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Abstract
This work deals with a chemotaxis model where an external source involving a sub and
superquadratic growth effect contrasted by nonlocal dampening reaction influences
the motion of a cell density attracted by a chemical signal. We study the mechanism
of the two densities once their initial configurations are fixed in bounded impenetrable
regions; in the specific, we establish that no gathering effect for the cells can appear
in time provided that the dampening effect is strong enough. Mathematically, we are
concerned with this problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = �u − χ∇ · (u∇v) + auα − buα
∫

�
uβ in � × (0, Tmax ),

τvt = �v − v + u in � × (0, Tmax ),

uν = vν = 0 on ∂� × (0, Tmax ),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �̄,

♦

for τ = 1, n ∈ N, χ, a, b > 0 and α, β ≥ 1. Herein u stands for the population
density, v for the chemical signal and Tmax for the maximal time of existence of
any nonnegative classical solution (u, v) to system (♦). We prove that despite any
large-mass initial data u0, whenever

• (The subquadratic case) 1 ≤ α < 2 and β > n+4
2 − α,

• (The superquadratic case) β > n
2 and 2 ≤ α < 1 + 2β

n ,
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actually Tmax = ∞ and u and v are uniformly bounded. This paper is in line with the
result in Bian et al. (Nonlinear Anal 176:178–191, 2018), where the same conclusion
is established for the simplified parabolic-elliptic version of model (♦), corresponding
to τ = 0; more exactly, this work extends the study to the fully parabolic case Bian et
al. (Nonlinear Anal 176:178–191, 2018).

Keywords Chemotaxis · Global existence · Nonlocal growth terms · Boundedness

Mathematics Subject Classification Primary: 35A01 · 35K55 · 35Q92 · 34B10;
Secondary: 92C17

1 Introduction andMotivations

1.1 Basic Description of the Research

In this paper we consider

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = �u − χ∇ · (u∇v) + auα − buα
∫

�
uβ in � × (0, Tmax ),

vt = �v − v + u in � × (0, Tmax ),

uν = vν = 0 on ∂� × (0, Tmax ),

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ �̄,

(1)

where � ⊂ R
n (n ∈ N) is a bounded domain with smooth boundary ∂� (briefly,

“bounded and smooth domain”); additionally, we fix χ, a, b > 0, α, β ≥ 1 and
sufficiently regular and nonnegative initial data u0(x), v0(x). On the other hand, the
subscript ν in (·)ν indicates the outward normal derivative on ∂� and Tmax is the
maximal existence time up to which solutions to the system are defined.

If properly interpreted, this model idealizes a chemotaxis phenomenon, a mecha-
nism frommathematical biology describing the directedmigration of a cell in response
to a chemical signal; more exactly, the movement of an organism or entity (such as
somatic cells, bacteria, and other single-cell or multicellular organisms) is strongly
influenced by the presence of a stimulus, and precisely themotion follows the direction
of the gradient of the stimulus itself.

It is well known that the land marking event of chemotaxis was first introduced by
Keller and Segel in 1970s ([2, 3]). More expressly, by indicating with u = u(x, t) a
certain cell density at the position x and at the time t , and with v = v(x, t) the stimulus
at the same position and time, the pioneering study reads as (1) for the specific case
a = b = 0. The partial differential equation modeling the motion of u, i.e.

ut = �u − χ∇ · (u∇v) in � × (0, Tmax ), (2)

essentially describes how a chemotactical impact of the (chemo)sensitivity (χ ) pro-
vided by the chemical signal v may break the natural diffusion (associated to the
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Laplacian operator, �u) of the cells. Indeed, the term −∇ · (uχ∇v) models the trans-
port of u in the direction χ∇v, the negative sign indicating the attractive effect that
v has on the cells (higher for χ larger and for an increasing amount of v). As a
consequence, when v is produced by the same cells, and in such a scenario v obeys

vt = �v − v + u in � × (0, Tmax ), (3)

the attractive impact may be so efficient as to lead the cell density to its chemotactic
collapse (blow-up at finite time with appearance of δ-formations in the region).

1.2 An Overview on the Keller–Segel System

Mathematically, it was proved that solutions to the initial-boundary value problem
associated to equations (2) and (3), may be globally bounded in time or may blow up
at finite time; this depends on the mass (i.e.,

∫

�
u0(x)dx) of the initial data, its specific

configuration, and the value of the sensitivity χ . More precisely, in one-dimensional
settings, all solutions are uniformly bounded in time, whereas for n ≥ 3 given any
arbitrarily small mass m = ∫

�
u0(x)dx > 0, it is possible to construct solutions

blowing-up at finite time. On the other hand, when n = 2, the value 4π separates
the case where diffusion overcomes self-attraction (if χm < 4π ) from the opposite
scenario where self-attraction dominates (if χm > 4π ); respectively, all solutions are
global in time, and initial data producing assembling processes at finite time can be
detected. A detailed discussion on such analyses can be found in [4–7], which are
undoubtedly classical results in this context.

