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Abstract: The surge in electric vehicles (EVs) and their electrical appliances requires highly efficient,
lightweight electrical machines with better performance. However, conventional wire used for
electrical machine windings have certain limits to the current requirements. Copper is a commonly
used material in electrical windings, and due to its ohmic resistance, it causes 75% of total losses
in electrical machines (copper losses). The high mass of the copper results in a bulky system size,
and the winding temperature of copper is always maintained at less than 150 ◦C to preserve the
thermal insulation of the electric machine of the windings. On the other hand, carbon nanotubes and
carbon nanotube materials have superior electrical conductivity properties and mechanical properties.
Carbon nanotubes ensure 100 MS/m of electrical conductivity, which is higher than the copper
electrical conductivity of 59.6 MS/m. In the literature, various carbon nanotubes have been studied
based on electrical conductivity, temperature co-efficient with resistivity, material thickness and
strength, insulation, and efficiency of the materials. Here, we review the electrical and mechanical
properties of carbon nanotubes, and carbon nanotube composite materials are reviewed with copper
windings for electrical wires.

Keywords: carbon nanotubes; carbon nanotube composite materials; electrical properties; mechanical
properties; electrical wires

1. Introduction

The increase in energy demand requires the efficient utilization of generated power
by improving the devices and materials used in the loads, such as machines. The increase
in electric vehicles also demands the high utilization of generated power by replacing
these materials. Copper and aluminium are commonly used materials for electrical wire
in machines. The fundamental requirement of electrical conductivity of any material is
high conductivity with low resistivity, a low-temperature co-efficient, and high mechanical
and tensile strength. Moreover, good conducting material has good solderability and high
reliability. Suitable conducting materials also ensure high resistance to corrosion [1,2]. These
requirements vary with the application of the materials. Copper is the most commonly
used conducting material. Copper has high conductivity and good mechanical properties.
It has good resistance to oxidation and corrosion during service conditions [3]. After
the annealing process, copper has good restoring capability (original state/soft state).
Aluminium is also used as a conducting material after copper, but the aluminium material
has comparatively less conducting and mechanical properties [4,5]. This conventional
material consumes more power during the conversion stage and load variation conditions.
Aluminium and copper, which have high densities, consume the most space in the machines
and also have temperature limits with different environmental and load conditions [6]. The
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availability of raw materials for copper and aluminium is decreasing, and manufacturing
creates high carbon footprints. Steel core materials are used in electrical machines and
have low conductivity values compared to copper and aluminium. Silver materials are
proposed due to their higher conductivity compared to copper. However, they are high in
cost and size, thus leading to high machine losses [7,8]. Meeting the minimum efficiency
performance standard (MEPS) raised by the United States in the 1992 Energy Policy Act
(EPAct) requires modified machine designs with conventional materials of aluminium and
copper. Finite element analysis and optimization in designs have been implemented. This
method ensures the machine’s efficiency and the magnetic laminations’ impacts on the iron
losses. However, conventional materials have challenges in laminating the windings of the
machine, and their efficiency mainly depends on the inverter efficiency of the machine. To
overcome the above issues, new technology and materials are required.

Permanent magnet (PM) materials are proposed to improve the power density and
efficiency of the system. PM materials have rare earth materials, which increase the cost of
the system and also are limited in terms of availability [9]. Surface-mounted permanent
magnet (SPM) material has less earth magnetic materials to reduce the cost and increase the
efficiency. However, this material has high electromagnetic interference (EMI) issues due
to high magnetic flux variations [10]. Fractional slot concentrated winding (FSCW) syn-
chronous PM machines have been developed to increase the efficiency, power density, slot
end turns, and tolerance level of the fault. The FSCW creates lower-order harmonics during
high-speed variations because of the high permeability of the stator path. In order to reduce
the permeability, the four-layer FSCW approach has been proposed, which minimizes the
permeability to reduce the lower-order harmonics. However, parasitic effects such as noise
and unbalanced PM effects cause an increase in harmonics components [11–13]. Brushless
permanent magnets (BPMs) have been developed with high torque density. BPM machines
are mainly used in EVs due to their compact size and high fault tolerance during load
variation conditions. However, BPM materials have high thermal stress because of the
losses generated by the machine that creates insulation failures in the machine [11]. To
eliminate thermal stress in BPMs, NDFEB and SmCo-type materials are proposed. These
materials increase the efficiency and reduce the eddy current losses generated by conven-
tional permanent magnetic materials [13,14]. However, the BPM machine’s losses depend
on the losses created by the copper wires in the stator windings [15].

