
Journal of Information Security and Applications 80 (2024) 103691

A
2

E
g
D
D

A

K
M
D
E
A

1

c
A
m
(
s
m
R
t

e
i
o
a
c
m
d
i
t
A

(

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

nhancing android malware detection explainability through function call
raph APIs
iego Soi ∗, Alessandro Sanna, Davide Maiorca, Giorgio Giacinto
epartment of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi, Cagliari, 09123, Italy

R T I C L E I N F O

eywords:
alware analysis
eep learning
xplainability
ndroid

A B S T R A C T

Nowadays, mobile devices are massively used in everyday activities. Thus, they contain sensitive data targeted
by threat actors like bank accounts and personal information. Through the years, Machine Learning approaches
have been proposed to identify malicious Android applications, but recent research highlights the need
for better explanations for model decisions, as existing ones may not be related to the app’s malicious
functionalities.

This paper proposes an explainable approach based on static analysis to detect Android malware. The
novelty lies in the specific analysis conducted to select and extract the features (i.e., APIs taken from the DEX
Call Graph) that immediately provide meaningful explanations of the model functionality, thus allowing a
significant correlation of the malware behavior with its family. Moreover, since we contain the number and
type of features, the distinct impacts of each one appear more evident. The attained results show that it is
possible to reach comparable results (in terms of accuracy) to existing state-of-the-art models while providing
easy-to-understand explanations, which may yield significant insights into the malicious functionalities of the
samples.
. Introduction

Android OS is the main operating system for mobile devices. Ac-
ording to Stat Counter [1], 70.93% of the devices sold in 2022 were
ndroid-based. Modern devices are not limited to basic operations, like
essages and phone calls; they can be employed as a key for MFA

Multi-Factor Authentication) purposes, such as to unlock a car or a
afe deposit box or to access bank or work accounts. Hence, mobile
alicious software poses a great risk to users’ security and privacy.
ecent reports show that Android was the target of choice for more

han 33 million in new malware samples [2,3].
This threat is often mitigated through anti-malware systems. Mod-

rn research on Machine Learning and Deep Learning showed that it
s possible to accurately discriminate malicious samples from benign
nes [4–8]. Nevertheless, a critical challenge that research has to
ddress is the increasing variability, in terms of behavior, of mali-
ious samples. For example, banking malware, which relies on Com-
and&Control servers, significantly differs from ransomware, which
irectly encrypts files on the system’s memory or locks the screen, mak-
ng the smartphone unusable. This is especially evident when analyzing
he decompiled code of such applications and examining the related
PIs. These vast differences between malware families might lead to the

∗ Corresponding author.
E-mail addresses: diego.soi@unica.it (D. Soi), alessandro.sanna96@unica.it (A. Sanna), davide.maiorca@unica.it (D. Maiorca), giacinto@unica.it

G. Giacinto).

extraction of a huge quantity of different features (e.g. the applications’
sizes, the number of resources within the APK, etc.), which may be
less relevant for detection purposes. As it is often done when dealing
with this kind of ML application, the burden of selecting the relevant
characteristics is left to the underlying machine-learning system.

This aspect may baffle analysts, who often believe that high de-
tection accuracy scores are due to an effective understanding of the
malicious characteristics of the apps.

Research has been focusing on interpretability to understand better
the decisions taken by machine-learning classifiers. In particular, the
focus is mostly on deep learning, which is the most complex technique
within ML due to the poor understanding of what happens at the
hidden layers that may constitute the network. We refer to techniques
capable of associating specific features with scores, representing their
influence in deciding the related class. Previous works have focused
on evaluating popular state-of-the-art systems, showing that features
relevant to the classifier are often not representative of the function-
alities of the sample. The reason for these often disappointing results
is that most systems, as underlined previously, employ feature sets
that do not clearly encapsulate the behavior of malicious samples.
vailable online 2 January 2024
214-2126/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.jisa.2023.103691
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
mailto:diego.soi@unica.it
mailto:alessandro.sanna96@unica.it
mailto:davide.maiorca@unica.it
mailto:giacinto@unica.it
https://doi.org/10.1016/j.jisa.2023.103691
https://doi.org/10.1016/j.jisa.2023.103691
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2023.103691&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.

f

Table 1
Comparison between Java and equivalent DEX and SMALI code.
Java DEX SMALI

int x = 42 13 00 2A 00 const/16 v0, 42

As a consequence, interpretability techniques fail to precisely identify
elements that are responsible for maliciousness.

For this reason, in this paper, we aim to advance state of the art by
proposing three main contributions: (i) the careful selection of features
(i.e. set of critical API calls) that can be effectively used to explain
complex models, such as deep-learning classifiers, and to gain valuable
insight both about the malicious characteristics of malware samples and
the impact of each feature on the classifier’s decision; (ii) the design
of a deep learning model able to classify Android applications starting
from the extraction of the Function Call Graph (FCG) obtained from
the static analysis of the Android packages (APK) and its subsequent
scan to select the list of APIs; (iii) the enforcement of a SHAP-based
explainable model to understand what the malware is capable of doing
(local explainability) and summarize the actions of samples that belong
to the same family (global explainability);

We evaluated our model by considering over 40,000 malicious and
benign samples extracted from various resources. The attained results
show that API calls can effectively provide reasonable explanations
of detections while keeping a very good accuracy and false positive
rate. We additionally perform an experimental evaluation to assess the
impact of concept and time drift on our system.

This work is structured as follows:

- We analyze the current State of the Art on detection and explain-
ability applied to Android Malware (Section 2).

- We provide a general technical background (Section 3).
- We illustrate a Deep Learning model to identify malicious samples

based on features statically extracted, and we include an explain-
ability stage that lists the basic operations performed for added
clarity (Section 4).

- We perform an experimental evaluation of the whole model on a
consistent dataset (Section 5).

- We discuss this work’s contributions and limitations, giving some
insight into future research directions (Section 6).

2. Related work

This section outlines the state-of-the-art strategies to understand
what has been achieved in Android Malware detection and what this
work adds to research. The approaches employed over the years differ
by analysis type, extracted features, chosen classifiers, and, possibly,
the explainability techniques that may be applied.

We can trace three main types of malware analysis approaches:
(i) static, (ii) dynamic, and (iii) hybrid. Static analysis studies, in the
case of Android applications, the APK by parsing the Android Manifest,
the DEX file, or the SMALI code, a human-readable way to write DEX
machine code, as shown in Table 1.

This way, the system can extract features like API calls, instruction
opcodes, permissions, and activities. Conversely, dynamic approaches
require the execution of the application in a controlled environment to
monitor API calls, network flow, and other kinds of run-time features.
They can counteract obfuscation,1 but it is time and resource-intensive.
Finally, the hybrid-based analysis combines both static and dynamic
ones.

Regarding classical ML models, Scalas et al. employed a Random
Forest that is useful for multiclass classification problems [9]; Han et al.

1 Obfuscation is a technique to create source code difficult to understand
or humans or computers.
2

evaluate the application of SVM to API calls represented by a tuple
(name, arguments, returned type) extracted from APKs [10];
Ref. [11], instead, extract permissions, SMALI size, and permissions
rate (i.e. the ratio between the total number of permissions required
and the SMALI size) applying an SVM model.

Concerning DL, the main models employed in Android Malware
analysis can be summarized as follows:

- Recurrent Neural Networks/Long Short-Term memory: they
focus on the sequentiality of operations, e.g. API calls, done by
the application [8,12,13];

- Graph Neural Networks: they avail of a graph to represent the
features, which is then fed to the network for classification [14,
15];

- Convolutional Neural Networks aim to represent the features as
a matrix. In this case, the features, such as API calls, permissions,
activities, and network packets, can be embedded with different
techniques [4–7].

Alternative methods employ different networks [16] for each feature,
which allows them to be retrained separately whenever necessary.

Regarding explainability, Drebin [17] is one of the first explainable
approaches applied to classical machine learning for Android Malware
detection. Specifically, the authors extracted the weights of the features
involved during classification. In this way, they could list the top k
features by weights and explain the samples. Other works, instead,
evaluate the possibility of leveraging gradient-based techniques to clas-
sical ML model (specifically, on Support Vector Machines): Gradient,
Gradient*Input, and Integrated gradients, which may be useful not
only to explain models [18,19] but also to assess the robustness of ML
against adversarial attacks [20].

