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Abstract. We study this zero-�ux attraction-repulsion chemotaxis model, with linear and superlinear production g for the
chemorepellent and sublinear rate f for the chemoattractant:

(3)


ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) in Ω× (0, Tmax),

vt = ∆v − f(u)v in Ω× (0, Tmax),

0 = ∆w − δw + g(u) in Ω× (0, Tmax).

In this problem, Ω is a bounded and smooth domain of Rn, for n ≥ 1, χ, ξ, δ > 0, f(u) and g(u) reasonably regular functions
generalizing the prototypes f(u) = Kuα and g(u) = γul, with K, γ > 0 and proper α, l > 0. Once it is indicated that any
su�ciently smooth u(x, 0) = u0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0 produce a unique classical and nonnegative solution (u, v, w)
to (3), which is de�ned in Ω × (0, Tmax), we establish that for any such (u0, v0), the life span Tmax = ∞ and u, v and w

are uniformly bounded in Ω × (0,∞), (i) for l = 1, n ∈ {1, 2}, α ∈ (0, 1
2

+ 1
n

) ∩ (0, 1) and any ξ > 0, (ii) for l = 1, n ≥ 3,

α ∈ (0, 1
2

+ 1
n

) and ξ larger than a quantity depending on χ‖v0‖L∞(Ω), (iii) for l > 1, α ∈ (0, 1
2

+ 1
n

) ∩ (0, 1), any ξ > 0, and
in any dimensional settings. Finally, an illustrative analysis about the e�ect by logistic and repulsive actions on chemotactic
phenomena is proposed by comparing the results herein derived for the linear production case with those in [11].

1. Presentation of the model

This article is dedicated to the following Cauchy boundary problem

(1)



ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) in Ω× (0, Tmax),

vt = ∆v − f(u)v in Ω× (0, Tmax),

0 = ∆w − δw + g(u) in Ω× (0, Tmax),

uν = vν = wν = 0 on ∂Ω× (0, Tmax),

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω̄,

de�ned in a bounded and smooth domain Ω of Rn, with n ≥ 1, χ, ξ, δ > 0 and some functions f = f(s) and g = g(s),
su�ciently regular in their argument s ≥ 0, and further regular initial data u0(x) ≥ 0 and v0(x) ≥ 0. Additionally, the
subscript ν in (·)ν indicates the outward normal derivative on ∂Ω, whereas Tmax the maximum time up to which solutions
to the system are de�ned.

The consideration of model (1) comes, essentially, from a natural coupling of two widely studied chemotaxis systems, largely
employed in biological processes: the classical Keller�Segel model ([8, 9, 10]) idealizing aggregation phenomena in situations
where certain cells (populations, organisms) are attracted by a signal they themselves absorb, and a repulsive counterpart,
where the same cells are repelled in response to another substance emitted by them. More precisely, if u = u(x, t) is used
to denote the population density of these cells at the position x and at the time t, and v = v(x, t) and w = w(x, t) stand,
respectively, for the concentration of the attractive and repulsive chemical signals (chemoattractant and chemorepellent),
problem (1) indicates that: (a) the motion of the cells, inside an insulated domain (zero-�ux on the border) and initially
distributed according to the law of u0, results from the competition between the aggregation/repulsion impact from the cross
terms χu∇v/ξu∇w (increasing for larger sizes of χ and ξ) and the di�usion of the cells (the Laplacian ∆u); (b) the initial
signal v0 is spread, w di�uses as well but v (second equation in (1)) is consumed with a rate f(u) whereas w (third equation)
is proliferated with rate g(u); (c) consumption and production are higher the more the cell density increases.

Purely intuitive considerations (but below we will give precise references) suggest that this interplay between the factors
taking part in model (1) might lead to very di�erent situations for the aforementioned cellular movement: from global
stabilization and convergence to equilibrium of the cell distribution u, to the so-called chemotactic collapse, the mechanism
resulting in aggregation processes for u, eventually blowing up/exploding at �nite time. Mathematically, in the �rst case,
solutions (u, v, w) are de�ned and bounded for all (x, t) in Ω × (0,∞), in the other a �nite time Tmax exists and (u, v, w)
ceases to exist for larger value of Tmax; in particular, the component of the solution associated to the particle density becomes
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unbounded approaching Tmax, with emergencies of δ-formations. In this research we will derive criteria on the data involved
in the initial-boundary value problem (1) ensuring that the life span Tmax of its solutions is in�nity and that, moreover, they
are as well bounded.

2. Some known results. Claim of the main theorems

2.1. A view on the state of the art. In the framework of classical Keller�Segel models, as mentioned above, (1) is a
combination of the signal-production

(2) ut = ∆u− χ∇ · (u∇v) and vt = ∆v − v + u, in Ω× (0, Tmax),

and signal-absorption

(3) ut = ∆u− χ∇ · (u∇v) and vt = ∆v − uv, in Ω× (0, Tmax),

chemotaxis systems, originally derived in [8, 10] respectively. Even though the equation for u is the same, it is conceivable
that the resulting evolution of each initial boundary value problem related to (2) and (3), must di�er from the other, even
for same �xed χ > 0 and initial data u0 and v0. This is essentially justi�ed by the observation that v increases with u in
problem (2), whereas it decreases in (3). Let us present some more details concerning this discussion; in particular, since we
will focus on questions tied to classical solutions, in order to better establish our aims, we select only these references, among
some others.

i) For problem (2), the production of v may break the natural homogenization process of the cells, especially in terms
of the size of χ related to the aggregation impact, the initial mass of the particle distribution, i.e., m =

∫
Ω
u0(x)dx,

and the space dimension. Indeed, if in the one-dimensional setting blow-up phenomena are excluded (see [19]),
in higher dimensions if mχ surpasses a certain critical value mχ, the system might present the aforementioned
chemotactic collapse, whereas for mχ < mχ no instability appears in the motion of the cells. There are many
contributions dedicated to understanding this scenario. In this regard, in [4, 6, 17, 25] (and references therein cited),
the interested reader can �nd pointers to the rich literature dealing with the existence and properties of global,
uniformly bounded or blow-up (local) solutions to the Cauchy problem associated to (2). On the other hand, as
far as nonlinear segregation chemotaxis models like those we are considering, when in problem (2) the production
g(u) = u is replaced by g(u) ∼= ul, with 0 < l < 2

n (n ≥ 1), uniform boundedness of all its solutions is proved in
[13]. Moreover, by resorting to a simpli�ed parabolic-elliptic version in spatially radial contexts, when the second
equation is reduced to 0 = ∆v−µ(t) +g(u), with g(u) ∼= ul and µ(t) = 1

|Ω|
∫

Ω
g(u(·, t)), it is known (see [30]) that the

same conclusion on the boundedness continues to be valid for any n ≥ 1 and 0 < l < 2
n , whereas for l >

