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The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates
that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic
dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral
tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via
antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as
assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing.
Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR
antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as
alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-
stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced
salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-
mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy
metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated
stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as
of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
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INTRODUCTION
Caffeine and ethyl alcohol (alcohol) are the two most consumed
psychopharmacologically active substances in the world [1, 2]. The
pharmacological consequences of their combined use have been
extensively investigated, but different studies have produced
conflicting data that diverge based on species, strains, dosages,
routes, and schedules of administration. In this fragmented
scenario, it is difficult to capture a unique pattern of the influence
of caffeine on alcohol effects but, as far as the effects on alcohol
consumption are concerned, it seems that caffeine may exert bi-
directional influences depending on several experimental para-
meters [3–9].
To further characterize caffeine-alcohol interaction, we focused

our research on the potential ability of caffeine to affect the
neurophysiological and neurochemical processes underlying the

reinforcing properties of alcohol. In particular, we previously
showcased that caffeine, at doses borderline for eliciting arousal
[10, 11] and locomotor activity [7, 12], can functionally antagonize
alcohol reinforcement by demonstrating that it could prevent the
acquisition of alcohol-elicited conditioned place preference and
aversion [13], pointing to the dopamine (DA)-dependent under-
lying associative learning process [14] as the possible mechanism
targeted by caffeine to gain this behavioral outcome. This
hypothesis was grounded in the observations that alcohol-
elicited place conditioning is prevented by DA receptor antago-
nists [15, 16], that caffeine exerts, through an antagonistic action
on A2A adenosine receptors (A2AR) [17], a direct negative control
on neuronal firing of DA cells in the posterior ventral tegmental
area (pVTA) [18], and that caffeine administration prior to alcohol
also prevents its DA-dependent [19] ability to increase the
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expression of phosphorylated Extracellular signal Regulated
Kinase (pERK) in the shell of the nucleus accumbens (AcbSh)
[13, 20]. Notably, increased pERK expression is a DA receptor-
dependent marker of activation of mesolimbic DA transmission by
alcohol [19, 21] and other addictive substances [22, 23], but not by
caffeine [22, 24], as well as a DA-dependent mechanism at the
basis of associative learning [14, 25–27].
The mechanism by which alcohol activates mesolimbic DA

transmission has been the subject of intense research for decades,
as this pathway is critical in mediating the reinforcing effects of
alcohol, as well as other drugs of abuse [28, 29]. Even in humans,
positron emission tomography studies have shown that alcohol
induces a release of DA in the ventral striatum [30], and that this
fast release of DA is associated with alcohol-induced reinforcing
effects and acquisition of conditioned responses [31]. In this
regard, the metabolic conversion of alcohol into acetaldehyde has
been recognized as critically involved [32, 33], and this suggestion
was further extended by the observation that another molecule, 1-
methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol),
obtainable by Pictet-Spengler condensation of acetaldehyde and
DA, could be responsible for the reinforcing properties of alcohol
and for its addictive potential [34, 35]. This hypothesis was
recently substantiated by multiple robust lines of evidence. The
first line of evidence refers to experiments showing that systemic
[36] or local [37] salsolinol administration elicits conditioned place
preference, exerts alcohol-like motivational/sensitization effects
[38, 39] and leads to excessive alcohol intake [39]. The second line
of evidence refers to an in-vitro electrophysiological study, in
which the ability of alcohol to stimulate the firing rate of DA
neurons of the pVTA critically depended on the availability of DA,
as well as on the metabolic conversion of alcohol into
acetaldehyde [40]. Finally, direct evidence was provided also by
Bassareo et al. [41], in which the systemic administration of alcohol
resulted in the in-vivo formation of salsolinol in the pVTA which
was connected, in a mechanistic- and time-locked manner, to
increased DA transmission in the AcbSh via μ opioid receptor [41].
In addition, this study also demonstrated that the inhibition of
brain catalase, the enzyme responsible for alcohol oxidation into
acetaldehyde, prevents both the formation of salsolinol in the
pVTA and the increase of DA transmission in the AcbSh [41].
Hence, in order to understand the mechanistic influence of

caffeine on DA-mediated alcohol effects [13, 20], we verified
whether caffeine can affect the ability of alcohol, administered at a
dose that results in mild behavioral activation [42–44], to activate
DA transmission in the AcbSh, and if this influence also involves
the alcohol-dependent generation and availability of salsolinol in
the pVTA [41]. Moreover, since caffeine is an A1R and A2AR
antagonist [45], we also verified if the effects of caffeine could be
attributable to an action onto adenosine receptors. To this end,
the effects of caffeine, and of the selective A1R and A2AR
antagonists, DPCPX and SCH 58261, on alcohol-stimulated DA
transmission in the AcbSh and newly formed salsolinol in the
pVTA [41] were simultaneously investigated through in-vivo dual
probe brain microdialysis. Additionally, a catalase-mediated
synthesis of salsolinol was set up, in-vitro, to verify whether
caffeine, similarly to the non-competitive catalase inhibitor 3-
amino-1,2,4-triazole (3AT), could prevent the formation of
salsolinol by directly inhibiting the enzyme. Moreover, to further
characterize the mechanism of action of caffeine on alcohol-
mediated stimulation of mesolimbic DA neurons, in-vitro patch-
clamp recordings from pVTA slices were performed. Additionally,
to verify whether caffeine could also show effects unrelated to
salsolinol generation, we verified its activity on the enhancement
of mesolimbic DA transmission mediated by exogenous salsolinol,
as well as by another μ receptor agonist, morphine. Finally, we
also performed region specific untargeted metabolomics of the
pVTA in alcohol-treated rats, with and without caffeine pre-
treatment, to detect changes in the biochemical profiles that

might also be related to the stimulatory effects of alcohol on
mesolimbic DA function.