Other techniques applied to Android malware analysis with Deep
Learning mainly depend on the type of model used. Kinkead et al. [21]
use the LIME (Local Interpretable Model-agnostic Explanations) model
to produce relevance scores for all the features employed in a 1D
CNN highlighting which is the activation of each program part. Some
employ visualization approaches like GRAD-CAM to produce heatmaps
highlighting bytecode relevant for the decision [22], others an atten-
tion mechanism to a Multilayer Perceptron that uses as features API
calls and permissions [23] denoting how a general overview of an
application functionality can be achieved.

Additionally, recent approaches employed Transformer-based mod-
els [24]. Ullah et al. [25] applied BERT (Bidirectional Encoder Rep-
resentations from Transformers) to extract features from dynamically
extracted network traffic applying SHAP to explain how the features
contribute to malware or benign labeling, while Jo et al. [26] employed
Visual Transformers on image representations of dex code using the
intrinsic attention mechanism to produce a relevance score for each
feature (i.e. the pixels of the image). However, they introduced the pos-
sibility of automatically retracing the code starting from the highlighted
sections of the heatmaps.

The motivation for this work is two-folded. Firstly, the features
employed in other state-of-the-art systems are, in most cases, either
unrelated to the application’s functionality or inflated due to the di-
verse kinds of malware to identify. This may mask the distinct impact
of each feature on the classification, resulting in explanations that lack
clarity and relevance to the sample being analyzed. Secondly, while
visual explanations, as demonstrated in Refs. [22,26], can be beneficial,
they pose challenges for the analyst in terms of interpretability. Even
though automatic approaches may be employed, the uncertainties and
complexities in studying in depth the underlying code, starting from
a heatmap (see Fig. 1), to understand the degree of relevance of the
highlighted sections, remain.

In contrast, this work aims to introduce an explainable classification
approach that relies only on a specific type of feature, namely API calls,
which exhibit a strong correlation with critical packages, as detailed

in subsequent sections. This approach allows us to achieve both good

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
Fig. 1. Example of visual explanation using GradCAM technique on a CNN ap-
proach [22]. The central green line is highlighted because it is the most relevant part
of the bytecode for the classification.

performance and a clear understanding of the functional operations
performed by an application.

In Section 5.4, a full comparison with some of the approaches
presented here [11,22,23,26] is done concerning both classification
performance and the different kind of explanations that state-of-the-art
systems proposed (i.e. visualization and text-based).

3. Background

This section discusses the technical background necessary to read
and understand this paper. In particular, we provide key concepts of
Android applications and Explainability.

3.1. Android

Android is an operating system for mobile devices developed by
Google, based on the Linux kernel, and available as free and open-
source software. For that reason, it has been widely adopted by differ-
ent mobile vendors that adapt the Operating System to their necessities,
maintaining the core unvaried.

3.1.1. APK
Android applications are distributed as APK files [27], that are

akin to a ZIP archive that contains all the resources required by the
devices to install and execute the application: (i) lib, which is a
directory holding the libraries for each different CPU; (ii) DEX2 file,
that contains the actual app code executed by ART (Android Runtime);
(iii) assets, and res directories to save external and raw resources;
(iv) AndroidManifest.xml, which holds data such as permissions
(i.e. the rights required to use restricted APIs), services, intents, and
components.

3.1.2. Entry points
In Android OS, the entry points of an app are the ways in which

either the system or the user can interact with the application. It is
fundamental to understand what they are to get an insight into how
Android apps can start their execution. These are primarily categorized
into four distinct groups, defined in the AndroidManifest.xml
file [28]. The activities facilitates user interaction through the UI;
the services execute background actions3; broadcast receivers enforce
a publish–subscribe pattern enabling the communication between the
app and the underlying system; content providers manage resources,
facilitating data access.

2 Dalvik Executable Format: https://source.android.com/docs/core/runtim
e/dex-format

3 Foreground services - noticeable to the user; Background services - not
directly noticed to the user; Bound services - to implement components
interactions
3

Fig. 2. Model distillation schema. The distilled model takes as input features X, the
original model’s parameters, and the output of each sample for training the model g(X).

3.2. Explainability

Explainability has a crucial role in machine learning (ML) because
it is the extent to which the mechanisms inside the ML models can be
explained in human terms [29]. In some cases, the term explainability
is confused with interpretability, which, on the contrary, is the extent to
which a human can predict a model’s result.

A learning model can be intrinsically explainable when it is explain-
able by design (e.g. small decision trees), or post-hoc explainable when
further processing is needed.

Various approaches to explainability have been proposed in the
literature [30], typically falling into three main categories:

- Visualization approaches whose common representation are
heatmaps that highlight the most relevant features. They dif-
fer in the generation methodology: perturbation-based by per-
turbing the input to verify how the model prediction changes;
backpropagation-based that analyzes the gradients from output to
input during the training phase4;

- Model Distillation, whose goal is to generate a model capable
of mimicking the behavior of the original one (see Fig. 2). SHAP
(SHAPley additive explanations) methodology, first introduced in
2017 [31], is one of the most representative examples. SHAP
values are the mean marginal contribution of each feature across
all possible values in the feature space, to measure the relevance
of the features used in the model;

- Model Intrinsic approaches enforce the use of intrinsic char-
acteristics of the model. An example is the Attention Mechanism
in which the weights of each unit are extracted to define the
importance of a feature.

4. Methodology

This section presents an overview of the methodology applied dur-
ing this work with respect to chosen classification and explainability
approaches. In particular, the goal is to develop a model that is both
effective in identifying the malicious applications among the benign
ones and explainable in the sense that the intrinsic malicious func-
tionalities should be acknowledged. To achieve this, we need to work
with human-understandable features intrinsically correlated with the
behavioral characteristics of the application.

Classification. As explained in Section 3.1, an Android application
contains the DEX code, which holds classes and APIs called by the
Android Runtime during execution. Starting from this, our approach,

4 Examples are Class Activation Maps (CAM) and Gradient CAM (Grad-
CAM) applied to CNNs models.

https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
Fig. 3. Overall classification schema which consists of different steps: Function Call Graph extraction, Critical API extraction, Embedding Layer, and the actual classifier.
depicted in Fig. 3, is to analyze the APK to extract the so-called
Function Call Graph (FCG), whose aim is to represent in a graph all
API calls that are performed within the application code. By scanning
that graph, a list of APIs belonging to critical packages is pulled out.
Then, an embedding layer is applied to obtain suitable features for the
subsequent CNN network to decide whether the sample is benign or
malicious.

The choice to extract only APIs statically derives from the fact
that these features are immediately attributable to the behavior of
the samples. Therefore, the successive explainability methodology may
deal with meaningful features, producing meaningful explanations. On
the contrary, features such as the permissions from the AndroidManifest
or the opcodes from SMALI analysis, although strictly connected to the
sample execution purposes, are not as significant as the APIs.

Now that the general idea is clear, a detailed illustration of each
step is necessary.

Function call graph (FCG) extraction. The FCG, as the name suggests,
is a graph of all the API calls found in the DEX file. Specifically, a node
is an API, while edges represent the relationship between them, i.e. a
call. The idea is to scan the graph, starting from the apk entry points,
so that we can trace the calls execution path.

Various techniques exist in literature to extract dynamic or static
function calls. In the former, the sample is run in a controlled en-
vironment to trace all the API calls, while in the second case, the
code is scanned. In this work, we enforce a static analysis using the
Androguard tool to produce the FCG. This way, we are sure to produce
the entire call graph without leaving out any relevant API call, which,
in the case of dynamic analysis, may not be reached throughout the
application execution because of the limited run time. Additionally, dy-
namic approaches are hindered by anti-sandboxing and anti-debugging
techniques used in malware; these techniques modify the program’s
behavior at run time and, consequentially, the sequence of performed
API calls.

Another static method involves SMALI code analysis by looking
at the invoke-* opcodes [9,32]. However, this kind of systematic
approach may require a huge analysis of the SMALI files, which may
be numerous in the case of larger applications.

Critical API calls. By scanning the FCG, only API calls belonging to a
list of critical packages specified in Table 2 are extracted. As described
in [33], critical APIs are the ones that are controlled by run-time
permissions, which give the application access to restricted data or in-
structions. Two examples are android.telephony, which contains
APIs to monitor basic phone information (deviceID, IMEI, or SIM data)
or to perform some actions (e.g. sending SMS), and android.net,
which provides APIs that can manage network connectivity.

The choice is driven by two considerations: (i) minimizing the
number of features, thereby reducing processing them; (ii) considering
the entirety of API calls, including Java’s, may not be representative
for distinguishing between APK categories.
4

Table 2
Critical APIs list in which Android modules and their description is depicted.

