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Abstract—The availability of accurate data is fundamental for
several monitoring and control applications of modern power
grids. Nevertheless, the knowledge of critical data such as
transmission line and transformer parameters is often affected by
uncertainty. This can lead to important problems in the correct
management of the power systems. In spite of a monitoring
infrastructure that is being renewed thanks to new generation
devices providing synchronized measurements, the actual values
of line parameters and tap changer ratios are still affected by
uncertainty sources that need to be properly considered. The
behaviour of all the elements involved in the measurement chain
must be duly modelled. This paper proposes an improved method
to carry out the simultaneous estimation of line parameters,
tap changer ratios, and systematic measurement errors for a
three-phase power system. The proposed method is based on the
suitable modelling of the measurement chain and on three-phase
constraint equations (voltage drop and current balance) of all
the components involved. Its effectiveness is confirmed by tests
performed on a IEEE 14 bus test system reproduced as a three-
phase system under different operative conditions.

Index Terms—phasor measurement units, power transmission
lines, tap changers, three-phase lines, measurement errors, step
voltage regulators, instrument transformers, voltage measure-
ments, current measurements.

I. INTRODUCTION

Accurate knowledge of power network parameters and

actual operating conditions is essential for several monitoring

and control applications. The transmission line parameters

are critical for any application, but they are usually obtained

from offline calculations based on assumptions concerning,

for example, the conductors geometry and length, therefore

actual values may be significantly different from those stored

in the Transmission System Operator (TSO) database [1], [2].

The tap changer is critical, for example, in voltage stability

applications [3], because the tap changer impacts on the

margins of voltage stability and has important effects on

voltage monitoring and control operations. The tap changer

ratio is inevitably affected by uncertainty [4], furthermore,

voltage regulators, often based on local measurements, can
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call for frequent changes, accelerating wear and tear. Although

malfunctioning of the equipment involved in the tap changer

is not frequent [5], the on-load tap changer is one of the

most error-prone parts in the transformer because its elements

can suffer from both electrical and mechanical stress [6],

[7]. The uncertainty on tap changer performance impacts

on fundamental analysis tools like state estimation (see, for

instance, [8] and [9]).

Voltage regulation is a critical tool for any power system,

because the increasing penetration of distributed resources

affects every level of the grids and regulation of the medium

voltage level is increasingly needed. Regulation can be ob-

tained with different systems and equipment, in primary and

secondary substations and also along the lines [10], [11].

Commonly, it is possible to find solutions with single-phase

regulators along with a transformer without load tap changer

or transformers with load tap changers. The choice is often

driven by considerations about maintenance or procedures to

be followed in case of failure.

Methodologies designed to increase the knowledge about

power grid components are therefore more and more required.

For example, in [12], an ac power standard, for high voltages

and high currents, permitting the correction of the systematic

errors of the components is presented. Several procedures have

been presented for the estimation of the line parameters both in

transmission and in distribution grids [1], [13]–[17], but none

of these considers the impact of the entire measurement chain

also addressing systematic error estimation, which is intended

for compensation purposes, and voltage regulation uncertainty

estimation.

In the context of transmission systems, several papers

consider the tap changer estimation problem in equivalent

single-phase power grids. Among them, it is possible to cite

as an example [18], where a power system state estimator

that includes tap positions and uses an iterative method for

taking into account properly zero-injections is proposed, and

[19], where the problem of the tap position identification is

addressed. In [8], the state estimation model is designed by

including the tap settings (voltage transformer turns ratios or

phase-shift transformer angles) as additional state variables by

means of a measurement model transformed to a conventional

nodal frame formulation, introducing one fictitious bus and



one fictitious branch for each transformer.

Accurate knowledge of the value of tap changer parameters

affects also the effectiveness of network parameters estimation

tools. Considering a Supervisory Control and Data Acquisition

(SCADA) system, in [20] it is proposed the simultaneous

estimation of line and transformer parameters, exploiting the

relationships between the estimated state and the parameters

of interest to estimate linearly the single-phase values of

impedance, transverse susceptance and tap ratio.

New estimation procedures are often based on Phasor Mea-

surement Units (PMU), thanks to their everyday increasing

availability. In [21] and [22], algorithms for estimating the

parameters of lines and transformers using synchronized pha-

sor measurements at both ends of a line are presented. In both

cases, measurement errors are simulated by adding a noise

to the results obtained from load flow solutions. In [23], a

phasor-measurement-based state estimator for improving data

consistency is proposed with features such as current channel

scaling and estimation of tap position and line parameters,

which can be achieved if a current phasor measurement is

available and provided that sufficient measurement redundancy

is ensured. In [24] a phasor-only state estimator is presented,

allowing corrections for phase biases, transformer taps, and

current magnitude scaling. The method is validated on a

real system, therefore it is not possible to assess properly

the impact of the uncertainty in the measurement chain on

the estimates. In [13] a method for online identification of

positive-sequence series transmission line and power trans-

former parameters is developed. The procedure is described as

permitting also the estimation of negative- and zero-sequence

parameters. However, also in this case, the measurement errors

affecting the estimation results are taken into account applying

only random noises to PMU data.

Another point to consider is that innovative proposals in

this ambit are often validated under equivalent single-phase

simplified operative conditions. Nevertheless, after this first

validation stage, an extension to more realistic conditions is

also required. The single-phase equivalent model can only

provide the estimation of the parameters corresponding to the

positive sequence, which are different from the parameters

that should be evaluated in slightly unbalanced systems, as

modern transmission grids actually are. Indeed, three-phase

modeling allows the real parameters of physical systems to be

estimated. Moreover, it is worth noticing that the estimation

of the systematic errors introduced by ITs is directly related

to a three-phase model because measurements are obtained on

a per-phase basis: only a three-phase model would allow, for

instance, to identify specific degradation of the metrological

performance of a single IT or of the parameters in a given

phase.