1.3 An Overview on the Keller–Segel Systemwith Logistics

If the evolution of u in equation (2) is also influenced by the presence of logistic terms
behaving as au − buβ , for β > 1, mathematical intuition suggests that superlinear
damping effects should benefit the boundedness of solutions (this, for instance, occurs
for ordinary differential equations of the type u′ = au−buβ ). Actually, the prevention
of δ-formations in the sense of finite-time blow-up for

ut = �u − χ∇ · (u∇v) + au − buβ in � × (0, Tmax ), (4)

when coupled with some equation implying the segregation of v with u (for instance
(3)), has been established only for large values of b (if β = 2, see [8], [9]), whereas
for some value of β near 1 a blow-up scenario was detected, first for dimension 5 or
higher [10], (see also [11] for an improvement of [10]), but later also for n ≥ 3, in
[12].

If we move from the context of classical solutions, more relaxed conditions ensur-
ing boundedness of generalized solutions to models involving equation (4) can be
found in [13–16]. But there is more; dampening logistics similar to those in (4) may
provide smoothness even when singular initial distributions for the corresponding
initial-boundary value problem are fixed: see [17, 18].
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1.4 An Overview on the Keller–Segel SystemWith Nonlocal Sources

As anticipated, in this researchwe are interested in understanding how the introduction
of external growth factors of logistic type defined in terms of the total mass of some
power of the population, and hence idealized by nonlocal external sources, may avoid
blow-up mechanisms, exactly as logistics. In particular, we will consider even super-
linear population growth: indeed, chemotaxis models involving logistics behaving as
u(1− u)(u− 1

2 ) have been discussed in [19–21] in the context of patterns formations.
To be precise, likewise to classical logistic effects, impacts behaving as

auα − buα

∫

�

uβ a, b > 0 and α, β ≥ 1, (5)

model a competition between a birth contribution, favoring instabilities of the species
(especially for large values of a), and a death one opportunely contrasting this insta-
bility (especially for large values of b). Such reaction terms have been originally
employed in 1930’s to describe nonlinear growth under nonlocal resource consump-
tion of biological species: see [22–24]. (More recent results inspired by these articles
will be cited later on in the frame of the Fisher–KPP equation.)

In this context, some questions naturally arise.

Q: Can one expect that in a biological mechanism governed by the equation

ut = �u − χ∇ · (u∇v) + auα − buα

∫

�

uβ in � × (0, Tmax ), (6)

the external dampening source suffices to enforce boundedness of solutions, even
for any large initial distribution u0, arbitrarily small b > 0 and in any large
dimensionn?Are, conversely, some restrictions onn and/ora, b,α, β, u0 required?

To our knowledge, most of the analyses connected to the aforementioned questions
can be found in the literature when the equation for v expressed as (or similarly to)
(6) is of elliptic type, i.e. for some γ ≥ 1

0 = −�v + v + uγ in � × (0, Tmax ).

As amatter of fact, when the equations for the cells and the stimulus are both evolutive,
we are only aware of [25], where the authors consider, for τ = 1 = m, σ > 2, γ ≥ 1
and h = h(x, t) ≡ 0, the initial-boundary value problem associated to this model

{
ut = ∇ · (

(u + 1)m−1∇u − ∇ · (χu(u + 1)σ−2∇v
) + f (u) in � × (0, Tmax ),

τvt = �v − v + uγ + h in � × (0, Tmax ).

(7)
Herein, the nonlocal term is

f (u) := u

(

a0 − a1u
α + a2

∫

�

uαdx

)

, (8)
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where α ≥ 1, a0, a1 > 0 and a2 ∈ R; in particular, it is worthwhile mentioning that
even though problem (1) is the limit case of (7) form = 1 = γ and σ = 2 (and h = 0),
these models are not directly comparable. In fact, conversely to the mechanism we are
dealing with (see again model (1)), in [25] the attractive drift-sensitivity is nonlinear
(i.e., σ > 2 in −χu(u + 1)σ−2∇v) and, more importantly, the nonlocal term of the
reaction in (8) has both an increasing (a2 > 0) and decreasing (a2 < 0) effect on the
cell density, whereas the dampening counterpart is of polynomial type; this contrasts
with (5), where the nonlocal term is purely absorbing and the local one productive.

For model (7) the global-in-time existence of classical solutions and the conver-
gence to the steady state are established in the same [25], under suitable regularity
assumptions on the initial data and whenever the coefficients of the system satisfy

α + 1 > σ − 1 + γ and a1 − a2|�| > 0. (9)

(Naturally a1 − a2|�| > 0 is unnecessary if a2 ≥ 0.) Additionally, the suppression
of some of the conditions in (9), might provide (at least from the numerical point of
view) some blow-up solution.

As we said above, when the equation for the chemical v is elliptic (biologically this
idealizes the situations where chemicals diffuse much faster than cells), some more
results are available in the literature. In particular, in [26] the authors analyze, inter
alia, problem (7) in the framework of what follows: τ = 0, σ = 2, m = γ = α = 1
and h = h(x, t) is a uniformly bounded function with suitable properties. Similar
conclusions as those of the fully parabolic case are derived.

On the other hand, when the reaction term is taken exactly as in (5), these further
results dealing with uniform-in-time boundedness of classical solutions emanating
from sufficiently regular initial data have been obtained for problem (7), with τ = 0
and h ≡ 0:

• For the special case where m = γ = a = b = 1 and σ = 2 in [1], whenever these
assumptions (with α ≥ 1, β > 1) n ≥ 3, 2 ≤ α < 1 + 2β

n or n+4
2 − β < α < 2

are complied;
• In [27] for the case m = a = b = 1 and σ = 2 γ ≥ 1, σ > 2 tied by

γ + σ − 1 ≤ α < 1 + 2β
n or n+4

2 − β < α < γ + σ − 1;
• For general choices of the parametersm > 0, σ ≥ 1, a = b > 0, for γ = 1, under
the hypotheses that σ + n

2 (σ −m)−β < α < m + 2
nβ or α = σ + n

2 (σ −m)−β

together with b large enough (see [28]).