Android module Description

android.accounts User’s account management APIs
android.app Application management APIs
android.bluetooth Bluetooth management APIs
android.content Publish, access and share device data APIs
android.location Geolocation management APIs
android.media Device media interface management APIs
android.net Network access management APIs
android.nfc NFC access management APIs
android.provider Content provider access management APIs
android.telecom Call management APIs
android.telephony Monitor basic phone information APIs

Embedding layer. We assume the list of critical APIs extracted in the
previous stage as a sentence, like in Natural Language Processing (NLP).
Two procedures are needed to represent features in a form suitable for
a CNN:

- TF-IDF5: we select the 20 most relevant strings. As explained
later in Section 5.2, this number has been chosen because it
represents the best compromise between performance speed and
results validity. This is critical because each APK has its own list
of APIs with varying sizes; the classifier, however, needs inputs
of uniform length.

- Word2Vec Embedding: we derive an embedding vector for each
API. A matrix of 20 × 25 is then produced. In practice, the
context of words is considered and ‘‘remembered’’ during classi-
fication [34].

As stated previously, the methodology presented takes advantage of
the research in NLP. Therefore, the adoption of TF-IDF and Word2Vec
embedding is natural since it is a standard de facto for this kind of
application [35,36]. Indeed, the first process considers only the most
relevant words (i.e. APIs) in the list of critical calls extracted in the
previous stage, while Word2Vec is needed to build an embedding
between the selected APIs to produce the corresponding word vector,
a vectorial representation of that API.

Classifier. Fig. 4 shows the classifier’s scheme employed in this work.
The core is a CNN consisting of 1D convolutional layers ReLu activated.
We need this kind of convolution since the network must process each
feature (API) alone so that no correlation between APIs is learned. A
dropout layer is inserted to reduce overfitting that may arise. Then, 1D
max pooling and Flatten layers are required to produce a valuable
input for the last fully connected network (i.e. the last three Dense
layers) that can generate the classification score with a final sigmoid
unit. Eventually, a threshold of 0.5 is chosen to weight the two classes

5 TF-IDF stands for Term Frequency-Inverse Document Frequency.

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
Fig. 4. Classifier Schema with all its layers. See Table 3 for further clarifications.
Table 3
Deep Neural Networks parameters. Layer field represents the type of Keras layer; Padding and Stride are
two of the main attributes to specify in the case of convolutional layers; Filters/Units/Pool size specifies
the number of filters or units in the case of different layers; and Output shape is the shape of the result
produces by the layer.

Layer (Activation) Padding Stride Filters/Units/Pool size Output shape

Conv1D (ReLu) None 1 32 (None, 20, 32)
Dropout (rate 0.2) – – – (None, 20, 32)
Conv1D (ReLu) None 1 20 (None, 20, 20)
MaxPool1D (–) None – 4 (None, 5, 20)
Flatten (–) – – – (None, 100)
Dense (ReLu) – – 80 (None, 80)
Dense (ReLu) – – 50 (None, 50)
Dense (ReLu) – – 1 (None, 1)
identically and to yield the actual classification label: 0 for benign APKs
and 1 for malicious ones (Eq. (1)).

𝑙𝑎𝑏𝑒𝑙 =

{

0 if 𝑠𝑐𝑜𝑟𝑒 < 0.5
1 if 𝑠𝑐𝑜𝑟𝑒 > 0.5

(1)

Explainability. The proposed approach employs a well-known me-
thodology applied in other works [37–39]: the SHAP model. In par-
ticular, the surrogate model can compute relevance scores for each
feature passed in input to the classifier (i.e. the APIs). The SHAP model
produces a matrix of 20 × 25. A sum is then applied row by row
to calculate the relevance of each API. SHAP-based explanations are
chosen for their simplicity, intuitiveness, and ability to measure only
the contribution to the classification without considering the model’s
performance. In addition, SHAP can be used for both local and global
explainability.

5. Experiments

5.1. Dataset

The dataset consists of 48,372 APK samples in total (Table 4).
In particular, most malicious samples are from VirusShare datasets,6
while Androzoo collection7 is used to obtain benign ones. To label
uncategorized samples, VirusTotal APIs are used considering malware,
those for which at least one security vendor or sandbox flagged it as
malicious. Otherwise, it is considered a benign APK. We use VirusShare
APIs and AVClass [40] to associate each extracted malware with its
description, indicating the family it belongs to. For brevity, in Table 5,
we report only the data about the 10 most popular families out of
the total 432. Additionally, we pair these findings with a description
of the general threats associated with these samples enumerated in 12
categories in Table 6.

As shown in Fig. 5 and Table 7, the samples’ year ranges from 2008
to 2022, with malicious samples being prevalent until 2015, while the
number of benign ones is more significant after 2016.

6 https://virusshare.com/
7 https://androzoo.uni.lu/
5

Table 4
Complete dataset specifics. It describes the number and the source of the APKs used
in the work.

Description Androzoo VirusShare Tot.

Benign 21,459 (100%) – 21,459
Malicious 832 (3%) 26,081 (97%) 26,913

Table 5
Top 10 malicious families
in the dataset.

Family Amount

smsreg 3041
oimobi 568
dowgin 512
skymobi 507
smssend 506
gappusin 500
kuguo 458
smspay 385
igexin 338
hiddenapp 330

Table 6
Threat categories in the malicious
dataset.

Threat Amount

grayware 10 537
downloader 3058
virus 1537
rooter 277
ransomware 181
backdoor 171
clicker 140
spyware 79
bot 17
worm 3
dialer 2
hoax 1
unknown 10 910

https://virusshare.com/
https://androzoo.uni.lu/
https://www.f-secure.com/sw-desc/riskware-android-smsreg.shtml
https://www.fortiguard.com/encyclopedia/virus/6861089
https://www.f-secure.com/sw-desc/adware-android-dowgin.shtml
https://www.fortiguard.com/encyclopedia/virus/6871465
https://www.f-secure.com/v-descs/trojan-android-smssend.shtml
https://www.fortiguard.com/encyclopedia/virus/8148181
https://www.fortiguard.com/encyclopedia/virus/7802205
https://www.f-secure.com/sw-desc/riskware-android-smspay.shtml
https://www.fortiguard.com/encyclopedia/virus/7510628/adware-igexin-b
https://www.malwarebytes.com/blog/detections/android-trojan-hiddenapp

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
Fig. 5. Distribution of samples per year. The blue bars identify the benign sample, while the orange ones represent the malicious samples.
Table 7
Number of samples per year.

Year Benign Malicious

2008 46 213
2009 321 1495
2010 768 4707
2011 777 2229
2012 836 4160
2013 1457 3254
2014 909 2622
2015 2169 2854

Year Benign Malicious

2016 892 442
2017 2416 339
2018 2837 263
2019 3566 283
2020 3391 270
2021 650 53
2022 172 13

5.2. Evaluation of classification

We performed several tests in order to evaluate the model used
to classify and explain Android APKs. Therefore, in this section, we
present the experiments and the corresponding results.

5.2.1. 10-Fold cross-validation
Setup. The dataset is divided into training and test sets (80% and

20%, respectively), and a fold-cross test is performed to evaluate model
classification performance over a small dataset. The train set is further
split into 10 folds: one is employed as a validation test, while the others
train the model. This process is repeated 10 times. The remaining 20%
of the dataset will be used only in the test described in the following.
The other reason for this test is to choose some fundamental parameters
for the classification task: the number of APIs selected by TF-IDF (20
APIs per sample) and the number of elements per API by Word2Vec
embedding (25 elements per API). Note that considering fewer APIs
per sample would mean a drop in the performance, while more than
20 results in an increase in the computational time.

Results. Results are shown in Table 8. We computed several met-
rics, including accuracy, precision, and F1-score, to measure the quality
of the test classification. As one can notice, the average measures over
ten folds are satisfactory since the achieved accuracy is 87.3%±0.63,
and the F1-score is 87.3%±0.48. This means that the model can rec-
ognize both malware and benign samples since F1 takes into account
both precision and recall. In addition, the standard deviation (i.e. the
measure of the variation or dispersion inside a set of data) remains low,
meaning that over the ten folds, the measures are clustered around the
6

mean.
Table 8
Results over 10 folds. The table shows the average and standard
deviation of the measures done to evaluate the performance over 10
folds.

