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Abstract

In practice, pattern recognition applications often suffer from imbalanced data distributions between classes, which may vary
during operations w.r.t. the design data. For instance, in many video surveillance applications, e.g., face re-identification, the face
individuals must be recognized over a distributed network of video cameras. An important challenge in such applications is class
imbalance since the number of faces captured from an individual of interest is greatly outnumbered by those of others. Two-class
classification systems designed using imbalanced data tend to recognize the majority (negative) class better, while the class of
interest (positive class) often has the smaller number of samples. Several data-level techniques have been proposed to alleviate
this issue, where classifier ensembles are designed with balanced data subsets by up-sampling positive samples or under-sampling
negative samples. However, some informative samples may be neglected by random under-sampling and adding synthetic positive
samples through up-sampling adds to training complexity. In this paper, a new ensemble learning algorithm called Progressive
Boosting (PBoost) is proposed that progressively inserts uncorrelated groups of samples into a Boosting procedure to avoid loosing
information while generating a diverse pool of classifiers. In many real-world recognition problems, the samples may be regrouped
using some application-based contextual information. For example, in face re-identification applications, facial regions of a same
person appearing in a camera field of view may be regrouped based on their trajectories found by face tracker. From one iteration
to the next, the PBoost algorithm accumulates these uncorrelated groups of samples into a set that grows gradually in size and
imbalance. Base classifiers are trained on samples selected from this set and validated on the whole set. Consequently, PBoost is
more robust when the operational data may have unknown and variable levels of skew. In addition, the computation complexity
of PBoost is lower than Boosting ensembles in literature that use under-sampling for learning from imbalanced data because not
all of the base classifiers are validated on all negative samples. The new loss factor used in PBoost avoids biasing performance
towards the negative class. Using this loss factor, the weight update of samples and classifier contribution in final predictions are
set according to the ability of classifiers to recognize both classes. The proposed approach was validated and compared using
synthetic data and videos from the Faces In Action, and COX dataset that emulate face re-identification applications. Results show
that PBoost outperforms state of the art techniques in terms of both accuracy and complexity over different levels of imbalance and
overlap between classes.
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1. Introduction

Class imbalance is a fundamental issue in many real-world
pattern recognition applications found in, e.g., automated video
surveillance, fraud detection, intrusion detection in computer
and network security, risk management, and medical diagno-5

sis. Imbalance appears in binary classification problems and bi-
narization of multi-class classification problems using one-vs-
all strategy when samples from one class are compared against
all samples from all other classes (Galar et al., 2011; Wang &
Yao, 2012). In particular, in face re-identification applications,10
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systems for video-to-video face recognition are designed using
faces of individuals captured from video sequences, and seek
to recognize them when they appear in archived or live videos
captured over a network of video cameras. Face tracking sys-
tems follow the position of faces over consecutive video frames15

and define the trajectories by collecting all face captures cor-
respond to a same high quality track of an individual. Class
imbalance is an important challenge in this application because
the number of face captures from an individual of interest (pos-
itive class) may be greatly outnumbered by those of unknown20

or non-target individuals (negative class).

In practice, the level of imbalance observed during opera-
tions is unknown a priori and varies over time. This level of
skew may differ from what is seen in the design data. Classifi-
cation algorithms designed using imbalanced data are often bi-25
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ased towards the majority (negative) class, even though the mi-
nority class is the (positive) class of interest. The main reason is
that learning algorithms are typically designed to optimize the
performance in terms of standard accuracy. Consequently, cor-
rect classification of negative class becomes their priority due30

to the abundance of samples for this class.
Several approaches have been proposed in literature to de-

sign ensembles of classifiers using imbalanced data (see the re-
views (He & Garcia, 2009; Galar et al., 2012; Branco et al.,
2016; Krawczyk, 2016; Haixiang et al., 2016)). In this pa-35

per, these approaches are divided into data-level and algorithm-
level approaches. Data-level approaches either up-sample the
positive class, under-sample the negative class or combine up-
sampling and under-sampling to re-balance data for learning
an ensemble of classifiers. Algorithm-level methods create40

or modify learning algorithms to counter the bias towards the
negative class through cost-free techniques or by introducing
uneven misclassification costs for the samples from different
classes in cost-sensitive approaches.

Ensemble generation techniques can also be categorized into45

static and dynamic approaches. Static ensembles are designed
a priori and face no change during operations. The ensembles
selection or fusion may be set off-line using validation data,
but typically assume a fixed level of imbalance during oper-
ations. Dynamic ensembles allow to adapt the selection and50

fusion of base classifiers during operations based on the opera-
tional data (Xiao et al., 2012; Galar et al., 2013a).

Most of the ensemble learning methods to handle imbal-
ance in literature are static approaches. Boosting (Freund &
Schapire, 1995; Freund et al., 1996) is a common static ensem-55

ble method that has been modified in several ways to learn from
imbalanced data (see the reviews by (Galar et al., 2012; Branco
et al., 2016; Krawczyk, 2016; Haixiang et al., 2016)). In data-
level Boosting approaches, training data is rebalanced by up-
sampling positive class, under-sampling negative class, or using60

both up-sampling and under-sampling (Chawla et al., 2003; Hu
et al., 2009; Mease et al., 2007; Guo & Viktor, 2004; Seiffert
et al., 2010; Galar et al., 2013b; Dı́ez-Pastor et al., 2015). Up-
sampling methods like SMOTEBoost (Chawla et al., 2003) are
often more accurate, but they are computationally complex. In65

contrast, random under-sampling (RUS) (Seiffert et al., 2010)
is more computationally efficient, but suffers from information
loss. Partitional approaches (Soleymani et al., 2016a; Yan et al.,
2003; Li et al., 2013) avoid information loss by splitting the
negative class to uncorrelated subsets and training classifiers70

using all of these subsets.
Another issue with Boosting-based ensembles is that they

may suffer from the bias of performance towards negative class
because the loss factor, which guides their learning process, is
obtained based on weighted accuracy. In cases of imbalance,75

weighted accuracy reflects the ability for correct classification
of negative samples more than positive ones. This issue can
be avoided by adopting a cost-sensitive approach (Fan et al.,
1999; Ting, 2000; Sun et al., 2007), that defines different mis-
classification costs for different classes and integrates these cost80

factors into Boosting learning process. The drawback of these
cost-sensitive techniques is that they rely on the suitable se-

lection of cost factors which is often estimated by searching
a range of possible values. In contrast, cost-free techniques
modify learning algorithms by enhancing loss factor calcula-85

tion without considering cost factors (Joshi et al., 2001; Kim
et al., 2015; Soleymani et al., 2016b).

In literature, imbalance is addressed for face re-identification
through dynamic and static approaches. The dynamic ap-
proaches base the selection and fusion of the classifiers on90

the estimated level of skew (Radtke et al., 2014; De-la Torre
et al., 2015) to build robust ensembles of classifiers. In (Radtke
et al., 2014; De-la Torre et al., 2015) authors design base clas-
sifiers for a range of different levels of imbalance for face re-
identification in video surveillance application. Then, they esti-95

mate the skew level of input data stream and select a suitable
fusion function based on that level. The level of imbalance
may be difficult to estimate accurately during operations and
the diverging selection and fusion function can decrease per-
formance. In contrast, in a static approach (Soleymani et al.,100

2016a), the range of possible imbalance levels is accounted for
during design by training base classifiers on data subsets with
different imbalance levels.

In this paper we address the two above mentioned issues of
Boosting-based ensembles in imbalanced problems, and in par-105

ticular in face re-identification applications: the computational
complexity of up-sampling methods, the loss of information of
under-sampling ones; and the bias of the standard loss factor
towards the negative class. To this aim we propose the Pro-
gressive Boosting (PBoost) algorithm to design static classifier110

ensembles that can maintain a high level of performance over
a range of possible levels of imbalance and complexity in the
data encountered during operations.

PBoost uses a partitioning method inspired by face re-
identification applications, Trajectory Under-Sampling (TUS),115

that we proposed in our previous work [10]. TUS uses par-
titions of the negative class based on tracking information to
design ensembles of classifiers. In particular, samples from
the negative class are regrouped into disjoint partitions and,
over iterations, these partitions are gradually accumulated into120

a temporary design subset. However, samples from the newly
added partition and the important samples from previous itera-
tions have an equally higher probability of being selected. The
base classifier is then validated on the whole temporary sub-
set. As with traditional Boosting ensembles, the samples that125

are misclassified are considered as the most important samples
and their weights increase. With the sample selection scheme
proposed in this paper, loss of information is considerably re-
duced, correlation among subsets of negative class is low, and
only important samples tend to appear in more than one train-130

ing subset. Therefore, the diversity and accuracy of Boosting
ensembles tend to increase. In addition, to avoid biasing the
performance towards the negative class, the proposed PBoost-
ing algorithm employs a loss factor based on the Fb-measure,
previously proposed by the authors (Soleymani et al., 2016b),135

that is applicable in any Boosting ensemble.
The diverse pool of classifiers generated with PBoost allows

to globally model a range of different levels of imbalance and
decision bound complexities for the data. Therefore, the static
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ensembles produced using PBoost are robust to possible vari-140

ations in data processed during operations because base clas-
sifiers are validated on a growing number of negative samples
(imbalance level). In addition, the number of samples used per
iteration to design (train and validate) a classifier in this ensem-
ble is smaller than Boosting methods in the literature, which145

translates to a lower computational complexity for design.
The contributions of the proposed PBoost algorithm for face

re-identification is summarized as follows:

• A new sample selection process for designing Boosting
ensembles where negative class samples inter the Boosting150

process in uncorrolated partitions to avoid loss of informa-
tion. Specifically for face re-identification application, the
disjoint partitions are selected using tracking information.

• Modifying the validation step in Boosting learning such
that base classifiers are validated on growing number of155

negative samples to increase robustness to imbalance and
decrease computation complexity;

• Exploiting a specific loss factor (F-measure) in Boosting
algorithm to avoid bias of performance towards the major-
ity class.160

The PBoost algorithm has been compared to state of the art
Boosting ensembles on synthetic and video datasets, that emu-
late face re-identification application, in terms of both accuracy
and computational complexity.

The rest of the paper is structured as follows. Section 2 con-165

tains a review of literature on ensemble learning for class im-
balance in general and in face re-identification application. In
Section 3, the proposed PBoost algorithm is described. The ex-
perimental methodology and results are presented in Sections 4
and 5, respectively.170

2. Boosting Ensemble Learning for Class Imbalance

Learning from imbalanced data has been addressed in lit-
erature through data-level, algorithm-level, and cost-sensitive
techniques. Ensemble learning methods exploit one or a com-
bination of aforementioned techniques (Galar et al., 2012) to175

handle imbalance. Classifier ensembles can provide higher
accuracy and robustness than a single classifier system by
combining diverse classifiers (Rokach, 2010). Boosting is
a common static ensemble learning algorithm initiated with
AdaBoost (Freund & Schapire, 1995) and improved in Ad-180

aBoost.M1 (for 2-class problems) and AdaBoost.M2 (for
multiple-class problems) (Freund et al., 1996) to effectively
promote a weak learner that performs slightly better than ran-
dom guessing into a stronger ensemble. In AdaBoost.M1
(Algo.1) samples are assigned weights that indicate their im-185

portance. These weights guide the learning process such that
base classifiers in the ensemble focus on correct classification
of more important samples as the learning iterations proceed.
Samples that are misclassified in each iteration gain more im-
portance for the next iteration and more accurate base classi-190

fiers gain higher contribution in final decision. These weights

Algorithm 1: AdaBoost.M1 ensemble learning method.
Input: Training set: S = {(xi,yi); i = 1, ...,M},yi 2 {�1,1}

# of iterations: E
Test input : X

Output: Prediction Function: H(·)
1 Initialize W1(i) = 1

M for i = 1, ...,M.
2 for e = 1, ..,E do

i Create new training set S
0
e with weight distribution W

0
e.

ii Train classifier Ce on S
0
e with W

0
e.

iii Test Ce on S and get back a label set {Yi, i = 1, ...,M}.

iv Calculate the pseudo-loss for S and We:
ee = Â

(i,Yi):yi 6=Yi

We(i) .

v If ee > 0.5 go to step i

vi Calculate the weight update parameter: ae =
ee

1�ee

vii Update We+1(i) = We(i)a
|yi�Yi|/2
e

viii Normalize We+1 such that: ÂWe+1 = 1.

3 Output the final hypothesis: H(·) = ÂE
e=1 he(·) log 1

ae

are used directly or for re-sampling training data, depending on
the type of the base classifier being used. When the base clas-
sifier is from a type that is not designed to incorporate sample
weights in its learning process (like SVMs), training data is re-195

sampled according to the weights of the samples. This case is
considered here to explain the Boosting procedure.

Let’s consider a two-class problem with M labelled training
samples S = {(xi,yi); i = 1, ...,M} where yi 2 {�1,1} that con-
tains M+ positive samples and M� negative samples. All sam-
ples in the dataset are initially associated with the same weight
W1(i) = 1/M, i = 1, ...,M. Then, a new training subset is re-
sampled into S

0 with W
0 to trained classifier Ce. This classifier

is tested on all training samples (S) and a loss factor (ee) is cal-
culated as the sum of the weights of misclassified samples:

ee = Â
(i,Yi):yi 6=Yi

We(i) (1)

where Yi is the label associated with xi by Ce. If the classifier is
too weak (ee > 0.5), the classifier is discarded and training set
is re-sampled to train another classifier. The loss factor is then
used to define a weight update factor:

ae =
ee

1� ee
. (2)

The weights of the samples are then updated as:

We+1(i) = We(i)a
1
2 |yi�Yi|
e , (3)

Weight vector is normalized such that the weights of the mis-
classified samples (more important samples) increase exponen-
tially while the weights of the correctly classified samples de-
crease. ae is also used to determine the contribution of the
classifier in final predictions (Equation 4) so that more accurate
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classifiers play more important role in identifying the class of
the input sample. This process is repeated for a predefined num-
ber of times to design E classifiers. Considering he(x) as the
output of Ce (either a classification score or a label) for an input
sample x, final prediction of the ensemble is obtained from:

H(x) =
E

Â
e=1

he(x) log
1

ae
(4)

Analogous to most learning algorithms, AdaBoost is not ef-
fective to learn from imbalanced data for two reasons. Negative
samples are the majority and when training data is re-sampled200

in line 2.i of AdaBoost (see Algo. 1), they contribute more in S
0.

Therefore, Ce is trained biased to correct classification of this
class. After that, when Ce is tested on S, loss factor in line 2.iv
is calculated as a weighted error rate of classification. Again,
negative samples contribute more in loss factor calculation and205

the weight update formula and classifiers contribution in final
prediction become biased such that weight of negative samples
increases for the next iteration and classifiers that mostly clas-
sify negative samples correctly get higher importance in final
prediction of the ensemble. A taxonomy of methods in litera-210

ture that modify AdaBoost to handle imbalance is presented in
Figure 1. Based on the issue these approaches address, they are
divided to two categories, data-level and algorithm-level meth-
ods that are presented in subsections 2.1 and 2.2, respectively.