MATERIALS AND METHODS
Animals
Male Sprague Dawley rats weighing 275–325 g (8–12 weeks old, N= 161)
(Charles River, Calco, Italy; San Diego, California, US) were used. Subjects
had access to water and food ad libitum. All animals have been handled
1 week before the experimental procedures, and every effort was made to
minimize suffering and reduce the number of animals used. Moreover, the
present research complies with the commonly accepted ‘3Rs’. For all the
experimental procedures, subjects were randomly assigned to the
experimental groups.

Drugs
Alcohol 1 g/kg (5.8 mL/kg) (Sigma-Aldrich, Milan, Italy) 20% (v/v) in water
was administered intragastrically (i.g.). Caffeine (3 and 15mg/kg) (Sigma-
Aldrich, Milan, Italy) was dissolved in saline (3mL/kg) and administered
intraperitoneally (i.p.) 20 min before water or alcohol or dissolved in
normal Ringer (see below) to 10 µM to be delivered by reverse dialysis in
the pVTA, starting 30min before water or alcohol. DPCPX and SCH 58261
(Tocris, Bristol, UK) were suspended in saline with 0.3% Tween-80 and in
0.5% methyl cellulose, respectively. Both drugs were administered i.p., at
the dose of 2 mg/kg, 20 min before water or alcohol. (±)-Salsolinol (Santa
Cruz Biotechnology Inc., Dallas, TX, United States) was dissolved in normal
Ringer (see below) to 10 nM and delivered by reverse dialysis in the pVTA.
The doses and the concentrations of alcohol [40, 41, 46–49], caffeine
[10, 13, 24], DPCPX [50], SCH 58261 [51], salsolinol [37, 40, 52] and
morphine [40] were selected based on previous literature.

Microdialysis experiments
Vertical probes, prepared as previously reported [53], were stereotaxically
implanted in the pVTA and AcbSh according to the rat brain atlas of
Paxinos and Watson (1998) [54]: AP: −5.8 mm and ML: ±0.5 mm from
bregma and DV: −8.0 mm from dura, for the pVTA; AP: 1.8 mm and ML:
±1mm from bregma and DV: −7.6 mm from dura, for the AcbSh (see
Supplementary Fig. 2 for histology). Probes were implanted ipsilaterally, at
random distribution between left and right brain sides. The location of the
probes was reconstructed and referred to the rat brain atlas plates [54]
through histological analysis. On the experiment day, pVTA and AcbSh
probes were connected to an infusion pump and perfused with normal
Ringer (in mM: 147 NaCl, 4 KCl, 2.2 CaCl2) at flow-rate of 1 μl/min. Dialysate
samples (10 μL) were injected without purification into a high-performance
liquid chromatograph (HPLC) to simultaneously quantify salsolinol (from
pVTA samples) and DA (from AcbSh samples) as previously described [41].
Sensitivity of the assay was 5 femtomoles/sample for both pVTA and
AcbSh samples. A detailed timeline of microdialysis related experimental
procedure is available in the Supplementary Information (Supplementary
Fig. 1A).

Electrophysiological experiments
Rat brain slices were prepared as previously described [55]. In brief, animals
were decapitated under 5% isoflurane anesthesia. Brains were harvested
and transferred to a modified ice-cold artificial cerebrospinal fluid (aCSF)
solution containing (in mM): 220 sucrose, 2 KCl, 0.2 CaCl2, 6 MgSO4, 26
NaHCO3, 1.3 NaH2PO4, and 10 D-glucose (pH 7.4, adjusted by aeration with
95% O2 and 5% CO2). Horizontal brain slices containing the pVTA were
sectioned (260 μm) in ice-cold modified aCSF using a Leica VT1200S
vibratome (Leica, Heidelberg, Germany). Slices were transferred to a nylon
mesh immersed in standard aCSF containing (in mM): 126 NaCl, 3 KCl, 2
CaCl2, 1 MgCl2, 26 NaHCO3, 1.25 NaH2PO4, and 10 D-glucose (pH 7.4,
adjusted by aeration with 95% O2 and 5% CO2). After incubation for at
least 40 min at 35 °C, followed by at least 1 h at room temperature, the
hemi-slices were transferred to the recording chamber and continuously
perfused with standard aCSF at a flow-rate of ~2mL/min. The bath
temperature was maintained at 33 °C for all recordings.
Patch-clamp recordings from pVTA dopaminergic neurons were

performed as previously described [55]. Recording pipettes were prepared
from borosilicate capillaries with an internal filament using a P-97 Flaming
Brown micropipette puller (Sutter Instruments, Novato, CA, USA). The
resistance of the pipettes ranged from 4.5 to 6.0 MΩ when they were filled
with the following solution (in mM): 135 potassium gluconate, 10 MgCl2,
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0.1 CaCl2, 1 EGTA, 10 Hepes-KOH (pH 7.3), and 2 ATP (disodium salt).
Signals were recorded with an Axopatch 200-B amplifier (Axon Instruments
Inc., San Jose, CA, USA), filtered at 2 kHz, and digitized at 5 kHz. The
pClamp 9.2 software (Molecular Devices, Union City, CA, USA) was used to
measure and analyze the firing rate and other membrane kinetic
parameters of pVTA neurons and the occurrence of HCN-mediated Ih
currents (see below). The cell-attached configuration was used to monitor
the spontaneous and pharmacologically conditioned firing rate of DA
neurons. After obtaining a pipette-membrane seal with a GΩ resistance, at
least 10 min were allowed before recording to obtain a stable and regular
spontaneous firing rate. In addition, the whole-cell configuration was
obtained at the end of each recording to determine the presence of Ih
currents, to confirm the identity of pVTA DA neurons [56]. Accordingly, in
our experimental conditions, identified pVTA DA neurons showed both a
robust Ih (mean amplitude: −134.4 ± 15 pA, n= 60) in response to a single
hyperpolarizing voltage step, from −65 to −115mV, and a spontaneous
regular firing rate of action potentials (4.26 ± 1.3 Hz n= 30). In each
recording, after 3 min of recording a stable basal firing rate, different drugs
were perfused: 60 mM alcohol (5 min), 10 μM caffeine (10min), 10 nM
salsolinol (10 min), 10 μM SCH 58261 (10min), 10 μM DPCPX (10min), and
1 μM morphine (10min). A detailed timeline of electrophysiological related
experimental procedure is available in the Supplementary Information
(Supplementary Fig. 1B).