Acc. (%) Prec. (%) F1 (%) AUC

𝜇 87.3 87.0 87.0 0.94
𝜎 0.63 1.68 0.48 0

Table 9
Classification report where Precision, Recall, and F1-score are the measures produced
based on the considered class (i.e. Benign or Malicious) while the accuracy is computed
over all the test set.

Class Prec. (%) Recall (%) F1 (%) Support

Benign 87.0 85.0 86.0 4318
Malicious 86.0 88.0 87.0 4563
Acc. (%) 87.0 8881

Fig. 6. ROC curve describing the experiments’ performance with the whole dataset.

5.2.2. Classification with the whole dataset
Setup. A separate test has been done on the whole dataset by using

the complete training test, not divided into folds, to train a newly
created model with the same parameters set in the previous test, and
the test set (20% of the entire dataset, as described before) to evaluate
the performance. The training is done over 8 epochs with a batch size
of 20 samples and a validation set composed of 15% of the training set.

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
Fig. 7. Time-aware classification test. The figures show the metrics (i.e. precision, recall, and f1 score) computed considering as testing year range the values in the 𝑥-axis while
the training set consists of samples from 5 years earlier.
Fig. 8. Sliding window test. The figures show the metrics (i.e. precision, recall, and f1 score) computed considering as testing year the values in the 𝑥-axis, while the training set
consists of samples from 5 years earlier.
Fig. 9. Enforcing the same malicious-benign rate per analysis year.

Results. Fig. 6 shows the ROC curve from which we can state
that 𝑇𝑃𝑅 = 0.87 while 𝑇𝑁𝑅 = 0.86. The ROC considers the trade-
off between precision and recall, so it is a more indicative metric
than accuracy, considering only how many predictions are correct. In
addition to the ROC curve, Table 9 shows the classification report
produced to measure precision, recall, and F1-score for both classes,
and the overall accuracy reaches about 87.0%.

5.2.3. Time-aware classification
Setup. We carried out four different tests, employing the TESSER-

ACT library [41], in which the samples’ development year is considered
because different works denoted how temporal biases could affect the
dataset, leading to better performance [41,42]. This bias refers to
7

unrealistic evaluations of the samples in the test set due to the wrong
integration of future knowledge in the training set; namely, if samples
from 2019 are in the training data, the model may learn some features
that can only be seen in the future (e.g. API calls introduced only in
2019) simplifying the identification of past data. Conversely, in the case
of malware analysis, the objective is to identify future samples starting
from past knowledge.

The first test is done by incrementally training the model with recent
data. So, starting from a time window of five years (2008–2012), we
tested the model on future data (i.e. APK from 2013 and 2014). Then,
we re-trained the model, adding data that once were used for testing
(i.e. 2008 to 2014 applications), and re-testing it with 2015-2016’s
samples. That is done until the test consists of 2021-2022’s applications.

Results. Fig. 7 shows a degradation of performances over time.
Interestingly, however, the benign class presents a rise in performance
scores. This can be addressed by collecting more recent data, especially
for malware.

5.2.4. Time-aware sliding window classification
Setup. This test has been done to understand how model training

is affected by the number of samples per year within the dataset, as
shown in Fig. 5. The training set comprises samples in a time window
of five years, while the test consists of only the samples from one year
next to the last in the training window. For example, if the training
window is 08–12, as depicted in Fig. 8, the training samples belong to
the development year range 2008–2012, while the test applications are
from 2013. Besides, a sliding window of one year is chosen to notice
how the results change based on the different testing years.

Results. Fig. 8 shows the results of the sliding window test. The
consideration we can make is that if the number of samples per class
is low, the results are poor. Let us take the case of malicious class; all

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
Fig. 10. Time-aware same-distribution classification test. The figures show the metrics (i.e. precision, recall, and f1 score) computed considering as testing year range the values
in the 𝑥-axis while the train set consists of samples from 5 years earlier.
Fig. 11. Time-aware classification from 2016. The figures show the metrics (i.e. precision, recall, and f1 score) computed considering as testing year the values in the 𝑥-axis while
the train set consists of samples from 1 year earlier.
p
a
d
p
f
m

b
v
d
i
s
f

5

r
a

metrics are significant in the first four ranges (i.e. 2013 to 2016), and
then the performance drops. The same results for the benign class; when
the samples are lower in number (i.e. 2013 to 2015), the performance
are poor, while when the number of sample increases, the computer
metrics are better.

These results are coherent with the consideration that we made
before; the dataset should be yearly balanced in the number of samples.

5.2.5. Time-aware same-distribution classification
Setup. To address irregular time distribution in our data, we veri-

fied our results with an additional experiment concerning a downsam-
pled set considering a yearly balanced data set. Specifically, we take the
minimum number of samples in each class each year (e.g., since 2012
has 4160 malicious samples, but only 836 benign ones, we take 836
malicious samples and all the benign ones). Years 2008, 2021, and 2022
had to be cut for lack of sufficient samples in one of the classes. This
was done to be sure that the model was not just learning the temporal
distribution of the data, albeit it had not explicitly access to it. We train
the model in the same fashion as in 5.2.3. Having discarded 2008 data,
however, the initial training batch’s size is four years (from 2009 to
2012).

Results. Fig. 9 shows the new data distribution. As Fig. 10 shows, the
model’s performance degrades in the same fashion as the previous tests,
showing that the features are the main learning item. However, the
difference in performances between the two classes is less severe, which
probably can be imputed to the more balanced set. The influence of
features towards classification is detailed further in Section 5.3.

5.2.6. Time-aware classification from 2016
Setup. Having noticed that all previous temporal evaluations indi-
8

cated a sudden negative spike in performances when the year 2016
was selected for testing, we investigated if there could be an event that
could have introduced a sudden change in the data distribution. As it
turns out, in that year, Android Nougat was released, which featured
OpenJDK as the main development kit in lieu of the defunct Apache
Harmony.8 Even if carried out seamlessly at the time, such a change
may well have introduced completely new features in data, drastically
shifting the data distribution.

Results. As Fig. 11 shows, using data from 2016 and ongoing to
erform the same test described in 5.2.3 yields fairly better results, with
n increase of overall results in the case of benign class. Nonetheless,
ue to the malicious data scarcity signaled before, the positive class
erformed poorly. For this reason, we advise that systems that use
eatures like ours should be retrained using a significant amount of
ore modern data, considering this significant concept drift.

In light of the time-aware experiments, it is essential to differentiate
etween recent and unknown malware. The first refers to samples de-
eloped after training time, while the latter encompasses malware that,
espite not being recent, has never been encountered by the system
n the training stage. Having clarified this, the system performance
ensibly drops only if test data falls in the first category due to the drift
ound in 2016.

.3. Evaluation of explainability

In this section, we present the experiments and the corresponding
esults for the explainability stage. Particularly, we focused on local
nd global explainability of the samples comprising the dataset.

8 https://shorturl.at/drsLM

https://shorturl.at/drsLM

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
Fig. 12. Bar plot of the SHAP values computed for a malicious sample correctly
classified where SHAP values and API index (row in the feature matrix) are shown.
Red bars, on the right, are associated with a malicious operation, while blue ones, on
the left, are associated with a benign operation.

Table 10
Top 5 APIs of the sample in Fig. 12 based on SHAP value. Bold APIs are those related
to a malicious operation.

API index API SHAP ↑

6 android.content.res.AssetManager-open 0.085
4 android.net.wifi.WifiInfo-getMacAddress 0.073
3 android.telephony.gsm.GsmCellLocation-getCid 0.067
2 android.telephony.gsm.GsmCellLocation-getLac 0.061
5 android.net.wifi.WifiManager-getConnectionInfo 0.046

5.3.1. Local explainability
Setup. As described in Section 3.2, local explainability is intended

to explain a single sample. Hence, this test aims to ascertain the
system’s capability to generate distinct explanations by associating each
sample (one malicious and one benign) with the most representative
APIs. We present the results through bar plots and tables. The first
shows the SHAP values for each API extracted for the corresponding
sample. Red bars correspond to positive SHAP values associated with
APIs relevant to malicious (class ‘‘1’’) classification. Vice versa, blue
bars indicate negative SHAP values, therefore associated with APIs that
are more interesting for benign (class ‘‘0’’) classification. The tables
show the top 5 APIs with the corresponding SHAP values sorted in de-
scending order of their absolute value. This is to know the most relevant
APIs and, derivatively, the most significant operations performed by the
sample.