2.1. Data-Level Methods:215

Class imbalance can be handled in Boosting ensembles
through up-sampling the positive class, under-sampling the
negative class or combination of them. A popular up-sampling
Boosting approach is SMOTEBoost (Chawla et al., 2003)
that integrates Synthetic Minority Over-sampling Technique220

(SMOTE) into AdaBoost.M2. SMOTE creates synthetic sam-
ples by interpolating each positive sample with its k-nearest
neighbours. MSMOTEBoost (Hu et al., 2009) use modified
SMOTE (MSMOTE) by eliminating noisy samples and over-
sampling only safe samples. Jous-Boost (Mease et al., 2007)225

oversample the positive class by duplicating it, instead of cre-
ating new samples, and introduce perturbation (jittering) to this
data in order to avoid overfitting. DataBoost-IM (Guo & Vik-
tor, 2004) oversample difficult samples from both classes and
integrates it into AdaBoost.M1 .230

Up-sampling techniques address the bias of performance in
classifiers through balancing class distribution without loss of
information. However, up-sampling, in general, increase the
number of samples and consequently increase the complexity
of learning algorithms, and SMOTE involves additional com-235

putations due to interpolating each sample with its k-nearest
neighbours to generate synthetic samples.

In under-sampling Boosting category, RUSBoost (Seiffert
et al., 2010) integrates random under-sampling (RUS) into Ad-
aBoost.M1. RUSBoost is similar to AdaBoost presented in240

Algo. 1 where in line 2.i of this algorithm, S
0 contains all pos-

itive samples and a randomly selected subset of negative class,
often with a size equal to the positive class. The subsets of
negative class selected randomly over iterations of RUSBoost

could be highly correlated and the classifiers trained on them245

can lack in diversity, especially when the skew level of training
data is high. The sample selection paradigm in RUSBoost is
managed in EUSBoost (Galar et al., 2013b) to create less corre-
lated subsets using evolutionary prototype selection (Garcı́a &
Herrera, 2009).250

Some researchers combine SMOTE and RUS in AdaBoost
to achieve greater diversity and avoid loss of information as
in Random Balance Boosting (RB-Boost) (Dı́ez-Pastor et al.,
2015). RB-Boost combines SMOTE and RUS to create training
subsets with random and different skew levels in AdaBoost.M1.255

Repetition of sampling in Boosting ensembles increase the
chance of low correlation between subsets of data that are used
for designing base classifiers and therefore maintain diversity
among them. However, some potentially informative samples
may be overlooked from these subsets in under-sampling pro-260

cess. In partitional approaches (Soleymani et al., 2016a; Yan
et al., 2003; Li et al., 2013) bootstraps are selected without re-
placement either randomly (Yan et al., 2003), by clustering (Li
et al., 2013) or based on a prior knowledge from the application
(like trajectories in video surveillance applications such as face265

re-identification (Soleymani et al., 2016a)). In these ensemble
bootstraps are drawn from a set of negative samples that re-
duces size in each iteration. In other words, after selection of
a bootstrap in each iteration, its samples are eliminated from
the main set. In random partitioning of negative samples by270

Yan et al. (Yan et al., 2003) the negative data is randomly de-
composed into a number of subsets and each subset, combined
with the positive samples, is used to train a classifier. Li et
al. (Li et al., 2013) partition negative data by clustering it using
k-means in the feature space and then create an ensemble from275

the classifiers trained on each negative cluster and the positive
samples. The contribution of the classifiers in the ensemble are
then weighted based on the distance between the correspond-
ing negative cluster and positive class. In (Soleymani et al.,
2016a), partitioning negative class is done by selecting samples280

from a set of trajectories that are formed based on the tracking
information, as found in several video surveillance applications
like face re-identification. In this approach, data from the tra-
jectories are accumulated as the training iteration proceeds and
therefore, base classifiers in the ensemble are trained on dif-285

ferent imbalance levels to increase robustness of the ensemble
to the possible variations in the skew level and complexity of
operational data.

In contrast to RUSBoost, these partitional approaches use all
negative samples from partitions to design ensembles and avoid290

loss of information. However, not all samples are informative
and using all samples for training may result in unnecessary
time and memory complexity. Therefore, enhancing partitional
methods with more intelligent sample selection and ensemble
learning algorithm (like RUSBoost) can avoid information loss295

and excessive time complexity at the same time.

2.2. Algorithm-Level Methods:
Using the standard loss factor based on misclassification rate

in Boosting ensemble learning algorithms biases their perfor-
mance towards negative class. In literature this issue is avoided300
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Figure 1: A taxonomy of Boosting ensembles learning methods specialized for imbalanced data.

at the algorithm level using two types of techniques; those that
employ two different misclassification cost factors, one for pos-
itive and another for negative classes and those that handle this
issue without the use of cost factors. Cost-sensitive Boost-
ing methods including AdaCost (Fan et al., 1999), CSB (Ting,305

2000) and AdaC (Sun et al., 2007), embed different misclassi-
fication cost factors into loss function or weight update formula
of AdaBoost.M2.

Given µi as the cost factor of sample xi, in AdaCost (Fan
et al., 1999), two cost adjustment functions are defined for each
sample as f+ =�0.5µi +0.5 and f� = 0.5µi +0.5 and weight
update formula is changed to:

We+1(i) =

(
We(i)exp{�aef+|yi�Yi|/2} for Yi = 1
We(i)exp{�aef�|yi�Yi|/2} for Yi =�1

(5)

CSB (Ting, 2000) introduce two different cost factors for
positive and negative classes as µ+ = 1 and µ� � 1, respec-
tively.

We+1(i) =

(
We(i)µ+ exp{�ae|yi�Yi|/2} for Yi = 1
We(i)µ�exp(�ae|yi�Yi|/2} for Yi =�1

(6)

In AdaC1, 2, 3 (Sun et al., 2007) cost factors are embedded
into the weight update formula in three different ways. Given
µi 2 [0,+•), in AdaC1:

ae =
1
2

ln
1+ Â

i,yi=Yi

µiWe(i)� Â
i,yi 6=Yi

µiWe(i)

1� Â
i,yi=Yi

µiWe(i)+ Â
i,yi 6=Yi

µiWe(i)
, (7)

We+1(i) = We(i)exp{�aeµiYiyi) (8)

In AdaC2:

ae =
1
2

ln
Â

i,yi=Yi

µiWe(i)

Â
i,yi 6=Yi

µiWe(i)
, (9)

We+1(i) = µiWe(i)exp{�aeYiyi} (10)

In AdaC3:

ae =
1
2

ln
Âi µiWe(i)+ Â

i,yi=Yi

µ2
i We(i)� Â

i,yi 6=Yi

µ2
i We(i)

Âi µiWe(i)� Â
i,yi=Yi

µ2
i We(i)+ Â

i,yi 6=Yi

µ2
i We(i)

, (11)

We+1(i) = µiWe(i)exp{�aeµiYiyi} (12)

In these cost-sensitive approaches by setting µ+ greater than
µ� the weights of misclassified samples from positive class in-310

crease more than that of the misclassified samples from nega-
tive class. In addition, the weights of the classifiers that cor-
rectly classify positive class better than the negative class is
higher in final decision. Therefore, these cost-sensitive ap-
proaches can make up for the usage of standard error rate in315

Boosting ensembles and allow adapting the performance by
selecting proper cost factors based on the application. The
drawback of these cost-sensitive approaches is that they require
known µis that are usually set ad-hoc or by conducting a search
in the space of possible costs for a dataset.320

Some cost-free approaches have been proposed to deal with
the bias of performance caused by using standard error in
Boosting ensembles. In RareBoost (Joshi et al., 2001), two dif-
ferent as are defined for positive and negative classes as:

a+
e =

1
2

ln(
T Pe

FPe
),a�e =

1
2

ln(
T Ne

FNe
) (13)

where T Pe and T Ne are the true positive and true negative
counts, respectively. Then the weight update formula and fi-
nal classification prediction are modified as:

We+1(i) =

(
We(i)exp{�a+

e |yi�Yi|/2} for Yi = 1
We(i)exp{�a�e |yi�Yi|/2} for Yi =�1

(14)

H(x) = sign( Â
e:he(x)�0

a+
e he(x)+ Â

e:he(x)<0
a�e he(x))) (15)

Kim et al. (Kim et al., 2015) also define two different aes for
positive and negative classes as:

a+
e =

1� l+

l+
, l+ =

Â
i;yi=+1

We(i)|yi�Yi|/2

Â
i;yi=+1

We(i)
(16)
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a�e =
1� l�

l�
, l� =

Â
i;yi=�1

We(i)|yi�Yi|/2

Â
i;yi=�1

We(i)
(17)

where l+ and l� are pseudo errors of classifier in classifying
each class. Finally:

ae = ln(
q

µia+
e a�e ) , (18)

µi is a multiplier to control the weight of each sample.
Another cost-free approach (Soleymani et al., 2016b) modi-

fies the loss factor calculation of Boosting algorithm using F-
measure, the most frequently used measures for performance
evaluation in class imbalance learning. To calculate this loss
factor, the weight vector We is split to two weight matrices for
positive W

+
e and negative W

�
e classes. Then, weighted versions

of true positive, false positive, true negative and false negative
counts are defined as:

TPe = Â
i:Yi=1

W
+
e (i), i = 1, ...,M+ (19)

FPe = Â
i:Yi=1

W
�
e (i), i = 1, ...,M� (20)

TNe = Â
i:Yi=�1

W
�
e (i), i = 1, ...,M� (21)

FNe = Â
i:Yi=�1

W
+
e (i), i = 1, ...,M+ (22)

Based on these values, the accuracy of a classifier is computed
in terms of Fb-measure as:

AF =
(1+b2)TPe

(1+b2)TPe +FPe +b2FNe
, (23)

To measure the error of the classifiers, the corresponding loss
factor is defined as:

Le = 1�AF =
FPe +b2FNe

(1+b2)TPe +FPe +b2FNe
. (24)

The condition ee > 0.5 in line (v) of AdaBoost.M1 (Algo. 1)
means that classifiers in a Boosting ensemble should perform
better than random guessing. When Fb-measure is used as the
evaluation metric, the base classifier to beat is the one that pre-325

dicts everything as positive (Flach & Kull, 2015). Therefore,
when the loss factor is calculated using Eq. (24), the accu-
racy criterion of 0.5 in AdaBoost.M1 should be replaced by
lb = M�

(1+b2)M++M� .

Cost-free methods enhance the performance of Boosting en-330

sembles without setting any cost factors and guide the learning
process using a more suitable loss factor calculation since the
use of weighted standard accuracy, as in original Boosting algo-
rithm, biases the learning process towards correct classification
of the negative class. The problem with the loss factor proposed335

by Kim et al. (Kim et al., 2015) is that, if there are no misclassi-
fied samples in one class or in both classes, ae is undefined. Be-
sides, Fb-measure is more sensitive to imbalance than G-mean

and at the same time allows us to give more importance to one
class than the other. Therefore, this metric is used in loss factor340

calculation of the proposed PBoost algorithm.

2.3. Class Imbalance in Face Re-Identification

Face re-identification is a video surveillance application
where video-to-video face recognition systems are designed to
recognize faces of the individuals in archived or live videos at345

different time instants and/or locations over a network of dis-
tributed cameras. In this application, a face tracker defines fa-
cial trajectories for the moving faces captured over consecutive
frames. An efficient tracking system does not mix the tracking
information from several individuals between frames and there-350

fore each trajectory corresponds to one individual. A trajectory
is defined as a set of facial ROIs that correspond to a same high
quality track of an individual across consecutive frames.

A common classification architecture in face re-identification
is modular classification systems consisting of a single classifier355

or an ensemble of classifiers designed per target individual of
interest. Two class classification systems in this application are
designed using face captures from the target individual of inter-
est (positive class) and those of the non-target individuals (neg-
ative class). This application is challenging due to variations in360

capture conditions such as pose, illumination, expression, etc.
Moreover, an important challenge in this application is that the
number of faces captured from the target individual is typically
limited and greatly outnumbered by those of non-target ones.
In addition, the level of imbalance during operations may differ365

from that of the design data.
There are some specialized approaches in literature to ad-

dress imbalance in face re-identification application. In a dy-
namic approach (Radtke et al., 2014; De-la Torre et al., 2015),
a pool of classifiers is generated using data subsets with differ-370

ent imbalance levels. These classifiers are then combined using
Boolean combination and validated on different imbalance lev-
els. During operations, the level of imbalance is estimated and
the suitable Boolean function and its corresponding set of clas-
sifiers is selected.375

The level of imbalance may be difficult to estimate accurately
during operations and a static approach that accounts for varia-
tions in imbalance level of data may be of more interest. In the
static approach of (Soleymani et al., 2016a), all the face cap-
tures are regrouped into trajectories. The classifiers are trained380

using a positive class trajectory and different numbers of nega-
tive class trajectories to design diverse and accurate classifiers.
Selecting samples using trajectories to design classifier ensem-
bles appears to be more effective than using the general-purpose
sampling techniques (RUS and CUS) to improve accuracy. The385

same sample selection technique is utilized in the proposed
PBoost algorithm for face re-identification application.

3. Progressive Boosting for Learning Ensembles from Im-

balanced Data:

The Progressive Boosting (PBoost) learning method is pro-390

posed to sustain a high level of performance over a range of
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imbalance and complexity levels in the data seen during opera-
tions. This method follows a static approach, and learns ensem-
bles based on a combination of under-sampling and cost-free
adjustment of Boosting ensemble learning.395

With the PBoost algorithm, negative class is partitioned into
disjoint subsets. These partitions are accumulated into a tempo-
rary design set progressively as learning iterations proceed. In
each iteration, a subset of this temporary set is used for training
a classifier such that the most important samples plus samples400

from the new partition are given an equally high opportunity
to be used in training a base classifier. Loss of information
is therefore avoided and ensemble diversity is increased. The
trained classifier is then validated on the temporary set that con-
tains all positive samples and only those negative partitions that405

have already been used in previous training iterations. As the
temporary set grows, its imbalance level increases and there-
fore, the ensemble’s robustness to diverse levels of skew and
decision bound complexities during operations is increased. In
PBoost, the error of the classifier is determined based on its410

ability to correctly classify both positive and negative classes.
This loss factor plays an important role in determining the con-
tribution of classifiers in final prediction, and in selection crite-
ria of samples for designing the next classifiers.

There are several possible ways to partition the negative sam-415

ples into disjoint subsets in literature (Xu & Wunsch, 2005) e.g.,
prototype-based methods like k-means and GMM algorithms,
affinity-based methods like spectral, normalized-cut and sub-
space algorithms to represent the negatives, and thus define par-
titions (number of clusters and association of data to clusters).420

Two general-purpose partitioning techniques have been used in
literature to partition data to learn ensembles from imbalanced
data: Random Under-Sampling without replacement (we call
RUSwR in this paper) (Yan et al., 2003) , and Cluster Under-
Sampling (CUS) (Li et al., 2013). In some applications the data425

is already partitioned, like binarization of multi-class classifica-
tion problems using one-vs-all strategy. In some others, the data
may be grouped based on some contextual or application-based
knowledge of data.