For completeness, we add that another indication showing how rich is effectively the
study in the framework of models with stationary equations for the stimulus, is given
in these papers [29–32], where nonlocal problems alike those in (7) are studied in the
whole spaceRn . (In this context, the equation for v is the classical Poisson’s equation.)

1.5 ConnectionWith the Fisher–KPP Equation

In mathematics
ut − �u = F(u), (10)
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is known (in its original one spatial dimensional version) as the Fisher–KPP equation,
and it describes a reaction-diffusion phenomenon used to model population growth
and wave propagation. (See [23, 24] and also [33, 34].) In its more common form F ,
interpretable according towhat said above as the rate of growth/death of the population,
has this expression (a, b ≥ 0):

F(u) = auα(1 − u) − bu.

Apart from the law of the corresponding sources, it appears interesting to discuss the
parallelism between equations (10) and (4): essentially, in the latter the extra transport
effect −∇ · (uχ∇v) appears. In the specific, for χ = 0 no convection on the particle
density u influences the mechanism, and pure Reaction/F(u)-Diffusion/�u models
(RDm) are obtained (see (10)). Oppositely, for χ > 0 the population is transported
in the habitat toward the direction of ∇v; in this case, equation (4) is an example
of Taxis/∇ · (uχ∇v)-Diffusion–Reaction models (TDRm). As a consequence, and at
least intuitively, the sources being equal, TDRm are more inclined to present some
instabilities with respect to RDm.

Confining our attention to reactions F(u) of nonlocal type, for a general study on
initial-boundary value problems (the majority of them with a homogeneous Dirichlet
boundary condition, i.e. u = 0 on ∂�) associated to (10), we refer to [35, 36] and
references therein. Conversely, for results on more similar contexts to that considered
in our analysis,wemention [37],where the authors study, amongother things, globality
and long-time behavior of solutions to a zero-flux nonlocal Fisher-KPP type problem.

2 Presentation of theMain Result and Organization of the Paper

2.1 Claim of theMain Result

In this research we intend to improve the degree of knowledge on chemotactic models
described by two coupled partial differential equations, and with non-local logistic
sources, when both are of parabolic-type. In particular, our overall analysis gives an
answer to questions Q, in the sense that we establish that despite any fixed small
value of the dampening parameter b and arbitrarily large growth parameter, any
initial data (u0, v0) (even arbitrarily large) produce uniform-in-time boundedness of
solutions to model (1) for both subquadratic and superquadratic growth rate α, by
properly magnifying the impact associated to the death rate β.

Formally, we will prove the following

Theorem 2.1 Let � ⊂ R
n, n ∈ N, be a bounded domain with smooth boundary,

χ, a, b > 0 and α, β ≥ 1. Additionally, for every 1 < q < ∞, let 0 ≤ u0, v0 ∈
W 2,q(�) be given such that ∂νu0 = ∂νv0 = 0 on ∂�. Then, whenever either

subquadratic growth rate: 1 ≤ α < 2 and β >
n + 4

2
− α,
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or

superquadratic growth rate: β >
n

2
and 2 ≤ α < 1 + 2β

n
,

problem (1) admits a unique classical solution, global and uniformly bounded in time,
in the sense that

{
u ∈ C2,1(�̄ × (0,∞)) ∩ C0(�̄ × [0,∞)) ∩ L∞(�̄ × (0,∞)),

v∈C2,1(�̄×(0,∞))∩C0(�̄×[0,∞))∩L∞
loc([0,∞);W 1,q(�))∩L∞(�̄×(0,∞)).

2.2 Structure of the Paper

The rest of the paper is structured as follows. First, in §3, we collect some necessary
and preparatorymaterials. Then, in §4, we give some hints on the local-well-posedness
to model (1), so obtaining properties of related local solutions (u, v) on�×(0, Tmax );
additionally, through the extensibility criterion we establish how to ensure globability
(i.e., Tmax = ∞) and boundedness (i.e., ‖u(·, t)‖L∞(�) finite on (0,∞)) by using
their uniform-in-time Lk(�)-boundedness, for k > 1. Such a bound is derived in §5,
and successively used in §6 to prove Theorem 2.1.

Remark 1 (On the difficulties of the fully parabolic analysis) As we will see below,
conversely to the parabolic-elliptic case analyzed in [1, (2.21)], in the fully parabolic
case it is no longer possible to use the equation for v, so replacing�v appearing in the
testing procedures with v−u. This complexity is circumvented by relying onMaximal
Sobolev Regularity applied to the equation vt = �v − v + u.

3 Some Preliminaries and Auxiliary Tools

We will make use of this functional relation, obtainable by manipulating the well
known Gagliardo–Nirenberg inequality. We underline that for the case � = R

n the
proof is given in [38, Lemma 2]; we did not find a reference covering bounded domains
and henceforth herein we dedicate ourselves to this issue.