In vitro synthesis of salsolinol
The protocol followed to synthesize salsolinol was an adaptation of
Akbayeva et al. [57] to obtain a catalase-mediated oxidation of alcohol into
acetaldehyde and the production of salsolinol in presence of DA via Pictet-
Spengler reaction. The blank consisted of bovine catalase (Sigma-Aldrich,
Italy) at 0.33mg/mL (666.67-1666.67 units/mL) and DA hydrochloride
(Sigma Aldrich, CAS No. 62-31-7) at 1.5 mM dissolved in PBS. Triplicates of
blank, blank + 0.05 M catalase inhibitor 3AT (Sigma Aldrich, Italy), and
blank + 0.05 M caffeine (Sigma Aldrich, Italy) were kept in an agitator at
37 °C for 20min. After that, PBS or 1mM alcohol in PBS+ 0.06 M hydrogen
peroxide (Sigma Aldrich, Italy) in PBS were added to the solutions and the
samples were placed back in an agitator at 37 °C for additional 30min. The
reactions were then quenched with formic acid (FA, final concentration 1%
v/v). The same steps were also followed using a more diluted catalase
solution (0.0033mg/mL or 6.67–16.67 units/mL). Samples were centrifuged
at 4 °C for 15min at 14,000 × g, and the supernatant was collected and
diluted 1:1000 in LC graded H2O before untargeted metabolomics analysis.

pVTA harvesting and sample preparation
Rats (N= 36) were randomly divided into 4 experimental groups: saline-
water, saline-alcohol, caffeine-water, caffeine-alcohol. Subjects received
pre-treatment with saline or caffeine i.p. (15mg/kg). Twenty minutes after
pre-treatment, rats were treated with water or alcohol (1 g/kg) i.g. and
returned to their home cages. After 30min from alcohol treatment, rats
were decapitated under 5% isoflurane deep anesthesia, brains were
removed and pVTA from both hemispheres harvested, weighed, and
immediately frozen in dry ice. Pre-chilled LC graded 50% MeOH:H2O
containing 1 µM sulfadimethoxine, as an internal standard, was added to
each pVTA sample to obtain a final 1:20 w/v ratio. One 5mm stainless steel
bead was added to each sample before homogenization at 25 Hz for 5 min
(TissueLyser II, Qiagen). Samples were left to incubate for 1 h at 4 °C before
centrifugation at 14,000 × g for 15 min at 4 °C. In separate Eppendorf’s
tubes, 900 µL of supernatant was collected and added to 180 µL of FA
(500 nM). Samples were then centrifuged again for 10min at 14,000 × g
and 4 °C. The collected supernatant (1 mL) was then dried overnight in a
speed vacuum concentrator. Samples were stored at −80 °C and on the
day of the untargeted metabolomics experiments were reconstituted in
200 µL of 50% acetonitrile (ACN) and vortexed.

Untargeted metabolomics and in vitro synthesis of salsolinol
experiments
For the metabolomics experiments, a Vanquish ultra-high performance
liquid chromatography (UHPLC) system coupled to a Q Exactive
quadrupole orbitrap mass spectrometer (Thermo Fisher Scientific, Wal-
tham, MA, USA) was used. Samples (5 μL) were injected into a Kinetex C18
column (50 × 2.1 mm, 1.7 µM particle size, 100 A pore size; Phenomenex,
Cat#00B-4475-AN) at 30 °C column temperature. A flow rate of 0.5 mL/min
was used for both the in-vitro synthesis of salsolinol and pVTA experiments
with elution carried out using LC grade H2O (A) and 100% ACN (B), both

acidified with 0.1% FA Different elution gradients were used. For the
in vitro synthesis of salsolinol experiment: 0–1min 0.1% B, 1–3min
0.1–40% B, 3–3.5 min 40–100% B, 3.5–5min 100% B, 5–5.1 min 100–0.1% B,
5.1–6.5 min 0.1% B; for the pVTA experiment: 0–1min 5% B, 1–7min
5–100% B, 7–7.5 min 100% B, 7.5–8min 100–5% B, 8–10min 5% B.
The mass spectrometer was operated in data-dependent acquisition

(DDA) mode, and it was used in an m/z range from 100 to 1500 Da in the
pVTA experiments and 50 to 750 Da in the in-vitro synthesis of salsolinol
experiment, operating in positive ionization mode. Full scan MS1 was
performed at 1e6 with a resolution of 35,000 and 70,000 for the pVTA and
in-vitro synthesis of salsolinol experiment respectively, with a maximum
ion injection time (IT) of 100ms. MS2 experiments were performed at a
resolution of 17,500 with maximum IT of 100ms for pVTA and 50ms for
catalase, and TopN was used for the 5 most abundant precursor ions per
MS2. The MS2 precursor isolation window was set to 1m/z with no offset.
The step collision energy was set to 20 eV, 30 eV, and 40 eV.