Trajectory Under-Sampling (TUS) is applicable in video430

surveillance applications where Regions Of Interest (ROIs),
which are faces in face re-identification, are regrouped into a set
called a trajectory with a high quality face tracker (Soleymani
et al., 2016a). A high quality tracking system finds the tra-
jectories by efficiently following the location of the ROIs that435

belong to the same individual over consecutive video frames.
This application-based under-sampling method appeared to be
more effective than the general-purposed under-sampling meth-
ods in designing classifier ensembles for face re-identification
in terms of diversity and accuracy of opinions (Soleymani et al.,440

2016a).
The progressive Boosting method is presented in Algo. 2

and Figure 2. Its main steps are explained in the following.
The negative samples are regrouped to E disjoint partitions
Pe, where e = 1, ..,E, one per classifier in the ensemble (line445

1). E and the number of negative samples in each partition
Ne varies and depends on the partitioning method and the data
distribution. In the case of random under-sampling without re-

placement E is preselected and Ne takes a fixed random value
Ne 2 [M+/2,2M+] such that ÂE

e=1 Ne =M�. In the case of CUS450

and TUS, E and Ne depend on the number of samples that are
assigned to each partition by the clustering algorithm and the
tracker, respectively.

Given a training data set S, one partition Pe is selected in each
iteration and added to a temporary set S

tmp
e (line 5.ii) which ini-455

tially contains the positive samples. The same initial weight
wini is assigned to the samples in the new partition creating a
weight vector W

p
e (line 5.i) which is also added to a temporary

weight set W
tmp
e (line 5.ii). In the next step (line 5.iv), Ne sam-

ples from the temporary set S
tmp
e are selected through random460

under-sampling to create a new subset S
0
e with the weight distri-

bution of W
0
e. A classifier Ce is trained on S

0
e (line 5.v). Then it

is tested on the whole temporary set S
tmp
e that has an imbalance

level of le = 1 : Âe
f=1

Nf/M+ (line 5.vi). Therefore, the classi-
fiers in this ensemble are in fact validated on data subsets with465

a growing level of imbalance and complexity.
After that, the loss factor is calculated using the method pro-

posed in (Soleymani et al., 2016b). The temporary weight vec-
tor W

tmp
e is split to two weight matrices for positive W

tmp,+
e and

negative W
tmp,�
e classes. The size of W

tmp,+
e is M+ and the size

of W
tmp,�
e is Âe

f=1 Nf , and:

W
tmp,+
e = {W

tmp
e ( j), j = 1, ...,(M++

e

Â
f=1

Nf )|y j = 1} , (25)

W
tmp,�
e = {W

tmp
e ( j), j = 1, ...,(M++

e

Â
f=1

Nf )|y j =�1} . (26)

Then, weighted versions of true positive, false positive, true
negative and false negative counts are defined as:

TPe = Â
k:Yk=1

W
tmp,+
e (k),k = 1, ...,M+ (27)

FPe = Â
k:Yk=1

W
tmp,�
e (k),k = 1, ...,

e

Â
f=1

Nf (28)

TNe = Â
k:Yk=�1

W
tmp,�
e (k),k = 1, ...,

e

Â
f=1

Nf (29)

FNe = Â
k:Yk=�1

W
tmp,+
e (k),k = 1, ...,M+ (30)

To measure the error of the classifiers, the corresponding loss
factor is defined as:

Le = 1�AF =
FPe +b2FNe

(1+b2)TPe +FPe +b2FNe
. (31)

After calculation of ae (line 5.ix) from:

ae =
Le

1�Le
, (32)

the weights in the temporary set W
tmp
e are updated (line 5.x) as:

W
tmp
e+1( j) = W

tmp
e ( j) a|yj�Yj|/2

e . (33)
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Even though it is desirable to limit the loss of information
during under-sampling of data, some samples (like borderline
samples) are of more interest than others for training classifiers
in the ensemble. In Boosting ensembles, these samples are of-
ten detected as misclassified samples because borderline sam-
ples play more important role in defining the decision bound
and they are more likely to be misclassified. More importance
is given to these samples by assigning higher weights to them,
so that they have a higher chance to be included in training sub-
set(s). In the proposed PBoost ensemble, after normalization of
W

tmp
e , its maximum value among negative samples is selected

as the initial weight for the next iteration (line 5.xii):

wini
e+1 = max

y j=�1
{W

tmp
e ( j)}, j = 1, ...,M++

e

Â
f=1

Nf . (34)

This value corresponds to the weight of more important mis-
classified negative samples. Therefore, in each iteration, new
samples and misclassified samples from previous iterations
have more chance to be included in the training subset. Finally,470

ae is used to obtain the final class prediction of the ensemble
from (4) (line 6).

PBoost is somewhat inspired from RUSBoost, but differs
in three main respects. First, during each iteration, instead
of random under-sampling with replacement, most of training475

negative samples are selected from disjoint partitions. Conse-
quently, repeatedly selection of the same samples over all iter-
ations and information loss is avoided while the diversity in-
creases. Second, instead of validating the classifiers on all sam-
ples, the classifiers are validated only on a subset of training480

set that grows in size and imbalance over iterations. Therefore,
robustness to different levels of data imbalance and complexity
increases, and the computations complexity of validation step
decreases significantly. Third, instead of weighted accuracy, F-
measure, an imbalance-compatible performance metric, avoids485

biasing performance towards negative class.

4. Experimental Methodology

In our experiments, the proposed PBoost ensemble learning
method is assessed and compared with AdaBoost.M1 (Freund
et al., 1996), and one state of the art method from each fam-490

ily of the data-level approaches reviewed in Section 2 includ-
ing SMOTEBoost (Chawla et al., 2003), RUSBoost (Seiffert
et al., 2010), and RB-Boost (Dı́ez-Pastor et al., 2015). The
datasets that are used for the experiments include: (1) A set
of synthetic 2D data sets in which the level of skew and over-495

lap between classes are controllable, (2) the Face In Action
(FIA) video database (Goh et al., 2005) that emulates a pass-
port checking scenario in face re-identification application, and
(3) COX Face dataset the face recognition in video surveillance
applications (Huang et al., 2015).500

4.1. Datasets
4.1.1. Synthetic Dataset

The performance of classification systems may vary on dif-
ferent levels of overlap and skew between classes in both train-

ing and test data. Therefore, in our experiments on synthetic505

data, different synthetic datasets with different overlap and
skew levels are generated and used to compare classification
systems.

The data is generated to emulate both binarization of a multi-
class classification problem when the classification strategy is510

one versus all and binary classification problems where there is
no prior knowledge of optimal partitions. The samples of both
positive and negative classes are generated from a mixture of
Gaussian distributions. The samples from one normal distribu-
tion are considered as positive class and all other samples are515

considered as negative class.
To generate the 2D synthetic data, M+ = 100 positive class

samples are generated with a normal distribution as N(m+,s+),
where m+ = (0,0) and s+ = [ 1 0

0 1 ] indicate its mean and covari-
ance matrix, respectively. Then, T� = 100 points are generated520

randomly from a uniform distribution around m+. These points
(m�, j, j = 1, ...,T�) are generated as the mean of T� Normal
distributions (N(m�, j,s�), j = 1, . . . ,T�) for negative class
where s� = s+. Each normal distribution contains M+ = 100
samples and is considered as an ideal cluster of negative class525

(used for PCUSi and to emulate face captures along trajectories
in TUS). The mean of these clusters (m�, js) keep a margin dis-
tance d from m+. This margin is used to control the level of
overlap between positive and negative classes.

For the experiments, we selected the parameter d as 0.1530

(maximum overlap) and 0.2 (medium overlap). For each over-
lap level, each normal distribution is randomly divided into two
subsets for design and testing. Then the design subsets are di-
vided into 5 folds considering one fold for validation and 4 folds
for training. Five replications are carried out by alternating the535

validation fold in each iteration and by reversing the role of de-
sign and testing subsets for a total of 10 replications.

Two skew levels and two overlap levels of training data have
been considered for the experiments, which have been com-
bined into the three settings shown in Table 1. ltrain = 1 : M�/M+540

is set to 1:50 in two setting and to 1:20 in the other. When
ltrain = 1 : 50, only 50 clusters from the negative class are used
for training. The objective is to compare different classifica-
tion algorithms when they are designed on different levels of
imbalance. Properties of training data generated with these set-545

tings are summarized in Table 1 and examples are presented in
Figure 3.

In a similar way, four imbalance levels (ltest = {1 : 1,1 :
20,1 : 50,1 : 100}) are considered for testing to evaluate the
robustness of the classification algorithms over varying skew550

levels of data during operation. Examples of synthetic test data
corresponding to setting D1 are presented in Figure 4.

4.1.2. Face Re-Identification Dataset
To compare the performance of proposed PBoost algorithm

to state of the art classification systems, two datasets for video-555

based face recognition were considered.
FIA video database (Goh et al., 2005) contains video se-

quences that emulate a passport checking scenario. The video
streams are collected from 221 participants under different cap-
ture conditions such as pose, illumination and expression in560
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Algorithm 2: Progressive Boosting ensemble learning method.
Input: Training set: S = {(xi,yi); i = 1, ...,M},yi 2 {�1,1},M = M�+M+

Output: Predicted score or label: H(·)
1 Partition non-target samples from S into E clusters {Pe;e = 1, ...,E}.
2 Create a temporary training set and weight vector: S

tmp
1  {(xi,yi) 2 S|yi = 1} and W

tmp
1 (k) = 1,k = 1, ...,M+.

3 Initialize wini
1 = 1.

4 Set lb = M�
(1+b2)M++M�

5 for e = 1, ..,E do

i Initialize weight distribution of Pe as W
p
e (k) = wini

e ,k = 1, ...,Ne. // Ne is the size of Pe.

ii S
tmp
e  S

tmp
e

S
Pe , W

tmp
e  W

tmp
e

S
W

p
e

iii Normalize W
tmp
e such that: ÂW

tmp
e = 1.

iv Randomly select Ne non-target samples from S
tmp
e based on W

tmp
e , to create a training subset S

0
e with W

0
e.

v Train Ce on S
0
e with W

0
e.

vi Test Ce on S
tmp
e and get back labels Yj, j = 1, ...,(M++Âe

f=1 Nf ).

vii Calculate the pseudo-loss for S
tmp
e from W

tmp
e (using Equations 25 to 30): W

tmp,+
e = {W

tmp
e ( j), j = 1, ...,(M++Âe

f=1 Nf )|y j = 1},
W

tmp,�
e = {W

tmp
e ( j), j = 1, ...,(M++Âe

f=1 Nf )|y j =�1},
TPe = Â

(k,Yk):Yk=1
W

tmp,+
e (k),k = 1, ...,M+,

FPe = Â
(k,Yk):Yk=1

W
tmp,�
e (k),k = 1, ...,Âe

f=1 Nf ,

TNe = Â
(k,Yk):Yk=�1

W
tmp,�
e (k),k = 1, ...,Âe

f=1 Nf ,

FNe = Â
(k,Yk):Yk=�1

W
tmp,+
e (k),k = 1, ...,M+,

Le = 1�AF = FPe+b2FNe
(1+b2)TPe+FPe+b2FNe

.

viii If Le > lb go to step iv

ix Calculate the weight update parameter: ae =
Le

1�Le

x Update W
tmp
e+1( j) = W

tmp
e ( j)a|yj�Yj|/2

e

xi Normalize W
tmp
e+1 such that: ÂW

tmp
e+1 = 1.

xii Set wini
e+1 = max(Wtmp

e ),y j =�1

6 Output the final hypothesis: H(·) = ÂE
e=1 he(·) log 1

ae
// he(·) is the output of Ce.

Table 1: Settings used for data generation.

D1 D2 D3

ltr 1:50 1:50 1:20
d 0.2 0.1 0.2

both indoor and outdoor environments. Videos were collected
over three sessions where second and third sessions are three
months later than the previous one. The participants are present
before 6 cameras for about 5 seconds, resulting in total of 18
video sequences per person.565

For experiments in this paper using FIA dataset, only the
faces captured with frontal camera in indoor environment is
used for both design and testing. ROIs are converted to gray-
scale and rescaled to 70⇥ 70 pixels using Viola Jones algo-
rithm (Viola & Jones, 2001) from this video. Some examples570

of ROIs from this data set are presented in Figure 5.

The COX Face dataset for face recognition in video surveil-
lance (Huang et al., 2015) contains videos from 1000 partici-
pants captured with 4 cameras under different capture condi-
tions. The faces are tracked and resized such that for each frame575

with a face detected, an image patch centered at the head of the
subject is cropped out with a size of 66⇥66.

For experiments with video data, multi-resolution gray-Scale
and rotation invariant Local Binary Patterns (LBP) (Ojala et al.,
2002) histograms have been extracted as features. The local580

image texture for LBP has been characterized with 8 neighbours
on a 1 radius circle centred on each pixel. Finally, a feature
vector with the length of 59 has been obtained for each ROI.

10 individuals are randomly selected as targets and 91 indi-
viduals are randomly selected as non-targets. In each round of585

experiment, face patterns of one target individual (a trajectory)
is considered as the positive class and 100 individuals (includ-
ing 9 other target individuals and 91 non-target individuals) are
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Figure 2: Block diagram representation of PBoost learning method.

selected as the negative class 1. ROI patterns for each trajec-
tory are divided into 2 sets for design and testing. The design590

set is divided to 5 folds, and for each round one fold is con-
sidered for validation and remaining 4 folds are considered for

1The ROIs of each individual in FIA and COX datasets are already grouped.

training. Then the roles of design and testing sets is reversed.
Therefore, for each target individual, three independent sets are
collected from these face patterns for training, validation and595

testing. Each set contains one group of samples from the tar-
get individual, 9 groups of samples from the remaining target

10
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Figure 3: Examples of synthetic train-
ing data generated under different set-
tings D1, D2 and D3 .
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Figure 4: Examples of synthetic test
data generated with d = 0.2 and dif-
ferent skew levels ltest.

individuals and 90 groups of samples from non-target individ-
uals. Repeating this process for each target individual yields
10⇥10 = 100 overall experiments for this dataset.600

Two imbalance levels (ltrain = 1 : 50 and 100) and four dif-
ferent imbalance levels ltest = {1 : 1,1 : 20,1 : 50,1 : 100} are
considered for selecting the training and testing negative class
for each positive individual, respectively. This is to evaluate the
performance of different classification algorithms when they605

are trained on different imbalance levels, and to evaluate the
robustness of the classification algorithms over varying skew
levels during operations. When ltrain = 1 : 50, for each positive
individual, only T� = 50 of 100 other individuals are used as
the negative class from the training set that was collected for610

that positive individual. Therefore, when ltest = 1 : 100, there
are 50 negative individuals in the testing set that were not in-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ID002

ID003
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ID012
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ID016

Figure 5: Examples of 2D mapping of LBP feature vectors belonging to 8 indi-
viduals using Sammon mapping (Sammon, 1969) on the left, and examples of
70 ⇥ 70 pixels ROIs along a trajectory captures with camera 3, during session
one for ID010 with their frame numbers on the right.

cluded in training the classification systems and the skew level
of test data is higher than the skew level of training data. When
ltest < 1 : 50, most of the negative individuals that were used for615

training do not appear in testing data. When ltrain = ltest = 100,
the maximum imbalance level of testing data is the same as the
imbalance level of training data. Therefore, all individuals are
seen in both training and testing. However, in this case a high
level of imbalance exists in both training and testing stages that620

makes both learning and classification more difficult. It is worth
mentioning that in all settings, the skew level of the validation
data is selected to be the same as testing data.

4.2. Experimental Protocol
For validation, synthetic and video datasets are used to evalu-625

ate the algorithm when the ideal partitions (or clusters) of nega-
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tive class are known a priori. These data sets are also used for a
binary classification problem where no information is available
regarding the ideal clusters of data.