2
n blow-up

phenomena may occur. (Let us note that the sole consideration of logistic-type restrictions, as those speci�ed in item
ii) below, does not exclude blow-up in Keller�Segel models with productions, neither in high dimensions nor in low:
[26], [31].)

ii) Conversely to what was discussed for model (2), when the chemical v responsible for gathering processes of the cells is
consumed throughout the time, so far no result detecting unbounded solutions to the corresponding initial boundary-
value problem to (3) is available. Such a question seems quite hard to solve, and this does not appear surprising;
indeed, from comparison arguments, the second equation for the chemical immediately ensures uniform boundedness
of v. Despite that, such a bound by itself is not enough to ensure that classical solutions (u, v) to (3) emanating from
any su�ciently regular initial data (u0, v0) are uniformly bounded. Precisely, this holds true only in two-dimensional
settings (as a combination of the results in [27] and [28], where a more general coupled chemotaxis-�uid model is
studied); for n ≥ 3, oppositely, the smallness assumption χ‖v0‖L∞(Ω)≤ 1

6(n+1) is required ([20]). Nevertheless, this

condition does not exclude the possibility that solutions emanating from initial data, not satisfying it, may collapse in
�nite time. However, a way to prevent blow-up scenario to problem (3) even when χ‖v0‖L∞(Ω) is larger than

1
6(n+1) ,

consists in considering logistic sources with strong damping e�ect in the equation of the cells, exactly reading

(4) ut = ∆u− χ∇ · (u∇v) + ku− µu2, in Ω× (0, Tmax), k, µ > 0.

In [11] it is indeed shown that the resulting Cauchy problem admits classical bounded solutions for arbitrarily
large χ‖v0‖L∞(Ω) provided µ is also larger than a certain expression depending in an increasing way on the same
χ‖v0‖L∞(Ω).

As far as we know, a general n-dimensional theoretical analysis tied to the attraction-repulsion chemotaxis system in the
form of (1), has not been developed yet. Conversely, for f(u) = g(u) = u, a fully parabolic attraction-repulsion Stokes
system is addressed for the two-dimensional case in [14]: here, inter alia, boundedness of classical solutions is achieved for
any initial data. In addition, model (1) where the chemoattractant and chemorepellent are both produced has been proposed,
as well in the fully parabolic version, in [15] for one-dimensional settings and linear proliferation, to describe the aggregation
of microglia observed in Alzheimer's disease. In particular, for the attraction-repulsion system (1) with second and third
equations replaced by

0 = ∆v − βv + f(u) and 0 = ∆w − δw + g(u), in Ω× (0, Tmax), β, δ > 0,
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the following is known in the literature. For linear growths of the chemoattractant and the chemorepellent, f(u) = αu,
α > 0, and g(u) = γu, γ > 0, we have that the value ξγ − χα, measuring in some sense the di�erence between the repulsion
and attraction contributions, is critical for n = 2: particularly, if ξγ − χα > 0 (repulsion prevails over attraction), in any
dimension all solutions to the model are globally bounded, whereas for ξγ − χα < 0 and n = 2 (attraction prevails over
repulsion) unbounded solutions can be constructed (see [3, 12, 21, 22, 32] for some details on the issue). On the other hand,
for more general production laws, respectively f and g generalizing the prototypes f(u) = αus, s > 0, and g(u) = γur,
r ≥ 1, we are only aware of the following recent result, valid for n ≥ 2 ([23]): for every α, β, γ, δ, χ > 0, and r > s ≥ 1 (resp.
s > r ≥ 1), there exists ξ∗ > 0 (resp. ξ∗ > 0) such that if ξ > ξ∗ (resp. ξ ≥ ξ∗), any su�ciently regular initial datum
u0(x) ≥ 0 (resp. u0(x) ≥ 0 enjoying some smallness assumptions) produces a unique classical and bounded solution. In
addition the same conclusion holds true for every α, β, γ, δ, χ, ξ > 0, 0 < s < 1, r = 1 and any su�ciently regular u0(x) ≥ 0.

2.2. Motivations and presentation of the Theorems. In accordance to what has been discussed above, especially in
items i) and ii), with this research we mainly aim at extending the mathematical comprehension of attraction-repulsion
Keller�Segel systems by giving answers to questions concerning system (1), to our knowledge, not yet studied. In this sense,
since as seen a chemorepellent impact does not su�ce to regularize chemotactic instabilities, we aim at essentially establishing
its role on the motion of the particle density, whose kinetics is not in�uenced by any smoothing logistic term. Speci�cally,
we will give su�cient conditions on the data of model (1) such that the joint actions of the consumed chemoattractant and
the produced chemorepellent su�ce to provide global and bounded solutions in terms of, or independently of, smallness
constraints on χ‖v0‖L∞(Ω). To this scope, these assumptions are �xed

(5) f, g ∈ C1(R) with 0 ≤ f(s) ≤ Ksα and γsl ≤ g(s) ≤ γs(s+ 1)l−1, for some K, γ, α > 0, l ≥ 1 and all s ≥ 0,

and the following results are shown.

Theorem 2.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1, and χ, δ positive. Moreover, for some K, γ > 0,
let f and g ful�ll (5), respectively with α ∈

(
0, 1

2 + 1
n

)
∩ (0, 1) and l = 1. Then there exists C(n) ≥ 0, with C(1) = C(2) = 0

and C(n) > 0 for n ≥ 3, such that for any initial data (u0, v0) ∈ C0(Ω̄) × C1(Ω̄), with u0, v0 ≥ 0 on Ω̄, and any ξ >

C(n)‖χv0‖
4
n

L∞(Ω), problem (1) admits a unique global and uniformly bounded classical solution.