In recent decades, synchronous reluctance machines have been developed to improve
power density, torque density, and electromagnetic interferences. In synchronous reluctance
machines, the windings are developed by laminated silicon steel. Because of their small
size, synchronous reluctance machines are mainly used in electric vehicle machines. These
proposed materials are low in cost and deliver a higher power density [16,17]. The main
drawback of the material is high noise due to high ripple torque, the harmonic components,
and limitations in the speed variations. Moreover, silicon steel causes high power losses
compared to copper materials. Hence, conventional materials such as copper, aluminium,
and other materials do not provide better efficiency, power density, and conductivity [18,19].

To overcome the above issues, carbon-based materials have been proposed. In 1838,
the first carbon element was used in vacuum bulbs as a current-carrying conductor with
high resistivity and smaller size. Later, the electric bulb was developed that used paralyzed
carbon filaments due to their more extended life properties. Carbon fibres were manufac-
tured in 1860 with a high-temperature carbonization process for electrical bulbs. Carbon
fibre has high mechanical strength and good electrical properties [20–22]. In recent decades,
CNTs and graphene with composite materials have been proposed to replace copper wires.

Since the initial days of CNT development, electrospinning methods have been used
to manufacture CNTs. This method is used for research and commercial purposes to
convert any polymer material to fine pure nanowires. However, this method is restricted
to short MWCNTs. Research on the electrospinning method further suggested long, high
quality, and high electrical conductivity CNTs [23]. Figure 1 [24] shows the schematic
diagram of CNT wire manufacturing and the step-by-step manufacturing of CNT wires
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using the electrospinning method. In this method, the material’s electrical conductivity
is doubled compared to the previous manufacturing method. To increase the electrical
conductivity, non-hazardous inexpensive materials such as polyethylene oxide and non-
ionic surfactants are used [24]. In the electrospinning method, initially CNTs are pulled
into alignment, and nanofibers are converted to yarn with electrospinning [25]. With
high temperatures, sacrificial materials and the surfactant are removed, and aligned CNT
wires are created. In the electrospinning method, optimization aspects of solvent selection,
surfactant selection, optimization of thermal treatment temperature, and the fabrication
wire selection process improve the electrical conductivity of CNTs. N-Methyl-2-pyrrolidone,
dimethyl formamide, ethanol, dimethyl sulfide, dimethyl actinide, isopropyl alcohol, and
ortho-dichlorobenzene are commonly used solvents for the manufacture of CNT wire [26].
Nanomaterials such as CNT and CNT composite materials were proposed for electrical
machines to improve efficiency and reduce the cost. CNTs have high electrical, mechanical,
and thermal properties. CNTs have been developed for electronic devices due to their
electrical and thermal insulation properties [27–29].
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Figure 1. Schematic diagram of the manufacturing of CNT wire represented in four steps: 1. CNTs
are pulled into alignment, 2. Nanofibers are converted to yarn with electro spinning, 3. Sacrificial
polymer and surfactant are thermally removed, and 4. Aligned CNT wires. This image is reproduced
with permission from Ref. [24] under the terms of the Creative Commons CC-BY license.

CNTs replace the copper windings in the transformers and has high operating range
variations with the frequency [30]. CNTs with composites such as aluminium and copper
increase the electrical and mechanical characteristics of the windings [29,31]. The robustness
of the CNTs plays a vital role in the transformer. However, these CNTs are in laboratory-
level development [32,33]. To use the CNTs and CNT composites in electrical machines,
we need to analyse the electrical and mechanical properties of the CNTs. The selection of
CNT wires for replacing copper materials must meet the characteristics of windings used
in electrical wires, windings used in electrical machines, windings used in transformers,
and wires used in other electrical appliances. A detailed literature examination indicates
the need for good conducting materials with light weight and low cost. This objective can
be obtained from the CNT and CNT composite materials.

In this review article, Section 2 describes electrical characteristics such as electrical
conductivity, temperature coefficient, and efficiency. Section 3 examines the mechanical
features such as material strength and thickness, temperature coefficient, and thermal
insulation of CNT and CNT composite materials with conventional conducting materials
such as copper and aluminium. Finally, Section 4 summarises the conclusions and future
research directions to improve the electrical properties of composite materials.
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2. Electrical Properties of Materials

The electrical properties of materials are essential for selecting wires for electrical
machines. This section analyses the electrical conductivity and temperature coefficient of
resistivity of the different materials.

2.1. Electrical Conductivity

Electrical conductivity is the main parameter of any material used in electrical ma-
chines. Electrical conductivity (σ) is a function of the size and efficiency of the wires in the
machine, and it mainly depends on the material’s resistivity (see Equation (1)). Conduc-
tivity also depends on the length (l) and cross-sectional area (A) of the material; R is the
resistance of the material [34–36].