Lemma 3.1 Let � be a bounded and smooth domain of Rn, with n ∈ N and let, for
n ≥ 3,

p := 2n

n − 2
. (11)

Additionally, let q, r satisfy 1 ≤ r < q < p and q
r < 2

r +1− 2
p . Then for all ε1, ε2 > 0

there exists C0 = C0(ε1, ε2) > 0 such that for all ϕ ∈ H1(�) ∩ Lr (�),

‖ϕ‖qLq (�) ≤ C0‖ϕ‖γ

Lr (�) + ε1‖∇ϕ‖2L2(�)
+ ε2‖ϕ‖2L2(�)

, (12)

where

λ :=
1
r − 1

q
1
r − 1

p

∈ (0, 1), γ := 2(1 − λ)q

2 − λq
.
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The same conclusion holds for n ∈ {1, 2}whenever q, r fulfill, respectively, 1 ≤ r < q
and q

r < 2
r + 2 and 1 ≤ r < q and q

r < 2
r + 1.

Proof Let n ≥ 3. From the Gagliardo–Nirenberg inequality ([39, page 126]) and this
algebraic one

(A + B)l ≤ 2l−1(Al + Bl) for all A, B ≥ 0 and l ≥ 1, (13)

for any q, r > 1 and s > 0 there is some positive CGN such that

‖ϕ‖qLq (�) ≤ CGN‖∇ϕ‖λq
L2(�)

‖ϕ‖(1−λ)q
Lr (�) + CGN‖ϕ‖qLs (�), (14)

with (recall (11))

λ =
1
r − 1

q
1
r − 1

2 + 1
n

=
1
r − 1

q
1
r − 1

p

∈ (0, 1) for all 1 ≤ r < q < p. (15)

Now, from the relation q
r < 2

r + 1− 2
p we have λq

2 < 1, so that the Young inequality
applied in (14) infers for every ε1 > 0 some C1 = C1(CGN , ε1) > 0 such that

‖ϕ‖qLq (�) ≤ ε1‖∇ϕ‖2L2(�)
+ C1‖ϕ‖γ

Lr (�) + CGN‖ϕ‖qLs (�), (16)

where

γ = 2(1 − λ)q

2 − λq
. (17)

On the other hand, for any q, p > 1, let s = 2pq
3p−2 > 0. Subsequently, the Hölder

inequality provides (note that 2q
s = 3p−2

p > 1)

CGN‖ϕ‖qLs (�) = CGN

(∫

�

ϕ
s
q ϕ

s− s
q

) q
s ≤ CGN

(∫

�

ϕ2
) 1

2
(∫

�

ϕ
2s(q−1)
2q−s

) 1
2 (

2q
s −1)

,

and, in turn, Young’s inequality gives for any ε2 > 0, some C2 = C2(CGN , ε2) > 0

CGN‖ϕ‖qLs (�) ≤ ε2

∫

�

ϕ2 + C2

(∫

�

ϕ
2s(q−1)
2q−s

) 2q
s −1

. (18)

The conclusion goes through standard but tedious computations; specifically, by insert-
ing relation (18) into estimate (16) and by establishing that for s as above, and λ and
γ as in (15) and (17) respectively, 2 s(q−1)

2q−s = r and 2q
s − 1 = γ

r , the proof is given
with C0 = C1 + C2.

For n ∈ {1, 2}, the same arguments apply by taking respectively s = q
2 and s = 2q

3 .

�
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In the spirit of [40–42], let us recall the following consequence ofMaximal Sobolev
Regularity results (like [43] or [44, Thm. 2.3]):

Lemma 3.2 Let n ∈ N, � ⊂ R
n be a bounded and smooth domain and q ∈ (1,∞).

Moreover, let v0 ∈ W 2,q(�) such that ∂νv0 = 0 on ∂�. Then there is CMR > 0
such that the following holds: Whenever T ∈ (0,∞], I = [0, T ), f ∈ Lq(I ; Lq(�)),
every solution v ∈ W 1,q

loc (I ; Lq(�)) ∩ Lq
loc(I ;W 2,q(�)) of

vt = �v − v + f in � × (0, T ); ∂νv = 0 on ∂� × (0, T );
v(·, 0) = v0 on �

satisfies

∫ t

0
es

(∫

�

|�v(·, s)|q
)

ds≤CMR

[

1 +
∫ t

0
es

(∫

�

| f (·, s)|q
)

ds

]

for 0 < t < T .

Proof For A = � − (1 − 1
q ) and X = Lq(�), let X1 = D(A) = W 2,q

∂ν
(�) =

{w ∈ W 2,q(�) : ∂νw = 0 on ∂�}. From the hypotheses on v, one can establish that

z := e
t
q v ∈ W 1,q

loc (I ; X) ∩ Lq
loc(I ; X1) and it solves

z′ + Az = e
t
q f for a.e. t ∈ (0, T ), z(0) = v0.