Theorem 2.2. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1, and χ, δ positive. Moreover, for some K, γ > 0,
let f and g ful�ll (5), respectively with α ∈

(
0, 1

2 + 1
n

)
∩ (0, 1) and l > 1. Then for any initial data (u0, v0) ∈ C0(Ω̄)×C1(Ω̄),

with u0, v0 ≥ 0 on Ω̄, and any ξ > 0, problem (1) admits a unique global and uniformly bounded classical solution.

Remark 1. We specify the following aspects:
• As usual in the nomenclature, in chemotaxis models a global and uniformly bounded classical solution to problem (1)
is a triplet of nonnegative functions (u, v, w) ∈ (C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)))3, such that for some q > n and
C > 0 this relation holds:

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω) ≤ C for all t ∈ (0,∞).

• Even though in one-dimensional settings boundedness of solutions to Keller�Segel systems is achievable by well-known
reasoning, we give the proof of Theorems 2.1 and 2.2 also for n = 1 because it will directly result as a particular case
of the n-dimensional version.

The remaining part of the paper is structured as follows: In §3 some general and well-known preliminaries are given,
whereas §4 is focused on the existence of local classical solutions (u, v, w) to problem (1). In particular, crucial properties of
these solutions, and how to achieve their uniform-in-time boundedness from their Lp-boundedness, for some suitable p > 1,

is analyzed. Successively, in §5, we associate to the local solutions, the functional y(t) :=
∫

Ω
up + (χ

2

γ )p
∫

Ω
|∇v|2p, by means

of which the desired uniform-in-time bound is proved; this will allow us to proof our results, also in the same §5. Finally, in
§6 we compare [11, Theorem 1.1] and Theorem 2.1 as to discuss the boundedness issue for chemotaxis-consumption models
with di�erent smoothing reactions: a logistic source and a produced chemorepellent.

3. Some preparatory tools

In this section we summarize some inequalities and further necessary results.

Lemma 3.1. Let A,B ≥ 0, d1, d2 > 0 and p > 1. Then for some d, d3 > 0 we have

(6) Ad1 +Bd2 ≥ 2−d(A+B)d − d3,

and

(7) (A+B)p ≤ 2p−1(Ap +Bp).

Proof. The proofs can be found, respectively, in [16, Lemma 3.3] and [7, Theorem 1]. �
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Lemma 3.2. Let Ω be a bounded and smooth domain of Rn, n ≥ 1. For all ψ ∈ C2(Ω̄), we have

(8) (∆ψ)2 ≤ n|D2ψ|2,

(9) |D2ψ∇ψ|2 ≤ |D2ψ|2|∇ψ|2.

If, further, ψ satis�es ψν = 0 on ∂Ω, then for all p > 1 and η > 0 one has

(10) ‖∇ψ‖2p+2
L2p+2(Ω) ≤ 2(4p2 + n)‖ψ‖2L∞(Ω̄)‖|∇ψ|

p−1D2ψ‖2L2(Ω),

where D2ψ represents the Hessian matrix of ψ and |D2ψ|2 =
n∑

i,j=1

ψ2
xixj , whereas for some positive constant Cη

(11)

∫
∂Ω

|∇ψ|2p−2(|∇ψ|2)ν ≤ η
∫

Ω

|∇ψ|2p−4|∇|∇ψ|2|2 + Cη

(∫
Ω

|∇ψ|2
)p

.

Proof. Regard the proof of inequalities (8) and (9), we refer the reader to [16, Lemma 3.1]. As to (10), this is a special case
of [11, Lemma 2.2], and relation (11) is derived in [11, Lemma 2.1 c)]. �

Lemma 3.3. Let Ω ⊂ Rn, n ≥ 1, be a bounded and smooth domain and δ > 0. Then for any nonnegative g ∈ C1(Ω̄), the
solution 0 ≤ ψ ∈ C2,κ(Ω̄), 0 < κ < 1, of the problem{

0 = ∆ψ + g − δψ in Ω,

ψν = 0 on ∂Ω,

has the following property: For any ĉ, σ > 0 and p ∈ (1,∞), there exists c̃ = c̃(σ, p) > 0 such that

(12) ĉ

∫
Ω

ψp+1 ≤ σ
∫

Ω

gp+1 +
c̃

|Ω|p
(∫

Ω

g
)p+1

.

Proof. A detailed proof of (12) can be found in [23, Lemma 3.1]. (See also [29, Lemma 2.2].) �

4. Existence of local-in-time classical solutions. From uniform boundedness in Lp(Ω) to L∞(Ω).

Let us dedicate ourselves to the existence question of classical solutions to system (1). It is shown that such solutions are
at least local and, additionally, satisfy some crucial estimates.

Lemma 4.1 (Local existence). Let Ω be a bounded and smooth domain of Rn, with n ≥ 1, q > n, χ, δ > 0 and nontrivial
(u0, v0) ∈ C0(Ω̄) × C1(Ω̄), with u0 ≥ 0 and v0 ≥ 0 on Ω̄. Assume, moreover, that for some γ,K > 0, f and g ful�ll (5),
respectively with α ∈ (0, 1

2 + 1
n ) ∩ (0, 1) and l ≥ 1. Then, for any ξ > 0 there exist Tmax ∈ (0,∞] and a unique triplet of

nonnegative functions (u, v, w) ∈ (C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)))3, such that this dichotomy criterion holds true:

(13) either Tmax =∞ or lim sup
t→Tmax

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω)) =∞.

In addition, the u-component obeys the mass conservation property, i.e.

(14)

∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx = m > 0 for all t ∈ (0, Tmax),

whilst for some c0 > 0 the v-component is such that

(15) 0 ≤ v ≤ ‖v0‖L∞(Ω) in Ω× (0, Tmax) and

∫
Ω

|∇v(·, t)|2 ≤ c0 on (0, Tmax).

Proof. The local solvability as well as the dichotomy criterion (13) can be proved by adapting well-established approaches
widely used in the frame of classical chemotaxis models (see for instance [2, Lemma 1.2], [5, Theorem 3.1] and [21, Lemma
3.1]). Moreover, comparison arguments apply to yield u, v, w ≥ 0 in Ω× (0, Tmax) and the �rst relation in (15), whereas the
mass conservation property follows by integrating over Ω the �rst equation of (1), in conjunction with the boundary and
initial conditions.

