA is given in orange.
The linezolid part fluctuates much more than the TCV part and it can
be considered disordered, explaining the difficulties to catch it with
XRD.

Figure 7. Analysis of changes in the transcription of the TBDT genes.
RT-qPCR was performed on RNA from P. aeruginosa PAO1 cells
grown in CAA medium, with and without supplementation with 10
μM ENT, BCV, TCV, or conjugates 10 to 13. The data are
normalized relative to the reference gene uvrD and are representative
of three independent experiments performed in triplicate (n = 3). pfeA
encodes for the TBDT of ENT, pfeE for the esterase involved in ENT
hydrolyses, and pirA and cirA for TBDT involved in iron acquisition
by catechol siderophores.
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■ CONCLUSIONS
Catechol siderophores are used to access iron by many
bacterial species, even those unable to produce them. This
predominance appears to be related to the extremely high
affinity of catechol siderophores for iron in comparison to
other natural chelators, yielding a selective advantage in the
competition for iron.59 P. aeruginosa does not produce ENT
but can use it as a siderophore by expressing PfeA, a dedicated
outer-membrane transporter and PfeE, a periplasmic esterase
involved in the hydrolysis of the trilactone ring to facilitate iron
release. These two proteins have their expression induced
when P. aeruginosa is grown in the presence of ENT. Several
research groups developed cargo based on the ENT or closely
related molecule (salmochelin) to efficiently deliver antibiotic
and other xenobiotics into Gram-negative bacteria.18,23,32,33

BCV 4 and TCV 5, alternative ENT vectors used in the
present study, are easy to prepare on the gram scale and
chemically stable compared to the trilactone core of the native
siderophore. Moreover, the terminal alkyne of these vectors is
a versatile chemical function to the conjugation of a broad
range of linkers and payloads. We report here the synthesis of
their conjugates 10 to 13 with an oxazolidinone antibiotic.
These conjugates proved to be invaluable molecular tools to
investigate, for the first time, the recognition process by the
specific outer membrane transporter PfeA and the signaling
induced across the transporter to get the uptake of the
compounds through the bacterial outer membrane. The BCV
vector 4 was shown to mimic ENT in the PfeA first binding
site, but the related conjugates failed to activate the two-
component system PfeS/PfeR located in the inner membrane
and involved in the regulation of pfeA transcription. However,
TCV 5 as a vector in Trojan horse strategies against P.
aeruginosa showed more promise; both the ferric−vector and
the ferric−oxazolidinone conjugates bind to PfeA at the same
site as ferric ENT and both result in the activation of the PfeS/
PfeR system, suggesting that they are transported inside the
bacterial periplasm. These are the properties required for a
siderophore-based Trojan horse approach. Since the TCV
derivatives are able to enter the bacterial periplasm, these
conjugates are most suited to deliver antibiotics with
periplasmic targets or whose linker specifically breaks down
in the periplasm (thus allowing further transport into the
cytoplasm).

■ MATERIALS AND METHODS
Chemicals. ENT and linezolid used as references were

purchased from Sigma-Aldrich. BCV 4 and TCV 5 and their
respective protected versions 6 and 7 were prepared according
to previously described protocols.51 Linezolid-azide derivatives
8 and 9 were synthesized according to previously described
protocols.49 Conjugates 10 to 13 were prepared according to
procedures described in the Supporting Information.
Structural Biology. PfeA was produced and crystallized as

previously described.38 Apo crystals have been cross-linked by
diffusion of a 25% glutaraldehyde prior to being soaked for a
few hours in the mother liquor containing 5 mM of either
Fe3+−BCV, Fe3+−BCV−L5, Fe3+−BCV−L6, Fe3+−TCV,
Fe3+−TCV−L5, or Fe3+−TCV−L6. Data were collected at
the beamline IO3, IO4, and IO4-1 at Diamond Light Source.
Data were processed with XIA2.60−64 Structures of the
complexes and mutant proteins have been solved using the
apo structure.38 Models were adjusted with COOT,65 and

refinement was carried out using REFMAC in the CCP4
program suite with TLS (Translation/Libration/Screw)
parameters.66 Prosmart has been used for refinement.
Coordinates and topologies of ligands were generated using
PRODRG.67 Atomic coordinates and structure factors have
been deposited in the Protein Data Bank (5N3C, 6Z33,
7OBW, 6YY5, 6Z2N, and 6Y47). The quality of the structure
was checked with MOLPROBITY.68 Figures were drawn using
PYMOL.69