Subsequently, if we apply Maximal Sobolev Regularity ([43, (3.8)], [44, Thm. 2.3])
to the above problem, there exists some c1 > 0 such that we have for t ∈ (0, T ) that

‖Az‖Lq ([0,t];Lq (�)) + ‖z′‖Lq ([0,t];Lq (�))

≤ c1

(

‖v0‖1− 1
q ,q +

( ∫ t

0
‖e s

q f (·, s)‖qLq (�) ds
) 1

q
)

,

where ‖·‖1− 1
q ,q represents the norm in the interpolation space (X , X1)1− 1

q ,q . In turn,

we have by using (13) that for CMR =
(
c1 max

{
1, ‖v0‖1− 1

q ,q

})q
2q−1

∫ t

0

( ∫

�

|�z(·, s)|q
)
ds ≤ CMR

[

1 +
∫ t

0
es

(∫

�

| f (·, s)|q
)

ds

]

on (0, T ). (19)

We can finally obtain the claim by re-substituting z(·, t) := e
t
q v(·, t) into relation

(19). �

We will also need this comparison argument for Ordinary Differential Equations.

Lemma 3.3 Let T > 0 andφ : (0, T )×R
+
0 → R. If 0 ≤ y ∈ C0([0, T ))∩C1((0, T ))

is such that
y′ ≤ φ(t, y) for all t ∈ (0, T ),
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and there is y1 > 0 with the property that whenever y > y1 for some t ∈ (0, T ) one
has that φ(t, y) ≤ 0, then

y ≤ max{y1, y(0)} on (0, T ).

Proof Setting y0 = y(0), let us distinguish the cases y0 < y1 and y0 ≥ y1 and let us
show that, respectively, the sets

Sy1 := {t ∈ (0, T ) | y(t) > y1} and Sy0 := {t ∈ (0, T ) | y(t) > y0}

are empty. In particular, we will establish only that Sy1 = ∅, the reasoning for Sy0
being similar.

By contradiction, if there were some t0 ∈ Sy1 then by the continuity of y and
y0 < y1 we could find I = (t, t̄) (with possibly t0 = t̄) such that y1 < y(t) < y(t̄),
y1 < y(t) on I ; henceforth, by hypothesis, φ(t, y) ≤ 0 for all t ∈ I . At this stage, the
Lagrange theorem would provide a proper ξ ∈ I leading to this inconsistency:

0 <
y(t̄) − y(t)

t̄ − t
= y′(ξ) ≤ φ(ξ, y) ≤ 0.

�


4 Local Solutions and Their Main Properties. A Boundedness Criterion

Lemma 4.1 (Local existence and extensibility criterion) Let n ∈ N, � ⊂ R
n be

a bounded and smooth domain, χ, a, b > 0 and α, β ≥ 1. Moreover, for every
1 < q < ∞, let u0, v0 ∈ W 2,q(�) satisfy

∂νu0 = ∂νv0 = 0 on ∂�, and u0, v0 ≥ 0 on �̄.

Then problem (1) has a unique and nonnegative classical solution

{
u ∈ C2,1(�̄ × (0, Tmax )) ∩ C0(�̄ × [0, Tmax )),

v ∈ C2,1(�̄ × (0, Tmax )) ∩ C0(�̄ × [0, Tmax )) ∩ L∞
loc([0, Tmax );W 1,q(�)),

for some maximal Tmax ∈ (0,∞] which is such that

either Tmax = ∞ or lim sup
t→Tmax

‖u(·, t)‖L∞(�) = ∞. (20)

Additionally, there exists m0 > 0 such that

∫

�

u(x, t) dx ≤ m0 for all t ∈ (0, Tmax ). (21)
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Proof The first part of the proof can be obtained by adapting to the fully parabolic
case the reasoning in [1, Proposition 4] developed for the simplified parabolic-elliptic
scenario.

As to the boundedness of themass, we integrate over� the first equation of problem
(1) so that by Hölder’s inequality, and γ (t) := ∫

�
uα ≥ 0 on (0, Tmax ), so having for

all t ∈ (0, Tmax )

y′(t) := d

dt

∫

�

u =
∫

�

uα

(

a − b
∫

�

uβ

)

≤ γ (t)
(
a − b|�|1−β(y(t))β

)
.

Now we apply Lemma 3.3 with T = Tmax , φ(t, y) = γ (t)
(
a − b|�|1−β(y(t))β

)
,

y0 = y(0) = ∫

�
u0 and y1 :=

(
a

b|�|1−β

) 1
β
, so concluding with m0 = max{y0, y1}. �


Once the classical local well posedness to model (1) provided by Lemma 4.1 is
ensured (in particular from now on with (u, v) we refer to the local solution defined
on�×(0, Tmax )), a suitable uniform-in-time boundedness criterion is required. In the
specific, the next result based on an iterative method connected to theMoser–Alikakos
technique addresses the issue.

Lemma 4.2 Whenever for every k > 1 there exists C > 0 such that

∫

�

uk ≤ C for all t ∈ (0, Tmax ),

actually u is uniformly bounded on (0, Tmax ), and consequently u ∈
L∞((0,∞); L∞(�)). Automatically, v is also uniformly bounded.