Let us, �nally, derive the last claim as follows. We separate the cases 0 < α ≤ 1
2 and 1

2 < α < min{ 1
2 + 1

n , 1}. For

0 < α ≤ 1
2 , from the second equation of (1), we have that an integration over Ω, the Young inequality, the bound for v given

in (15) and the constraints of f in (5) lead to

d

dt

∫
Ω

|∇v|2 = 2

∫
Ω

∇v · ∇(∆v − f(u)v) = −2

∫
Ω

(∆v)2 + 2

∫
Ω

f(u)v∆v

= −2

∫
Ω

(∆v)2 + 2

∫
Ω

v(f(u)− 1)∆v − 2

∫
Ω

|∇v|2 ≤ −
∫

Ω

(∆v)2 − 2

∫
Ω

|∇v|2 +

∫
Ω

v2(f(u)− 1)2

≤ −2

∫
Ω

|∇v|2 + ‖v0‖2L∞(Ω)K
2

∫
Ω

u2α + 2‖v0‖2L∞(Ω)K

∫
Ω

uα + ‖v0‖2L∞(Ω)|Ω| on (0, Tmax).

(16)
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Now, since L1(Ω) ⊆ L2α(Ω) ⊆ Lα(Ω), thanks to the mass conservation property (14) we can �nd c1 > 0 such that

‖v0‖2L∞(Ω)K
2

∫
Ω

u2α + 2‖v0‖2L∞(Ω)K

∫
Ω

uα + ‖v0‖2L∞(Ω)|Ω| ≤ c1 with t ∈ (0, Tmax),

so that (16) reads
d

dt

∫
Ω

|∇v|2 ≤ −2

∫
Ω

|∇v|2 + c1 on (0, Tmax),

and a comparison argument entails
∫

Ω
|∇v|2 ≤ max{ c12 ,

∫
Ω
|∇v0|2} for all t ∈ (0, Tmax).

When, indeed, 1
2 < α < min{ 1

2 + 1
n , 1}, we can pick 1

2 < ρ < 1− n
2

(
α− 1

2

)
and set ζ = 1− ρ− n

2

(
α− 1

2

)
> 0. Moreover,

through the Hölder inequality, taking in mind (5) and again (14), we have

(17) ‖f(u(·, t))‖
1
α

L
1
α (Ω)

=

∫
Ω

f(u)
1
α ≤ K 1

α

∫
Ω

u ≤ K 1
αm for all t < Tmax.

As a consequence, from the representation formula for v, we have

v(·, t) = et∆v0 −
∫ t

0

e(t−s)∆f(u(·, s))v(·, s)ds for all t ∈ (0, Tmax),

and aided by smoothing properties related to the Neumann heat semigroup (et∆)t≥0 (see Section 2 of [5] and Lemma 1.3 of
[25]), we obtain for some λ1 > 0, CS > 0 and c2 > 0, once bounds v ≤ ‖v0‖L∞(Ω) on Ω̄× (0, Tmax) and (17) are considered,

‖v(·, t)‖W 1,2(Ω) ≤ ‖et∆v0‖W 1,2(Ω)+

∫ t

0

‖e(t−s)∆f(u(·, s))v(·, s)‖W 1,2(Ω)ds

≤ CS‖v0‖W 1,2(Ω)+CS

∫ t

0

‖(−∆ + 1)ρe(t−s)∆f(u(·, s))v(·, s)‖L2(Ω)ds

≤ CS‖v0‖W 1,2(Ω)+CS‖v0‖L∞(Ω)|Ω|
1
2

∫ t

0

(t− s)−ρ−n2 (α− 1
2 )e−λ1(t−s)‖f(u(·, s))‖

L
1
α (Ω)

ds

≤ c2
(

1 +

∫ t

0

(t− s)−ρ−n2 (α− 1
2 )e−λ1(t−s)ds

)
.

By recalling the above position on ζ, we introduce the Gamma function Γ inferring
∫ t

0
(t−s)−ρ−

n
2

(
α− 1

2

)
e−λ1(t−s)ds ≤ λ−ζ1 Γ(ζ),

so obtain the second bound in (15) with c0 = max{ c12 ,
∫

Ω
|∇v0|2, c22(1 + λ−ζ1 Γ(ζ))2}. �

Remark 2. We observe that the second estimate in (15) is crucial when relation (11) and a proper version of the Gagliardo�
Nirenberg inequality will be below invoked. The case α = 1, for which this bound does not hold true, does not �t into the
computations of our general machinery, and henceforth it is herein excluded.

In view of the forthcoming lemma, in order to ensure the uniform-in-time L∞ bound of (u, v, w), it will be su�cient in
the sequel controlling the uniform-in-time Lp-norm of u, for some suitable p > 1.

Lemma 4.2. Under the hypotheses of Lemma 4.1 and any ξ > 0, let (u, v, w) be the local-in-time classical solution to problem
(1). If for some p > max{1, n2 } the u-component and g belong to L∞((0, Tmax);Lp(Ω)), then (u, v, w) is global in time, i.e.
Tmax =∞, and moreover u, v and w are uniformly bounded in Ω× (0,∞) (in the sense of Remark 1).

Proof. W.l.o.g., we assume p > 1, for n = 1, and n
2 < p < n, for n ≥ 2. In this way, classical regularity theory on elliptic

equations in conjunction with Sobolev embedding theorems infer through the third equation of (1) that

w ∈ L∞((0, Tmax);W 2,p(Ω)) and ∇w ∈ L∞((0, Tmax);W 1,p(Ω)),

and so for all 2 ≤ n < q < p∗ := np
n−p , and q =∞ for n = 1,

(18) w ∈ L∞((0, Tmax);C [2−(n/p)](Ω̄)) and ∇w ∈ L∞((0, Tmax);Lq(Ω)).