Isothermal Titration Calorimetry. Affinities of PfeA
wild-type and mutants for the Fe3+−siderophore were
measured by ITC using an ITC200 instrument (Microcal) at
25 °C. Titrations were performed using 19 × 2 μL injections of
∼450 μM Fe3+−siderophore into ∼45 μM protein. The heats
of dilution measured from the injection of the ligands into the
buffer were subtracted, and titration curves were fitted with a
one-site binding model using Origin software with and without
the N fixed at 1 and cell adjusted to ∼ 30 μM. Determination
of thermodynamic parameters is not fully accurate because of
the errors in the Fe3+ complex, active PfeA concentrations, and
non-sigmoidal profile. Fe3+−ENT into PfeA titration has been
fitted previously with a cooperative two binding site model
using AFFINImeter.
Computational Methods. MD simulations were set up

such that the PfeA protein was inserted in a phospholipid
membrane and fully solvated using the CHARRM-GUI web
server.70 In particular, the lipid bilayer consists of 233 POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) molecules
with xy planar dimensions of 100 Å × 100 Å. The whole
system was then immersed in an explicit water solution adding
KCl ions to match a concentration of 0.15 M. MD trajectories
were produced by using the ACEMD software,71 whereas
AMBER14 and the LIPID14 were chosen as the force
fields,72,73 respectively, for the protein and the lipids. For the
explicit solvent, we have used the TIP3P model.74 Fe3+−ENT
complex parameterization was performed using the Metal
Center Parameter Builder.75 After the initial heating, the
system was equilibrated in the NPT ensemble by gradually
releasing the constraints that had been initially applied to the
protein Cα/Cβ atoms and phosphorus atoms of the lipid head
groups. After several stages of equilibration, we performed 300
ns long MD simulations under the NVT ensemble, using as
fixed volume the average volume of the last equilibration stage.
Pressure and temperature were kept at 1 atm and 310 K using
the isotropic Berendsen barostat and the Langevin thermostat,
respectively. Electrostatic interactions were computed using
the particle mesh Ewald approach, with a cut-off of 9.0 Å for
the short-range evaluation in direct space and with frequency
set to 2. Non-bonded interactions were addressed with a
switch function where the switch-distance was set to 7.5 Å and
cut-off at 9.0 Å. In order to accelerate the simulations, mass of
hydrogen atoms were scaled to 4 AMU, which allowed an
integrating time step of 4 fs. The Cα correlation was computed
by using the bio3d package within R.76 and a statistical
mechanical approach invariant to relative atomic motions
known as linear mutual information (LMI),53 ranging from 0
(no correlation or random movements) to 1 (complete
correlation or concerted movements). The beneficial side of
the LMI over the conventional methods for detecting
correlation in protein motions is its invariance to a relative
orientation of atomic fluctuations. Due to this property, the
LMI captures a more detailed picture of how protein motions
are coupled. Moreover, the LMI omits undesired non-linear
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correlations and makes a perfect candidate for considering the
protein dynamics. The convergence of the LMI was tested by
performing a block analysis where the total trajectory was
divided into 50 ns windows, and an LMI matrix was calculated
for each window. All figures and plots were produced using the
VMD77 and R78 software.
Quantitative Real-Time PCR Assays. The quantitative

real-time PCR assay was carried out as described previously.39

The bacteria were first grown in LB medium overnight at 30
°C and then washed and resuspended in casamino acid
medium (CAA), which is an iron-restricted medium, having
the following composition: 5 g L−1 low-iron CAA (Difco), 1.46
g L−1 K2HPO4·3H2O, and 0.25 g L−1 MgSO4·7H2O and grown
overnight at 30 °C. Afterward, the bacteria were diluted to an
optical density at 600 nm of 0.1 units and grown for 8 h in
fresh CAA medium at 30 °C in the absence or presence of 10
μM ENT, vectors, or conjugates. An aliquot of 2.5 × 108 cells
from this culture was added to two volumes of RNA protect
Bacteria Reagent (Qiagen), and the same protocol was used for
RNA extraction as previously described.59 1 μg of total RNA
was then reverse-transcribed with the High-Capacity RNA-to-
cDNA Kit, in accordance with the manufacturer’s instructions
(Applied Biosystems). The amounts of specific complementary
DNAs were assessed using a StepOne Plus instrument
(Applied Biosystems) with Power Sybr Green PCR Master
Mix (Applied Biosystems) and the appropriate primers (see
Table S4 in the Supporting Information). Primer efficiencies
were determined using serially diluted genomic DNA, and the
double ΔCT method was used to analyze qPCR data.
Evaluation of the Antibiotic Activities. Evaluation of

the antibiotic activities of the different compounds was carried
out in Mueller−Hinton II Broth (MHB) using the two-fold
serial dilution method with an inoculum of 105 bacteria per
milliliter. The strains used in this assay are P. aeruginosa PAO1
and S. aureus HG001. Data are reported as minimum
inhibitory concentration (MIC), which corresponds to the
lowest concentration of antibiotic that inhibits the visible cell
growth after an 18 h culture at 37 °C.
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