Metabolomics data processing
Acquired .raw files were converted into open-access .mzML format using
MSConvert 3.0.23 [58]. Both .raw and .mzML files have been deposited and
can be downloaded from public metabolomics repository GNPS/MassIVE
(https://massive.ucsd.edu/) under the accession codes MSV000094216
(pVTA experiment) and MSV000094218 (in-vitro synthesis of salsolinol
experiment). Feature detection and extraction was performed using
MZmine 3.9 [59]. Briefly, mass detection noise for MS1 and MS2 was set
at 5e4 and 1e3 respectively. ADAP chromatogram builder parameters were
set as 4 minimum consecutive scans, 8e4 minimum absolute height, and
10 ppm m/z tolerance. Local minimum feature resolver module was set at
85% chromatographic threshold, 0.05 minimum search range RT, and
1.70 minimum ratio of peak top/edge. The 13C isotope filter was applied
with an m/z tolerance of 5 ppm and a retention time tolerance of 0.03min.
Features were aligned using a m/z tolerance of 5 ppm and retention time
tolerance of 0.2 min, with weight for m/z over RT was set to 3:1. Features
not present in at least two samples and without MS2 acquisition were
discarded. Finally, a feature list and two .mgf files, one for molecular
networking [60] and one for SIRIUS [61], were exported for downstream
analysis.

Metabolomics data analysis
Feature-based molecular networking analyses [62] were performed on
GNPS (https://gnps.ucsd.edu/) and can be accessed for both pVTA (https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=abb23428a158496b8bd0c689a
43d2940) and catalase (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=60b61623c3874081a9b263371b03d49a) experiments. Briefly, toler-
ances for both precursor ion and fragment ions were set at 0.02 Da. For
networking, a minimum modified cosine score of 0.7 and minimum
number of matching peaks of 3 were set. Same parameters were set for
library search. Generated annotation table was used for subsequent
analysis and network were visualized using Cytoscape 3.10 [63].
Compound classes were predicted using CANOPUS [64] in SIRIUS 5.8.5.
For the in-vitro synthesis of salsolinol experiment, a targeted peak
extraction was also performed using Skyline v23.1 [65]. Feature list was
imported in R 4.2.2 (The R Foundation for Statistical Computing, Vienna,
Austria) for univariate and multivariate analyses. Feature list was first
cleaned though blank filtering, only features with peak area ratio >5
compared to blanks were kept. Data quality was assessed calculating
coefficient of variance of internal standard in the samples and of the
6 standards present in the quality control samples (QCmix). Principal
component analysis (PCA), via ‘mixOmics‘ v 6.22 package, was used to
inspect data and visualize possible outliers. Before ordination, data was
robust center log ratio transformed using ‘vegan‘ v 2.6. Batch effects were
corrected using the removeBatchEffect function of ‘limma‘ v 3.54.
Supervised multivariate partial least square discriminant analysis (PLS-
DA) models were generated using ‘mixOmics‘ and performance (classifica-
tion error rate) was assessed using a 4-folds cross validation.

Statistical analysis
Statistical analysis was carried out either via Statistica 8.0 (StatsSoft Inc.,
Tulsa, OK, USA) or PRISM, GraphPad 8 Software (San Diego, CA, USA) with
significance set for all the experiments at p < 0.05. For microdialysis
experiments, basal dialysate salsolinol and DA were calculated as the
average ± SEM of the last three consecutive samples differing by no more
than 10%, collected during the time preceding each treatment. Changes in
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dialysate salsolinol and DA were expressed as fmol/10 μl of dialysate and
were analyzed by two- or three-way Analysis of Variance (ANOVA) with
repeated measures over time. For electrophysiology experiments, all data
are reported as mean ± SEM. Before ANOVA analyses, the normal
distribution of data was evaluated by skewness and kurtosis, and
homoscedasticity via the Bartlett test. Comparisons among experimental
conditions were obtained using at least n= 4 rats/group and was
performed by one-way ANOVA followed by Tukey’s post hoc test. Detailed
statistical analysis for microdialysis and electrophysiology experiments is
available in Supplementary Tables 1 and 2.

RESULTS
Effects of caffeine and adenosine receptor antagonists on
alcohol-elicited pVTA salsolinol formation and AcbSh DA
increase in vivo
Simultaneous dual probe in vivo brain microdialysis was used to
verify the effects of caffeine and adenosine receptors antagonists
on alcohol-dependent salsolinol generation, in the pVTA, and DA
transmission, in the AcbSh (Fig. 1A). Alcohol elicited the formation
of salsolinol in the pVTA and stimulated DA transmission in the
AcbSh and caffeine significantly prevented these effects (Fig. 1B,
C, three-way ANOVA followed by Tukey’s post hoc test). No
production of salsolinol was observed after alcohol administration
also when DPCPX or SCH 58261 were used as pre-treatment (Fig.
1D, Three-way ANOVA, p > 0.05). In addition, caffeine and SCH
58261, but not DPCPX, prevented the increase of DA after alcohol
administration (Fig. 1B–D, Three-way ANOVA followed by Tukey’s
post hoc test). In vivo brain microdialysis was also used to verify
the effect of intra-pVTA caffeine on alcohol-dependent salsolinol

generation in the pVTA and DA transmission in the AcbSh.
Salsolinol and DA concentrations during reverse dialysis applica-
tion of caffeine in the pVTA failed to reveal any effect of alcohol
(Fig. 1E, Two-way ANOVA p > 0.05). Given that local application of
caffeine by reverse dialysis prevented both systemic alcohol-
dependent salsolinol formation in the pVTA and DA increase in
the AcbSh, these results suggest that the systemic effects of
caffeine might be mediated by a direct action on the pVTA.
Additionally, an in vitro synthesis of salsolinol was set up to

verify whether caffeine could prevent salsolinol formation acting
as a catalase inhibitor. Specifically, the ability of the catalase-
inhibitor 3AT and caffeine to prevent catalase-mediated alcohol
oxidation to acetaldehyde and, consequently, its condensation
with DA to generate salsolinol were investigated (Fig. 2A, B). As
expected, salsolinol formation was catalase-dependent, as low-
ering the units/mL of the enzyme also reduced salsolinol
abundance (Supplementary Fig. 3A, One-way ANOVA followed
by Tukey’s post hoc test). Caffeine, differently from 3AT, did not
prevent the formation of salsolinol (Supplementary Fig. 3A, One-
way ANOVA followed by Tukey’s post hoc test), ruling out the
possibility of a direct inhibitory activity on catalase.
In vivo brain microdialysis was also used to verify the effects of

caffeine on salsolinol bioavailability in the pVTA (intended as the
relative amount of salsolinol detected in the pVTA after its
perfusion) and on salsolinol-induced DA transmission in the
AcbSh. The systemic administration of caffeine failed to signifi-
cantly affect pVTA salsolinol concentrations during pVTA perfusion
with exogenous salsolinol (Fig. 1F, Two-way ANOVA p > 0.05),
pointing out that caffeine does not affect salsolinol bioavailability.