We use SVM with RBF kernel (Chang & Lin, 2011) as the630

base classifier where K(x0,x00) = exp{�kx0�x
00k2/2k2}. The ker-

nel parameter k is set as the average of the mean minimum dis-
tance between any two training samples and the scatter radius
of the training samples in the input space (Li et al., 2008). The
scatter radius is calculated by selecting the maximum distance635

between the training samples and a point corresponding to the
mean of training samples. We used the LibSVM implementa-
tion of (Chang & Lin, 2011).

A brief description of the implemented ensembles, their vari-
ants and the abbreviations used for them are shown in Table 2.640

The last column of the table shows the datasets that are used
for experiments on these classification systems. The abbrevi-
ations assigned to these ensembles are selected based on their
sampling techniques and loss factor.

The baseline sampling techniques include Ada (resampling645

in AdaBoost), SMT (SMOTE in SMOTEBoost), RUS (ran-
dom under-sampling in RUSBoost), RB (random balance in
RB-Boost). For PBoost four partitioning techniques are used
for under-sampling the negative class to evaluate the effect of
the partitioning technique on the performance of PBoost en-650

semble: random under sampling without replacement (PRUS)
and cluster under-sampling (PCUS) are used as general parti-
tioning techniques for PBoost disregarding the data structure,
whether or not the negative class is partitioned a priori. For
PCUS, kernel k-means is used for clustering negative samples.655

To select k, it is varied over a range of possible values and the
value of Dunn index (Dunn, 1973) is calculated for each case
using a validation set. Finally, the optimal k, is selected when
Dunn index takes its maximum value. Two cases are consid-
ered for PBoost in which the partitions of the negative class are660

known a priori. The ideal cluster under-sampling (PCUSi) with
synthetic datasets and trajectory under-sampling (PTUS) with
video dataset.

The loss factor is calculated in two ways based on: the tra-
ditional technique i.e. weighted accuracy, and the F-measure.665

To indicate the use of F-measure in the Boosting ensembles in
Table 2, the abbreviation is followed by -F. For the use of pro-
posed loss factor calculation with the F-measure, b is set as 2 in
all experiments because b � 1 is more suitable for imbalanced
data classification when the positive class is the minority class.670

An experiment is done to evaluate the performance of Boosting
ensembles with different values of b.

In addition to the mentioned Boosting ensembles, the en-
sembles proposed in (Soleymani et al., 2016a) for face re-
identification are also included in the comparison. Rows 7 and675

8 in Table 2 summarize the properties of these ensembles. In
this technique, the negative class samples are regrouped to sub-
sets with growing imbalance levels using CUSi for synthetric
data and TUS for video data. In contrast to Boosting ensem-
bles, this method does not involve the use of any loss factors680

in learning process. However, the contribution of base classi-
fiers in final prediction depends on their performance in terms
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Figure 6: Performance of baseline Boosting ensembles for different values of
E on D2 with ltest = 1 : 100.

of F-measure.
In the experiments with synthetic and video data sets, two

different imbalance levels are used for training and four differ-685

ent imbalance levels are used for testing. This is to evaluate
the sensitivity of classification systems to the level of imbal-
ance during training and their robustness to possible variations
in skew level during operations. In experiments with synthetic
data, the overlap level between positive and negative classes are690

also varied because the issue of imbalance is related to the level
of overlap between classes (López et al., 2013).

In experiments with synthetic and video datasets, the size of
all Boosting ensembles is set equal to the maximum imbalance
level of the data, except from PCUS. The reason for this setting695

is that the number of ideal clusters and the number of trajecto-
ries are both known and equal to the level of skew. In addition,
based on a preliminary experiment under setting D2 (see Ta-
ble 1) on baseline ensembles in Figure 6, it is observed that the
size of these ensembles does not have a significant impact on700

their performance. The performance of these ensembles vary
in terms of F2-measure as the ensemble size grows. However,
their global performance in terms of AUPR do not change sig-
nificantly. For PCUS, the size of ensemble is selected equal to
the optimal k obtained using Dunn index.705

4.3. Performance Evaluation

Global performance evaluation curves such as ROC and
precision-recall, show the trade off between two metrics for dif-
ferent operational settings. For classifiers that output scores or
probability estimates, this setting is usually the choice of deci-710

sion threshold. Area under the curve, shows the global perfor-
mance of the classifier over a range of possible decision thresh-
olds, where local evaluation metric such as F-measure show the
performance for a specific decision threshold. Therefore, when
different classifiers are compared in terms of local metrics, the715

choice of the decision threshold becomes important. The deci-
sion threshold may be set to a fixed optimal value with or with-
out considering the operating conditions: the cost proportions
or skew levels (Hernández-Orallo et al., 2012). The perfor-
mance metrics that can be maximized to set the decision thresh-720

old are accuracy, Brier score, AUC, expected cost, G-mean and
F-measure (Hernández-Orallo et al., 2012; Lipton et al., 2014).
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Table 2: Ensembles and their variants.

Abbreviation Sampling method Boosting Ensemble Loss factor Data

Ada: Resampling with replacement AdaBoost Freund et al. (1996) Weighted accuracy Synthetic, Video
Ada-F: Resampling with replacement Modified AdaBoost Freund et al. (1996) Proposed F-measure Synthetic, Video
SMT: Synthetic minority over-sampling technique (SMOTE) SMOTEBoost Chawla et al. (2003) Weighted accuracy Synthetic, Video
SMT-F Synthetic minority over-sampling technique(SMOTE) Modified SMOTEBoost Chawla et al. (2003) Proposed F-measure Synthetic, Video
RUS: Random under-sampling with replacement (RUS) RUSBoost Seiffert et al. (2010) Weighted accuracy Synthetic, Video,
RUS-F: Random under-sampling with replacement (RUS) Modified RUSBoost Seiffert et al. (2010) Proposed F-measure Synthetic, Video
CUSi: Selecting ideal clusters generated in synthetic dataset Growing imbalance Soleymani et al. (2016a) - Synthetic
TUS: Selecting trajectories in video dataset Growing imbalance Soleymani et al. (2016a) - Video
RB: Combination of up-sampling (SMOTE) and under-sampling (RUS) RB-Boost Dı́ez-Pastor et al. (2015) Weighted accuracy Synthetic, Video
RB-F: Combination of up-sampling (SMOTE) and under-sampling (RUS) Modified RB-Boost Dı́ez-Pastor et al. (2015) Proposed F-measure Synthetic, Video
PRUS: Random under-sampling without replacement (RUSwR) Progressive Boosting Weighted accuracy Synthetic, Video
PRUS-F: Random under-sampling without replacement (RUSwR) Progressive Boosting Proposed F-measure Synthetic, Video
PCUS: Selecting clusters found by k-means Progressive Boosting Weighted accuracy Synthetic, Video
PCUS-F: Selecting clusters found by k-means Progressive Boosting Proposed F-measure Synthetic, Video
PCUSi: Selecting ideal clusters generated in synthetic dataset Progressive Boosting Weighted accuracy Synthetic
PCUSi-F: Selecting ideal clusters generated in synthetic dataset Progressive Boosting Proposed F-measure Synthetic
PTUS: Selecting trajectories in video dataset Progressive Boosting Weighted accuracy Video
PTUS-F: Selecting trajectories in video dataset Progressive Boosting Proposed F-measure Video

To this aim, the classifiers are tested on a set of data called val-
idation datasets that are independent from training and testing
data.725

When data is imbalanced, the same change in the number of
true positives and false positives reflects more significantly in
TPR than FPR. Therefore, precision is preferred to FPR be-
cause it magnifies FPR by the skew level of data for the given
TPR:

Pr =
TPR

TPR+pFPR
, (35)

where p is the proportion of the number of negatives to the pos-
itives. Consequently, AUPR (area under precision-recall curve)
is preferred to AUC (area under ROC curve) when data is im-
balanced. However, positive class is often the class of interest
which makes TPR (or recall) very important. In this case, F-
measure is a more suitable metric to compare the performance
of the classification systems. Fb-measure shows the harmonic
mean of precision and recall(Re) when a higher importance is
given to recall (in other words changes in precision is eased by
b2).

Fb =
1

(1+b2)�1

Pr + (1�(1+b2)�1)
Re

=
(1+b2)Pr ·Re

b2Pr+Re
(36)

Therefore, in the experiments in this paper, AUPR is used
to compare the performance of Boosting ensembles globally
which shows the average value of precision for different values
of recall (or TPR) giving them equal importance. F2-measure
is used for giving a higher importance to recall and G-mean is730

used to evaluates the performance of the classification systems
giving equal weight to the TPR and TNR(= 1�FPR).

The values of performance metrics are averaged over 10
replications obtained by 2 ⇥ 5-fold cross validation. In our
experiments, the decision threshold to obtain the F2-measure735

is set to the value that maximizes the value of F2-measure on
the validation data for comparing the performance of different
classification algorithms.

An example is shown in Figure 7, the PR curve of an experi-

ment under setting D2 on the validation data with skew level of740

1:50. In Figure 8, the ensembles are tested on a different test set
and Fop shows the value of F-measure when the optimal thresh-
old is selected using the validation step described. FD is the
value of F-measure when the combination function in Boosting
ensembles is majority voting and the decisions of base classi-745

fiers are combined. It is observed that Fop and FD may differ
significantly and in most cases Fop > FD.

In our experiments, the performance of the proposed PBoost
ensemble is also compared to state of the art Boosting ensem-
bles in terms of computational complexity. Time complexity for750

SVM training depends on several factors including the number
of training samples, the learning (optimization) algorithm and
the number of features. The computational complexity of SVM
implemented in LibSVM is evaluated in (Chang & Lin, 2011),
as O(ntrd) per iteration I, where ntr is the training set size, and d755

is the number of features. The authors state that “the number of
iterations p may be higher than linear to the number of training
data”. Therefore, the complexity is O(np

tr · d) for some p > 2.
This means that, time complexity for SVM training is not pro-
portional to, but increases more than linearly with respect to the760

training set size.

In the proposed PRUS and baseline Boosting ensembles, p
is unknown and d is identical in all algorithms. Each iteration
of Boosting ensembles includes a validation step that should be
added to training complexity to obtain the overall time com-765

plexity of learning process. Time complexity of the validation
step O(nSV ·nval), depends on the number of validation samples
nval and the number of support vectors nSV obtained from train-
ing each SVM. The reason is that, when an RBF SVM with
nSV support vectors is tested on a probe sample x, the value of770

K(x,SVj) = exp{�kx�SVjk2/2k2} is accumulated for all support
vectors ( j = 1, . . . ,nSV) and the sign of the resulting quantity
determines the decision.

Table 3 shows the number of samples to train and validate the
ensembles of the size E. The number of validation samples in
baseline Boosting ensembles is the same and equal to the over-
all number of training samples. However, the overall number of
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Figure 7: PR curve of baseline Boost-
ing ensembles on validation data and
finding the optimal threshold.
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Figure 8: PR curve of baseline Boost-
ing ensembles on test data using the
optimal threshold obtained from vali-
dation step.

samples used for validation in PTUS is calculated as:

E

Â
e=1

(M++
e

Â
f=1

Nf ) = EM++
E

Â
e=1

(E� (e�1))Ne, (37)

= EM++E2�
E

Â
e=1

eNe +M�, (38)

= EM++M�+E2�
E

Â
e=1

eNe. (39)

This value is less than E(M+ +M�) that is the total number
of validation samples in the sate of the art Boosting ensembles.775

Table 3 shows that the total number of training and validation

samples in PTUS ensemble is the smallest one. The number
of training and validation samples in TUS is also found using
Eq. 39.

5. Results and Discussion780

The performance of the proposed and state of the art ensem-
ble learning methods are analyzed for synthetic and video data
in 4 parts: (1) accuracy and robustness over different levels of
overlap and imbalance between design and test data and of us-
ing the proposed loss factor; (2) the performance of RUSBoost785

with and without progressive partitioning; (3) the combined im-
pact of progressive partitioning and proposed loss factor; (4) the
computation complexity during design and testing.

5.1. Results of Experiments with Synthetic Data

5.1.1. Impact of Loss Factor Based on the F-measure790

The performance of the baseline Boosting ensembles: Ad-
aBoost , SMOTEBoost, RUSBoost, and RB-Boost are com-
pared in Table 4 for different settings. In addition, Fb is used to
optimize loss factor calculation in these ensembles.

Given a fixed skew level of test data, the performance of all795

Boosting ensembles declines in terms of F-measure and AUPR
as the overlap between positive and negative classes grows.
This decline of performance is more significant when test data
is imbalanced compared to the case where test data is balanced.
In our experiments, changes in skew level of test data result800

in different number of misclassified negative samples and no
change in the number of correctly classified positive samples.
Therefore, even for the same level of overlap, the performance
of all ensembles degrades, in terms of F-measure and AUPR
when testing on a more imbalanced data. However, the value805

of G-mean is relatively high and does not change significantly
with variations in imbalance.

For the same level of overlap and different imbalance of
training data (settings D1 and D3) the performance of all Boost-
ing ensembles is lower when imbalance of training data is810

lower. The reason is that less information is provided for train-
ing and also the skew level of training and test data has a greater
difference. Overall, Table 4 shows that SMT and RB are the
most robust to changes in overlap and imbalance. Based on
the Table 4, the following results are obtained. Using the F-815

measure loss factor improves the performance of RUS signif-
icantly with D1, D2 and D3 for all ltest in terms of all three
metrics. Performance of SMT and RB improves only in terms
of AUPR and with D1 and D2. Performance of Ada improves
when ltest = 1 : 100 in terms of G-mean and AUPR.820

Using the F-measure loss factor may improve the perfor-
mance of the Boosting ensembles that rely on under-sampling
of data in terms of F-measure, especially for more difficult
problems with overlapping data. The performance of Boosting
ensembles that involve up-sampling of positive samples does825

not improve significantly in terms of F-measure. However, the
global performance of these Boosting ensembles in terms of
AUPR does improve after using the F-measure loss factor.
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Table 3: Number of training and validation samples.

Ensemble ntr in iteration e Total ntr nval in iteration e Total nval
Ada M++M� E(M++M�) M++M� E(M++M�)
SMT 2M� 2EM� M++M� E(M++M�)
RUS 2M+ 2EM+ M++M� E(M++M�)
TUS M++Âe

f=1 Nf EM++M�+E2�ÂE
e=1 eNe M++Âe

f=1 Nf EM++M�+E2�ÂE
e=1 eNe

RB M++M� E(M++M�) M++M� E(M++M�)
PTUS M++Ne EM++M� M++Âe

f=1 Nf EM++M�+E2�ÂE
e=1 eNe

In Table 5, the performance of baseline ensembles and their
variants for different values of b is compared for D2. The goal830

is to evaluate the effect of the value of b on improving the
performance when the proposed loss factor is used. This Ta-
ble shows the performance only when ltest = 1 : 100 because
the performance of baseline systems usually decline for higher
skew levels of test data.835

Evaluation is done in terms of the same Fb-measure that is
used in loss factor calculation. The results are shown in terms
of both FD and Fop. FD is the value of F-measure when the
decisions of base classifiers are combined in Boosting ensem-
bles and Fop is the value of F-measure when the scores of base840

classifiers are combined in Boosting ensembles and the opti-
mal decision threshold of each ensemble is set to the point that
maximizes F-measure when that ensemble is validated on an
independent set of data (see section 4.2.1.).