Proof From the first equation of problem (1) and the nonnegativity of u, we have
that u itself is such that ut ≤ �u − χ∇ · (u∇v) + auα . In particular, u solves [45,
(A.1)] with D(x, t, u) = 1, f (x, t) = −χu(x, t)∇v(x, t) and g(x, t) = auα(x, t).
In these positions, since from our hypotheses u ∈ L∞((0, Tmax ); Lk(�)) for all
k > 1 (and in particular for k arbitrarily large), g belong to L∞((0, Tmax ); Lk(�))

and from parabolic regularity results ([46, IV. 5.3]) we have that also ∇v ∈
L∞((0, Tmax ); Lk(�)). As a by-product, f and, and [45, Lemma A.1] ensures
u ∈ L∞((0, Tmax ); L∞(�)). Finally, the extensibility criterion (20) entails Tmax = ∞
and we conclude. (The boundedness of v follows from u ∈ L∞((0,∞); Lk(�))

for arbitrarily large k > 1 and, again, parabolic regularity results and Sobolev
embeddings.) �


5 A Priori Estimates

Since the uniform-in-time boundedness of u is implied whenever u ∈
L∞((0, Tmax ); Lk(�)) for some k > 1, here under we dedicate to the derivation
of some a priori integral estimates.

(In the sequel we will tacitly assume that all the constants ci appearing below,
i = 1, 2, . . . are positive.)
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Lemma 5.1 For all k > 1, χ > 0, whenever α > 1 there exists c1 such that

(k − 1)χ
∫

�

uk�v ≤
∫

�

uk+α−1 + c1

∫

�

|�v| k+α−1
α−1 for all t ∈ (0, Tmax ), (22)

while if α ≥ 1, we can find c2 entailing

(k − 1)χ
∫

�

uk�v ≤
∫

�

uk+1 + c2

∫

�

|�v|k+1 for all t ∈ (0, Tmax ). (23)

Proof The Young inequality directly provides the claim. �


Let us now distinguish the analysis of the subquadratic case from the superquadratic
one, exactly starting from this last situation.

5.1 The Superquadratic Growth:ˇ > n
2 and 2 ≤ ˛ < 1 + 2ˇ

n

Lemma 5.2 Assume that α, β ≥ 1 satisfy that

β >
n

2
and 2 ≤ α < 1 + 2β

n
. (24)

Then there exist k0 ≥ 1, L0 > 0 such that for all k > k0,

∫

�

uk ≤ L0 for all t ∈ (0, Tmax ).

Proof Let us start fixing k0 = 1, and when necessary we will enlarge this initial value.
For all k > k0, we have from the first equation in (1) and integration by parts that

d

dt

∫

�

uk = k
∫

�

uk−1�u − kχ
∫

�

uk−1∇ · (u∇v) + ka
∫

�

uk+α−1

− kb

(∫

�

uk+α−1
) (∫

�

uβ

)

= −k(k − 1)
∫

�

uk−2|∇u|2 + k(k − 1)χ
∫

�

uk−1∇u · ∇v + ka
∫

�

uk+α−1

− kb

(∫

�

uk+α−1
) (∫

�

uβ

)

= −4(k − 1)

k

∫

�

|∇u
k
2 |2 − (k − 1)χ

∫

�

uk�v + ka
∫

�

uk+α−1

− kb

(∫

�

uk+α−1
) (∫

�

uβ

)

on (0, Tmax ).

(25)
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Here, from bound (22) in Lemma 5.1 we have that

− (k − 1)χ
∫

�

uk�v ≤
∫

�

uk+α−1 + c1

∫

�

|�v| k+α−1
α−1 for all t ∈ (0, Tmax ). (26)

A combination of relations (25) and (26) implies that for all t ∈ (0, Tmax )

d

dt

∫

�

uk + kb

(∫

�

uk+α−1
) (∫

�

uβ

)

≤ −4(k − 1)

k

∫

�

|∇u
k
2 |2 + c3

∫

�

uk+α−1 + c1

∫

�

|�v| k+α−1
α−1 . (27)

We now estimate the second integral on the right-hand side of (27). From the identity
∫

�
uk+α−1 = ‖u k

2 ‖
2(k+α−1)

k

L
2(k+α−1)

k (�)

, our aim is exploiting Lemma 3.1 with ϕ := u
k
2 and

proper q and r . In the specific, for n ≥ 3 (at the end of this proof we will discuss the
cases n = 1 and n = 2) in order to make meaningful the forthcoming computations,
let us take k0 = max{β − α + 1, 1}. From the definition of k0 and condition (24), for
any k > k0 it is possible to set

k′ := k + α + β − 1

2
, (28)

which satisfies

max

{

β,
k

2
,
p(α − 1)

p − 2

}

< k′ < k + α − 1. (29)

In this way, for

q := 2(k + α − 1)

k
, r := 2k′

k

a number of calculations yield 1 ≤ r < q < p and q
r < 2

r + 1 − 2
p . Therefore we

infer from (12) that for all c̄ > 0 and for all t ∈ (0, Tmax )

c̄
∫

�

uk+α−1 = c̄‖u k
2 ‖

2(k+α−1)
k

L
2(k+α−1)

k (�)

≤ 2(k − 1)

k

∫

�

|∇u
k
2 |2 +

∫

�

uk + c4

(∫

�

uk
′
) γ

r

.

(30)

Here, the interpolation inequality (see [47, page 93]) yields for all t ∈ (0, Tmax ),

(∫

�

uk
′
) γ

r = ‖u‖b1
Lk′ (�)

≤ ‖u‖a1b1
Lβ (�)

‖u‖(1−a1)b1
Lk+α−1(�)

=
(
‖u‖β

Lβ(�)
‖u‖k+α−1

Lk+α−1(�)

) (1−a1)b1
k+α−1 ‖u‖

[
a1− β(1−a1)

k+α−1

]
b1

Lβ(�)
,

(31)
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where

b1 = b1(q) := k′γ (q)

r
= k′γ

r
, a1 :=

1
k′ − 1

k+α−1
1
β

− 1
k+α−1

∈ (0, 1). (32)

We note that recalling the expression of k′ in (28) and the range of α in (24), some
computations provide

[

a1 − β(1 − a1)

k + α − 1

]

b1 = 0 and
(1 − a1)b1
k + α − 1

< 1.