Fig. 1 Effects of caffeine, DPCPX, and SCH 58261 on alcohol-induced pVTA salsolinol formation and AcbSh DA increase, and effects of
caffeine on salsolinol bioavailability and AcbSh DA increase during pVTA perfusion with salsolinol. A Schematic representation of dual
probe in vivo brain microdialysis procedures, sampled areas and neurotransmitters recorded. Effects of i.p. administration of Caf (3 mg/kg) (B),
Caf (15 mg/kg) (C), DPCPX or SCH (D) and of pVTA perfusion with Caf (E) on pVTA SALS formation and AcbSh DA enhancement induced by i.g.
EtOH, and (F) effects of i.p. administration of Caf (15mg/kg) on pVTA SALS concentration and ipsilateral AcbSh DA transmission during pVTA
perfusion with SALS. Horizontal bars depict the duration and content of the pVTA perfusion along the experiments. Vertical arrows indicate
the last pVTA or AcbSh microdialysis sample before Veh, Caf, DPCPX or SCH and water or EtOH administrations. Filled symbols indicate
samples representing p < 0.001 vs. basal; **p < 0.01 vs. Caf (3 mg/kg)+ EtOH, vs. Caf (15mg/kg)+ EtOH, and vs. Caf (15mg/kg)+ SALS;
*p < 0.05 vs. DPCPX+H2O. Veh-H2O (n= 4); Veh-EtOH (n= 6); Caf (3 mg/kg)-H2O (n= 4); Caf (15mg/kg)-H2O (n= 4); Caf (3 mg/kg)-EtOH
(n= 11); Caf (15 mg/kg)-EtOH (n= 12); DPCPX-H2O (n= 3); SCH-H2O (n= 3); DPCPX-EtOH (n= 5); SCH-EtOH (n= 6); Caf (10 μM)-H2O (n= 3);
Caf (10 μM)-EtOH (n= 8); Veh-SALS (n= 3); Caf (15mg/kg)-SALS (n= 5). Veh Saline, Caf Caffeine, H2O Water, EtOH Alcohol, SCH SCH 58261,
SALS Salsolinol.
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However, caffeine pre-treatment significantly reduced the increase
of AcbSh DA induced by reverse dialysis of exogenous salsolinol in
the ipsilateral pVTA (Fig. 1F, Two-way ANOVA followed by Tukey’s
post hoc test). These last results suggest that other mechanisms of

action in the pVTA, in addition to the prevention of alcohol-
induced salsolinol formation, should be envisioned to explain
caffeine inhibitory effects on alcohol-induced increase of meso-
limbic DA transmission.

Fig. 2 Effects of alcohol, caffeine, salsolinol, and morphine on the firing rate of rat pVTA DA neurons. A, B Representative traces of
spontaneous firing recorded from single DA neurons before (baseline), during, and after (washout) bath application of 60mM EtOH (A), 10 μM Caf
(B), of 10 nM SALS (J), and of 1 μM Mor (N). Scale bar: 1 s. Graphs showing the effects of EtOH (C), Caf (D) and their combination (E), of the
combination of 10 μM SCH (G) or 10 μM DPCPX (H) with 60mM EtOH, of 10 nM SALS alone (K) and in association with 10 μM Caf (L), and of 1 μM
Mor alone (O) and in association with 10 μM Caf (P) on the firing rate of DA neurons. Data are expressed as mean ± SEM. The bar graphs summarize
the percentage of change from baseline produced by EtOH and Caf alone and by their combination (n= 33 neurons from 11 rats) (F), the effects of
SCH and DPCPX on the stimulatory effect of EtOH (n= 36 neurons from 18 animals) (I), the effects of SALS and Caf when bath perfused alone or
during their association (n= 22 neurons from 11 rats) (M), the effects of Mor alone and in combination with Caf (n= 22 neurons from 11 rats) (Q).
One-way ANOVA, *p < 0.05 versus baseline; #p< 0.05 versus DPCPX alone. EtOH Alcohol, Caf Caffeine, SCH SCH58261, SALS Salsolinol, Mor Morphine.
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Effects of caffeine on the excitation of pVTA DA neurons
induced by alcohol, morphine, and salsolinol: in vitro
electrophysiological experiments
To further characterize the effects of caffeine on alcohol-induced
stimulation of mesolimbic DA signaling, in vitro patch-clamp
recordings from pVTA slices were performed. As expected from
previous reports [47–49, 66], acute perfusion of 60mM alcohol
significantly increased (40.1 ± 4.4%) the firing rate of pVTA DA
neurons, an effect that was promptly reversed by drug washout
(Fig. 2A, C, F, one-way ANOVA followed by Tukey’s post hoc test).
In contrast, 5 min of acute perfusion with 10 µM caffeine
significantly decreased (−34.3 ± 7.7%) DA neuron firing rate (Fig.
2B, D, F, one-way ANOVA followed by Tukey’s post hoc test). The
modulatory effect of alcohol on the firing rate of pVTA DA neurons
was completely suppressed in the presence of 10 µM caffeine (Fig.
2E, F, one-way ANOVA followed by Tukey’s post hoc test).
In vitro patch-clamp recordings from pVTA slices were also