The performance of Ada improves for all values of b in terms845

of both FD and Fop. Some improvements are seen for SMT and
RB, but FD and Fop tend to stay the same in most cases and de-
crease in a few cases. The performance of RUS improves for
b = 1 and 2 in terms of both FD and Fop, and the improvement
tends to decrease for higher b values. This was expected, since850

using higher values of b to calculate F-measure means giving
more importance to recall than precision. Therefore, the impact
of imbalance is masked when higher values of b is used and the
performance may not change when the loss factor is calculated
based on F-measure. For each of the classification systems, the855

same reason result in higher values of FD and Fop with higher
values of b. Comparing FD and Fop of each ensemble for each
value of b shows that selecting the proper decision threshold
can improve the performance in terms of accuracy and robust-
ness, especially for lower values of b.860

The results are not shown in terms of AUPR because AUPR
does not change with variations in the value of b, since the im-
portance of recall and precision stays the same and equal in
obtaining AUPR.

5.1.2. Impact of progressive partitioning in RUSBoost865

In this section, progressive partitioning is integrated into
RUS without the use of F-measure in loss factor calculation.
It is observed in Table 7 that robustness of RUS improves sig-
nificantly after using this method of sampling. Indeed, using all
samples for training through partitioning avoids loss of infor-870

mation and may improve the classification accuracy. In addi-
tion, validating on different imbalance levels of data increases

the robustness to variations in the imbalance level of test data.
The performance of PCUSi is significantly better than RUS in
terms of both F-measure and G-mean with D1, D2 and D3 and875

all ltest. In terms of AUPR, integrating PCUSi improves the
performance of RUS with D2, and higher skew levels of test
data with D1 and D2. Integrating PRUS and PCUS also im-
proves the performance of RUS specially in terms of F-measure
and AUPR and with D1 and D3.880

5.1.3. Impact of progressive partitioning and loss factor com-
bined

In this section progressive partitioning and the proposed loss
factor are integrated into RUS algorithm, resulting in PRUS-F,
PCUS-F, and PCUSi-F. In terms of F-measure, PCUSi-F out-885

performs other classification systems for higher skew levels of
test data. PCUSi-F outperforms others in terms of G-mean with
D2. Comparing Tables 4, 6 and 7 shows that combining the use
of F-measure and progressive partitioning is more effective in
increasing performance and robustness compared to using each890

of them independently because during learning process, accu-
racy and robustness to imbalance improve at the same time, not
separately. If the negative class is partitioned a priori (CUSi),
PBoost performs significantly better than the case when general
partitioning techniques (RUS and CUS) are used.895

5.2. Results of Experiments with Video Data
Similarly to the synthetic data sets, the results of experiments

on video datasets are shown in three parts, assessing the impact
of: (1) using the F-measure loss factor on the performance of
baseline Boosting ensembles, (2) integrating progressive parti-900

tioning into RUS, and (3) using the F-measure loss factor and
progressive partitioning compared with the baseline and state
of the art ensembles.

From Table 8, the performance level of all ensembles is lower
when the skew level of training data is higher. This is despite905

the fact that when the imbalance of training data is lower, the
data that is used to test classifiers contain samples from some in-
dividuals that are not in the training data. Using the F-measure
loss factor improves the performance of Ada and RUS in terms
of F-measure, and has less impact on the performance of RB910

and SMT in most cases of skew between classes in training and
testing data. In terms of G-mean, the performance improves
for all ensembles with both datasets, except for RUS with FIA.
The performance of these ensembles after using the F-measure
loss factor does not change significantly in terms of AUPR.In915

15



fact, the use of F-measure loss factor performs similarly to ad-
justing the decision threshold of the Boosting algorithms to bet-
ter account for imbalance and therefore may improve the per-
formance only in terms of local performance metrics like F-
measure.920

After integrating the progressive partitioning in RUS using
PRUS and PTUS, the performance of RUS improves and be-
comes more robust in terms of both F-measure and AUPR (see
Table 9), especially when TUS is used for partitioning. Validat-
ing base classifiers on different imbalance levels of imbalance925

result in more robust classification systems and using all sam-
ples for training through partitioning avoids loss of information
and may improve the classification accuracy.

Comparing the performance of final PBoost variants with
baseline ensembles in Table 10, PTUS-F outperforms all other930

approaches in terms of F-measure. In terms of G-mean RUS
performs the best and in terms of AUPR, SMT has the high-
est mean value. From these results, it is observed that com-
bining the use of F-measure and integration of progressive par-
titioning, is more effective in increasing performance and ro-935

bustness compared to using each of them independently. In
the experiments on the video data, trajectory under-sampling
is more effective when used in PBoost compared to ran-
dom under-sampling without replacement and cluster under-
sampling. This is the case when partitions of negative class940

are known a priori.

5.3. Statistical Comparison of the Classification Systems

The statistical comparison in this paper is carried out once
for each skew level of test data. K = 8 is the number of classi-
fication systems in Tables 7 and 10. N = 8 is the number of in-945

dependent datasets used for statistical comparison that includes
six synthetic datasets and two video datasets. The results of ex-
periments with three of the synthetic datasets D1, D2 and D3
have been presented in section 5.1. Remaining three datasets
used for statistical comparison are D4(ltrain = 1 : 20,d = 0.1),950

D5(ltrain = 1 : 100,d = 0.2), D6(ltrain = 1 : 100,d = 0.1). The
data used for two settings of experiments on video data are de-
pendent because all the samples that are used when ltrain = 1 :
50 are used again when ltrain = 1 : 100. Therefore, only the re-
sults with ltrain = 1 : 100 are used for statistical comparison of955

the classification systems with FIA and COX datasets.
For each skew level of test data (s=1,...,4), Table 11 shows

the mean rank of each classification system (Rs
k = (1/N)Ân rk

n,s
where k = 1, ...,K and n = 1, ...,N). rk

n,s is the rank of kth classi-
fication system for sth skew level with nth dataset such that best960

performing algorithm gets rank of 1 and the worst one gets rank
of 8. In case of ties average ranks are assigned. From Table 11,
it is observed that PTUS-F takes the highest rank in terms of
F-measure and G-mean. To determine if there are any signif-
icant differences between the ranks, we use Friedman test and965

the subsequent version of Iman and Davenport (Iman & Dav-
enport, 1980) which rejects the null hypothesis that all clas-
sification systems perform the same. Then we use Hochberg
test (Hochberg, 1988) to compare the state of the art ensemble
methods (Ada, RUS, SMT, RB and TUS) to PTUS-F. Table 12970

shows the p-values of these comparisons. With alpha of 0.05,
the boldface entries of the table indicate the rejection of null
hypothesis that PTUS-F does not outperform these ensembles.
It is observed that the null hypothesis is rejected in 14 out of
20 comparisons in terms of F-measure, and 6 out of 20 compar-975

isons in terms of G-mean and AUPR.

5.4. Computational Complexity
In this section the time complexity needed to design and test

the proposed and baseline Boosting ensembles are compared.
To compare the training time and memory cost of these ensem-980

bles, the number of training samples is counted and to compare
their validation time and memory cost the number of validation
samples and the number of support vectors of base classifiers
are considered.

Figure 9 show the results obtained with setting D2 in our ex-985

periments. The number of training and validation samples, the
average number of support vectors, and overall number of eval-
uations of the kernel function (nSV · nval) is presented in Fig-
ure 9(a)-(d) to estimate and compare design time of the pro-
posed and baseline Boosting ensembles. To compare the com-990

plexity of these classification systems during testing O(nSV)
with a probe sample x, we compared the overall number of
support vectors in these ensembles in Figure 9(e) because com-
puting each SVM output requires nSV evaluations of the kernel
function.995

Given ne
tr as the number of samples to train the eth classifier

in the ensemble, Figure 9(a) shows ÂE
e=1 ne

tr. In Figure 9(b),
ÂE

e=1 ne
val is presented, where ne

val is the number of samples that
the eth classifier in the ensemble is validated with. Average
number of support vectors in E classifiers of the ensembles are1000

shown in Figure 9(c). Given ne
SV as the number of support vec-

tors obtained after training the eth classifier in the ensemble,
Figure 9(d) shows ÂE

e=1 ne
val ·ne

SV for each ensemble.
In terms of training (see Figure 9(a)), PCUSi and RUS are

under-sampling ensembles and have the lowest computational1005

cost, while SMT and RB-Boost include up-sampling and are
significantly more costly. Total number of validation samples is
equal for Ada, SMT, RUS and RB, and total number of valida-
tion samples is less with PCUSi (see Figure 9(b)). The average
number of support vectors is higher for SMT (see Figure 9(c))1010

because the base classifiers in this ensemble are trained on
higher number of samples. Therefore, SMT is the most costly
method, in terms of validation (see Figure 9(d)). Note that time
and memory required for partitioning in PCUSi, and generat-
ing synthetic samples in SMT and RB-Boost is neglected here.1015

Nevertheless, PCUSi is the most efficient ensemble technique
in terms of designing memory and time complexity.

The number of training and validation samples as well as
the average number of support vectors is smaller with PCUSi
and therefore, PCUSi is less costly in terms of design time and1020

memory complexity.
In terms of testing time complexity (see Figure 9(e)) PCUSi

and RUS have the lowest number of evaluations of the kernel
function per probe sample. RB-Boost and SMT have the high-
est number of evaluations of the kernel function per probe sam-1025

ple.
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Figure 9: Complexity related to the design and testing process of ensembles: (a) total number of training samples, (b) total number of validation samples, (c)
Number of nSV ·nval during validation, (d) total number of nSV ·nval during validation, (e) total number of evaluations of the kernel function per probe sample during
testing.

Although AdaBoost is given the same ensemble size, it fails
to generate enough classifiers 2 and consequently result in
smaller number of support vectors. Therefore, the total num-
ber of validation and testing processes of Ada is lower than ex-1030

pected.

5.5. Summary of Results
As a summary of results on synthetic and video datasets, we

observed that:

1. Using the proposed loss factor calculation may reduce the1035

bias of performance in Boosting ensembles and increase
the accuracy.

2. Partitioning improves the performance of RUS in all cases
in terms of both accuracy and robustness to imbalance.

3. Integrating both partitioning and the proposed loss factor1040

outperforms state of the art Boosting ensembles, relying
on the choice of partitioning technique for each dataset
such that:

(a) With synthetic data, PCUSi-F outperforms all sys-
tems in terms of both F-measure and AUPR, while1045

2AdaBoost failed many times to generate classifiers because the training
subset in step 2.i of Algo. 1 may contain only negative class samples during
sampling or weight update in step 2.vii may lead to that due to unsuitable loss
factor calculation in step 2.ivv. Nevertheless, only successful attempts are con-
sidered.

PRUS and PCUS outperform RUS in most cases of
skew and overlap between classes.

(b) With the video data, PTUS is more accurate than the
state of the art ensembles, PRUS as well as PCUS.

4. PBoost is computationally less costly than the state of the1050

art Boosting ensembles in terms of computational com-
plexity.

Therefore, PBoost is an effective approach in correct classi-
fication of data when data is imbalanced in comparison to
the state of the art Boosting ensembles especially for face re-1055

identification. This method relies on the choice of partition-
ing technique for each dataset and performs significantly bet-
ter when a more suitable partitioning technique is used. In
problems that the natural clusters are known, as with trajec-
tory under-sampling in face re-identification application, the1060

performance is better than using the general partitioning meth-
ods such as random under-sampling without replacement or
k-means clustering. Therefore, PBoost can be more efficient
than baseline Boosting ensembles for face re-identification un-
der imbalance considering both accuracy and complexity fac-1065

tors.

6. Conclusion

In this paper, a new Boosting ensemble algorithm named as
PBoost is proposed to address imbalance based on the idea of
modifying RUSBoost by (1) under-sampling the majority class1070
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using partitional techniques and in particular trajectory-based
partitioning, inspired by face re-identification applications, (2)
validating classifiers on a growing validation subset, and (3)
using a more suitable loss factor calculation. The partitions
enter the Boosting process progressively for designing classi-1075

fiers over iterations to avoid information loss and to maintain
diversity among them. Validating base classifiers on a growing
number of negative samples makes the PBoost ensembles more
robust to possible skew levels of data during operations in addi-
tion to lowering the computational complexity. The loss factor1080

based on F-measure handles bias of performance towards neg-
ative class, and guides the Boosting process in a more effective
direction with the purpose of correctly classifying both classes.
Experiments show that PBoost may perform differently with
different techniques of partitioning for each dataset such that1085

more suitable partitioning result in better performance. For face
re-identification application, the PBoost ensemble using trajec-
tory under-sampling outperforms the state of the art Boosting
ensembles in terms of accuracy. In addition, PBoost has signif-
icantly lower computational complexity in both designing and1090

testing stages compared to state of the art ensembles. The ap-
plicability of PBoost to multi-class classification problems and
other real-world applications can be further investigated in a
future work.
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Table 4: Average of F2-measure, G-mean and AUPR performance of baseline techniques with and without F-measure loss factor on synthetic data over different
levels of skew and overlap in test data.

Ensembles

Train

Data
D1 (ltrain =1:50, d = 0.2) D2 (ltrain =1:50, d = 0.1) D3 (ltrain =1:20, d = 0.2)