On the other hand, the hypotheses on f are such that if u ∈ L∞((0, Tmax);Lp(Ω)) also f ∈ L∞((0, Tmax);Lp(Ω)). Henceforth,
we again use the variation-of-constants formula for v as to obtain, taking into account the �rst bound in (15), some proper

C̃S , c3 > 0 producing for λ1 > 0 as in Lemma 4.1

‖∇v(·, t)‖Lq(Ω) ≤ ‖∇et∆v0‖Lq(Ω)+

∫ t

0

‖∇e(t−s)∆f(u(·, s))v(·, s)‖Lq(Ω)ds

≤ C̃S‖∇v0‖Lq(Ω)+C̃S‖v0‖L∞(Ω)|Ω|
1
q

∫ t

0

(1 + (t− s)−
1
2−

n
2 ( 1

p−
1
q ))e−λ1(t−s)‖f(u(·, s)))‖Lp(Ω)ds

≤ c3
(

1 +

∫ t

0

(t− s)−
1
2−

n
2 ( 1

p−
1
q )e−λ1(t−s)ds

)
.
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Further, the assumptions on q ensures that − 1
2 −

n
2 ( 1

p −
1
q ) > −1, so as before

∫ t
0
(t − s)−

1
2−

n
2 ( 1

p−
1
q )e−λ1(t−s)ds is �nite and

we also get v ∈ L∞((0, Tmax);W 1,q(Ω)). From this inclusion and (18), since W 1,q(Ω) ↪→ L∞(Ω) for q > n, we immediately
have that v, w ∈ L∞((0, Tmax);L∞(Ω)), and moreover for ṽ = χv − ξw some positive constant Cq can be found so to get

(19) ‖ṽ(·, t)‖Lq(Ω)+‖∇ṽ(·, t)‖Lq(Ω)≤ Cq for all t ∈ (0, Tmax).

Subsequently, for any (x, t) ∈ Ω× (0, Tmax), the �rst equation of (1) reads ut = ∆u−∇ · (u∇ṽ) and for t0 := max{0, t− 1}
we have

u(·, t) ≤ e(t−t0)∆u(·, t0)−
∫ t

t0

e(t−s)∆∇ · (u(·, s)∇ṽ(·, s))ds =: u1(·, t) + u2(·, t).

As to the conclusion u ∈ L∞((0, Tmax);L∞(Ω)), this is an adaptation of [1, Lemma 3.2], and we herewith omit it; more
precisely (see also [24, Lemma 4.1]), the L∞(Ω)-norm of u on (0, Tmax) is achieved by controlling (also with the support
of u ∈ L∞((0, Tmax);Lp(Ω)), for n

2 < p < n only, (19) and (14)) a suitable norm of the cross-di�usion term u∇ṽ. Finally,

u ∈ L∞((0, Tmax);L∞(Ω)) and v ∈ L∞((0, Tmax);W 1,q(Ω)) imply from the dichotomy criterion (13) that necessarily we must
have Tmax =∞, so that actually u, v, w ∈ L∞((0,∞);L∞(Ω)). �

5. A priori estimates and proof of the theorems

In this section we control the Lp-norm, p > 1, by establishing an absorptive di�erential inequality for the functional

y(t) :=
∫

Ω
up + (χ

2

γ )p
∫

Ω
|∇v|2p.

Lemma 5.1. Let n ≥ 1, l ≥ 1 and the hypotheses of Lemma 4.1 be satis�ed. Then for every ξ > 0 the local solution (u, v, w)

to problem (1) is such that for any p ∈ (max{l, l(nl−2)
n },∞) and all t ∈ (0, Tmax) one has:

• For l = 1 and some c4 > 0

d

dt

∫
Ω

up ≤ −2(p− 1)

p

∫
Ω

|∇u
p
2 |2 +

χ2p(p− 1)

2(p+ 1)

(
ξγ(p+ 1)

2p2χ2

)−p ∫
Ω

|∇v|2(p+1) − ξγ(p− 1)

4

∫
Ω

up+1 + c4;

• For l > 1, every ε1, ε2 > 0 and some c5 > 0

d

dt

∫
Ω

up ≤
[
−2(p− 1)

p
+ ε1

] ∫
Ω

|∇u
p
2 |2 + ε2

∫
Ω

|∇v|2(p+1) − ξγ(p− 1)

4

∫
Ω

up+l + c5.

Proof. Testing the �rst equation of problem (1) by up−1, using its boundary conditions and recalling the assumptions of g in
(5), provide on (0, Tmax)

1

p

d

dt

∫
Ω

up =

∫
Ω

up−1ut = −(p− 1)

∫
Ω

up−2|∇u|2 + (p− 1)χ

∫
Ω

up−1∇u · ∇v − ξ(p− 1)

∫
Ω

up−1∇u · ∇w

≤ −(p− 1)

∫
Ω

up−2|∇u|2 + (p− 1)χ

∫
Ω

up−1∇u · ∇v +
ξδ(p− 1)

p

∫
Ω

upw − ξγ(p− 1)

p

∫
Ω

up+l,

(20)

whereas Young's inequality infers

(21) (p− 1)χ

∫
Ω

up−1∇u · ∇v ≤ (p− 1)

2

∫
Ω

up−2|∇u|2 +
χ2(p− 1)

2

∫
Ω

up|∇v|2 on (0, Tmax).

Now, let us analyze separately the two cases.
• Case l = 1. The Young inequality entails

(22)
χ2(p− 1)

2

∫
Ω

up|∇v|2 ≤ ξγ(p− 1)

4p

∫
Ω

up+1 +
χ2(p− 1)

2(p+ 1)

(
ξγ(p+ 1)

2p2χ2

)−p ∫
Ω

|∇v|2(p+1) for all t ∈ (0, Tmax).

On the other hand, since l = 1, an integration over Ω of the third equation of (1), together with the mass conservation
property (14), give

∫
Ω
w = mγ

δ on (0, Tmax). In this way, by exploiting Young's inequality, again, and relation (12)
with ψ = w, g(u) = γu and p = p, proper positive constants ĉ, c6 imply

ξδ(p− 1)

p

∫
Ω

upw ≤ ξγ(p− 1)

4p

∫
Ω

up+1 + ĉ

∫
Ω

wp+1 ≤ ξγ(p− 1)

4p

∫
Ω

up+1 +
ξγ(p− 1)

4p

∫
Ω

up+1 + c6 on (0, Tmax).(23)

By plugging estimates (21), (22) and (23) into bound (20), and for c4 = pc6, we directly obtain the claim in view of
the identity ∫

Ω

up−2|∇u|2 =
4

p2

∫
Ω

|∇u
p
2 |2 on (0, Tmax).