In the context of three-phase power grids, this paper ad-

dresses the simultaneous estimation of line parameters and

tap changer ratios and the compensation of the systematic

errors introduced by the measurement chain, which includes

ITs affecting voltage and current synchronized phasor mea-

surements. To the knowledge of the authors, in the literature

this kind of estimation problem has not yet been addressed

considering the whole measurement chain and its different

uncertainty sources.

The procedure is performed considering some of the most

used Step Voltage Regulator (SVR) configurations in three-

phase systems and can be applied from the single branch to

the entire network. The paper is based on the method proposed

in [25], where the estimation problem was faced in the ambit

of equivalent single-phase networks. Now a three-phase model

of each component of the network is developed, focusing,

in particular, on the proper modelling of three-phase SVR

for wye and closed delta connections [26]. The problem is

formulated considering also prior knowledge and is addressed

in the Weighted Least Squares (WLS) sense. Validation tests,

also using experimental PMU errors, are carried out consider-

ing both single-branch and multiple-branches approaches on a

three-phase version of the IEEE 14-bus grid. The presented

results prove that the proposed three-phase approach can

be successfully applied with two of the most used SVR

configurations, significantly improving the estimation accuracy

in the presence of a realistic measurement chain.

The paper is organized as follows. In Section II, the adopted

models and the proposed method are discussed. Section III

method’s performance is extensively assessed. Finally, Section

IV provides some closing remarks and future research ideas.

II. PROPOSED METHOD

A. Transmission Line and Measurement Model

The three-phase line model shown in Fig. 1, corresponding

to the generic branch (i, j) of a transmission line, is consid-

ered. The line model can be represented by means of two 3×3
matrices Zij and Ysh,ij , i.e. the impedance matrix and shunt

admittance matrix, respectively, that can be written as:

Fig. 1. Three-phase scheme for a transmission network branch and available
measurements.

Zij =





zij,aa zij,ab zij,ac
zij,ab zij,bb zij,bc
zij,ac zij,bc zij,cc



 (1)

Ysh,ij =





ysh,ij,aa ysh,ij,ab ysh,ij,ac

ysh,ij,ab ysh,ij,bb ysh,ij,bc

ysh,ij,ac ysh,ij,bc ysh,ij,cc



 (2)

In the entries of both matrices, the subscripts ij indicate

the end nodes of the (i, j) branch, while the subscripts pq



with p, q ∈ {a, b, c} indicate the corresponding phases pair.

Thus zij,pq is the line impedance (or the mutual impedance

when p ̸= q) and bsh,ij,pq is the shunt admittance between

phase p and q. The shunt admittance is assumed to be equally

divided into the two sides of the three-phase π-line model of

each branch, and it is assumed to be a pure susceptance, thus

giving ysh,ij,pq = jBsh,ij,pq and Ysh,ij = jBsh,ij .

In this paper, the availability of PMUs installed on both

sides of each branch is assumed. The synchronized mea-

surements provided by the PMUs are the 3 phase voltage

synchrophasor measurements vh,p, with p = {a, b, c}, for

each node h ∈ {i, j}, that is at the start and end nodes.

The 6 current synchrophasor measurements iij,p and iji,p are

also measured. The synchronized measurements can be time-

aligned (labelled with an UTC timestamp t) and thus represent

a coordinated set of measurements referred to the same time

instant t.
The line model defines a measurement model that links the

set of measured values to the line parameters, which are not

perfectly known, and to the errors that affect every measured

value. Each measured synchrophasor can be expressed as

a function of reference values (indicated in the following

equations by superscript R) and of measurement errors as

follows:

vh,p = Vh,pe
jϕh,p = V rh,p + jV xh,p

= (1 + ξsysh,p + ξrndh,p )V
R
h,pe

j(ϕR
h,p+α

sys

h,p
+αrnd

h,p )

iij,p = Iij,pe
jθij,p = Irh,p + jIxh,p

= (1 + ηsysij,p + ηrndij,p )I
R
ij,pe

j(θRij,p+ψ
sys
ij,p

+ψrnd
ij,p)

(3)

where Vh,p and ϕh,p are the magnitude and phase-angle

measurements of node h voltage at phase p. Analogously,

Iij,p and θij,p are the measured magnitude and phase angle

of the p-phase branch current flowing from node i towards

node j. Measured current phasor iji,p (see Fig. 1) can be

expressed in a similar way. Superscripts r and x are used for

the real and imaginary parts of the corresponding phasors.

Finally, superscripts sys and rnd refer to the systematic and

random errors, respectively. The main difference between these

errors is that systematic errors are the same across repeated

measurements, while random errors vary from one observation

to another. To model the uncertainty contributions, in the

following, the systematic measurement errors are attributed

mainly to ITs and the random errors to PMUs. The errors,

as indicated in (3), affect both magnitudes and phase angles

of each synchrophasor measurements. In particular, quantities

ξsysh,p and ηsysij,p (or ηsysji,p) refer to the systematic ratio errors of

the voltage and current phasors at node h and phase p, respec-

tively. Moreover, αsysh,p and ψsysij,p (or ψsysji,p) are the systematic

phase displacement errors for the above defined measurements.

These quantities can be assumed as the unknowns in the

measurement model. Analogously, replacing sys with rnd, the

corresponding random ratio and phase displacement errors can

be defined.

It is realistic to assume that all the absolute values of these

errors are much lower than one (i.e. |err| j 1, with err ∈

{ξ, α, η, ψ}), as in [25], and thus it is possible, adopting a first

order approximation, to rewrite (3) to express each reference

synchrophasor as function of the measured values and of the

above defined errors (h and p have same meaning as before):

vRh,p ≃
(

V rh,p + jV xh,p
)

(

1− ξsysh,p− ξrndh,p − jαsysh,p− jαrndh,p

)

iRij,p ≃
(

Irij,p + jIxij,p
) (

1− ηsysij,p− ηrndij,p − jψsysij,p− jψrndij,p

)

(4)

Current phasor iRji,p can be similarly defined.