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

F2-measure

Ada 0.97
± 0.02

0.97
± 0.03

0.92
± 0.02

0.78
± 0.04

0.85
± 0.05

0.75
± 0.07

0.62
± 0.05

0.42
± 0.05

0.98
± 0.02

0.93
± 0.03

0.85
± 0.02

0.57
± 0.04

Ada-F 0.96
± 0.03

0.96
± 0.03

0.92
± 0.03

0.79

± 0.04
0.87

± 0.09
0.74
± 0.08

0.58
± 0.05

0.42
± 0.08

0.98
± 0.02

0.92
± 0.03

0.85
± 0.02

0.58

± 0.05

RUS 0.89
± 0.11

0.85
± 0.21

0.55
± 0.19

0.34
± 0.15

0.82
± 0.09

0.62
± 0.10

0.47
± 0.08

0.27
± 0.08

0.56
± 0.20

0.35
± 0.24

0.21
± 0.18

0.13
± 0.11

RUS-F 0.93

± 0.06
0.93

± 0.06
0.81

± 0.11
0.63

± 0.17
0.93

± 0.04
0.71

± 0.06
0.51

± 0.03
0.36

± 0.07
0.85

± 0.15
0.77

± 0.20
0.67

± 0.21
0.47

± 0.18

SMT 0.96
± 0.04

0.96
± 0.04

0.94
± 0.04

0.90
± 0.03

0.94
± 0.04

0.85
± 0.02

0.65
± 0.02

0.61
± 0.02

0.96
± 0.04

0.91
± 0.01

0.90
± 0.02

0.74
± 0.03

SMT-F 0.95
± 0.04

0.95
± 0.04

0.94
± 0.04

0.90
± 0.03

0.94
± 0.04

0.85
± 0.02

0.65
± 0.02

0.61
± 0.02

0.96
± 0.04

0.91
± 0.01

0.90
± 0.02

0.74
± 0.03

RB 0.96
± 0.02

0.96
± 0.02

0.94
± 0.02

0.90
± 0.01

0.91
± 0.05

0.85
± 0.01

0.63
± 0.01

0.60
± 0.01

0.96
± 0.03

0.92
± 0.02

0.90
± 0.02

0.73
± 0.05

RB-F 0.96
± 0.03

0.96
± 0.03

0.94
± 0.03

0.90
± 0.02

0.91
± 0.03

0.85
± 0.02

0.63
± 0.02

0.59
± 0.03

0.97
± 0.03

0.91
± 0.01

0.89
± 0.03

0.72
± 0.05

G-mean

Ada 0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.86
± 0.05

0.86
± 0.05

0.86
± 0.05

0.85
± 0.05

0.98
± 0.02

0.98
± 0.02

0.98
± 0.02

0.97
± 0.02

Ada-F 0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.88

± 0.08
0.87

± 0.07
0.87

± 0.07
0.87

± 0.07
0.98
± 0.02

0.98
± 0.02

0.98
± 0.02

0.97
± 0.02

RUS 0.93
± 0.05

0.93
± 0.05

0.92
± 0.05

0.91
± 0.06

0.84
± 0.08

0.83
± 0.08

0.83
± 0.08

0.82
± 0.08

0.50
± 0.20

0.68
± 0.23

0.68
± 0.23

0.68
± 0.23

RUS-F 0.94

± 0.06
0.94

± 0.06
0.93

± 0.06
0.93

± 0.05
0.93

± 0.04
0.92

± 0.04
0.92

± 0.04
0.92

± 0.04
0.80

± 0.25
0.91

± 0.08
0.91

± 0.08
0.91

± 0.08

SMT 0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.94
± 0.04

0.94
± 0.04

0.94
± 0.04

0.94
± 0.04

0.96
± 0.04

0.96
± 0.03

0.96
± 0.04

0.96
± 0.04

SMT-F 0.96
± 0.04

0.96
± 0.04

0.96
± 0.04

0.95
± 0.04

0.94
± 0.03

0.94
± 0.03

0.93
± 0.03

0.94
± 0.03

0.96
± 0.04

0.96
± 0.03

0.96
± 0.04

0.96
± 0.04

RB 0.96
± 0.02

0.96
± 0.02

0.96
± 0.02

0.96
± 0.02

0.91
± 0.05

0.91
± 0.04

0.90
± 0.04

0.91
± 0.05

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

RB-F 0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.91
± 0.03

0.91
± 0.03

0.90
± 0.03

0.91
± 0.03

0.97
± 0.03

0.96
± 0.03

0.97
± 0.03

0.96
± 0.03

AUPR

Ada 1.00
± 0.00

1.00
± 0.00

0.98
± 0.01

0.89
± 0.04

1.00
± 0.00

0.82
± 0.07

0.66
± 0.05

0.34
± 0.07

1.00
± 0.00

0.99
± 0.01

0.96
± 0.01

0.70
± 0.04

Ada-F 1.00
± 0.00

1.00
± 0.00

0.98
± 0.01

0.90

± 0.03
1.00
± 0.00

0.81
± 0.08

0.55
± 0.13

0.36

± 0.14
1.00
± 0.00

0.99
± 0.01

0.95

± 0.02
0.71

± 0.05

RUS 0.93
± 0.21

0.90
± 0.28

0.46
± 0.25

0.29
± 0.23

1.00
± 0.00

0.70
± 0.13

0.40
± 0.08

0.20
± 0.08

0.64
± 0.20

0.34
± 0.33

0.20
± 0.23

0.10
± 0.11

RUS-F 1.00

± 0.00
1.00

± 0.00
0.86

± 0.19
0.71

± 0.23
1.00

± 0.00
0.75

± 0.11
0.37

± 0.07
0.26

± 0.09
0.89

± 0.22
0.81

± 0.27
0.73

± 0.30
0.51

± 0.27

SMT 0.90
± 0.32

0.90
± 0.32

0.89
± 0.31

0.88
± 0.31

0.90
± 0.32

0.84
± 0.30

0.52
± 0.19

0.51
± 0.19

1.00
± 0.00

0.99
± 0.01

0.98
± 0.01

0.88
± 0.01

SMT-F 1.00

± 0.00
1.00

± 0.00
0.99

± 0.01
0.98

± 0.01
1.00

± 0.00
0.93

± 0.03
0.58

± 0.04
0.57

± 0.05
1.00
± 0.00

0.99
± 0.01

0.98
± 0.01

0.88
± 0.01

RB 0.80
± 0.42

0.80
± 0.42

0.79
± 0.42

0.78
± 0.41

0.60
± 0.52

0.57
± 0.49

0.32
± 0.28

0.31
± 0.27

1.00
± 0.00

0.99
± 0.01

0.98
± 0.01

0.84
± 0.03

RB-F 1.00

± 0.00
1.00

± 0.00
0.99

± 0.00
0.98

± 0.01
1.00

± 0.00
0.94

± 0.02
0.53

± 0.03
0.51

± 0.03
1.00
± 0.00

0.98
± 0.01

0.98
± 0.01

0.85

± 0.02
The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying loss factor using F-measure.
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Table 5: Average of F2-measure performance of baseline techniques with and without F-measure loss factor for different values of b on D2, ltest = 1 : 100.

Ensembles
FD Fop

b = 1 b = 2 b = 4 b = 7 b = 10 b = 1 b = 2 b = 4 b = 7 b = 10

Ada 0.24
± 0.14

0.26
± 0.15

0.19
± 0.17

0.20
± 0.15

0.24
± 0.16

0.38
± 0.10

0.25
± 0.18

0.27
± 0.16

0.34
± 0.06

0.32
± 0.13

Ada-F 0.30

± 0.07
0.31

± 0.07
0.33

± 0.05
0.34

± 0.03
0.33

± 0.04
0.41

± 0.09
0.39

± 0.11
0.36

± 0.05
0.36

± 0.08
0.38

± 0.07

RUS 0.09
± 0.01

0.09
± 0.01

0.09
± 0.01

0.09
± 0.01

0.09
± 0.01

0.51
± 0.03

0.46
± 0.03

0.48
± 0.04

0.43
± 0.13

0.48
± 0.03

RUS-F 0.19

± 0.04
0.10

± 0.01
0.09
± 0.01

0.09
± 0.01

0.08
± 0.02

0.52

± 0.08
0.48

± 0.03
0.43
± 0.10

0.44

± 0.12
0.46
± 0.07

SMT 0.36
± 0.02

0.36
± 0.02

0.36
± 0.02

0.33
± 0.12

0.33
± 0.12

0.49
± 0.05

0.47
± 0.04

0.41
± 0.15

0.41
± 0.15

0.45
± 0.03

SMT-F 0.36
± 0.02

0.36
± 0.02

0.36
± 0.02

0.37

± 0.02
0.36

± 0.02
0.49
± 0.05

0.47
± 0.04

0.45

± 0.03
0.45

± 0.03
0.45
± 0.03

RB 0.33
± 0.01

0.32
± 0.02

0.29
± 0.10

0.26
± 0.14

0.23
± 0.16

0.47
± 0.03

0.41
± 0.15

0.34
± 0.18

0.38
± 0.14

0.29
± 0.20

RB-F 0.30
± 0.02

0.30
± 0.02

0.30

± 0.02
0.30

± 0.02
0.31

± 0.02
0.47
± 0.04

0.46

± 0.05
0.41

± 0.02
0.42

± 0.02
0.41

± 0.02
The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying loss factor using F-measure.

Table 6: Average of F2-measure, G-mean and AUPR performance of RUSBoost with and without integrating progressive Boosting on synthetic data over different
levels of skew and overlap of test data.

Ensembles

Train

Data
D1 (ltrain =1:50, d = 0.2) D2 (ltrain =1:50, d = 0.1) D3 (ltrain =1:20, d = 0.2)

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

F2-measure

RUS 0.89
± 0.11

0.85
± 0.21

0.55
± 0.19

0.34
± 0.15

0.82
± 0.09

0.62
± 0.10

0.47
± 0.08

0.27
± 0.08

0.56
± 0.20

0.35
± 0.24

0.21
± 0.18

0.13
± 0.11

PRUS 0.82
± 0.09

0.64
± 0.11

0.61

± 0.12
0.55

± 0.15
0.90

± 0.09
0.43
± 0.18

0.35
± 0.14

0.32

± 0.11
0.70

± 0.06
0.58

± 0.18
0.56

± 0.20
0.48

± 0.19

PCUS 0.83
± 0.12

0.61
± 0.17

0.58

± 0.16
0.54

± 0.14
0.92

± 0.13
0.60
± 0.15

0.48

± 0.09
0.43

± 0.09
0.88

± 0.09
0.84

± 0.09
0.82

± 0.08
0.71

± 0.06

PCUSi
0.97

± 0.03
0.92

± 0.03
0.92

± 0.03
0.90

± 0.03
0.99

± 0.01
0.79

± 0.09
0.63

± 0.09
0.58

± 0.12
0.94

± 0.05
0.92

± 0.05
0.91

± 0.04
0.78

± 0.04

G-mean

RUS 0.93
± 0.05

0.93
± 0.05

0.92
± 0.05

0.91
± 0.06

0.84
± 0.08

0.83
± 0.08

0.83
± 0.08

0.82
± 0.08

0.50
± 0.20

0.68
± 0.23

0.68
± 0.23

0.68
± 0.23

PRUS 0.85
± 0.06

0.70
± 0.09

0.69
± 0.09

0.69
± 0.09

0.91

± 0.08
0.57
± 0.15

0.53
± 0.17

0.53
± 0.17

0.78

± 0.05
0.76

± 0.06
0.76

± 0.06
0.76

± 0.06

PCUS 0.86
± 0.11

0.69
± 0.14

0.69
± 0.14

0.67
± 0.15

0.95

± 0.08
0.71
± 0.15

0.70
± 0.15

0.69
± 0.16

0.89

± 0.08
0.87

± 0.07
0.87

± 0.08
0.85

± 0.07

PCUSi
0.97

± 0.03
0.93

± 0.03
0.93

± 0.03
0.93

± 0.03
0.99

± 0.01
0.94

± 0.02
0.93

± 0.02
0.93

± 0.06
0.94

± 0.05
0.94

± 0.05
0.93

± 0.04
0.92

± 0.05

AUPR

RUS 0.93
± 0.21

0.90
± 0.28

0.46
± 0.25

0.29
± 0.23

1.00
± 0.00

0.70
± 0.13

0.40
± 0.08

0.20
± 0.08

0.64
± 0.20

0.34
± 0.33

0.20
± 0.23

0.10
± 0.11

PRUS 1.00

± 0.00
0.95

± 0.14
0.64

± 0.30
0.49

± 0.35
1.00
± 0.00

0.77

± 0.08
0.43

± 0.04
0.26

± 0.08
0.88

± 0.21
0.81

± 0.26
0.62

± 0.28
0.37

± 0.20

PCUS 1.00

± 0.00
0.96

± 0.05
0.69

± 0.24
0.45

± 0.29
1.00
± 0.00

0.57
± 0.19

0.38
± 0.15

0.27

± 0.15
0.99

± 0.02
0.86

± 0.20
0.76

± 0.17
0.53

± 0.16

PCUSi
0.90
± 0.32

0.90
± 0.32

0.89

± 0.31
0.86

± 0.31
0.90
± 0.32

0.44
± 0.24

0.35
± 0.22

0.29

± 0.21
1.00

± 0.00
0.97

± 0.02
0.96

± 0.03
0.80

± 0.07
The boldface entries correspond to improvement in the performance of RUS after integrating progressive Boosting.
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Table 7: Average of F2-measure, G-mean and AUPR performance of proposed and baseline techniques on synthetic data over different levels of skew and overlap
of test data.

Ensembles

Train

Data
D1 (ltrain =1:50, d = 0.2) D2 (ltrain =1:50, d = 0.1) D3 (ltrain =1:20, d = 0.2)