performed to test whether this effect of caffeine was mediated by
an antagonistic component on A1R or A2AR. Independent bath
perfusion with either antagonist decreased the firing rate of pVTA
DA neurons (Fig. 2G–I, one-way ANOVA followed by Tukey’s post
hoc test). Interestingly, while the effect of alcohol was completely
blocked by the A2AR antagonist SCH 58261 (Fig. 2G, I, one-way
ANOVA followed by Tukey’s post hoc test), it was indistinguish-
able from its effect when tested alone in presence of DPCPX (Fig.
2H, I, one-way ANOVA followed by Tukey’s post hoc test),
suggesting that the ability of caffeine to suppress the modulatory
effect of alcohol on DA firing rate is mediated by an action on
A2AR, but not A1R.
Finally, in vitro patch-clamp recordings were performed to

investigate whether caffeine could interfere with the positive
modulatory effect of salsolinol or morphine on DA neuron firing
rate. Accordingly, the acute perfusion of 10 nM salsolinol
significantly increased (45.1 ± 5.2%) the firing rate in pVTA DA
neurons, an effect that was reversed 5min after of drug removal
(Fig. 2J, K, M, one-way ANOVA followed by Tukey’s post hoc test).
The effect of salsolinol on DA neuron firing rate was completely
suppressed in the presence of caffeine (Fig. 2L, M, one-way
ANOVA followed by Tukey’s post hoc test), reinforcing the results
obtained in-vivo (Fig. 1F). Similarly, the acute perfusion of 1 μM
morphine caused a strong increase (75.1 ± 15.2%) in firing rate in
pVTA DA neurons, which was easily washed out after 5 min after of
drug removal (Fig. 2N, O, Q, one-way ANOVA followed by Tukey’s
post hoc test). The modulatory effect of morphine was also
completely abolished in the presence of caffeine (Fig. 2P, Q, one-
way ANOVA followed by Tukey’s post hoc test). These last results
confirm that, in addition to the prevention of alcohol-induced
salsolinol formation, other mechanisms must be involved in
caffeine’s inhibitory effects on alcohol-induced increase of
mesolimbic DA transmission.

Effects of caffeine on the pVTA biochemical profiles in alcohol-
treated rats
In order to detect additional mechanisms of action of caffeine
independent from salsolinol formation and bioavailability,
untargeted metabolomics analysis of rats pVTA was used to
assess potential changes in the biochemical profiles in response
to alcohol or water treatment, with or without caffeine pre-
treatment. Unsupervised PCA and supervised PLS-DA of all the
analyzed samples revealed a stronger effect of pre-treatment
over treatment (Fig. 3A, B, PERMANOVA pre-treatment R2= 0.03
and p= 0.03; PLS-DA pre-treatment CER= 0.23; PLS-DA treat-
ment CER= 0.40). More specifically, alcohol administration
moderately affected pVTA biochemical profiles, pairwise PLS-
DA model saline-water vs saline-alcohol (CER= 0.38), mostly
influencing molecules involved in lipid signaling and energy
metabolism, such as phosphatidylcholines (PCs), lyso-PCs, fatty
amides, and carnitines. Alcohol increased the abundance of

stearoyl-myristoyl-glycero-phosphocholine, PC-DAG, and palmi-
toyl-hydroxy-glycero-phosphoethanolamine, and decreased
Lyso-PC (22:6), oleamide, spermine, indole-acetyl-glutamate
and three predicted acyl-carnitines (Fig. 3C and Supplementary
Table 3). Interestingly, combined administration of both alcohol
and caffeine, pairwise PLS-DA model saline-water vs caffeine-
alcohol (CER= 0.27), did not highlight differences in stearoyl-
myristoyl-glycero-phosphocholine, PC-DAG, Lyso-PC (22:6),
oleamide and in two of the predicted acyl-carnitines, suggest-
ing that caffeine prevented alcohol-induced specific alterations
of these molecules (Fig. 3C). Pairwise PLS-DA model saline-
water vs caffeine-alcohol (CER= 0.27) also highlighted an
increase of indole amino acids, phenylalanine, tryptophan,
tyrosine, arginine, methionine, PCs (hexadecanoyl-, hexadecyl-,
octadecanoyl-, stearoyl-hydroxy- glycero-phosphocholine) and
phosphatidylethanolamines (PEs) (palmitoyl-hydroxy-glycero-
phosphoethanolamine and stearoyl-hydroxy-glycero-phos-
phoethanolamine) and a decrease in spermine and spermidine,
oleoylethanolamine, arachidonoyl thio-PC, adenosine, and
acetyl-carnitine (Supplementary Table 4).
Pre-treatment with caffeine had the biggest impact on the

pVTA biochemical profiles, pairwise PLS-DA model saline-water
vs caffeine-water (CER= 0.18). Caffeine increased the abun-
dance of several amino acids, such as the indole amino acids,
phenylalanine, tryptophan, and tyrosine, methionine, arginine,
and gamma-glutamylglutamate, glycerophospholipids, includ-
ing different PCs (heptadecanoyl-, hexadecyl-, octadecanoyl-,
stearoyl-hydroxy- glycero-phosphocholine) and PEs, such as
palmitoyl-hydroxy-glycero-phosphoethanolamine and stearoyl-
hydroxy-glycero-phosphoethanolamine, sphingolipids, like
tetracosenoyl-sphingenine and erythro-sphinganine, several
fatty amides, including oleoylethanolamine and predicted ones,
inosine, and 6-oxopurine. On the contrary, the abundance of
adenosine and adenosine monophosphate were reduced by
caffeine, potentially as a result to its ability to boost ATP
production and energy expenditure [67–70]. Also the abun-
dance of indole-acetyl-glutamate, and of arachidonoyl thio-PC
appeared to decrease in response to caffeine. Moreover, caffeine
generally reduced the carnitine pool: accordingly, L-carnitine,
acetyl-carnitine, butyryl-carnitine, lauroyl-carnitine and three
predicted ones all decreased (Fig. 3D and Supplementary Table
5). However, comparison of caffeine or saline pretreatment
under alcohol treatment, pairwise PLS-DA model saline-alcohol
vs caffeine-alcohol (CER= 0.36) revealed that caffeine had a
completely opposite effect on carnitines under alcohol treat-
ment. Accordingly, L-carnitine, butyrylcarnitine, arachidonoyl-
carnitine, and other four predicted carnitines increased with
caffeine pre-treatment under alcohol treatment (Fig. 3C). These
last results suggest that caffeine might affect carnitines pool
differentially depending on the presence of alcohol.
Finally, pairwise PLS-DA model saline-alcohol vs caffeine-alcohol