Considering (1) and (2), it is possible to rewrite the generic

line parameter, that is the generic element (p, q) in the matrices

Zij and Bsh,ij , as:

zij,pq = Rij,pq + jXij,pq

= R0
ij,pq(1 + γij,pq) + jX0

ij,pq(1 + βij,pq)

Bsh,ij,pq = B0
sh,ij,pq (1 + ρij,pq)

(5)

where γij,pq , βij,pq and ρij,pq (p and q ∈ {a, b, c}) are the

relative deviations of resistance, reactance and transversal sus-

ceptance values, respectively, from R0
ij,pq , X

0
ij,pq and B0

sh,ij,pq

available in TSO database (superscript 0 indicates nominal

values).

As in [25], the procedure aims at estimating all the sys-

tematic measurement errors and all the parameters’ deviations.

The estimation algorithm can thus rely on the constraints given

by Kirchhoff’s laws, which correspond to the following three-

phase line voltage drop constraints and three-phase current

balance equations:

(

v
R
i − v

R
j

)

= Zij

(

i
R
ij − j

Bsh,ij

2
v
R
i

)

(6)

(

i
R
ij + i

R
ji

)

= j
Bsh,ij

2

(

v
R
i + v

R
j

)

(7)

where v
R
h =

[

vRh,a v
R
h,b v

R
h,c

]⊺

is the voltage phasors vector

of the h node, while i
R
ij =

[

iRija i
R
ijb

iRijc
]⊺

and i
R
ji =

[

iRjia i
R
jib

iRjic
]⊺

are the three-phase branch-current phasor vec-

tors leaving nodes i and j, respectively1. The Kirkhhoff’s

laws link reference phasors with actual line parameters. Then,

by substituting the expressions (4) of reference phasors as

function of measured values and errors and the actual line

parameters from (5) into (6) and (7), it is possible to write

a system of complex equations involving measurements and

measurement errors. Applying a first order approximation as

in [25] and finally splitting each complex equation into its real

and imaginary part, a system of 12 real-valued linear equations

can be obtained from the constraints. For these equations,

the systematic errors and the parameter deviations can be

considered as the unknowns, while random errors represent

the model errors.

1⊺ is the transpose operator.



B. Step Voltage Regulator and Measurement Model

In this paper, the three-phase SVR is modelled aiming at

the simultaneous estimation of line parameters, systematic

measurement errors and tap-changer ratios. More specifically,

a comprehensive formulation of wye and closed delta con-

nections is developed, showing the proposed method for both

configurations (see, for example, [27] for details about these

connections). The SVR is a device installed along the feeder or

at the substation to keep the voltages within acceptable limits.

It is a connection of an auto-transformer with a variable turn

ratio [28], which is dependent on the position of the tap and is

determined through a control circuit that uses the approximate

voltage drop to command the displacement of the tap.

In this paper, the SVR is modelled as installed in a

generic branch (l, k) with the same assumptions made for

the transmission line branch. PMUs are available at both

ends of the branch, providing the synchrophasor measurements

vh,p, ilk,p and ikl,p (with h ∈ {l, k} and p ∈ {a, b, c}).

The corresponding reference synchrophasors are indicated by

vRh,p, iRlk,p and iRkl,p, respectively. In the following, the pair of

symbols (l, k) will be used to distinguish a branch with SVR

from a generic line branch (i, j). Thus, (3) and (4) are still

valid models for measured and reference synchrophasors of

the SVR branch when h ∈ (l, k) and ij is replaced with lk.

The relationship between voltage and current phasors at the

primary and secondary of the SVR associated with branch

(l, k) are obtained by means of the matrices Av,lk, Ai,lk and

ZSVR,lk, which are the voltage gain, the current gain and the

impedance matrix of the SVR, respectively [26]. For all the

SVR connection typologies, the following relationship among

the matrices Av,lk and Ai,lk holds true:

A
−1
v,lk = A

⊺

i,lk (8)

The entries of the above-mentioned matrices are determined

by the specific connection configuration, e.g. wye or closed

delta. The models adopted by the proposed algorithm for these

connections are presented in detail in the following.

For a wye-connected SVR the voltage gain matrix has the

following structure:

Av,lk =





alk,aa 0 0
0 alk,bb 0
0 0 alk,cc



 (9)

while, for a closed delta connected SVR the matrix is:

Av,lk =





alk,ab 1− alk,ab 0
0 alk,bc 1− alk,bc

1− alk,ac 0 alk,ac



 (10)

The following expression is used to define the nonzero entries

of Av,lk for both wye and closed delta configurations:

alk,pq = a0lk,pq (1 + τlk,pq) (11)

where p, q ∈ {a, b, c} (the permitted combinations depend on

the connection type), a0lk,pq is the nominal or assumed value

of the tap changer ratio, and τlk,pq is the relative deviation of

actual value from nominal one. In the following, tap changer

ratio variations are assumed to be occurring with a longer

timescale than PMU reporting rates, therefore τlk,pq can be

considered as an additional unknown of the estimation process.

The impedance matrix ZSVR,lk is considered diagonal and,

similarly to the first equation in (5), its entries can be expressed

as a function of the corresponding reactance value available

from the TSO database and of the relative deviation from it. In

particular, following the notation in [26], for wye connection

zlk,pp is:

zlk,pp = jX0
lk,pp (1 + βlk,pp) (12)

with p ∈ {a, b, c}. For closed delta configuration, the diagonal

nonzero parameters are zlk,ab, zlk,bc and zlk,ac and depend on

the associated βlk,ab, βlk,bc and βlk,ac variables and on the

corresponding reactances.