Results. Fig. 12 and Table 10 show the results for a spyware
malicious application.9 SHAP values are mostly positive: the classifier
considers the associated features to indicate maliciousness. The top
5 APIs are critical operations and among them, some can retrieve
sensitive information about cell location employed by the smartphone
(getLac and getCid which retrieve cell ID and location), and con-
nectivity state (getConnectionInfo) that, probably, is fundamental
because the malware needs it to connect on the Internet.

Fig. 13 and Table 11 show the results for a benign application.10

In this case, one can notice immediately that features extracted for
the sample shift the classification score closer to the benign because
blue bars are prevalent. Table 11 shows that the operations performed
are not so critical: they access application resources from the content
provider without leaking valuable information.

9 MD5: 65f37e366b9ba5000eba50834f87fed9
Name: com.mobistartapp.win7imulator.apk (spyware)

10 MD5: ed8b7e9ad3f00dd02d7e1c755de98393
Name: com.resultsdirect.eventsential.branded.cues
9

Fig. 13. Bar plot of the SHAP values computed for a benign sample correctly classified
where SHAP values and API index (row in the feature matrix) are shown. Red bars,
on the right, are associated with a malicious operation while blue ones, on the left,
are associated with a benign operation.

Table 11
Top 5 APIs of the sample in Fig. 13 based on SHAP value.

API index API SHAP ↑

13 android.content.res.Resources-getXml −0.085
0 android.content.res.ColorStateList-isStateFul −0.046
11 android.content.res.Resources-getDrawable −0.043
6 android.content.res.Resources-getValue −0.043
5 android.content.res.TypedArray-getColor −0.038

5.3.2. Multi-class global explainability
Setup. This test aimed to understand which are the most discrimina-

tive APIs from a global perspective. Therefore, we took only malicious
samples from the test set to highlight behavior that can be considered
malicious. More than one sample can contain the same APIs, so SHAP
values are computed by averaging the values obtained for each APK in
the test.

Results. Table 12 refers to the top 10 APIs based on SHAP value.
There are APIs related to internet connectivity checks, SMS sending
functionality, and WiFi information. There are also APIs not related to
maliciousness because test malware samples belong to heterogeneous
families, so samples are quite varied in their functionalities.

5.3.3. Same-class global explainability
Setup. To counteract the variety of samples in the test set, we

performed a second test related to global explainability taking samples
from the same family from another set different than training and test.
The set consists of ten samples from the LockerPin family taken from
the CICAndMal2017 dataset.11 In this way, we could evaluate the model
classification on samples the model did not see and if it can correlate
samples and explain them.

Results. Table 13 shows explanations for three samples belonging to
the LockerPin ransomware family. From it, we can state that is possible
to find a correlation between considered applications since the top 5
APIs are similar:

- lockNow() to lock immediately the device;
- resetPassword() to change the unlocking PIN/password;
- isAdminActive() to check if the administrative component is

enabled.

11 https://www.unb.ca/cic/datasets/andmal2017.html

https://www.unb.ca/cic/datasets/andmal2017.html

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.

5

t

c
e
s

Table 12
Top 10 APIs for the malicious samples in the test set. Bold APIs are those related to a malicious
operation.

API SHAP ↑

android.net.wifi.WifiInfo-getMacAddress 0.157
android.content.res.TypedArray-getFloat −0.137
android.app.admin.DevicePolicyManager-isDeviceOwnerApp 0.130
android.content.res.Resources-getIdentifier −0.129
android.telephony.gemini.GeminiSmsManager-sendDataMessageGemini 0.128
android.telephony.gsm.SmsManager-getDisplayOriginatingAddress 0.123
android.content.pm.PackageManager-setComponentEnabledSetting 0.118
android.content.res.XmlResourceParser-getAttributeFloatValue −0.113
android.content.res.AssetManager-openXmlResourceParser −0.118
android.net.wifi.wifiManager-getConnectionInfo 0.109
Table 13
Approach applied to three malware from the LockerPin family. Bold APIs are those related to a malicious
operation.

MD5 API SHAP ↑

Locker 1a

android.app.admin.DevicePolicyManager-isAdminActive 0.058
android.app.admin.DeviceAdminReceiver-onPasswordFailed 0.055
android.content.res.AssetManager-open 0.047
android.app.admin.DevicePolicyManager-resetPassword 0.044
android.app.admin.DevicePolicyManager-lockNow 0.037

Locker 2b

android.content.pm.PackageManager-getApplicationIcon 0.095
android.app.admin.DevicePolicyManager-lockNow 0.059
android.app.admin.DeviceAdminReceiver-onPasswordFailed 0.047
android.app.admin.DevicePolicyManager-resetPassword 0.045
android.content.res.AssetManager-open 0.028

Locker 3c

android.app.admin.DevicePolicyManager-isAdminActive 0.062
android.content.pm.PackageManager-getApplicationIcon 0.061
android.content.pm.PackageManager-setComponentEnabledSetting 0.060
android.content.res.AssetManager-open 0.043
android.app.admin.DevicePolicyManager-resetPassword 0.038

a MD5: a063292d8667cf3d83ff9365dfb8650a
b MD5: d335f22545505783e473b42259253d36
c MD5: aa2be7fd72752dffa89fb903cb70392e
w

.4. Comparison with other approaches

A comparison with four other approaches is discussed to understand
he pros and cons of the proposed model.

Akbar et al. [11] use a classical machine-learning approach to
lassify Android applications. In particular, the employed statically-
xtracted features are diverse (i.e. permissions, SMALI size, and permis-
ion rate). The classifier employed is an SVM model trained with 10 000

applications in total. In terms of performance, the proposed approach
is comparable (87% vs 89% of accuracy), without considering the time-
aware dataset as in [11]. Even though explainability is not a key point
in the compared work, this has been done to underline that the kind of
features employed are not so easily correlated with the app behavior
as stated in previous sections.

Iadarola et al. [22] examine the possibility of using a CNN on DEX
files represented as black/white images. Also, in this case, the accuracy
is higher (87% vs 95% of accuracy). Concerning explainability, they
employ GRAD-CAM to obtain heatmaps highlighting the most relevant
parts of the dex code for the classification. The problem is that it is
not as immediate as our explainable approach to understanding the
functionalities of a sample because the analyst should always examine
the code.

An interesting comparison can be made with a similar approach
to [22], proposed by Jo et al. [26]. As mentioned in Section 2,
the approach uses novelties on transformers-based models since they
applied a Vision Transformer (ViT) on image representations of dex
files. One of the main results is the possibility of using the intrinsic
attention mechanism to produce a heatmap similar to the one made by
GradCAM. However, to counteract the difficulties related to heatmaps’
analysis, they implemented an automatic reversing methodology to
understand which part of the code is related to the ‘‘critical’’ pixels.
10
The approach seems quite good, but the main problems remain the
resources required to do that and the uncertainty of the pixel-to-dex
method, which may result in not providing sufficient details for the
application at hand. Therefore, the same consideration done in the
previous comparison can be made: the approach presented in this work
is much more intuitive and straightforward.

At last, we performed a practical comparison to highlight the dif-
ferences between our method and Xmal [23] by testing the two ap-
proaches with samples belonging to different malware families. The
approach is akin to ours as it aims to offer human-understandable
explanations regarding malware functionality. However, a notable dis-
tinction lies in the features employed (i.e. both API calls and permis-
sions). A comparative analysis is warranted to discern the differences
and similarities in the produced explanations that are generated in
different ways for both the kind of method and the features applied.

Table 14 summarizes the results for the 4 most representative
malware.

For the LockerPin sample,12 our approach lists a set of APIs, among
hich lockNow, resetPassword, onEnable, and getWho are

associated with the malicious behavior of a LockerPin malware. Specif-
ically, they are employed to obtain administrative privileges, reset the
password and lock the screen immediately preventing the user from
accessing the device. On the other hand, Xmal can only retrieve one
relevant permission: WAKE_LOCK. This allows to keep the smartphone
alive even though the device appears asleep. This is reasonable since
Xmal is not extracting any feature related to locking capabilities, be it
an API or permission.

12 MD5: 4BD33BA8957168DCCBEADBBEA45C6843

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.

k
s

Table 14
Comparison between our approach and Xmal with four samples. Bold features represent those that are more associated with true
malicious behavior, while Xmal permissions are highlighted in bold italics to distinguish them from API calls clearly. All APIs within
the left column are in android package.