• Case l > 1. Let us �rst estimate the term
(∫

Ω
ul
) p+l

l : by applying the Gagliardo�Nirenberg inequality (see [18])
combined with (7), for any c > 0 we can introduce a suitable constant c7 > 0 and obtain

c

(∫
Ω

ul
) p+l

l

= c‖u
p
2 ‖

2(p+l)
p

L
2l
p (Ω)

≤ c7‖∇u
p
2 ‖

2(p+l)
p θ1

L2(Ω) ‖u
p
2 ‖

2(p+l)
p (1−θ1)

L
2
p (Ω)

+ c7‖u
p
2 ‖

2(p+l)
p

L
2
p (Ω)

for all t ∈ (0, Tmax),
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where for p as in our assumptions we have

0 < θ1 =
1− 1

l

1 + 2
np −

1
p

< 1 and 0 <
(p+ l)

p
θ1 < 1.

Hence, by recalling the mass conservation property (14), the Young and above inequalities entail for c8, c9 > 0 and
any ε1 > 0

(24) c

(∫
Ω

ul
) p+l

l

≤ c8
(∫

Ω

|∇u
p
2 |2
) (p+l)

p θ1
+ c8 ≤

ε1
p

∫
Ω

|∇u
p
2 |2 + c9 with t ∈ (0, Tmax).

On the other hand, by noting that 2(p+l)
l < 2(p+ 1) for l > 1, a double application of the Young inequality leads for

all t ∈ (0, Tmax), ε2 > 0 and some c10, c11 > 0 to

(25)
χ2(p− 1)

2

∫
Ω

up|∇v|2 ≤ ξγ(p− 1)

4p

∫
Ω

up+l + c10

∫
Ω

|∇v|2
p+l
l ≤ ξγ(p− 1)

4p

∫
Ω

up+l +
ε2
p

∫
Ω

|∇v|2(p+1) + c11.

Now by applying restrictions in (5) and relation (7), as well as the obvious inequality u ≤ u + 1, we have these
estimates for any p̄ > 1 and some c12, c13, c14, c15 > 0:∫

Ω

(g(u))p+1 ≤
∫

Ω

(
γu(u+ 1)l−1

)p+1 ≤ c12

∫
Ω

ul(p+1) + c13 for all t ∈ (0, Tmax),

and also (∫
Ω

g(u)

)p+1

≤ c14

(∫
Ω

ul
)p+1

+ c15 for all t ∈ (0, Tmax),

Aided by the gained estimates, we now use a combination of Young's inequality and relation (12) with ψ = w and
p = p

l > 1; we have for some c16 > 0

ξδ(p− 1)

p

∫
Ω

upw ≤ ξγ(p− 1)

4p

∫
Ω

up+l +
ĉ

c12

∫
Ω

wp+1

≤ ξγ(p− 1)

4p

∫
Ω

up+l + σ

∫
Ω

up+l + c

(∫
Ω

ul
) p+l

l

+ c16 on (0, Tmax).

(26)

By collecting (21), (25) and (26), with σ = ξγ(p−1)
4p , bound (20) gives the conclusion also in view of relation (24).

�

In the forthcoming lemma we adapt to our framework some derivations already developed in [11, Lemma 4.2].

Lemma 5.2. Let n ≥ 1, l ≥ 1 and the hypotheses of Lemma 4.1 be satis�ed. Then for every ξ > 0 the local solution (u, v, w)
to problem (1) is such for any p ∈ (1,∞) and all t ∈ (0, Tmax) one has:

• For l = 1 and some c17 > 0(
χ2

γ

)p
d

dt

∫
Ω

|∇v|2p +

(
χ2

γ

)p
p

∫
Ω

|∇v|2p−2|D2v|2 ≤ ξγ(p− 1)

4

∫
Ω

up+1

+
p

8(4p2 + n)‖v‖2L∞(Ω)

(
χ2

γ

)p ∫
Ω

|∇v|2(p+1) + c17;

• For l > 1, every positive ε3 and some c18 > 0(
χ2

γ

)p
d

dt

∫
Ω

|∇v|2p +

(
χ2

γ

)p
p

∫
Ω

|∇v|2p−2|D2v|2 ≤ ξγ(p− 1)

4

∫
Ω

up+l + ε3

∫
Ω

|∇v|2(p+1) + c18.

Proof. From the second equation of (1), we derive this pointwise identity valid for all x ∈ Ω and t ∈ (0, Tmax):

(|∇v|2)t = 2∇v · ∇vt = 2∇v · ∇∆v − 2∇v · ∇(f(u)v) = ∆|∇v|2 − 2|D2v|2 − 2∇v · ∇(f(u)v).

Successively, multiplying this last relation by |∇v|2p−2 and integrating over Ω lead to(
χ2

γ

)p
1

p

d

dt

∫
Ω

|∇v|2p + (p− 1)

(
χ2

γ

)p ∫
Ω

|∇v|2p−4|∇|∇v|2|2 + 2

(
χ2

γ

)p ∫
Ω

|∇v|2p−2|D2v|2

= −2

(
χ2

γ

)p ∫
Ω

|∇v|2p−2∇v · ∇(f(u)v) +

(
χ2

γ

)p ∫
∂Ω

(|∇v|2)p−1(|∇v|2)ν for all t ∈ (0, Tmax).

(27)

Now, by virtue of the L2-bound in (15), we apply estimate (11) with ψ = v so to obtain for c19 = Cηc
p
0

(28)

(
χ2

γ

)p ∫
∂Ω

(|∇v|2)p−1(|∇v|2)ν ≤ η
(
χ2

γ

)p ∫
Ω

|∇v|2p−4|∇|∇v|2|2 + c19 on (0, Tmax).
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Hence, an integration by parts to the right hand side term of (27) produces, also thanks to the �rst estimate in (15) and
assumption (5),

−2

(
χ2

γ

)p ∫
Ω

|∇v|2p−2∇v · ∇(f(u)v) = 2

(
χ2

γ

)p ∫
Ω

f(u)v|∇v|2p−2∆v

+ 2(p− 1)

(
χ2

γ

)p ∫
Ω

f(u)v|∇v|2p−4∇v · ∇|∇v|2

≤ 2K

(
χ2

γ

)p
‖v0‖L∞(Ω)

∫
Ω

uα|∇v|2p−2|∆v|

+ 2K

(
χ2

γ

)p
(p− 1)‖v0‖L∞(Ω)

∫
Ω

uα|∇v|2p−3|∇|∇v|2| for all t ∈ (0, Tmax).