With the node admittance matrix Ylk of branch (l, k), and

considering the three-phase model of the SVR, it is possible

to define the following constraints:
[

i
R
lk

i
R
kl

]

= Ylk

[

v
R
l

v
R
k

]

(13)

where, analogously to the symbols used in Section II-A,

v
R
h =

[

vRh,a v
R
h,b v

R
h,c

]⊺

is the vector of reference voltage

phasors at node h (h ∈ {l, k}), while i
R
lk =

[

iRlk,a i
R
lk,b i

R
lk,c

]⊺

and i
R
kl =

[

iRkl,a i
R
kl,b i

R
kl,c

]⊺

are the reference branch-current

phasor vectors departing from node l and k, respectively. Ylk

is the 6× 6 matrix defined by:

Ylk =





Ai,lkZ
−1
SVR,lkA

⊺

i,lk −Ai,lkZ
−1
SVR,lk

−Z
−1
SVR,lkA

⊺

i,lk Z
−1
SVR,lk



 (14)

Equation (13) and (14) can be used to define the constraints

deriving by Kirchhoff’s laws for the case of SVR. Choosing

the SVR configuration and the corresponding matrix Av,lk

from (9) or (10). Exploiting also the relationship (8) and

making explicit the voltages with respect to the currents,

the voltage drop equations and the current balance equations

associated with the SVR can be obtained as follows:

v
R
l −Av,lkv

R
k = Av,lkZSVR,lkA

⊺

v,lki
R
lk (15)

i
R
kl = −A

⊺

v,lki
R
lk (16)

With the same assumptions on the errors adopted in Section

II-A, (15) and (16) can be written with a first order approx-

imation, thus defining 6 complex-valued equations and thus

a system of 12 real-valued equations for each SVR in the

network. Such equations are reported in detail in the Appendix

and link the measurements to all the unknown parameters to

be estimated, including tap changer ratios.

C. Estimation Method for a Single Branch

The systems of linear equations described in Section II-A

for the generic line (i, j) and in Section II-B for the SVR

branch (l, k) are referred to a given set of synchronized

measurements associated with a specific time instant t (the



timestamp of PMU measurements). It is thus possible to

rewrite the system associated with a single branch with a

matrix notation, separating the random errors from the sys-

tematic ones. Focusing only on the SVR case for the sake of

brevity (similar expressions are valid also for a transmission

line, which are the generalization of those reported in [25]),

the following expression can be written:

blk,t = Hlk,t

































À
sys
l

³
sys
l

À
sys
k

³
sys
k

¸
sys
lk

È
sys
lk

¸
sys
kl

È
sys
kl

´lk
Älk

































+ Elk,t



























À
rnd
l,t

³rndl,t

À
rnd
k,t

³rndk,t

¸rndlk,t

È
rnd
lk,t

¸rndkl,t

È
rnd
kl,t



























= Hlk,txlk + Elk,telk,t = Hlk,txlk + ϵlk,t

(17)

where subscript t denotes the timestamp, blk,t is the vector

of all known terms associated with the equations for branch

(l, k) (the left side values in the equations of the Appendix)

and Hlk,t is the matrix that gives the linear relationship

between the equivalent measurements in blk,t and the vector

of systematic errors and deviations. Vector xlk includes all

the unknowns of branch (l, k). As an example, it includes

À
sys
h =

[

ξsysh,a ξ
sys
h,b ξ

sys
h,c

]⊺

(h ∈ {l, k}) that is the 3 × 1

vector including the systematic ratio errors for measured

voltage synchrophasors at node h. Similar definitions hold for

³
sys
h , ¸

sys
lk , È

sys
lk , ¸

sys
kl , È

sys
kl , ´lk and Älk. In particular,

´lk = [βlk,aa βlk,bb βlk,cc]
⊺

and Älk = [τlk,aa τlk,bb τlk,cc]
⊺

for wye configuration, whereas ´lk = [βlk,ab βlk,bc βlk,ac]
⊺

Älk = [τlk,ab τlk,bc τlk,ac]
⊺

for closed delta configuration.

Replacing sys with rnd, similar vectors can be defined

also for random errors and they are grouped in elk,t. Matrix

Elk,t transforms the measurement random errors in elk,t into

the random error vector ϵlk,t associated with the equivalent

measurements in blk,t.

When considering instead the system for the transmission

line of branch (i, j), a vector of unknowns xij can be defined,

which includes systematic errors for voltages and currents

and deviations γij,pq , βij,pq and ρij,pq , depending on the

parameters present in the model. Analogously to the SVR case,

matrices Hij,t, Eij,t and vectors eij,t and ϵij,t can be used

to define the corresponding system.

To estimate xlk, similarly to [25], multiple time instants

t1, · · · , tNt
(and their corresponding three-phase measurement

sets) are used altogether to define a multi-timestamp system

as follows:

blk=







blk,t1
...

blk,tNt






=







Hlk,t1

...

Hlk,tNt






xlk+







Elk,t1 0

0
. . .

Elk,tNt













elk,t1
...

elk,tNt







= Hlkxlk +Elkelk = Hlkxlk + ϵlk
(18)

where xlk is the same across different time instants and Elk

is block diagonal because the random errors of equivalent

measurements at each instant t depend only on the random

errors at the same instant.

Like in [25] and [29], without loss of generality, multiple

PMU measurements are assumed to be available for each load

condition and different load conditions (cases) are taken into

account. Measurements obtained within a small time interval

(repeated measurements for the same case) can be averaged

and used to define a problem like (17) that represents a specific

case. On this basis, the problem (18) can be considered as

composed only of different cases, thus limiting the size of the

system. If some measurements or timestamps are missing, it

is easy to adapt the method according to available data.

In addition to the above mentioned equations, every source

of prior information about the unknowns is also used and thus

it is possible to rewrite the problem as:

blk,+ =

[

blk

0r×1

]

=

[

Hlk

Ir

]

xlk +

[

ϵlk
eprior

]

= Hlk,+xlk + ϵlk,+

(19)

where 0r×1 is a r-size vector of zeros (r is the number

of unknowns in xlk, which depends on the exact model

and on the SVR connection type) that defines the pseudo-

measurements associated with prior information (i.e. no de-

viations is assumed) and Ir is the identity matrix of size r,

representing the measurement matrix of prior values. Vector

ϵlk,+ includes both the equivalent random errors ϵlk and the

random variables eprior associated with prior errors.