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

F2-measure

Ada 0.97
± 0.02

0.97

± 0.03
0.92
± 0.02

0.78
± 0.04

0.85
± 0.05

0.75
± 0.07

0.62
± 0.05

0.42
± 0.05

0.98
± 0.02

0.93
± 0.03

0.85
± 0.02

0.57
± 0.04

RUS 0.89
± 0.11

0.85
± 0.21

0.55
± 0.19

0.34
± 0.15

0.82
± 0.09

0.62
± 0.10

0.47
± 0.08

0.27
± 0.08

0.56
± 0.20

0.35
± 0.24

0.21
± 0.18

0.13
± 0.11

SMT 0.96
± 0.04

0.96
± 0.04

0.94

± 0.04
0.90
± 0.03

0.94
± 0.04

0.85

± 0.02
0.65
± 0.02

0.61
± 0.02

0.96
± 0.04

0.91
± 0.01

0.90
± 0.02

0.74
± 0.03

RB 0.96
± 0.02

0.96
± 0.02

0.94

± 0.02
0.90
± 0.01

0.91
± 0.05

0.85

± 0.01
0.63
± 0.01

0.60
± 0.01

0.96
± 0.03

0.92
± 0.02

0.90
± 0.02

0.73
± 0.05

CUSi
0.95
± 0.05

0.95
± 0.05

0.94

± 0.04
0.89
± 0.04

0.83
± 0.02

0.71
± 0.02

0.67

± 0.02
0.62
± 0.02

0.99

± 0.02
0.96

± 0.02
0.87
± 0.02

0.77
± 0.01

PRUS-F 0.90
± 0.07

0.76
± 0.10

0.75
± 0.09

0.74
± 0.09

0.99
± 0.02

0.54
± 0.12

0.45
± 0.08

0.44
± 0.08

0.72
± 0.06

0.63
± 0.16

0.62
± 0.16

0.57
± 0.13

PCUS-F 0.80
± 0.10

0.57
± 0.22

0.54
± 0.21

0.53
± 0.21

0.91
± 0.11

0.55
± 0.19

0.46
± 0.13

0.42
± 0.12

0.87
± 0.07

0.83
± 0.08

0.78
± 0.09

0.65
± 0.13

PCUSi-F
0.98

± 0.01
0.93
± 0.03

0.92
± 0.03

0.91

± 0.03
1.00

± 0.00
0.83
± 0.03

0.67

± 0.03
0.63

± 0.04
0.93
± 0.05

0.92
± 0.05

0.92

± 0.05
0.81

± 0.05

G-mean

Ada 0.97
± 0.02

0.97

± 0.02
0.97

± 0.02
0.97

± 0.02
0.86
± 0.05

0.86
± 0.05

0.86
± 0.05

0.85
± 0.05

0.98
± 0.02

0.98

± 0.02
0.98

± 0.02
0.97
± 0.02

RUS 0.93
± 0.05

0.93
± 0.05

0.92
± 0.05

0.91
± 0.06

0.84
± 0.08

0.83
± 0.08

0.83
± 0.08

0.82
± 0.08

0.50
± 0.20

0.68
± 0.23

0.68
± 0.23

0.68
± 0.23

SMT 0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.94
± 0.04

0.94

± 0.04
0.94

± 0.04
0.94

± 0.04
0.96
± 0.04

0.96
± 0.03

0.96
± 0.04

0.96
± 0.04

RB 0.96
± 0.02

0.96
± 0.02

0.96
± 0.02

0.96
± 0.02

0.91
± 0.05

0.91
± 0.04

0.90
± 0.04

0.91
± 0.05

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

0.96
± 0.03

CUSi
0.95
± 0.04

0.95
± 0.04

0.95
± 0.04

0.95
± 0.04

0.84
± 0.01

0.84
± 0.01

0.84
± 0.01

0.84
± 0.01

0.99

± 0.01
0.98

± 0.01
0.98

± 0.01
0.98

± 0.01

PRUS-F 0.90
± 0.06

0.78
± 0.08

0.78
± 0.08

0.78
± 0.08

0.99
± 0.02

0.62
± 0.09

0.62
± 0.09

0.61
± 0.09

0.78
± 0.05

0.77
± 0.05

0.76
± 0.05

0.76
± 0.06

PCUS-F 0.78
± 0.20

0.65
± 0.18

0.65
± 0.18

0.65
± 0.18

0.94
± 0.07

0.68
± 0.17

0.67
± 0.17

0.64
± 0.19

0.88
± 0.06

0.86
± 0.06

0.86
± 0.06

0.86
± 0.06

PCUSi-F
0.98

± 0.01
0.93
± 0.03

0.93
± 0.03

0.93
± 0.03

1.00

± 0.00
0.94

± 0.02
0.94

± 0.02
0.94

± 0.02
0.94

± 0.04
0.94
± 0.04

0.94
± 0.04

0.93
± 0.05

AUPR

Ada 1.00

± 0.00
1.00

± 0.00
0.98
± 0.01

0.89
± 0.04

1.00

± 0.00
0.82
± 0.07

0.66
± 0.05

0.34
± 0.07

1.00

± 0.00
0.99

± 0.01
0.96
± 0.01

0.70
± 0.04

RUS 0.93
± 0.21

0.90
± 0.28

0.46
± 0.25

0.29
± 0.23

1.00

± 0.00
0.70
± 0.13

0.40
± 0.08

0.20
± 0.08

0.64
± 0.20

0.34
± 0.33

0.20
± 0.23

0.10
± 0.11

SMT 0.90
± 0.32

0.90
± 0.32

0.89
± 0.31

0.88
± 0.31

0.90
± 0.32

0.84
± 0.30

0.52
± 0.19

0.51
± 0.19

1.00

± 0.00
0.99

± 0.01
0.98

± 0.01
0.88
± 0.01

RB 0.80
± 0.42

0.80
± 0.42

0.79
± 0.42

0.78
± 0.41

0.60
± 0.52

0.57
± 0.49

0.32
± 0.28

0.31
± 0.27

1.00

± 0.00
0.99

± 0.01
0.98

± 0.01
0.84
± 0.03

CUSi
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00
0.96
± 0.01

0.99
± 0.00

0.75
± 0.04

0.68

± 0.01
0.62

± 0.02
1.00

± 0.00
0.99

± 0.01
0.96
± 0.01

0.92

± 0.01

PRUS-F 1.00

± 0.00
1.00

± 0.00
0.99
± 0.01

0.97

± 0.02
1.00

± 0.00
0.86

± 0.05
0.44
± 0.04

0.35
± 0.07

0.99
± 0.01

0.99

± 0.01
0.90
± 0.09

0.64
± 0.15

PCUS-F 0.99
± 0.04

0.92
± 0.10

0.66
± 0.27

0.47
± 0.29

1.00
± 0.00

0.57
± 0.19

0.39
± 0.15

0.27
± 0.17

0.96
± 0.07

0.87
± 0.14

0.74
± 0.17

0.53
± 0.22

PCUSi-F
1.00

± 0.00
1.00

± 0.00
0.98
± 0.01

0.97

± 0.02
1.00

± 0.00
0.80
± 0.09

0.55
± 0.07

0.50
± 0.09

1.00

± 0.00
0.98
± 0.01

0.97
± 0.01

0.85
± 0.04

The boldface entries correspond to the best values of performance for each skew level of testing.
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Table 8: Average of F2-measure, G-mean and AUPR performance of baseline
techniques before and after using the F-measure loss factor on FIA and COX
data sets over different levels of skew in training and test data.

FIA COX

Ensembles

Train

Data
ltrain =1:50 ltrain =1:100 ltrain =1:50 ltrain =1:100

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100
F2-measure

Ada 0.80
± 0.18

0.80
± 0.18

0.80
± 0.18

0.79
± 0.18

0.62
± 0.29

0.62
± 0.29

0.62
± 0.29

0.62
± 0.29

0.48
± 0.30

0.48
± 0.30

0.48
± 0.30

0.48
± 0.30

0.43
± 0.25

0.43
± 0.25

0.43
± 0.25

0.43
± 0.25

Ada-F 0.99

± 0.01
0.99

± 0.01
0.75
± 0.03

0.75
± 0.02

0.87

± 0.09
0.74

± 0.08
0.60
± 0.05

0.62
± 0.08

0.99

± 0.01
0.99

± 0.01
0.55

± 0.03
0.47
± 0.02

0.87

± 0.09
0.74

± 0.08
0.58

± 0.05
0.42
± 0.08

RUS 0.98
± 0.02

0.86
± 0.10

0.72
± 0.15

0.57
± 0.16

0.98
± 0.02

0.85
± 0.10

0.70
± 0.16

0.59
± 0.17

0.89
± 0.11

0.50
± 0.22

0.43
± 0.22

0.37
± 0.24

0.87
± 0.12

0.44
± 0.19

0.40
± 0.19

0.36
± 0.20

RUS-F 0.96
± 0.04

0.89

± 0.03
0.72
± 0.03

0.58

± 0.04
0.93
± 0.04

0.85
± 0.06

0.71

± 0.03
0.60

± 0.07
0.96

± 0.04
0.89

± 0.03
0.55

± 0.03
0.42

± 0.04
0.93

± 0.04
0.71

± 0.06
0.51

± 0.03
0.36
± 0.07

SMT 0.93
± 0.04

0.93
± 0.04

0.93
± 0.04

0.92
± 0.05

0.92
± 0.05

0.92
± 0.05

0.92
± 0.05

0.92
± 0.05

0.81
± 0.15

0.80
± 0.15

0.80
± 0.15

0.80
± 0.15

0.82
± 0.12

0.82
± 0.12

0.82
± 0.12

0.82
± 0.12

SMT-F 0.98

± 0.02
0.98

± 0.02
0.92
± 0.01

0.90
± 0.02

0.94

± 0.04
0.90
± 0.02

0.90
± 0.02

0.90
± 0.02

0.98

± 0.02
0.98

± 0.02
0.80
± 0.01

0.80
± 0.02

0.94

± 0.04
0.85

± 0.02
0.80
± 0.02

0.80
± 0.02

RB 0.89
± 0.24

0.89
± 0.24

0.89
± 0.24

0.87
± 0.24

0.77
± 0.37

0.77
± 0.37

0.76
± 0.37

0.76
± 0.37

0.83
± 0.13

0.83
± 0.13

0.83
± 0.13

0.82
± 0.13

0.82
± 0.17

0.82
± 0.17

0.82
± 0.17

0.82
± 0.17

RB-F 0.99

± 0.01
0.99

± 0.01
0.88
± 0.01

0.85
± 0.03

0.91

± 0.03
0.85

± 0.02
0.75
± 0.02

0.74
± 0.03

0.99

± 0.01
0.99

± 0.01
0.82
± 0.01

0.81
± 0.03

0.91

± 0.03
0.85

± 0.02
0.80
± 0.02

0.79
± 0.03

G-mean

Ada 0.82
± 0.16

0.82
± 0.16

0.82
± 0.16

0.82
± 0.16

0.67
± 0.25

0.67
± 0.25

0.67
± 0.25

0.67
± 0.25

0.56
± 0.25

0.56
± 0.25

0.56
± 0.25

0.56
± 0.25

0.52
± 0.20

0.52
± 0.20

0.52
± 0.20

0.52
± 0.20

Ada-F 0.99

± 0.01
0.99

± 0.01
0.97

± 0.01
0.97

± 0.01
0.88

± 0.08
0.87

± 0.07
0.87

± 0.07
0.87

± 0.07
0.99

± 0.01
0.99

± 0.01
0.97

± 0.01
0.97

± 0.01
0.88

± 0.08
0.87

± 0.07
0.87

± 0.07
0.87

± 0.07

RUS 0.97
± 0.05

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95
± 0.06

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.85
± 0.18

0.90
± 0.07

0.94
± 0.05

0.94
± 0.05

0.83
± 0.19

0.89
± 0.08

0.93
± 0.07

0.94
± 0.07

RUS-F 0.96
± 0.04

0.96
± 0.04

0.95
± 0.03

0.95
± 0.03

0.93
± 0.04

0.92
± 0.04

0.92
± 0.04

0.92
± 0.04

0.96

± 0.04
0.96

± 0.04
0.95

± 0.03
0.95

± 0.03
0.93

± 0.04
0.92

± 0.04
0.92
± 0.04

0.92
± 0.04

SMT 0.94
± 0.04

0.94
± 0.04

0.94
± 0.04

0.94
± 0.04

0.92
± 0.04

0.92
± 0.04

0.92
± 0.04

0.92
± 0.04

0.83
± 0.12

0.83
± 0.12

0.83
± 0.12

0.83
± 0.12

0.84
± 0.10

0.84
± 0.10

0.84
± 0.10

0.84
± 0.10

SMT-F 0.98

± 0.02
0.98

± 0.02
0.97

± 0.02
0.97

± 0.02
0.94

± 0.03
0.94

± 0.03
0.93

± 0.03
0.94

± 0.03
0.98

± 0.02
0.98

± 0.02
0.97

± 0.02
0.97

± 0.02
0.94

± 0.03
0.94

± 0.03
0.93

± 0.03
0.94

± 0.03

RB 0.89
± 0.24

0.89
± 0.24

0.89
± 0.24

0.89
± 0.24

0.77
± 0.37

0.77
± 0.37

0.77
± 0.37

0.77
± 0.37

0.85
± 0.11

0.85
± 0.11

0.85
± 0.11

0.85
± 0.11

0.84
± 0.16

0.84
± 0.16

0.84
± 0.16

0.84
± 0.16

RB-F 0.99

± 0.01
0.99

± 0.01
0.98

± 0.01
0.98

± 0.01
0.91

± 0.03
0.91

± 0.03
0.90

± 0.03
0.91

± 0.03
0.99

± 0.01
0.99

± 0.01
0.98

± 0.01
0.98

± 0.01
0.91

± 0.03
0.91

± 0.03
0.90

± 0.03
0.91

± 0.03

AUPR

Ada 0.85
± 0.35

0.82
± 0.34

0.80
± 0.33

0.77
± 0.33

0.83
± 0.36

0.79
± 0.35

0.76
± 0.35

0.74
± 0.34

0.80
± 0.36

0.66
± 0.34

0.64
± 0.34

0.60
± 0.35

0.83
± 0.32

0.65
± 0.32

0.63
± 0.33

0.61
± 0.33

Ada-F 1.00

± 0.00
1.00

± 0.00
0.80
± 0.06

0.77
± 0.05

1.00

± 0.00
0.81

± 0.08
0.75
± 0.13

0.72
± 0.14

1.00

± 0.00
1.00

± 0.00
0.62
± 0.06

0.60
± 0.05

1.00

± 0.00
0.81

± 0.08
0.62
± 0.13

0.60
± 0.14

RUS 0.91
± 0.29

0.88
± 0.29

0.86
± 0.28

0.85
± 0.28

0.90
± 0.30

0.88
± 0.30

0.86
± 0.29

0.85
± 0.29

0.89
± 0.28

0.81
± 0.27

0.80
± 0.27

0.79
± 0.27

0.66
± 0.46

0.57
± 0.41

0.56
± 0.41

0.56
± 0.41

RUS-F 1.00

± 0.00
0.96

± 0.02
0.85
± 0.04

0.84
± 0.04

1.00

± 0.00
0.88
± 0.11

0.86
± 0.07

0.84
± 0.09

1.00

± 0.00
0.96

± 0.02
0.79
± 0.04

0.77
± 0.04

1.00

± 0.00
0.75

± 0.11
0.57
± 0.07

0.56
± 0.09

SMT 1.00
± 0.00

0.99
± 0.01

0.99
± 0.01

0.98
± 0.02

1.00
± 0.00

0.99
± 0.01

0.99
± 0.01

0.98
± 0.02

0.99
± 0.02

0.95
± 0.05

0.95
± 0.05

0.91
± 0.07

0.99
± 0.02

0.97
± 0.05

0.96
± 0.05

0.96
± 0.05

SMT-F 1.00

± 0.00
1.00

± 0.00
0.96
± 0.02

0.99
± 0.01

1.00

± 0.00
0.93
± 0.03

0.98
± 0.04

0.97
± 0.05

1.00

± 0.00
1.00

± 0.00
0.94
± 0.02

0.90
± 0.01

1.00

± 0.00
0.96
± 0.03

0.95
± 0.04

0.95
± 0.05

RB 0.93
± 0.26

0.92
± 0.25

0.92
± 0.25

0.91
± 0.25

0.81
± 0.39

0.80
± 0.39

0.80
± 0.39

0.79
± 0.39

0.99
± 0.03

0.94
± 0.06

0.94
± 0.06

0.91
± 0.07

0.96
± 0.17

0.93
± 0.17

0.92
± 0.17

0.92
± 0.17

RB-F 1.00

± 0.00
1.00

± 0.00
0.91
± 0.03

0.90
± 0.02

1.00

± 0.00
0.94

± 0.02
0.79
± 0.03

0.79
± 0.03

1.00

± 0.00
1.00

± 0.00
0.93
± 0.03

0.90
± 0.02

1.00

± 0.00
0.94

± 0.02
0.91
± 0.03

0.90
± 0.03

The boldface entries correspond to improvement in the performance of the
Boosting ensemble after modifying loss factor using F-measure.
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Table 9: Average of F2-measure, G-mean and AUPR performance of RUSBoost with and without integrating progressive Boosting FIA and COX data sets over
different levels of skew in training and test data.