(29)

In addition, the Young and (8) inequalities allow us to derive for some c20, c21 > 0

(30) 2K

(
χ2

γ

)p
‖v0‖L∞(Ω)

∫
Ω

uα|∇v|2p−2|∆v| ≤
(
χ2

γ

)p ∫
Ω

|∇v|2p−2|D2v|2 + c20

∫
Ω

u2α|∇v|2p−2 on (0, Tmax)

and similarly for all t ∈ (0, Tmax) and any η ∈ (0, p− 1)

(31) 2K

(
χ2

γ

)p
(p− 1)‖v0‖L∞(Ω)

∫
Ω

uα|∇v|2p−3|∇|∇v|2| ≤ (p− 1− η)

(
χ2

γ

)p ∫
Ω

|∇v|2p−4|∇|∇v|2|2 + c21

∫
Ω

u2α|∇v|2p−2.

By inserting (28), (29), (30) and (31) into (27), we deduce that for some c22, c23 > 0

(32)

(
χ2

γ

)p
1

p

d

dt

∫
Ω

|∇v|2p +

(
χ2

γ

)p ∫
Ω

|∇v|2p−2|D2v|2 ≤ c22

∫
Ω

u2α|∇v|2p−2 + c23 on (0, Tmax).

Further, for all l ≥ 1, the Young inequality also gives on (0, Tmax)

(33) c22

∫
Ω

u2α|∇v|2p−2 ≤ ξγ(p− 1)

4p

∫
Ω

up+l + c24

∫
Ω

|∇v|
2(p−1)(p+l)
p+l−2α ≤ ξγ(p− 1)

4p

∫
Ω

up+l +
ε3
p

∫
Ω

|∇v|2(p+1) + c25,

where we have used that 2(p−1)(p+l)
p+l−2α < 2(p+ 1) (recall 0 < α < 1) and ε3 is an arbitrarily positive constant and c24, c25 > 0.

We have the two claims introducing (33) into (32), with an evident choice of ε3 when l = 1. �

Lemma 5.3. Let n ≥ 1, l = 1 and the hypotheses of Lemma 4.1 be satis�ed. Then, for any p ∈ (1,∞) there exists C̃(p, n) > 0
such that for all ξ > 0 ful�lling

(34) ξ >

(
4C̃(p, n)‖χv0‖2L∞(Ω)

p

) 1
p

,

the following holds true: For some L > 0 the u-component of the local solution (u, v, w) to problem (1) complies with∫
Ω

up ≤ L for all t ∈ (0, Tmax).

Additionally, the same conclusion is valid whenever n ≥ 1, l > 1, ξ > 0 and all p ∈ (max{l, l(nl−2)
n },∞).

Proof. When l = 1, Lemma 5.1, Lemma 5.2 and relation (10), supported by the uniform bound for v in (15), imply that

d

dt

(∫
Ω

up +

(
χ2

γ

)p ∫
Ω

|∇v|2p
)

+
2(p− 1)

p

∫
Ω

|∇u
p
2 |2 + p

(
χ2

γ

)p ∫
Ω

|∇v|2p−2|D2v|2

≤

(
p

8(4p2 + n)‖v‖2L∞(Ω)

(
χ2

γ

)p
+
χ2p(p− 1)

2(p+ 1)

(
ξγ(p+ 1)

2p2χ2

)−p)∫
Ω

|∇v|2(p+1) + c26

≤

(
p

8(4p2 + n)‖v‖2L∞(Ω)

(
χ2

γ

)p
+
χ2p(p− 1)

2(p+ 1)

(
ξγ(p+ 1)

2p2χ2

)−p)
2(4p2 + n)‖v0‖2L∞(Ω)

∫
Ω

|∇v|2p−2|D2v|2 + c26

=

(
χ2

γ

)p(
p

4
+
C̃(p, n)

ξp
‖χv0‖2L∞(Ω)

)∫
Ω

|∇v|2p−2|D2v|2 + c26 on (0, Tmax),

(35)

where c26 > 0 and where for clarity we have set

C̃(p, n) =
2pp2p+1(p− 1)(4p2 + n)

(p+ 1)p+1
.
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Since by our assumptions ξ satis�es restriction (34), we get that C̃(p,n)
ξp ‖χv0‖2L∞(Ω) <

p
4 ; henceforth relation (35) actually

reads

d

dt

(∫
Ω

up +

(
χ2

γ

)p ∫
Ω

|∇v|2p
)

+
2(p− 1)

p

∫
Ω

|∇u
p
2 |2 +

p

2

(
χ2

γ

)p ∫
Ω

|∇v|2p−2|D2v|2 ≤ c26 on (0, Tmax).

On the other hand, from inequality (9) we have

|∇|∇v|p|2 =
p2

4
|∇v|2p−4|∇|∇v|2|2 = p2|∇v|2p−4|D2v∇v|2 ≤ p2|∇v|2p−2|D2v|2,

so that we obtain

(36) y′(t) +
2(p− 1)

p

∫
Ω

|∇u
p
2 |2 +

1

2p

(
χ2

γ

)p ∫
Ω

|∇|∇v|p|2 ≤ c26 on (0, Tmax).

Conversely, for l > 1, by relying again on Lemma 5.1, Lemma 5.2, any ε > 0 and some c27 > 0 entail

d

dt

(∫
Ω

up +

(
χ2

γ

)p ∫
Ω

|∇v|2p
)

+

[
2(p− 1)

p
− ε1

] ∫
Ω

|∇u
p
2 |2 + p

(
χ2

γ

)p ∫
Ω

|∇v|2p−2|D2v|2 ≤

εp(χ
2

γ )p

2(4p2 + n)‖v0‖2L∞(Ω)

∫
Ω

|∇v|2(p+1) + c27 for all t ∈ (0, Tmax),

which similarly to what has been previously done, by choosing ε1 ∈
(

0, 2(p−1)
p

)
and ε ∈ (0, 1), produces an absorptive

inequality similar to (36); then, both can be uni�ed for certain positive constants a, b, c as

(37) y′(t) + a

∫
Ω

|∇u
p
2 |2 + b

∫
Ω

|∇|∇v|p|2 ≤ c on (0, Tmax).