The problem (19) can be solved via WLS estimation, where

the weight matrix Wlk,+ = Σ
−1
ϵlk,+

with:

Σϵlk,+
=

[

Σϵlk
0

0 Σeprior

]

(20)

the covariance matrix of equivalent measurements and priors.

The covariance matrix of ϵlk is obtained through the Law of

Propagation of Uncertainty as:

Σϵlk
= ElkΣelk

E
⊺

lk (21)

where Σelk
is considered in the following, without loss of

generality, diagonal and includes the uncertainty description

of PMU measurements (here assumed decorrelated) or of

averaged repeated measurements.

The covariance matrix of the prior Σeprior
is the diagonal

matrix including all the prior variances of the unknowns. If

additional information on the correlations is available, it can

be included too.

Finally, x̂lk is the estimated unknowns vector and is ob-

tained through the solution of the WLS problem:

(HT
lk,+Wlk,+Hlk,+)x̂lk =

(

H
⊺

lk,+Wlk,+

)

blk,+ (22)

D. Estimation Method for a Set of Branches

In Section II-C, the estimation method for a single branch,

either a transmission line (i, j) or a voltage regulator branch

(l, k), has been presented. The approach can be extended to



a set of branches or even to the entire network, considering a

multiple instant problem like (18) for all the branches included

in the portion of interest. The obtained systems can be merged

so that all the voltage drop equations (6) and (15) and all

the current-related equations (7) and (16) of all the involved

branches are managed. A new overall system can thus be

written as:

b+=

























bl1k1
...

blNSVR
kNSVR

bi1j1
...

biNbr
jNbr

0rtot×1

























=

[

H

Irtot

]

x+

[

ϵ

eprior

]

= H+x+ ϵ+

(23)

where NSVR and Nbr are the number of involved SVRs and

lines, respectively, and H is the measurement matrix merging

all the constraints given by all the considered equations. Vector

x is the vector of all the unknowns and rtot is its length.

Considering different branches, systematic measurement er-

rors can belong to multiple constraints, thus improving the

measurement/constraint ratio and improving the estimation

process. The solution of (23) can be obtained through WLS

as in the single-branch approach and leads to a simultaneous

estimation of the systematic deviations of all the involved

measurements, the line parameters and the tap ratios, defining

a three-phase formulation of the multi-branch approach used

in [25].

III. TESTS AND RESULTS

The proposal has been validated by means of different types

of tests carried out in a controlled environment in order to

highlight properly the impact of different modelling on the

estimation results. The tests have been performed on a three-

phase version of the IEEE 14 bus test system (the equivalent

diagram is shown in Fig. 2) simulated in MATLAB. The three-

phase test system has been obtained by considering the data of

the IEEE 14-bus test system as positive sequence parameters

and then deriving negative and zero sequence values according

to [15].

All the tests have been carried out simulating different

realistic load conditions on the grid; each of them represents a

case (see Section II), and repeated measurements are acquired

for each case. To validate statistically the results, Monte Carlo

(MC) simulations have been performed. In particular, P = 10
cases and M = 10 measurements for every case and each

MC trial, and NMC = 10000 trials have been considered.

For each case, the reference values are obtained by means

of a three phase powerflow, therefore the voltage and current

measurements and actual tap ratio conditions are established.

For each measurement instant and for each voltage and current

measurement, systematic and random errors are then added to

the reference values.

In the following, random errors are assumed to be mainly

associated with PMUs and systematic errors are associated

Fig. 2. Unifilar diagram of the IEEE 14-bus system.

with ITs. Thus, random contributions depend on the accuracy

intervals given by PMU specifications, while systematic con-

tributions basically depend on the accuracy class of ITs.

The setup is prepared according to the following assump-

tions:

1) As for the line parameters, maximum deviations of

Rij,pq , Xij,pq and Bsh,ij,pq are equal to ±10%.

2) As for the ITs (assumed of class 0.5 [30], [31]), a

maximum error of 0.5% for voltage and current ratios,

a maximum CT phase-angle displacement of 0.9 crad

(10−2 rad) and a maximum VT phase-angle displace-

ment of 0.6 crad are considered, while for alk,pq the

maximum deviation is ±1% [4].

3) As for the PMUs, a maximum amplitude error of 0.1%
and a maximum phase-angle error of 0.1 crad are used,

corresponding to accurate but realistic values for real

PMUs in steady-state conditions.

4) As for the operating conditions, a variability of ±10%
with respect to nominal values for load/generator values

(for both active and reactive powers) is considered

among different load conditions. For each node, a max-

imum variability of ±1% of the nominal power has

also been imposed among the phases, thus keeping the

voltage asymmetry always compatible with that found

by Italian TSO (see, e.g., [32] and [33]).

5) For every test, the errors and the deviations of all the

parameters involved are extracted from uniform distri-

butions.

The above assumptions (default scenario) are intended to

describe in a meaningful way the variability in the network

and the main uncertainty sources of the monitoring system.

To assess the performance of the proposal, the root mean

square error (RMSE) is used:

RMSE =

√

√

√

√

NMC
∑

i=1

(ν̂ − ν)2

NMC

(24)

whereˆ indicates the estimated quantity. In (24) ν is a place-

holder for each unknown of the state vector x or xhd (with



(h, d) = (i, j) or (l, k) indicating the generic branch). For

phase p, ν can thus be equal to ξh,p, αh,p, ξd,p, αd,p, ηhd,p,

ψhd,p, ηdh,p, ψdh,p, γhd,pq , βhd,pq , ρhd,pq and τhd,pq , where

q ∈ {a, b, c} depending on the configurations and the models.