FIA COX

Ensembles

Train

Data
ltrain =1:50 ltrain =1:100 ltrain =1:50 ltrain =1:100

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100
F2-measure

RUS 0.98
± 0.02

0.86
± 0.10

0.72
± 0.15

0.57
± 0.16

0.98
± 0.02

0.85
± 0.10

0.70
± 0.16

0.59
± 0.17

0.89
± 0.11

0.50
± 0.22

0.43
± 0.22

0.37
± 0.24

0.87
± 0.12

0.44
± 0.19

0.40
± 0.19

0.36
± 0.20

PRUS 0.99

± 0.01
0.95

± 0.04
0.91

± 0.06
0.89

± 0.06
0.99

± 0.01
0.94

± 0.04
0.90

± 0.06
0.89

± 0.07
0.95

± 0.06
0.88

± 0.10
0.86

± 0.09
0.85

± 0.10
0.95

± 0.06
0.86

± 0.13
0.85

± 0.13
0.84

± 0.13

PCUS 0.99

± 0.01
0.95

± 0.04
0.91

± 0.06
0.88

± 0.06
0.99

± 0.01
0.95

± 0.04
0.91

± 0.06
0.89

± 0.06
0.95

± 0.07
0.88

± 0.11
0.85

± 0.11
0.84

± 0.11
0.95

± 0.07
0.85

± 0.13
0.84

± 0.14
0.84

± 0.14

PTUS 0.99

± 0.01
0.95

± 0.04
0.92

± 0.05
0.90

± 0.06
0.99

± 0.01
0.95

± 0.04
0.92

± 0.06
0.90

± 0.06
0.95

± 0.06
0.88

± 0.10
0.86

± 0.10
0.85

± 0.11
0.94

± 0.07
0.87

± 0.12
0.86

± 0.12
0.85

± 0.13

G-mean

RUS 0.97
± 0.05

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95
± 0.06

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.85
± 0.18

0.90
± 0.07

0.94
± 0.05

0.94
± 0.05

0.83
± 0.19

0.89
± 0.08

0.93
± 0.07

0.94
± 0.07

PRUS 0.98

± 0.03
0.97

± 0.03
0.95

± 0.04
0.94
± 0.04

0.97

± 0.04
0.97

± 0.03
0.95
± 0.03

0.94
± 0.04

0.95

± 0.06
0.92

± 0.07
0.92
± 0.07

0.91
± 0.07

0.95

± 0.06
0.91

± 0.08
0.90
± 0.09

0.90
± 0.09

PCUS 0.98

± 0.03
0.97

± 0.02
0.95

± 0.03
0.94
± 0.04

0.97

± 0.04
0.97

± 0.02
0.95
± 0.03

0.94
± 0.04

0.95

± 0.07
0.91

± 0.08
0.90
± 0.08

0.90
± 0.08

0.95

± 0.08
0.91

± 0.09
0.90
± 0.09

0.89
± 0.10

PTUS 0.98

± 0.03
0.97

± 0.03
0.95

± 0.04
0.94
± 0.04

0.98

± 0.03
0.97

± 0.03
0.95
± 0.04

0.94
± 0.04

0.95

± 0.06
0.91

± 0.09
0.90
± 0.09

0.88
± 0.09

0.94

± 0.06
0.91

± 0.08
0.90
± 0.09

0.89
± 0.10

AUPR

RUS 0.91
± 0.29

0.88
± 0.29

0.86
± 0.28

0.85
± 0.28

0.90
± 0.30

0.88
± 0.30

0.86
± 0.29

0.85
± 0.29

0.89
± 0.28

0.81
± 0.27

0.80
± 0.27

0.79
± 0.27

0.66
± 0.46

0.57
± 0.41

0.56
± 0.41

0.56
± 0.41

PRUS 1.00

± 0.00
0.95

± 0.03
0.93

± 0.05
0.91

± 0.05
1.00

± 0.00
0.95

± 0.03
0.93

± 0.05
0.91

± 0.05
0.98

± 0.04
0.88

± 0.11
0.85

± 0.11
0.83

± 0.11
0.83

± 0.21
0.72

± 0.23
0.71

± 0.23
0.71

± 0.23

PCUS 1.00

± 0.00
0.97

± 0.03
0.95

± 0.04
0.93

± 0.05
0.98

± 0.14
0.95

± 0.14
0.93

± 0.14
0.91

± 0.14
0.97

± 0.05
0.88

± 0.12
0.87

± 0.12
0.85

± 0.13
0.83

± 0.21
0.72

± 0.23
0.70

± 0.23
0.70

± 0.24

PTUS 0.98

± 0.14
0.96

± 0.14
0.94

± 0.14
0.92

± 0.14
0.97

± 0.16
0.95

± 0.16
0.93

± 0.16
0.91

± 0.16
0.97

± 0.16
0.88

± 0.17
0.86

± 0.18
0.84

± 0.18
0.84

± 0.35
0.76

± 0.33
0.75

± 0.33
0.73

± 0.33

The boldface entries correspond to improvement in the performance of RUS after integrating progressive Boosting.
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Table 10: Average of F2-measure, G-mean and AUPR performance of proposed
and baseline techniques FIA and COX data sets over different levels of skew in
training and test data.

FIA COX

Ensembles

Train

Data
ltrain =1:50 ltrain =1:100 ltrain =1:50 ltrain =1:100

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100
F2-measure

Ada 0.80
± 0.18

0.80
± 0.18

0.80
± 0.18

0.79
± 0.18

0.62
± 0.29

0.62
± 0.29

0.62
± 0.29

0.62
± 0.29

0.48
± 0.30

0.48
± 0.30

0.48
± 0.30

0.48
± 0.30

0.43
± 0.25

0.43
± 0.25

0.43
± 0.25

0.43
± 0.25

RUS 0.98
± 0.02

0.86
± 0.10

0.72
± 0.15

0.57
± 0.16

0.98
± 0.02

0.85
± 0.10

0.70
± 0.16

0.59
± 0.17

0.89
± 0.11

0.50
± 0.22

0.43
± 0.22

0.37
± 0.24

0.87
± 0.12

0.44
± 0.19

0.40
± 0.19

0.36
± 0.20

SMT 0.93
± 0.04

0.93

± 0.04
0.93

± 0.04
0.92

± 0.05
0.92
± 0.05

0.92
± 0.05

0.92

± 0.05
0.92

± 0.05
0.81
± 0.15

0.80
± 0.15

0.80
± 0.15

0.80
± 0.15

0.82
± 0.12

0.82
± 0.12

0.82
± 0.12

0.82
± 0.12

RB 0.89
± 0.24

0.89
± 0.24

0.89
± 0.24

0.87
± 0.24

0.77
± 0.37

0.77
± 0.37

0.76
± 0.37

0.76
± 0.37

0.83
± 0.13

0.83
± 0.13

0.83
± 0.13

0.82
± 0.13

0.82
± 0.17

0.82
± 0.17

0.82
± 0.17

0.82
± 0.17

TUS 0.63
± 0.18

0.63
± 0.17

0.62
± 0.17

0.62
± 0.17

0.87
± 0.08

0.87
± 0.08

0.87
± 0.08

0.86
± 0.08

0.58
± 0.27

0.49
± 0.23

0.49
± 0.23

0.48
± 0.23

0.59
± 0.27

0.59
± 0.27

0.59
± 0.27

0.59
± 0.27

PRUS-F 0.99

± 0.01
0.95
± 0.05

0.92
± 0.06

0.90
± 0.06

0.99

± 0.01
0.95

± 0.04
0.91
± 0.06

0.90
± 0.06

0.94
± 0.07

0.87
± 0.13

0.86
± 0.14

0.85
± 0.14

0.95

± 0.06
0.87
± 0.12

0.86
± 0.13

0.85
± 0.14

PCUS-F 0.99

± 0.01
0.95
± 0.04

0.92
± 0.06

0.90
± 0.06

0.99

± 0.02
0.95

± 0.04
0.91
± 0.06

0.90
± 0.07

0.95

± 0.07
0.85
± 0.16

0.84
± 0.17

0.82
± 0.18

0.95

± 0.07
0.85
± 0.16

0.84
± 0.17

0.83
± 0.17

PTUS-F 0.99

± 0.01
0.95
± 0.04

0.92
± 0.05

0.90
± 0.06

0.99

± 0.01
0.95

± 0.04
0.92

± 0.06
0.90
± 0.06

0.95

± 0.06
0.89

± 0.11
0.87

± 0.11
0.86

± 0.11
0.94
± 0.06

0.88

± 0.11
0.87

± 0.11
0.86

± 0.11

G-mean

Ada 0.82
± 0.16

0.82
± 0.16

0.82
± 0.16

0.82
± 0.16

0.67
± 0.25

0.67
± 0.25

0.67
± 0.25

0.67
± 0.25

0.56
± 0.25

0.56
± 0.25

0.56
± 0.25

0.56
± 0.25

0.52
± 0.20

0.52
± 0.20

0.52
± 0.20

0.52
± 0.20

RUS 0.97
± 0.05

0.97

± 0.02
0.97

± 0.02
0.97

± 0.02
0.95
± 0.06

0.97

± 0.02
0.97

± 0.02
0.97

± 0.02
0.85
± 0.18

0.90
± 0.07

0.94

± 0.05
0.94

± 0.05
0.83
± 0.19

0.89
± 0.08

0.93

± 0.07
0.94

± 0.07

SMT 0.94
± 0.04

0.94
± 0.04

0.94
± 0.04

0.94
± 0.04

0.92
± 0.04

0.92
± 0.04

0.92
± 0.04

0.92
± 0.04

0.83
± 0.12

0.83
± 0.12

0.83
± 0.12

0.83
± 0.12

0.84
± 0.10

0.84
± 0.10

0.84
± 0.10

0.84
± 0.10

RB 0.89
± 0.24

0.89
± 0.24

0.89
± 0.24

0.89
± 0.24

0.77
± 0.37

0.77
± 0.37

0.77
± 0.37

0.77
± 0.37

0.85
± 0.11

0.85
± 0.11

0.85
± 0.11

0.85
± 0.11

0.84
± 0.16

0.84
± 0.16

0.84
± 0.16

0.84
± 0.16

TUS 0.49
± 0.15

0.75
± 0.13

0.76
± 0.14

0.76
± 0.14

0.88
± 0.07

0.88
± 0.07

0.88
± 0.07

0.88
± 0.07

0.70
± 0.21

0.68
± 0.20

0.69
± 0.21

0.69
± 0.21

0.71
± 0.21

0.71
± 0.21

0.71
± 0.21

0.71
± 0.21

PRUS-F 0.98

± 0.03
0.97

± 0.03
0.95
± 0.04

0.94
± 0.04

0.98

± 0.04
0.97

± 0.03
0.95
± 0.03

0.94
± 0.04

0.94
± 0.08

0.91

± 0.08
0.91
± 0.08

0.90
± 0.09

0.95

± 0.07
0.92

± 0.07
0.91
± 0.08

0.90
± 0.09

PCUS-F 0.98

± 0.03
0.97

± 0.02
0.95
± 0.04

0.94
± 0.04

0.97
± 0.04

0.97

± 0.02
0.95
± 0.03

0.94
± 0.04

0.95

± 0.07
0.91

± 0.08
0.90
± 0.08

0.89
± 0.08

0.95

± 0.08
0.91
± 0.09

0.91
± 0.09

0.90
± 0.09

PTUS-F 0.98

± 0.02
0.97

± 0.03
0.95
± 0.04

0.94
± 0.04

0.98

± 0.03
0.97

± 0.02
0.95
± 0.04

0.94
± 0.04

0.95

± 0.08
0.91

± 0.09
0.90
± 0.09

0.89
± 0.09

0.94
± 0.07

0.91
± 0.08

0.90
± 0.08

0.90
± 0.09

AUPR

Ada 0.85
± 0.35

0.82
± 0.34

0.80
± 0.33

0.77
± 0.33

0.83
± 0.36

0.79
± 0.35

0.76
± 0.35

0.74
± 0.34

0.80
± 0.36

0.66
± 0.34

0.64
± 0.34

0.60
± 0.35

0.83
± 0.32

0.65
± 0.32

0.63
± 0.33

0.61
± 0.33

RUS 0.91
± 0.29

0.88
± 0.29

0.86
± 0.28

0.85
± 0.28

0.90
± 0.30

0.88
± 0.30

0.86
± 0.29

0.85
± 0.29

0.89
± 0.28

0.81
± 0.27

0.80
± 0.27

0.79
± 0.27

0.66
± 0.46

0.57
± 0.41

0.56
± 0.41

0.56
± 0.41

SMT 1.00

± 0.00
0.98

± 0.01
0.96

± 0.01
0.94

± 0.02
1.00

± 0.00
0.99

± 0.01
0.97

± 0.01
0.94
± 0.02

0.99

± 0.02
0.95

± 0.05
0.95

± 0.05
0.91

± 0.07
0.99

± 0.02
0.97

± 0.05
0.96

± 0.05
0.96

± 0.05

RB 0.93
± 0.26

0.92
± 0.25

0.92
± 0.25

0.91
± 0.25

0.81
± 0.39

0.80
± 0.39

0.80
± 0.39

0.79
± 0.39

0.99

± 0.03
0.94
± 0.06

0.94
± 0.06

0.91

± 0.07
0.96
± 0.17

0.93
± 0.17

0.92
± 0.17

0.92
± 0.17

TUS 0.62
± 0.15

0.62
± 0.15

0.61
± 0.15

0.60
± 0.15

1.00

± 0.00
0.99

± 0.02
0.97
± 0.03

0.96

± 0.03
0.99

± 0.02
0.40
± 0.16

0.38
± 0.17

0.37
± 0.17

0.99

± 0.01
0.95
± 0.05

0.93
± 0.06

0.91
± 0.08

PRUS-F 1.00

± 0.00
0.97
± 0.04

0.95
± 0.05

0.94
± 0.06

1.00

± 0.00
0.98
± 0.03

0.95
± 0.04

0.94
± 0.05

0.97
± 0.06

0.88
± 0.14

0.87
± 0.14

0.86
± 0.14

0.98
± 0.04

0.88
± 0.12

0.87
± 0.14

0.86
± 0.14

PCUS-F 1.00

± 0.00
0.98
± 0.03

0.95
± 0.05

0.93
± 0.05

1.00

± 0.00
0.97
± 0.03

0.95
± 0.05

0.93
± 0.06

0.97
± 0.06

0.85
± 0.18

0.83
± 0.19

0.82
± 0.20

0.97
± 0.06

0.85
± 0.18

0.83
± 0.19

0.83
± 0.20

PTUS-F 1.00

± 0.00
0.98
± 0.03

0.96
± 0.04

0.94
± 0.05

1.00

± 0.00
0.98
± 0.03

0.95
± 0.04

0.94
± 0.05

0.99

± 0.02
0.91
± 0.09

0.89
± 0.10

0.87
± 0.11

0.99

± 0.02
0.91
± 0.09

0.89
± 0.11

0.88
± 0.12

The boldface entries correspond to the best values of performance for each
skew level of testing.
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Table 11: Average ranking of the performance of proposed and baseline techniques.

Ensembles

Train

Data
F-measure G-mean AUPR

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada 4.50 3.25 5.38 5.75 4.50 3.38 3.38 3.38 2.88 3.62 4.25 4.50
RUS 6.62 6.12 6.88 7.75 6.62 5.50 5.12 5.12 3.50 5.81 6.75 7.50
SMT 4.25 3.12 2.50 2.62 4.25 3.25 3.25 3.12 2.12 2.38 2.12 2.00

RB 4.38 3.38 3.88 4.12 4.50 3.38 3.38 3.50 5.56 6.31 5.62 5.00
TUS 5.12 4.38 4.00 3.88 5.12 4.25 4.25 4.12 2.31 4.06 3.38 3.00

PRUS-F 3.50 6.38 5.62 4.88 3.62 6.38 6.50 6.75 1.62 2.00 3.75 3.25
PCUS-F 5.88 6.50 6.12 5.38 5.62 6.88 7.00 6.62 3.00 5.94 6.88 6.88
PTUS-F 1.75 2.88 1.62 1.62 1.75 3.00 3.12 3.38 1.50 3.38 3.25 3.88

Table 12: P-values of statistical comparison between PTUS-F and baseline techniques.

Ensembles
Metric F-measure G-mean AUPR

ltest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada 0.0125 0.3821 0.0011 0.0004 0.1250 0.3821 0.4207 0.5000 0.1314 0.4207 0.2090 0.3050
RUS 0.0010 0.0040 0.0000 0.0000 0.0000 0.0207 0.0516 0.0778 0.0516 0.0233 0.0022 0.0016

SMT 0.0207 0.4207 0.2389 0.0000 0.0207 0.4207 0.4602 0.5000 0.3050 0.5000 0.5000 0.5000
RB 0.0162 0.3446 0.0336 0.2090 0.0125 0.3821 0.4207 0.0398 0.0005 0.0084 0.0268 0.1814

TUS 0.0030 0.3888 0.0268 0.0336 0.0030 0.1539 0.1814 0.2709 0.2546 0.2877 0.4602 0.5000
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