σ =
l

R × A
(1)

The conventional materials of copper and aluminium have electrical conductivity
values of 59.6 MS/m and 35 MS/m, respectively, at room temperature. Copper wires are
typically used in induction motors because of their availability. Aluminium has lower
conductivity than copper wire, which is generally used in squirrel cage induction machines.
Copper materials have double the electrical conductivity. The commonly used steel has an
electrical conductivity of 4 MS/m, nearly 69% of the conductivity of copper wire [36,37].
Indeed, it is comparatively significantly lower than all the conventional materials used in
electrical machine wires [38]. The CNT has a long length and small cross-sectional area
compared to conventional copper and aluminium materials, which increase the conduc-
tivity of the CNT. Initially, CNT yarns were developed with an electrical conductivity
of 3.4 MS/m. Single-walled CNTs (SWCNT) and multi-walled CNTs (MWCNT) have
been developed with electrical conductivity values between 0.01 to 100 MS/m and 0.1 to
10 MS/m, respectively. With the help of the mechanical stretching method, the electrical
conductivity of CNTs can be increased to 6 MS/m. Adding hot pressing with mechanical
stretching increases the electrical conductivity to 7.2 MS/m [39].

Improving the electrical conductivity of CNTs can be achieved through doping with
materials of iodine, metallic chlorides, potassium, and lithium [40]. CNTs doped with iodine
give electrical conductivity values ranging from 2 MS/m to 6.7 MS/m, which is higher than
the conductivity of steel laminated wires. Iodine-doped CNT yarns improve conductivity
and vary from 0.1 MS/m to 1.4 MS/m. The electrical conductivity of potassium-doped
CNTs is 1.3 MS/m [20]. The composite materials further improve the electrical conductivity
of CNTs. The CNT-Cu material has an electrical conductivity ranging from 23 to 47 MS/m,
and the CNT-Al material has an electrical conductivity of 18.4 MS/m at room temperature.
For pure composite Cu and Al material, the electrical conductivity rises to 58 MS/m [23]. In
the above discussion, CNT-Cu has higher electrical conductivity. The electrical conductivity
of the CNT is 100 MS/m at room temperature, and it is higher than the conventional
materials used in electrical wires [41,42].

The conductivity of CNTs has further improved with composite materials and manu-
facturing methods. Here, we further discuss the variations in the electrical conductivity of
CNTs and CNT composites with temperature coefficients. Table 1 presents a comparative
analysis of non-CNT and graphene material wires’ electrical conductivity. High-resistance
conductors are used to convert the electrical energy to heat dissipation. Conductors with
high resistance are used in starters, resistance boxes, rheostats, electrical furnaces, and
loading rheostats. Alloy materials are used as high-resistance conducting coils and are
mainly categorized as measuring instruments, resistance elements, and materials used
for making temperature elements. On the other hand, materials with zero resistivity are
called superconducting materials. These conducting materials have either a larger area
with a smaller current density or a smaller area with a high current density. However, a
larger area increases the size of the machine, or a smaller area increases the I2R losses of
the conducting materials [43]. The maximum number of conductors superconduct only
below a particular temperature. Above this temperature, they lose their superconducting
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nature. This temperature is called the transition temperature. We can use superconducting
materials on a machine with low operating temperatures.

Table 1. A review of the electrical conductivity of the non-CNT and graphene materials.

Materials/Wire
Electrical

Conductivity
(MS/m)

Resistivity (Ωm)
Specific

Conductivity
(Sm 2 kg−1)

Density of
Materials (g/cm3) Reference

Steel 4 1 × 10−7 1.82 × 103 1.3 [31]
Aluminium 35 2.7 × 10−7 1.37 × 103 2.7 [44]

Copper 59.6 1.7 × 10−6 6.73 × 103 8.96 [44]
Silver 64.5 1.55 × 10−8 6.15 × 104 10.5 [44]
Gold 45.5 2.2 × 10−8 2.36 × 103 19.32 [44]

Graphite 0.001 4.51 × 10−8 4.51× 101 2.2
Graphene composite fibre 0.0459 2.18 × 10−4 – 9.8 [45]

3D-assembled graphene fibre 0.034–0.12 (0.83–2.9) × 10−5 1.3 × 102 – [46]
Polydopamine 6.6 1.52 × 10−5 1.37 × 104 – [47]