Our approach ↑ Xmal ↑

LockerPin app.admin.deviceAdminReceiver-onEnabled
app.admin.deviceAdminReceiver-onReceive
app.admin.devicePolicyManager-lockNow
content.pm.packageManager-
getLaunchIntentForPackage
app.admin.deviceAdminReceiver-onDisabled
app.admin.deviceAdminReceiver-
onDisableRequested
app.admin.deviceAdminReceiver-getWho
app.admin.deviceAdminReceiver-onPasswordFailed
content.res.resources-getConfiguration
app.admin.devicePolicyManager-resetPassword

android.permission.READ_PHONE_STATE
app.NotificationManager-cancel
content.pm.PackageManager-checkPermission
content.ContentResolver-query
android.permission.ACCESS_NETWORK_STATE
android.permission.INTERNET
Ljava.lang.Runtime-exec
android.permission.WAKE_LOCK
Ljava.net.URL-openConnection

MazarBot content.pm.packageManager-
getLaunchIntentForPackage
content.res.resources-getStringArray
content.pm.packageManager-
getInstalledApplications
content.ContentResolver-query
content.pm.packageManager-
setComponentEnabledSetting
app.admin.deviceAdminReceiver-
onPasswordSucceeded
app.admin.devicePolicyManager-wipeData
app.admin.deviceAdminReceiver-onEnabled
app.admin.deviceAdminReceiver-onDisabled
content.pm.signature-toByteArray

android.permission.READ_PHONE_STATE
app.NotificationManager-cancel
content.ContentResolver-query
android.permission.INTERNET
android.permission.ACCESS_NETWORK_STATE
telephony.TelephonyManager-getDeviceId

BeanBot content.pm.binding-attachInterface
app.enterprise.knoxCustom.customDevicemanager-
getInstance
telephony.smsMessage-getDisplayMessageBody
app.admin.devicePolicyManager-isDeviceOwnerApp
telephony.telephonyManager-getDeviceId
android.media.session.mediaSession-
setMediaButtonReceiver
telephony.gsm.smsManager-getDefault
telephony.gsm.smsManager-sendTextMessage
android.content.pm.resolveInfo-getIconResource
app.enterprise.enterpriseDeviceManager-
getFirewall

android.permission.READ_PHONE_STATE
Ljava.net.HttpURLConnection-getResponseCode
content.ContentResolver-query
android.permission.ACCESS_NETWORK_STATE
location.LocationManager-
requestLocationUpdates
android.permission.INTERNET

Fake Installer app.enterprise.multiUser.multiUserManager-
getInstance
location.LocationManager-
getLastKnownLocation
telephony.telephonyManager-getDeviceId
content.pm.packageManager-getPackageInfo
app.admin.devicePolicyManager-isDeviceOwnerApp
telephony.gsm.gsmCellLocation-getCid
net.wifi.wifiManager-setWifiEnabled
app.enterprise.deviceSettings.deviceSettingsPolicy-
getInstance
app.enterprise.enterpriseDeviceManager-
getFirewall

android.permission.READ_PHONE_STATE
Ljava.net.HttpURLConnection-getResponseCode
android.permission.INTERNET
android.permission.ACCESS_NETWORK_STATE
android.permission.SEND_SMS
s

o
h
t

6

A

The MazarBot malware13 can obtain administrative privileges, get
some information about the smartphone and wipe all data from the
device. In the case of our approach, the explanations can detect some
of the malicious behavior of the sample: (i) query that queries a URI,
(ii) onEnabled, onDisabled, onPasswordSucceded that are
associated with admin functionalities, and (iii) wipeData to delete all
data inside the smartphone. Xmal is only listing features that highlight
the internet and stealing data-related functionalities.

The other two samples, BeanBot14 and Fake Installer15 are two
inds of Trojan that can steal some information about the smartphone,
end SMS, and connect to some remote server. The explanations of

13 MD5: 1A4A6D135629D56917366D18C99ED316
14 MD5: 9C1A90860302572A0D86BCF6C6A084EE
15
11

MD5: 2CBADCC6A5474687A4F6A7F4183D835C s
the two approaches are different because, in the case of Xmal, only
some functionalities are listed since permissions are deemed more
relevant than other APIs extracted as features. Conversely, in our
approach, a list of some APIs can better represent malware capabilities
(e.g. getDeviceId, getDispalyMessageBody, sendTextMes-
aege, getCid, etc.).

The four examples just presented lead to an interesting result:
ne can use both approaches in a complementary fashion since they
ighlight different features (i.e. API calls and permissions). In this way,
he level of malware explainability is enhanced.

. Conclusions and future works

In this work, we developed a novel methodology for explainable
ndroid malware analysis. We selected API calls as a set of features

trictly correlated with malicious behavior, and we performed several

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.

t
s
A
l
c
p
i
c
m

w
t
a
a
c
s
t
i
e
t
i

C

tests on a dataset of over 40 000 Android applications to check whether
he explanations could detail malware behavior. The attained results
howed that the approach could detect and explain malicious Android
PKs with the set of APIs extracted. The SHAP values calculated on

ocal and global explanations show that APIs constitute a winning
hoice to understand learning-based systems decisions in Android. In
articular, experiments done with applications from the same fam-
ly (LockerPin ransomware) demonstrate the possibility of stating a
orrelation between the apps at hand and possibly recognizing the
aliciousness of the sample and its family automatically.

Different problems remain open and should be addressed in future
orks: (a) the classification performance is comparable but not superior

o other approaches analyzed in Sections Section 2, and 5.4. Hence,
wider dataset can be used to evaluate classifier strength further. In

ddition, to address the problems related to the time-aware classifi-
ation described in the previous sections, a dataset with more recent
amples, in particular for the malicious class, should be needed to test
he approach against temporal bias further; (b) The set of API extracted
s very large. For that reason, an idea to improve classification and
xplainability would be to select a smaller feature set (APIs belonging to
he same packages used in this work) that can represent maliciousness
n the applications at hand in an equally discriminative fashion.

RediT authorship contribution statement

Diego Soi: Conceptualization, Data curation, Software, Validation,
Writing – original draft, Writing – review & editing. Alessandro Sanna:
Software, Visualization, Writing – original draft. Davide Maiorca:
Conceptualization, Supervision, Writing – review & editing. Giorgio
Giacinto: Conceptualization, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

This work was partially supported by project SERICS (PE00000014)
under the NRRP MUR program funded by the EU - NGEU.

References

[1] StatCounter-GlobalStats. Mobile operating system market share worldwide.
2022, StatCounter. URL https://gs.statcounter.com/os-market-share/mobile/
worldwide. (Online - Accessed 06 December 2022).

[2] AV-ATLAS. Total amount of malware and PUA under android. 2022, URL https:
//portal.av-atlas.org/malware/statistics. (Online - Accessed 06 December 2022).

[3] Kaspersky. Android mobile security threats. 2022, URL https://www.kaspersky.
com/resource-center/threats/mobile. (Online - Accessed 03 November 2022).

[4] Feng R, Chen S, Xie X, Ma L, Meng G, Liu Y, et al. MobiDroid: A
performance-sensitive malware detection system on mobile platform. In: 2019
24th international conference on engineering of complex computer systems.
2019, p. 61–70. http://dx.doi.org/10.1109/ICECCS.2019.00014.

[5] Karabey Aksakalli I. Using convolutional neural network for android malware
detection. Comput Model New Technol 2019;23:29–35.

[6] Nicheporuk A, Savenko O, Nicheporuk A, Nicheporuk Y. An android malware
detection method based on CNN mixed-data model. 2020, EasyChair.

[7] Wang Z, Li G, Zhuo Z, Ren X, Lin Y, Gu J. A deep learning method for
android application classification using semantic features. Secur Commun Netw
12

2022;2022.
[8] Ravi V, Kp S, Poornachandran P, Kumar S S. Detecting android malware using
long short-term memory (LSTM). J Intell Fuzzy Systems 2018;34:1277–88. http:
//dx.doi.org/10.3233/JIFS-169424.

[9] Scalas M, Maiorca D, Mercaldo F, Visaggio CA, Martinelli F, Giacinto G.
R-PackDroid: Practical on-device detection of android ransomware, CoRR
abs/1805.09563. 2018, arXiv:1805.09563.

[10] Han H, Lim S, Suh K, Park S, Cho S-J, Park M. Enhanced android malware
detection: An SVM-based machine learning approach. In: 2020 IEEE international
conference on big data and smart computing. 2020, p. 75–81. http://dx.doi.org/
10.1109/BigComp48618.2020.00-96.