(CER= 0.36) also revealed that caffeine was responsible for
increased abundance of indole amino acids, phenylalanine,
tryptophan, and tyrosine, 6-oxopurine, niacinamide/nicotinamide
and arachidonoyl thio-PC, while it decreased the abundance of
histidine, acetyl-arginine, acetyl-carnitine, 13-docosenamide, and
some PCs, such as stearoyl-myristoyl- and octadecanoyl- glycero-
phosphocholine (Supplementary Table 6).

DISCUSSION
Alcohol consumption is one of the leading risk factors for
premature death and disability, contributing to approximately 2.5
million deaths each year worldwide [71]. The ability of alcohol to
stimulate mesolimbic DA function [72], as a requirement to exert
its reinforcing effects [14, 41, 46, 66, 73–75], has critical
implications for the development of alcohol use disorder (AUD)
[76, 77]. Recent studies have shown that alcohol excites DA
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Fig. 3 Effects of caffeine and alcohol on the biochemical profiles of rats pVTA. A Unsupervised PCA of complete dataset highlighted pre-
treatment effect on pVTA biochemical profiles (PERMANOVA, R2= 0.036 and p= 0.03). B Supervised PLS-DA models of complete dataset
showed a stronger effect of pre-treatment over treatment. Classification error rate (CER) calculated with 5-fold cross validation and 999
permutations. VIP scores of pairwise PLS-DA models Saline-Water v Saline-Alcohol, Saline-Water v Caffeine-Alcohol and Saline-Alcohol v
Caffeine-Alcohol (C) and Saline-Water v Caffeine-Water and Caffeine-Water v Caffeine-Alcohol (D) are plotted for molecules of interest.
Stratified models performance and features with VIP > 1 are listed in Supplementary Tables 3–6. N= 9 per group. Veh Saline, Caf Caffeine, H2O
Water, EtOH Alcohol.
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neurons in the pVTA [40] and stimulates DA transmission in the
AcbSh acting as the pro-drug of salsolinol [41]. Caffeine is a
psychopharmacological agent devoid of addictive potential
[10, 14, 78, 79] and equally consumed worldwide as alcohol.
The widespread diffusion of these two substances in the last
decades has raised several questions on the clinical impact of
their simultaneous consumption. The present study was aimed at
characterizing the consequences of the interaction of a behavio-
rally relevant acute dose of each of these substances on DA
function. The results reveal that the administration of caffeine
prior to alcohol prevents its ability to generate salsolinol in the
pVTA and, accordingly, to increase AcbSh DA transmission
without showing dose-dependency. This outcome suggests that
caffeine might be preventing the ability of alcohol to increase
AcbSh DA by interfering with the generation and/or with the
bioavailability of salsolinol in the pVTA. However, as far as the
reduction of the bioavailability is concerned, this possibility can
be ruled out since salsolinol detection does not significantly
differ, with and without systemic administration of caffeine,
during pVTA perfusion with salsolinol. Moreover, differently from
the catalase inhibitor 3AT, caffeine does not inhibit catalase-
dependent formation of salsolinol in-vitro. Consequently, the
possibility that caffeine affects salsolinol generation directly
inhibiting the enzyme catalase, whose activity is necessary to
salsolinol formation [40, 41], was also ruled out. Therefore, we
hypothesized that caffeine could prevent alcohol stimulation on
pVTA DA neurons, as well as alcohol-dependent generation of
pVTA salsolinol and AcbSh DA transmission, via an adenosine
receptor-mediated mechanism. Notably, as far as the generation
of salsolinol is concerned, this was the case, since both the A1R
and A2AR antagonists, DPCPX and SCH 58261, prevented the
generation (and detection) of salsolinol in pVTA after alcohol
administration. However, the administration of A1R and A2AR
antagonists prior to alcohol revealed that these receptors
differentially affect alcohol-elicited increases of AcbSh DA.
Accordingly, SCH 58261, but not DPCPX, prevents the stimulation
of AcbSh DA transmission by alcohol. This latter observation
appears fully in agreement with the electrophysiological record-
ings with A1R and A2AR antagonists.
However, microdialysis of the pVTA shows that salsolinol is not

entirely absent after alcohol administration with DPCPX, although
not significantly different from baseline (Fig. 1D). The increase in DA
levels in the AcbSh with DPCPX and alcohol (Fig. 1D) is also delayed
and less pronounced compared to without DPCPX (Fig. 1B).
According to Kaplan et al., intra-VTA A1R agonism suppresses
morphine’s effects on motor activity and VTA projections’ neural
activation, including Fos immunoreactivity in the nucleus accum-
bens [80]. Conversely, A1R antagonism by DPCPX might enhance
VTA DA neuron activation projecting to the AcbSh given by low
concentrations of salsolinol, which also acts on morphine receptors
[41], explaining the reduced alcohol-induced VTA DA neuron firing
with DPCPX (Fig. 2H, I) and the slower DA increase in the AcbSh
(Fig. 1D). Additionally, acute alcohol administration increases
extracellular adenosine by impairing its uptake via ENT1 [81, 82].
Without adenosine receptor modulators, this increase would inhibit
DA release via A1R in the accumbens [83]. However, blocking A1R by
DPCPX might prevent this inhibition. Moreover, alcohol-induced
increased adenosine levels may overstimulate A2 receptors,
reducing DA affinity for D2 receptors [84], which are autoreceptors
that provide negative feedback on DA synthesis, release, and
promote DA uptake [85]. These effects could lead to DA
accumulation. Moreover, A1R antagonism directly enhances DA
release [83]. At the dose used, DPCPX alone might not be capable
to induce DA release (Fig. 1D). Nevertheless, combined effects of
DPCPX and low salsolinol in the VTA, with DPCPX and EtOH in the
AcbSh, might lead to mild DA release and accumulation, and
consequent increase, observed in the AcbSh (Fig. 1D, right panel),
despite insignificant salsolinol in the VTA (Fig. 1D, left panel).