Successively, for any l ≥ 1, by exploiting again the Gagliardo�Nirenberg inequality, there exists a positive constant c28 such
that ∫

Ω

up = ||u
p
2 ||2L2(Ω)≤ c28||∇u

p
2 ||2θL2(Ω)||u

p
2 ||2(1−θ)

L
2
p (Ω)

+c28||u
p
2 ||2

L
2
p (Ω)

for all t ∈ (0, Tmax),

with

0 < θ =

np
2 (1− 1

p )

1− n
2 + np

2

< 1.

Taking into consideration bound (14) and introducing c29 > 0, the two above inequalities lead to

(38)

∫
Ω

up ≤ c29

(∫
Ω

|∇u
p
2 |2
)θ

+ c29 on (0, Tmax).

In a similar way, with another application of the Gagliardo�Nirenberg we arrive for some c30 > 0 at∫
Ω

|∇v|2p = |||∇v|p||2L2(Ω)≤ c30||∇|∇v|p||2θL2(Ω)|||∇v|
p||2(1−θ)

L
2
p (Ω)

+c30|||∇v|p||2
L

2
p (Ω)

with t ∈ (0, Tmax).

Moreover, by invoking the L2-bound for ∇v in (15), we have for c31 > 0

(39)

∫
Ω

|∇v|2p ≤ c31

(∫
Ω

|∇|∇v|p|2
)θ

+ c31 with t ∈ (0, Tmax).

As a consequence of all of the above, by manipulating inequalities (38) and (39) and thereof inserting the results into (37),
we can observe also by virtue of (6) that y satis�es this initial problem{

y′(t) ≤ c32 − c33y
1
θ (t) for all t ∈ (0, Tmax),

y(0) =
∫

Ω
up0 + (χ

2

γ )p
∫

Ω
|∇v0|2p,

with c32, c33 positive constants. Consequently, an ODE comparison principle implies that
∫

Ω
up ≤ y(t) ≤ max{y(0),

(
c32
c33

)θ} :=

L for all t ∈ (0, Tmax). �

Now we have all the necessary tools to conclude.
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Proof of Theorems 2.1 and 2.2. For l = 1, let C̃(p, n) be the constant de�ned in Lemma 5.3 and let us set

C(n) =

{
0 if n ∈ {1, 2},
( 8
n C̃(n/2, n))

2
n if n ≥ 3.

From our hypotheses, ξ > C(n)‖χv0‖
4
n

L∞(Ω), so that from continuity arguments we can always pick p > max{1, n2 } such that

assumption (34) holds true. Henceforth, Lemma 5.3 ensures that the u-component of the local solution (u, v, w) to problem
(1) belongs to L∞((0, Tmax);Lp(Ω)); since l = 1 also g ∈ L∞((0, Tmax);Lp(Ω)) and the claim follows by invoking Lemma
4.2. Indeed, for any l > 1, upon enlarging p in the same Lemma 5.3, we also can have u, g ∈ L∞((0, Tmax);Lp(Ω)) for
p > max{1, n2 }, and identically conclude. �

6. Logistic source vs. chemorepellent in chemotaxis-consumption models: Which one is more effective

toward boundedness?

We complement this research by discussing some di�erences and analogies between a chemotaxis-consumption model with
a logistic source and that presented here with a chemorepellent (linearly produced). To be precise, when the equation for
u in problem (1) is replaced by (4), and we set f(u) = u in that for v, the chemotaxis-consumption model with logistic
source (indicated with Pµ below) is obtained, and in [11] boundedness of solutions is established provided µ overcomes some
expression of χ‖v0‖L∞(Ω). Conversely, for our investigated attraction-repulsion model Pξ (to facilitate the comparison, we
also re-write it next to Pµ) an analogous largeness restriction is moved to the parameter ξ:

Pµ :

{
ut = ∆u− χ∇ · (u∇v) + ku− µu2

vt = ∆v − uv
and Pξ :


ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w)

vt = ∆v − f(u)v

0 = ∆w − δw + γu

.

In particular, some straightforward computations, show that the condition in [11, Theorem 1.1] reads

µ >
41/n(n− 1)n

n+ 1

(
(n− 1)(4n2 + n)

n+ 1

)1/n

‖χv0‖
2
n

L∞(Ω)

+
2
n−1
2 +n+1(2n− 1)

n+ 1

(
(n− 1)(2n− 1)(4n2 + n)

n+ 1

)n−1
2

‖χv0‖2nL∞(Ω) =: Cµ(χ‖v0‖L∞(Ω)),

whereas in Theorem 2.1 the correlated assumption appears as

ξ >

(
22−n2

(n
2
− 1
)(n

2
+ 1
)−n2−1

nn
(
n2 + n

))2/n

‖χv0‖
2
n

L∞(Ω) =: Cξ(χ‖v0‖L∞(Ω)).

Even though a very direct comparison between models Pµ and Pξ is not strictly possible, from Figure 1 it can be observed
that quantitatively Cµ(χ‖v0‖L∞(Ω)) > Cξ(χ‖v0‖L∞(Ω)), for any value of χ‖v0‖L∞(Ω).

For the sake of scienti�c clarity, we would like to stress that the curve trend of the function Cµ may be improved; this
is essentially due to the fact that in [11] the authors prove the deduction �Lp ⇒ L∞� for p > n, and not for p > n

2 , as we
performed in Lemma 4.2. (As known, in this context, n2 is the smallest value toward the validity of the above implication.) In
this sense, by adjusting to this choice of p the expression of Cµ, the situation is di�erent. More precisely, for su�ciently large
values of χ‖v0‖L∞(Ω), for which the analysis is more interesting, Cµ(χ‖v0‖L∞(Ω))� Cξ(χ‖v0‖L∞(Ω)); on the other hand, the
same does not happen when χ‖v0‖L∞(Ω) is small. (See Figure 2.) As a consequence, if we consider that for high values of

the cell concentration in problem Pξ the chemoattractant is consumed with a weaker law than that in Pµ (0 < α < 1
2 + 1

n
vs. α = 1, respectively), this discussion seems to indicate that the introduction in the classical Keller�Segel model with
consumption (3) of a linearly produced chemorepellent, has a more e�ective stabilizing impact on the cells' motility than the
one resulting by the introduction of a quadratic-damping logistic source.
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