As a consequence, we can invoke Young’s inequality so that relation (31) reads for all
t ∈ (0, Tmax )

c4

(∫

�

uk
′
) γ

r ≤ c4
(
‖u‖β

Lβ(�)
‖u‖k+α−1

Lk+α−1(�)

) (1−a1)b1
k+α−1

≤ kb

(∫

�

uk+α−1
)(∫

�

uβ

)

+ c5 ,

which in conjunction with (30) implies for all t ∈ (0, Tmax ),

c3

∫

�

uk+α−1 ≤ 2(k − 1)

k

∫

�

|∇u
k
2 |2

+
∫

�

uk + kb

(∫

�

uk+α−1
)(∫

�

uβ

)

+ c5 . (33)

Now we focus on the second integral at the right-hand side: the Gagliardo–Nirenberg
inequality and (21) produce for

θ1 :=
k
2 − 1

2
k
2 + 1

n − 1
2

∈ (0, 1)

and all ĉ > 0, this bound on (0, Tmax ):

ĉ
∫

�

uk = ĉ‖u k
2 ‖2L2(�)

≤ c6‖∇u
k
2 ‖2θ1

L2(�)
‖u k

2 ‖2(1−θ1)

L
2
k (�)

+ c6‖u
k
2 ‖2

L
2
k (�)

≤ c7

(∫

�

|∇u
k
2 |2

)θ1

+ c7 .

In turn, we have from the Young inequality that

ĉ
∫

�

uk ≤ 2(k − 1)

k

∫

�

|∇u
k
2 |2 + c8 for all t ∈ (0, Tmax ). (34)

Coming back to (27), let us now estimate the term c1
∫

�
|�v| k+α−1

α−1 . Since v classically
solves (1), it enjoys the hypotheses of Lemma 3.2, which in particular we can exploit
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with q = k+α−1
α−1 : henceforth we have for all t ∈ (0, Tmax )

c1

∫ t

0
es

(∫

�

|�v(·, s)| k+α−1
α−1

)

ds ≤ c1CMR

[

1 +
∫ t

0
es

(∫

�

u(·, s) k+α−1
α−1

)

ds

]

.

(35)

Since from the condition α ≥ 2 we have that k+α−1
α−1 ≤ k+α−1, the Young inequality

leads to

c1CMR

∫

�

u
k+α−1
α−1 ≤ c1CMR

∫

�

uk+α−1 + c9 for all t ∈ (0, Tmax ). (36)

(Naturally for the limit case α = 2, the constant c9 can be taken equal to 0.) We
now add to both sides of (27) the term

∫

�
uk and then we multiply by et . Since

et d
dt

∫

�
uk + et

∫

�
uk = d

dt

(
et

∫

�
uk

)
, an integration over (0, t) provides for all t ∈

(0, Tmax )

et
∫

�

uk −
∫

�

uk0 + kb
∫ t

0
es

(∫

�

uk+α−1
)(∫

�

uβ

)

ds

≤ −4(k − 1)

k

∫ t

0
es

(∫

�

|∇u
k
2 |2

)

ds

+
∫ t

0
es

(∫

�

uk
)

ds + c3

∫ t

0
es

(∫

�

uk+α−1
)

ds

+ c1

∫ t

0
es

(∫

�

|�v| k+α−1
α−1

)

ds.

(37)

By inserting estimate (35) into (37) and taking into account bounds (36), (33) and
(34), we arrive at

et
∫

�

uk ≤
∫

�

uk0 + c10e
t + c11 on (0, Tmax ),

which implies ∫

�

uk ≤ L0 for all t ∈ (0, Tmax )

with L0 := c12 + ∫

�
uk0, so the claim is proved.

For n ∈ {1, 2} the arguments are similar once relation (29) is, respectively, replaced
by

max

{

β,
k

2
,
α − 1

2

}

< k′ < k + α − 1 and max

{

β,
k

2
, α − 1

}

< k′ < k + α − 1.

�
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5.2 The Subquadratic Growth: 1 ≤ ˛ < 2 andˇ > n+4
2 − ˛

Lemma 5.3 Assume that α, β ≥ 1 satisfy

1 ≤ α < 2 and β >
n + 4

2
− α. (38)

Then there exist k1 ≥ 1, L1 > 0 such that for all k > k1,

∫

�

uk ≤ L1 for all t ∈ (0, Tmax ).