However, the observation that caffeine reduces the stimulation
in-vivo (AcbSh DA, by reverse dialysis) and in-vitro (pVTA DA
neuronal firing) by exogenous salsolinol, as well as the stimulation
of pVTA DA neuronal firing in-vitro by morphine, confirms that
salsolinol generation-independent mechanisms should be envi-
sioned. Thus, since the local application of caffeine in the pVTA
results in the same effects of the systemic one, it was reasonable
to look for these additional biological mechanisms in the same
region.
Accordingly, untargeted metabolomics analysis of pVTA lysates

points out that both alcohol and caffeine influence the abundance
of various lipids, but also that caffeine prevents alcohol-induced
alterations in the concentration of most of these molecules. In
addition to their structural function in cellular membranes, lipids
in the brain play crucial roles in regulating various physiological
processes, including signal transduction [86], synaptic plasticity
[87], and the release of neurotransmitters [88]. The role of lipids in
addiction is well known [89, 90] and alcohol [91–93], as well as
other addictive substances including morphine [94] or cocaine,
can alter their signaling. Lipid signaling is involved specifically in
DA mesolimbic transmission [95], by regulating reinforcing and
motivational aspects of feeding [96], but also VTA DA neurons
firing [97, 98]. One of the lipids reduced by alcohol in the present
study is oleamide. Oleamide is an endogenous fatty acid amide,
derived from oleic acid, which can be synthesized in the
mammalian nervous system and, among other effects, enhances
the amplitude of currents gated by GABAA receptors [99]. Notably,
we recently demonstrated that GABAA agonists [100], similarly to
caffeine [13], prevent alcohol- and morphine-induced conditioned
place preference, as well as pERK increase in the AcbSh [101].
Interestingly, recent studies revealed that intra-VTA administration
of oleic acid inhibits DA tone [97], and that oleamide, acting as
PPARα/CB1 receptor dual ligand, reduces alcohol intake and
alcohol and oxycodone self-administration in rats [102]. In the
present study, caffeine prevents alcohol-induced reduction in
oleamide. Moreover, caffeine also prevents alcohol-induced
changes in PC and Lyso-PC which activate PPARα/γ in addition
to other signaling pathways [103], and have been suggested as
potential targets for cocaine addiction [104]. Interesting effects of
caffeine were observed also on the carnitine pool. In fact, not only
caffeine seems to prevent alcohol-induced reduction of two
predicted acyl-carnitines, but it also appears to regulate carnitines
abundance bidirectionally depending on the presence of alcohol.
Carnitines are amino acid derivatives essential for the transporta-
tion of fatty acids into the mitochondria [105]. A potentially
therapeutic role of carnitines and acyl-carnitines in AUD has
already been described in rodents [106, 107] and humans [108].
Moreover, previous studies reported that carnitine inhibits
catalase activity and prevents catalase-mediated effects of alcohol
in mice [109, 110]. In the present study, caffeine-induced increase
in carnitine and acyl-carnitines, selectively under alcohol treat-
ment, might have reduced catalase-mediated oxidation of alcohol,
explaining the prevention of salsolinol formation in the pVTA and
justifying the discrepancy between the effects of caffeine on
catalase-mediated salsolinol generation in-vivo (preventive) and
in-vitro (no effect).
In conclusion, the present work reveals for the first time that

caffeine prevents alcohol-induced activation of the mesolimbic DA
pathway. Encouragingly, one of the few FDA-approved drugs for
AUD, the μ receptor antagonist naltrexone (ReVia®; Depade®),
prevents the reinforcing effects of alcohol by interfering with its
enhancement of the mesolimbic DA transmission [111] strength-
ening the potential of caffeine, and more specifically of A2AR
antagonists, for future development of preventive/therapeutic
strategies for AUD. Moreover, not only the stimulation of the
mesolimbic DA pathway is the critical initiating event of the
neurocircuitry of AUD, but also of addiction in general [14, 28, 29]
and, since our results point out that caffeine can also prevent
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mesolimbic DA stimulation by the μ receptor agonists, salsolinol
and morphine, one of the future directions of this study will be to
characterize further its effects on opioids-, as well as other drugs
of abuse. More detailed studies will also be required to explain
how A2AR antagonism elicits its inhibitory activity on alcohol
stimulation as well as the differential effects of A1R blockade on
alcohol-mediated generation of pVTA salsolinol and stimulation of
AcbSh DA, and to interpret the involvement of lipid signaling in
caffeine effects on alcohol activity in the mesolimbic system. One
of the limitations of this study is its exclusive focus on the
mesolimbic DA pathway in alcohol naïve rats, which is only
representative of the initial phase of AUD. We acknowledge the
role of other brain circuits in the onset and self-perpetuating cycle
of AUD, as well as the importance of other stages (i.e. withdrawal,
craving, relapse) of the disease. Hence, future studies are required
to explore the therapeutic potential of caffeine and adenosine
receptor antagonists in both naïve and dependent rats, at
different stages of the disease. Finally, all the subjects were male.
Additional studies on female rats will be necessary to address
eventual sex differences.

DATA AVAILABILITY
The datasets generated and/or analyzed during the current study are available from
the corresponding author on reasonable request.
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