[11] Akbar F, Hussain M, Mumtaz R, Riaz Q, Wahab AWA, Jung K-H. Permissions-
based detection of android malware using machine learning. Symmetry
2022;14(4). http://dx.doi.org/10.3390/sym14040718, URL https://www.mdpi.
com/2073-8994/14/4/718.

[12] Chaulagain D, Poudel P, Pathak P, Roy S, Caragea D, Liu G, et al. Hybrid
analysis of android apps for security vetting using deep learning. In: 2020
IEEE conference on communications and network security. 2020, p. 1–9. http:
//dx.doi.org/10.1109/CNS48642.2020.9162341.

[13] Vinayakumar R, Soman KP, Poornachandran P. Deep android malware detection
and classification. In: 2017 international conference on advances in computing,
communications and informatics. 2017, p. 1677–83. http://dx.doi.org/10.1109/
ICACCI.2017.8126084.

[14] Lo WW, Layeghy S, Sarhan M, Gallagher M, Portmann M. Graph neural
network-based android malware classification with jumping knowledge, CoRR
abs/2201.07537. 2022, arXiv:2201.07537.

[15] Pengbin Feng TL, Ma X, Xi N, Lu D. Android malware detection via graph
representation learning. Mob Inf Syst 2021;2021. http://dx.doi.org/10.1155/
2021/5538841.

[16] Kim T, Kang B, Rho M, Sezer S, Im EG. A multimodal deep learning method
for android malware detection using various features. IEEE Trans Inf Forensics
Secur 2019;14(3):773–88. http://dx.doi.org/10.1109/TIFS.2018.2866319.

[17] Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K. DREBIN: Effective and
explainable detection of android malware in your pocket. In: Symposium on
network and distributed system security. 2014, http://dx.doi.org/10.14722/ndss.
2014.23247.

[18] Scalas M, Rieck K, Giacinto G. Chapter 11 - Improving malware detection
with explainable machine learning. In: Benois-Pineau J, Bourqui R, Petkovic D,
Quénot G, editors. Explainable deep learning AI. Academic Press; 2023, p.
217–38. http://dx.doi.org/10.1016/B978-0-32-396098-4.00017-X, URL https://
www.sciencedirect.com/science/article/pii/B978032396098400017X.

[19] Melis M, Maiorca D, Biggio B, Giacinto G, Roli F. Explaining black-box android
malware detection, CoRR abs/1803.03544. 2018, arXiv:1803.03544.

[20] Melis M, Scalas M, Demontis A, Maiorca D, Biggio B, Giacinto G, et al. Do
gradient-based explanations tell anything about adversarial robustness to android
malware? CoRR abs/2005.01452 2020, arXiv:2005.01452.

[21] Kinkead M, Millar S, McLaughlin N, O’Kane P. Towards explainable CNNs
for android malware detection. Procedia Comput Sci 2021;184:959–65. http:
//dx.doi.org/10.1016/j.procs.2021.03.118, The 12th international conference on
ambient systems, networks and technologies (ANT) / The 4th international
conference on emerging data and Industry 4.0 (EDI40) / Affiliated workshops.
URL https://www.sciencedirect.com/science/article/pii/S1877050921007663.

[22] Iadarola G, Martinelli F, Mercaldo F, Santone A. Towards an interpretable
deep learning model for mobile malware detection and family identification.
Comput Secur 2021;105:102198. http://dx.doi.org/10.1016/j.cose.2021.102198,
URL https://www.sciencedirect.com/science/article/pii/S0167404821000225.

[23] Wu B, Chen S, Gao C, Fan L, Liu Y, Wen W, et al. Why an android app
is classified as malware? Towards malware classification interpretation, CoRR
abs/2004.11516. 2020, arXiv:2004.11516.

[24] Islam S, Elmekki H, Elsebai A, Bentahar J, Drawel N, Rjoub G, et al. A
comprehensive survey on applications of transformers for deep learning tasks.
2023, http://dx.doi.org/10.48550/arXiv.2306.07303.

[25] Ullah F, Alsirhani A, Alshahrani MM, Alomari A, Naeem H, Shah SA. Explainable
malware detection system using transformers-based transfer learning and multi-
model visual representation. Sensors 2022;22(18). http://dx.doi.org/10.3390/
s22186766, URL https://www.mdpi.com/1424-8220/22/18/6766.

[26] Jo J, Cho J, Moon J. A malware detection and extraction method for the
related information using the ViT attention mechanism on android operating
system. Appl Sci 2023;13(11). http://dx.doi.org/10.3390/app13116839, URL
https://www.mdpi.com/2076-3417/13/11/6839.

[27] Kaliciński W. Smallerapk, part 1: Anatomy of an apk, medium - Android Develop-
ers. 2022, https://medium.com/androiddevelopers/smallerapk-part-1-anatomy-

of-an-apk-da83c25e7003. (Online - Accessed 08 July 2022).

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://portal.av-atlas.org/malware/statistics
https://portal.av-atlas.org/malware/statistics
https://portal.av-atlas.org/malware/statistics
https://www.kaspersky.com/resource-center/threats/mobile
https://www.kaspersky.com/resource-center/threats/mobile
https://www.kaspersky.com/resource-center/threats/mobile
http://dx.doi.org/10.1109/ICECCS.2019.00014
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb5
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb5
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb5
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb6
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb6
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb6
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb7
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb7
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb7
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb7
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb7
http://dx.doi.org/10.3233/JIFS-169424
http://dx.doi.org/10.3233/JIFS-169424
http://dx.doi.org/10.3233/JIFS-169424
http://arxiv.org/abs/1805.09563
http://dx.doi.org/10.1109/BigComp48618.2020.00-96
http://dx.doi.org/10.1109/BigComp48618.2020.00-96
http://dx.doi.org/10.1109/BigComp48618.2020.00-96
http://dx.doi.org/10.3390/sym14040718
https://www.mdpi.com/2073-8994/14/4/718
https://www.mdpi.com/2073-8994/14/4/718
https://www.mdpi.com/2073-8994/14/4/718
http://dx.doi.org/10.1109/CNS48642.2020.9162341
http://dx.doi.org/10.1109/CNS48642.2020.9162341
http://dx.doi.org/10.1109/CNS48642.2020.9162341
http://dx.doi.org/10.1109/ICACCI.2017.8126084
http://dx.doi.org/10.1109/ICACCI.2017.8126084
http://dx.doi.org/10.1109/ICACCI.2017.8126084
http://arxiv.org/abs/2201.07537
http://dx.doi.org/10.1155/2021/5538841
http://dx.doi.org/10.1155/2021/5538841
http://dx.doi.org/10.1155/2021/5538841
http://dx.doi.org/10.1109/TIFS.2018.2866319
http://dx.doi.org/10.14722/ndss.2014.23247
http://dx.doi.org/10.14722/ndss.2014.23247
http://dx.doi.org/10.14722/ndss.2014.23247
http://dx.doi.org/10.1016/B978-0-32-396098-4.00017-X
https://www.sciencedirect.com/science/article/pii/B978032396098400017X
https://www.sciencedirect.com/science/article/pii/B978032396098400017X
https://www.sciencedirect.com/science/article/pii/B978032396098400017X
http://arxiv.org/abs/1803.03544
http://arxiv.org/abs/2005.01452
http://dx.doi.org/10.1016/j.procs.2021.03.118
http://dx.doi.org/10.1016/j.procs.2021.03.118
http://dx.doi.org/10.1016/j.procs.2021.03.118
https://www.sciencedirect.com/science/article/pii/S1877050921007663
http://dx.doi.org/10.1016/j.cose.2021.102198
https://www.sciencedirect.com/science/article/pii/S0167404821000225
http://arxiv.org/abs/2004.11516
http://dx.doi.org/10.48550/arXiv.2306.07303
http://dx.doi.org/10.3390/s22186766
http://dx.doi.org/10.3390/s22186766
http://dx.doi.org/10.3390/s22186766
https://www.mdpi.com/1424-8220/22/18/6766
http://dx.doi.org/10.3390/app13116839
https://www.mdpi.com/2076-3417/13/11/6839
https://medium.com/androiddevelopers/smallerapk-part-1-anatomy-of-an-apk-da83c25e7003
https://medium.com/androiddevelopers/smallerapk-part-1-anatomy-of-an-apk-da83c25e7003
https://medium.com/androiddevelopers/smallerapk-part-1-anatomy-of-an-apk-da83c25e7003

Journal of Information Security and Applications 80 (2024) 103691D. Soi et al.
[28] Alvares S. App components: Entry points for Android applications. 2020, DevGe-
nius. URL https://blog.devgenius.io/app-components-entry-points-for-android-
applications-f3d0b0294af7. (Online - Accessed 18 October 2022).