A. Single-Branch Approach

The first series of tests has been carried out using the single-

branch approach to assess the performance of the proposed

method on all three phase branches equipped with a step

voltage regulator (branches (4, 7), (4, 9) and (5, 6)). Both SVR

configurations presented in Section II-B have been adopted

in different tests. For space reasons, in the following, the

results are mainly reported for the closed delta configuration

exploring all the estimated quantities, since it is much fur-

ther from the single-phase model. All the RMSE results are

compared with the corresponding standard deviations of the

extracted errors or deviations in all NMC trials. These standard

deviations represent also the prior RMSE errors. In particular,

standard deviation is ∆γ/
√
3 = ∆β/

√
3 = ∆ρ/

√
3 ≃ 5.77%

(∆ indicates the maximum deviation) for network parameters

and ∆τ/
√
3 ≃ 0.57% for tap ratios, according to the assumed

ranges. For systematic ratio error of voltage and current

measurements the prior standard deviation is ∆ξ/
√
3 =

∆η/
√
3 ≃ 0.29%, while it becomes ∆α/

√
3 ≃ 0.35 crad and

∆ψ/
√
3 ≃ 0.52 crad for phase displacement error of voltage

and current measurements, respectively. The estimation results

of the proposal (referred to as “Tap estimation”) are compared

with those obtained with the method when tap ratios are

considered as if they were perfectly known at run time

(“No Tap estimation”). In the latter case, the deviations from

assumed values, which actually occur, are neither included in

the model nor estimated, since voltage regulation uncertainty

is indeed neglected.

Table I reports the estimation results of phase displacement

and voltage amplitude systematic errors for phase a (similar

results can be found for the other system phases). When the

tap changer is modelled, an RMSE reduction up to 50%
and 30% for ratio errors and phase displacement errors,

respectively, is achieved with respect to No Tap estimation. No

Tap estimation indeed suffers from the lack of modeling and

from the simplistic assumption of perfectly known tap ratios.

Reductions of the same order are obtained for the current

amplitude and phase displacement systematic errors. Similar

results can also be obtained with wye configuration, with a

30% RMSE reduction in the voltage ratio error. Nevertheless,

as in [25], the advantages for phase displacement are instead

negligible. It is important to highlight that, with Not Tap

estimation the values of RMSE for ξ are beyond the prior

(0.29%), thus showing a critical degradation introduced by

the estimator.

Table II shows the results for βlk,pq , that is for the reactance

estimation in SVR branches. Both estimation algorithms show

RMSE values much lower than prior (5.77%), but it is possible

to observe a further reduction of estimation error (up to 37%
for branch 10) when the tap changer ratio is modelled and

estimated.

TABLE I
RMSE OF SYSTEMATIC VOLTAGE ERRORS ESTIMATION -

SINGLE-BRANCH ESTIMATION, CLOSED DELTA CONFIGURATION

Branch Method RMSE

ξl,a αl,a ξk,a αk,a

Index (l, k) [%] [crad] [%] [crad]

8 (4, 7) Tap estimation 0.25 0.26 0.24 0.26

8 (4, 7) No Tap estimation 0.48 0.35 0.48 0.36

9 (4, 9) Tap estimation 0.24 0.26 0.24 0.26

9 (4, 9) No Tap estimation 0.47 0.33 0.47 0.35

10 (5, 6) Tap estimation 0.24 0.28 0.25 0.28

10 (5, 6) No Tap estimation 0.44 0.31 0.43 0.33

TABLE II
βlk,pq ESTIMATION - SINGLE-BRANCH ESTIMATION, CLOSED DELTA

CONFIGURATION

Branch Method RMSE [%]

Index (l, k) βlk,ab βlk,bc βlk,ac

8 (4, 7) Tap estimation 2.76 2.76 2.72

8 (4, 7) No Tap estimation 3.01 3.02 2.97

9 (4, 9) Tap estimation 2.03 2.10 2.08

9 (4, 9) No Tap estimation 2.75 2.81 2.81

10 (5, 6) Tap estimation 2.31 2.33 2.33

10 (5, 6) No Tap estimation 3.65 3.64 3.69

B. Multiple Branches Approach

Further analyses has been carried out with a multiple

branches (multi-branch) approach. In particular, the entire

three-phase network has been used in the estimation process

thus including the constraints of all the branches. As a first

result, Table III compares the RMSEs that can be obtained with

multi-branch and single-branch approaches for tap changer

ratio estimation (τpq parameters) considering closed delta

connection. It is possible to see that the proposed method

allows a remarkable reduction of the RMSE from prior value

0.57% to less than 0.2% with single-branch and less than

0.1% with the multi-branch. With wye configuration, and the

same loading conditions, the errors are higher, but single-

branch approach still more than halves (−54%) the RMSE

with respect to prior and multi-branch solution, in turn, halves

the estimation results obtained with the single-branch method,

achieving reductions respect to prior errors of more than 77%.

Fig. 3 gives further insight into the estimation results, show-

ing, for phase a as an example, the RMSEs for the estimation

of the amplitude voltage systematic errors (ξh,a) as a function

of the node index and obtained when the entire network is

considered with the multi-branch approach. When the method

is applied assuming the tap changer ratio as known, (blue

squares) the estimation is jeopardized because the method

suffers again from the lack of modelling. Indeed RMSEs are

much higher than prior (black plus sign) and all the nodes are

affected, even far away from the SVRs, thus preventing the



TABLE III
TAP RATIO ERROR τlk,pq ESTIMATION - MULTI-BRANCH VS

SINGLE-BRANCH, CLOSED DELTA CONFIGURATION

Branch Approach RMSE [%]

Index (l, k) τlk,aa τlk,bb τlk,cc

8 (4, 7) Single-branch 0.18 0.18 0.18

8 (4, 7) Multi-branch 0.08 0.08 0.08

9 (4, 9) Single-branch 0.18 0.19 0.19

9 (4, 9) Multi-branch 0.08 0.08 0.08

10 (5, 6) Single-branch 0.19 0.19 0.19

10 (5, 6) Multi-branch 0.09 0.09 0.09

Fig. 3. Estimation of voltage amplitude systematic errors - results obtained
with and without tap estimation.

application of the method. Estimating the tap ratios and using

the entire network (asterisks) brings a remarkable reduction

of the errors with respect to the prior. This is confirmed also

when looking at the estimation of systematic errors in voltage

phase-angle displacement (Fig. 4, where the same methods,

markers and colors as in Fig. 3 are used). It is also important

to highlight that the No Tap estimation method, which does

not consider deviations in the tap ratio, can be still applied

to the the branches that do not include tap changers (purple

dots). On this reduced set of branches, the proposed multi-

branch three-phase method is much more accurate than prior,

but the RMSEs are larger than the Tap estimation on all the

nodes (up to about 24% for voltage magnitude and 47% for

phase angle). The lowest RMSEs are thus obtained with the

proposed method and the fully detailed model, resulting in an

average improvement of about 68% with respect to the prior

for phase angle errors. This type of results suggest also that

a preliminary study on the network to monitor can help in

designing the most appropriate estimation method to apply.