Proof Let us consider k1 = 1; as done before, we will enlarge this initial value when
necessary. By following the same argument of Lemma 5.2 for all k > k1, we arrive
for all t ∈ (0, Tmax ) at

d

dt

∫

�

uk = −4(k − 1)

k

∫

�

|∇u
k
2 |2 − (k − 1)χ

∫

�

uk�v + ka
∫

�

uk+α−1

−kb

(∫

�

uk+α−1
) (∫

�

uβ

)

. (39)

Since α ≥ 1, an application of relation (23) of Lemma 5.1 to the second integral at
the right-hand side of (39) gives

− (k − 1)χ
∫

�

uk�v ≤
∫

�

uk+1 + c2

∫

�

|�v|k+1 for all t ∈ (0, Tmax ), (40)

whereas from the condition α < 2, the Young inequality leads to

ka
∫

�

uk+α−1 ≤
∫

�

uk+1 + c13 for all t ∈ (0, Tmax ). (41)

Combining estimates (40) and (41) with bound (39), we have for all t ∈ (0, Tmax ),

d

dt

∫

�

uk + kb

(∫

�

uk+α−1
) (∫

�

uβ

)

≤ −4(k − 1)

k

∫

�

|∇u
k
2 |2

+2
∫

�

uk+1 + c2

∫

�

|�v|k+1 + c13 . (42)

Now let us focus on the second integral on the right-hand side of (42). Since
∫

�
uk+1 =

‖u k
2 ‖

2(k+1)
k

L
2(k+1)

k (�)

, we can apply Lemma 3.1 with ϕ := u
k
2 and suitable q and r . In the

specific, for any
k > k1 := max {1, 1 − α + β} ,

by posing

k′ := k + α + β − 1

2
,
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it is possible to check that

max

{

β,
k

2
,

p

p − 2

}

< k′ < k + α − 1. (43)

In this way, and for n ≥ 3, letting

q := 2(k + 1)

k
, r := 2k′

k

we can establish that 1 ≤ r < q < p and q
r < 2

r + 1 − 2
p . Consequently, we deduce

from (12) that for all c̃ > 0

c̃‖u k
2 ‖

2(k+1)
k

L
2(k+1)

k (�)

≤ 2(k − 1)

k

∫

�

|∇u
k
2 |2+

∫

�

uk+c14

(∫

�

uk
′
) γ

r

for all t ∈ (0, Tmax ).

(44)
Now an application of the interpolation inequality yields for all t ∈ (0, Tmax ),

(∫

�

uk
′
) γ

r = ‖u‖b2
Lk′ (�)

≤ ‖u‖a2b2
Lβ(�)

‖u‖(1−a2)b2
Lk+α−1(�)

=
(
‖u‖β

Lβ(�)
‖u‖k+α−1

Lk+α−1(�)

) a2b2
β ‖u‖

[
1−a2− a2(k+α−1)

β

]
b2

Lk+α−1(�)
,

where

b2 = b2(q) := k′γ (q)

r
= k′γ

r
, a2 :=

1
k′ − 1

k+α−1
1
β

− 1
k+α−1

∈ (0, 1).

(A comparison between the couple (a2, b2) above and (a1, b1) in (32) shows that
a1 = a2, whereas bi , i = 1, 2 depends on q.) From straightforward calculations and
the condition (38), we observe that

[

1 − a2 − a2(k + α − 1)

β

]

b2 = 0 and
a2b2
β

< 1.

Subsequently, we can exploit the Young inequality entailing

c14

(∫

�

uk
′
) γ

r ≤ c14
(
‖u‖β

Lβ(�)
‖u‖k+α−1

Lk+α−1(�)

) a2b2
β

≤ kb

(∫

�

uk+α−1
) (∫

�

uβ

)

+ c15 on (0, Tmax ).

This in conjunction with (44) implies that for all t ∈ (0, Tmax )
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c̃
∫

�

uk+1 ≤ 2(k − 1)

k

∫

�

|∇u
k
2 |2 +

∫

�

uk + kb

(∫

�

uk+α−1
)(∫

�

uβ

)

+ c15 . (45)

As to the term
∫

�
|�v|k+1 in expression (42), by exploiting in this circumstance

Lemma 3.2 with q = k + 1, we obtain for all t ∈ (0, Tmax )

c2

∫ t

0
es

(∫

�

|�v(·, s)|k+1
)

ds≤c2CMR

[

1+
∫ t

0
es

(∫

�

u(·, s)k+1
)

ds

]

. (46)

On the other hand, by adding
∫

�
uk at both sides of estimate (42), by multiplying what

obtained by et , a subsequent integration over (0, t) yields

et
∫

�

uk −
∫

�

uk0 + kb
∫ t

0
es

(∫

�

uk+α−1
) (∫

�

uβ

)

ds

≤ −4(k − 1)

k

∫ t

0
es

(∫

�

|∇u
k
2 |2

)

ds

+ 2
∫ t

0
es

(∫

�

uk+1
)

ds +
∫ t

0
es

(∫

�

uk
)

ds

+ c2

∫ t

0
es

(∫

�

|�v|k+1
)

ds + c16e
t for all t ∈ (0, Tmax ).

(47)

By rearranging bound (47) by virtue of estimates (46), (45) and (34), it is provided

et
∫

�

uk ≤
∫

�

uk0 + c17e
t + c18 on (0, Tmax ),

which gives ∫

�

uk ≤ L1 for all t ∈ (0, Tmax )

with L1 := c19 + ∫

�
uk0, so proving the claim.

To establish the claim for n ∈ {1, 2}, relation (43) has to be taken as

max

{

β,
k

2

}

< k′ < k + α − 1.

�


6 Proof of Theorem 2.1

We apply Lemma 5.2 and Lemma 4.2, and Lemma 5.3 and Lemma 4.2 to give the
proof for the subquadratic and superquadratic case, respectively. �
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