[29] Gall R. Machine learning explainability vs interpretability: Two concepts that
could help restore trust in AI. 2022, KDN nuggets. URL https://www.kdnuggets.
com/2018/12/machine-learning-explainability-interpretability-ai.html. (Online -
Accessed 10 July 2022).

[30] Xie N, Ras G, van Gerven M, Doran D. Explainable deep learning: A field guide
for the uninitiated, CoRR abs/2004.14545. 2020, arXiv:2004.14545.

[31] Lundberg SM, Lee S. A unified approach to interpreting model predictions, CoRR
abs/1705.07874. 2017, arXiv:1705.07874.

[32] Raul M, Pengbin F, Jiafeng M, Teng L, Xindi M, Ning X, et al. Android malware
detection via graph representation learning. Mob Inf Syst 2021;2021/5538841.

[33] Yang Y, Du X, Yang Z, Liu X. Android malware detection based on structural
features of the function call graph. Electronics 2021;10(2). http://dx.doi.org/10.
3390/electronics10020186, URL https://www.mdpi.com/2079-9292/10/2/186.

[34] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word repre-
sentations in vector space. In: Proceedings of workshop at ICLR, vol. 2013.
2013.

[35] Kim Y. Convolutional neural networks for sentence classification, CoRR
abs/1408.5882. 2014, arXiv:1408.5882.

[36] Yue W, Li L. Sentiment analysis using Word2vec-CNN-BiLSTM classification.
In: 2020 seventh international conference on social networks analysis, manage-
ment and security. 2020, p. 1–5. http://dx.doi.org/10.1109/SNAMS52053.2020.
9336549.

[37] Morcos M, Al Hamadi H, Damiani E, Nandyala S, McGillion B. A surrogate-
based technique for android malware detectors’ explainability. In: 2022 18th
international conference on wireless and mobile computing, networking and
communications. 2022, p. 112–7. http://dx.doi.org/10.1109/WiMob55322.2022.
9941515.

[38] Alani MM, Awad AI. PAIRED: An explainable lightweight android malware
detection system. IEEE Access 2022;10:73214–28. http://dx.doi.org/10.1109/
ACCESS.2022.3189645.

[39] Giannakas F, Kouliaridis V, Kambourakis G. A closer look at machine learning
effectiveness in android malware detection. Information 2023;14(1). http://dx.
doi.org/10.3390/info14010002, URL https://www.mdpi.com/2078-2489/14/1/
2.

[40] Sebastián S, Caballero J. AVclass2: Massive malware tag extraction from AV
labels. In: Annual computer security applications conference. New York, NY,
USA: Association for Computing Machinery; 2020, p. 42–53. http://dx.doi.org/
10.1145/3427228.3427261.

[41] Pendlebury F, Pierazzi F, Jordaney R, Kinder J, Cavallaro L. TESSERACT:
Eliminating experimental bias in malware classification across space and time.
In: 28th USENIX security symposium. Santa Clara, CA: USENIX Association;
2019, p. 729–46, URL https://www.usenix.org/conference/usenixsecurity19/
presentation/pendlebury.

[42] Liu Y, Tantithamthavorn C, Li L, Liu Y. Explainable AI for android malware
detection: Towards understanding why the models perform so well? In: 2022
IEEE 33rd international symposium on software reliability engineering. 2022,
http://dx.doi.org/10.1109/ISSRE55969.2022.00026.
13
Diego Soi received his Master’s degree in Computer Engi-
neering, Cybersecurity and Artificial Intelligence from Uni-
versità degli Studi di Cagliari, Cagliari, Italy in November
2022, and his Bachelor’s degree in Electrical, Electronical
and Computer Engineering from Università degli Studi di
Cagliari, Cagliari, Italy in November 2020. Currently, he is
a Ph.D. candidate for University degli Studi di Cagliari and
his research interests are Malware analysis and detection
for mobile systems, and the use of ML/DL on this kind of
application.

Alessandro Sanna is a Corporate Ph.D. student for the
University of Cagliari, where is a member of the Pattern
Recognition and Application Laboratory, and Abissi Srl since
April 2021. Currently researching on Malware Detection and
Threat Intelligence, his studies focus primarily on Living-off-
the-Land Malware and the use of ML/DL for Malware and
Threat Detection.

Davide Maiorca received from the University of Cagliari
(Italy) the M.Sc. degree (Hons.) in Electronic Engineering in
2012, and the Ph.D. in Computer and Electronic Engineering
in 2016. He is currently a Senior Assistant Professor at
the Department of Electrical and Electronic Engineering,
University of Cagliari. His research fields include analyzing
and detecting X86 and Android malware, malicious doc-
uments and multimedia applications (e.g., PDF, Microsoft
Office), and Adversarial Machine Learning. Dr. Maiorca
authored more than 25 research papers and has served as a
Program Committee member and reviewer for international
conferences and journals.

Giorgio Giacinto is a Professor of Computer Engineering
at the University of Cagliari, Italy, where he serves as the
coordinator of the M.Sc. degree in Computer Engineering,
Cybersecurity and Artificial Intelligence.

His research interests are in machine learning for
malware analysis and detection, and he published more
than 180 papers in international conferences and journals.
He is the Editor in Chief of the "Security Engineering &
Applications" section of the Journal of Cybersecurity and
Privacy He is a member of the managing committees of the
Cybersecurity National Lab and the Artificial Intelligence &
Intelligent Systems Lab within the CINI consortium, Italy.
He also represents the Cybersecurity National Lab within
the European Cybersecurity Organization (ECSO) He is a
Fellow of the IAPR (International Association for Pattern
Recognition) and a Senior Member of the IEEE Computer
Society and ACM.

https://blog.devgenius.io/app-components-entry-points-for-android-applications-f3d0b0294af7
https://blog.devgenius.io/app-components-entry-points-for-android-applications-f3d0b0294af7
https://blog.devgenius.io/app-components-entry-points-for-android-applications-f3d0b0294af7
https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
http://arxiv.org/abs/2004.14545
http://arxiv.org/abs/1705.07874
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb32
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb32
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb32
http://dx.doi.org/10.3390/electronics10020186
http://dx.doi.org/10.3390/electronics10020186
http://dx.doi.org/10.3390/electronics10020186
https://www.mdpi.com/2079-9292/10/2/186
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb34
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb34
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb34
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb34
http://refhub.elsevier.com/S2214-2126(23)00275-2/sb34
http://arxiv.org/abs/1408.5882
http://dx.doi.org/10.1109/SNAMS52053.2020.9336549
http://dx.doi.org/10.1109/SNAMS52053.2020.9336549
http://dx.doi.org/10.1109/SNAMS52053.2020.9336549
http://dx.doi.org/10.1109/WiMob55322.2022.9941515
http://dx.doi.org/10.1109/WiMob55322.2022.9941515
http://dx.doi.org/10.1109/WiMob55322.2022.9941515
http://dx.doi.org/10.1109/ACCESS.2022.3189645
http://dx.doi.org/10.1109/ACCESS.2022.3189645
http://dx.doi.org/10.1109/ACCESS.2022.3189645
http://dx.doi.org/10.3390/info14010002
http://dx.doi.org/10.3390/info14010002
http://dx.doi.org/10.3390/info14010002
https://www.mdpi.com/2078-2489/14/1/2
https://www.mdpi.com/2078-2489/14/1/2
https://www.mdpi.com/2078-2489/14/1/2
http://dx.doi.org/10.1145/3427228.3427261
http://dx.doi.org/10.1145/3427228.3427261
http://dx.doi.org/10.1145/3427228.3427261
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
http://dx.doi.org/10.1109/ISSRE55969.2022.00026

	Enhancing android malware detection explainability through function call graph APIs
	Introduction
	Related Work
	Background
	Android
	APK
	Entry points

	Explainability

	Methodology
	Experiments
	Dataset
	Evaluation of classification
	10-fold cross-validation
	Classification with the whole dataset
	Time-aware classification
	Time-aware sliding window classification
	Time-aware same-distribution classification
	Time-aware classification from 2016

	Evaluation of explainability
	Local explainability
	Multi-class Global explainability
	Same-class Global explainability

	Comparison with other approaches

	Conclusions and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