As an example, Fig. 5 reports the RMSE results for the

parameters estimation of branch (4, 5), which is the branch

next to the branches equipped with SVRs. In particular, the

RMSE obtained for reactance deviations, with or without

estimating the tap changer ratios, are shown (in the latter

Fig. 4. Estimation of voltage phase-angle systematic errors - results obtained
with and without tap estimation.

Fig. 5. RMSE results for the estimation of reactance parameters of branch
(4, 5).

case the reduced set of branches is considered as above for

a fair comparison). When the tap ratios are estimated, the

uncertainty in the estimation of self reactances is lowered to

almost one third of the prior uncertainty, while for mutual

parameters RMSEs are reduced of about 30%, thus confirming

the advantages of the proposed algorithm also in three-phase

line estimation. A clear improvement is also brought by the

complete model, leading to an RMSE reduction of more than

32% and 19% for self and mutual parameters, respectively,

compared to the reduced set case. Similar results can be found

also with SVRs in wye connection.

To investigate the impact of IT and PMU uncertainty on the

estimation performance, tests have been performed considering

different values for the IT class and the maximum PMU errors.

IT with accuracy class 0.2 (0.2% as maximum ratio error and

0.3 crad as maximum phase displacement) is now considered.

This implies prior standard deviations for ξ and α lower

than in previous tests (0.12% and 0.17 crad, respectively).

Table IV reports the RMSE results for both line parameters



and VT systematic errors, focusing on branch (2, 3). Similar

results can be found also for other branches. As expected,

the estimation accuracy degrades with higher uncertainties. In

particular, since systematic errors are included in the model

and estimated, the main impact is due to PMU errors, leading

to an RMSE increase of more than 20% for all the estimated

line parameters when maximum PMU errors double.

TABLE IV
ESTIMATION PERFORMANCE UNDER DIFFERENT UNCERTAINTY

SCENARIOS

IT PMU RMSE

class accuracy γ23,aa γ23,ab β23,aa β23,ab ξ2,a α2,a ξ3,a α3,a

| · |[%],∠[crad] [%] [%] [%] [%] [%] [crad] [%] [crad]

0.2
0.1, 0.1 2.11 2.81 1.39 2.81 0.07 0.08 0.06 0.07
0.2, 0.2 2.63 3.37 1.67 3.47 0.08 0.11 0.07 0.09

0.5
0.1, 0.1 2.21 2.83 1.44 2.84 0.13 0.13 0.12 0.12
0.2, 0.2 2.74 3.39 1.77 3.51 0.15 0.17 0.14 0.14

To investigate the impact on the estimation accuracy of

the number of branches involved in the algorithm, tests have

been performed considering the default scenario on a net-

work size increasing progressively from a single branch to

the entire network. Table V reports the RMSE results2 for

selected quantities focusing on branch (2, 3). As expected, the

results improve with the size. The largest and most significant

improvement for line-related parameters is achieved when

two additional branches are included (error reduction up to

about 26% on an overall reduction with the whole network

of about 34%), thus confirming the immediate advantage of a

multi-branch approach. For systematic errors the effect is even

more pronounced when the number of branches increases.

For instance, the RMSE of α2,a is almost halved on the

entire network with respect to single-branch case. It is inter-

esting to highlight that the improvements depend also on the

network topology. Meshes, for instance, introduce additional

constraints on the unknowns because each node is shared at

least among two branches, thus helping the estimation process.

TABLE V
ESTIMATION PERFORMANCE ON INCREASING NETWORK PORTION -

BRANCH (2, 3)

Network

Portion

RMSE
γ23,aa γ23,ab β23,aa β23,ab ξ2,a α2,a ξ3,a α3,a

[%] [%] [%] [%] [%] [crad] [%] [crad]

Single-branch 3.24 4.06 2.20 4.29 0.22 0.26 0.22 0.26
3 branches 2.48 3.16 1.63 3.16 0.19 0.22 0.18 0.21
6 branches 2.43 3.09 1.56 3.12 0.14 0.17 0.15 0.18

All branches 2.21 2.83 1.44 2.84 0.13 0.13 0.12 0.12

Finally, even though an all-encompassing comparison with

other methods from the literature is not possible, an example

of the RMSE results (on branch (2, 3)) achievable for line

2In Table V, “3 branches” corresponds to the set of branches with indexes
3, 4 and 6, while “6 branches” corresponds to branch indexes from 1 to 6.

parameters with different approaches using the same measure-

ments is reported in Table VI. The proposed algorithm, which

is used also in its single-branch version, is compared with two

methods designed to estimate three-phase line parameters from

PMU measurements. The first algorithm (Method A) is based

on a two-step estimation of shunt admittance and impedance

matrices of a branch [14], while the second algorithm (Method

B) uses a robust estimator for the shunt and line admittance

parameters starting from current equations at both ends [15].

The first method has been generalized to consider also non-

transposed lines as the proposed one. These two methods rely

on a significant level of unbalance to improve their accuracy.

For this reason and to perform a fairer comparison with them,

the maximum variations of the load power among the phases

at a given node have been considered with two different levels

(column ‘Load Unb.’): ±1% and ±5% of the nominal power.

In addition, following also the sensitivity study reported above,

two classes of transducers and two PMU accuracy levels have

been used. In the in Table VI, symbol ‘>’ is used to indicate

results far beyond (at least twice) the prior standard deviation

of the parameters. It is clear that the proposed method shows

lower RMSEs for all the parameters, whereas Methods A

and B suffer low unbalance levels. In particular, the proposed

method in its multi-branch configuration reaches the lowest

RMSE and it clearly benefits from a higher unbalance level.

As a final comment, it is important to highlight that the

three-phase formulation, besides allowing the estimation of

three-phase parameters and the systematic errors that are

intrinsically referred to the per-phase collected measurements,

permits a better estimation also of positive sequence quantities

when a realistic unbalance is present. To prove this, the

positive sequence resistance and reactance of each line has

been computed from the three-phase parameters estimated

with the proposed method and directly with the single-phase

version of [25]. The wye configuration has been used because

an exact equivalence is possible with [25] in this case. The

average estimation RMSEs across all the branches are reported

in Table VII, where γ+ and β+ represent the relative devia-

tions of positive sequence values from nominal ones for line

resistance and reactance, respectively. The results confirm the

advantages of the three-phase formulation when symmetry is

no guaranteed in practice.

C. Experimental Results

To assess the performance of the proposed method with

an even more realistic uncertainty description, additional tests

have been performed using real measurement errors obtained

through experimental laboratory characterization of commer-

cial PMUs. As an example, Table VIII reports the RMSE

results for system phase a and branches (2, 3), (4, 5) and

(9, 14) when the experimental PMU errors are used. In partic-

ular, the amplitude and phase-angle errors recorded during the

experiments have been added to the simulated quantities (after

introducing IT systematic errors according to the assumed

class 0.5) and the estimation has been performed with the pro-

posed method (multi-branch). The RMSE results are similar



TABLE VI
COMPARISON AMONG DIFFERENT METHODS IN DIFFERENT

UNCERTAINTY SCENARIOS - BRANCH (2, 3)

Method
ITs PMU Load RMSE

class accuracy Unb. γ23,aa γ23,ab β23,aa β23,ab

| · |[%],∠[crad] [%] [%] [%] [%] [%]

Proposed

Method

(All branches)

0.2 0.1, 0.1
1 2.11 2.81 1.39 2.81
5 0.93 1.02 0.59 1.25

0.5
0.1, 0.1

1 2.21 2.83 1.44 2.84
5 1.08 1.07 0.67 1.33

0.2, 0.2
1 2.74 3.39 1.77 3.51
5 1.63 1.72 1.04 1.94

Proposed

Method

(Single branch)

0.2 0.1, 0.1
1 3.14 4.06 2.13 4.23
5 1.47 1.64 0.97 2.07

0.5
0.1, 0.1

1 3.22 4.07 2.19 4.29
5 1.71 1.72 1.08 2.22

0.2, 0.2
1 3.55 4.54 2.52 4.63
5 2.56 2.81 1.72 3.35

Method A

[14]

0.2 0.1, 0.1
1 > > > >
5 2.36 2.38 1.50 3.20

0.5
0.1, 0.1

1 > > > >
5 3.30 3.42 2.09 4.62

0.2, 0.2
1 > > > >
5 4.99 4.96 3.11 6.77

Method B

[15]

0.2 0.1, 0.1
1 10.48 10.08 6.50 >
5 2.14 2.22 1.40 2.92

0.5
0.1, 0.1

1 > > 8.40 >
5 2.99 3.16 1.96 4.15

0.2, 0.2
1 > > > >
5 4.45 4.55 2.86 6.05

TABLE VII
COMPARISON OF POSITIVE SEQUENCE PARAMETERS ESTIMATION WITH

SINGLE-PHASE AND THREE-PHASE APPROACHES

Method
Average RMSE [%]

γ+ β+

Single-phase 2.47 1.23
Three-phase 1.59 0.76

to those obtained with simulated PMU errors and even better

since the used commercial PMUs have lower uncertainty than

that assumed for previous tests. The RMSEs are much lower

than prior standard deviations, thus confirming the validity of

the presented approach in reducing the uncertainty of both

network parameters and IT errors.

TABLE VIII
ESTIMATION PERFORMANCE WITH EXPERIMENTAL PMU ERRORS

Branch

Index (i,j)

RMSE

γij,aa γij,ab βij,aa βij,ab ξi,a αi,a ξj,a αj,a

[%] [%] [%] [%] [%] [crad] [%] [crad]

3 (2, 3) 1.81 2.36 1.10 2.29 0.11 0.11 0.11 0.11
7 (4, 5) 2.19 2.62 1.53 3.41 0.11 0.10 0.11 0.11

17 (9, 14) 1.62 1.91 1.39 3.27 0.09 0.10 0.09 0.10

IV. CONCLUSIONS

A novel method based on PMU measurements for the

simultaneous estimation of systematic measurements errors,

line parameters and tap changer ratios in a three-phase power

systems has been presented in this paper. The method provides

a framework to deal with different models of lines and

regulators and can be adapted to different operator needs.

It allows modelling the uncertainty introduced by the mea-

surement chain together with the lack of knowledge in the

network parameters. The estimation results obtained with the

proposed method in a simulated environment under different

uncertainty conditions and considering also experimental PMU

errors show a remarkable improvement in the knowledge of

the grid, thus fostering its extension to further models and

instruments for a more accurate and complete monitoring of

the power systems. The paper has also illustrated the risk of

an incomplete description of the uncertainty, thus suggesting

new research activities on measurement systems more aware

of the available information quality.

APPENDIX

Equations A.25-A.28 (full width, top of next page) report

the real and imaginary parts of the voltage drop and of the

current balance equations for the wye connected SVR at

branch (l, k) for all phases p ∈ {a, b, c}. Equations A.29-A.32

(full width, top of the last page) report the real and imaginary

parts of the voltage drop and of the current balance equations

for the closed delta connected SVR at branch (l, k) for phase

a. Similar equations can be written for the other system phases.
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