Graphene sheets annealed (1400 ◦C) 5.5 1.52 × 10−5 4.2 × 101 1.3 [48]
Graphene sheets annealed (2000 ◦C) 1.5 6.67 × 10−6 1.01 × 102 1.48 [48]
Graphene sheets annealed (2500 ◦C) 1.6 6.25 × 10−6 1.03×102 1.55 [48,49]
Graphene sheets annealed (2850 ◦C) 1.79 5.59 × 10−6 1.13 × 102 1.58 [48,50]
Graphene fibre annealed (2850 ◦C) 2.1 4.76 × 10−6 1.13 × 102 1.86 [48,51]
Graphene fibre annealed (2500 ◦C) 1.04 4.76 × 10−6 1.13 × 102 – [48,51]
Graphene fibre annealed (3000 ◦C) 8.3 1.2 × 10−6 2.3 × 102 – [52]

FeCl3 graphene fibre 7.7 1.3 × 10−6 4.74 × 103 1.625 [53]
K doped graphene fibre 22.4 4.5 × 10−8 1.38 × 104 1.625 [54]

Br2–graphene fibre 15 6.7 × 10−8 4.74 × 103 1.625 [55]
Au-doped graphene yarns 2.86 3.5 × 10−5 6.81 × 102 0.42 [56,57]
Ag-doped graphene yarns 9.3 1.08 × 10−5 – – [51]
N-doped graphene yarns 9.51 1.05 × 10−2 – – [58]

Table 1 depicts that the electrical conductivity of silver at room temperature is rela-
tively high compared to other materials like copper and aluminium. Non-metallic elements
(graphene, DWCNT) have lower electrical conductivity than metallic elements. Based
on the manufacturing process and heating temperature, graphene materials have higher
conductivity than carbon materials. The heating temperature parameter of any material
purely depends on removing impurities and improving the material’s electrical conduc-
tivity. Moreover, this heating temperature should not affect the mechanical properties of
the materials. The working life of any machine is mainly based on the insulation of the
machine, and the life of insulating material primarily depends on the machine’s operating
temperature. Once the temperature increases beyond the operational limit of the insulation
material, machine failure will occur. Therefore, additional cooling and ventilating arrange-
ments are required to reduce the machine’s operating temperature [59]. Increasing the
heating temperature increases the electrical conductivity of graphene fibres. By increasing
the heating temperature of graphene with Ca above 3000 ◦C, the electrical conductivity
reaches superconductivity [43,60]. The electrical conductivity decreases with the resistivity.
The material’s conductivity increases with the increase in density of the material.

Table 2 shows that the electrical conductivity of CNTs is higher than that of conven-
tional and graphene materials. CNT-Cu has high electrical conductivity with a lower
density of materials than other materials. CNT-polypropylene materials are proposed; this
composite film has an electrical conductivity of 5.535 S/m. Further development has been
proposed with polyurethane [59].
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Table 2. Electrical conductivity of CNT materials.

Materials/Wire
Electrical

Conductivity
(MS/m)

Resistivity (Ωm)
Specific

Conductivity
(Sm 2 Kg−1)

Density of
Materials (g/cm3) Reference

CNT 100 1 × 10−8 15 × 104 7.3 [31]
CNT–Al 18.4 2.7 × 10−8 1.37 × 104 2.7 [31]
CNT–Cu 27–58 2.7 × 10−8 1.37 × 103 5.2 [31]
SWCNTs 10 1 × 10−8 7.7 × 104 1.3 [61]

High annealed carbon yarn 1 1 × 10−6 - - [62]
PAN based carbon yarns 0.1–1 0.1–1 × 10−5 - 1.6–2 [63]
Pitch based carbon yarns 0.1–1 0.1–1 × 10−5 – 1.7–2.1 [63]

Metallic based SWCNT yarns 0.01 1 × 10−6 2200 – [64]
DWCNT yarns 0.05 2 × 10−4 5 × 102 1.0 [65]
MWCNT yarns 0.3 3.3 × 10−5 1.37 × 104 - [63]

MWCNT purified yarns 0.4–0.8 2.5 × 10−5 8.9 × 101 - [66]
H2SO4 SWCNT fibres 5 1.2 × 10−6 5 × 102 1.11 [67]

Acid oxidized SWNT composite fibres 1.02 2.7 × 10−8 - - [57]
PtCl4 doped MWCNT fibres 10 1 × 10−7 - - [68,69]

HSO3Cl doped MWCNT in HNO3 7.7 1.3 × 10−7 4.9 × 103 1.3 [28,70]
MWCNT HNO3 fibres 9.63 1.7 × 10−5 - - [20,71]

HSO3 Cl doped SWCNT fibres 2.9 3.4 × 10−7 2.2 × 103 1.3 [28,72]
Iodine doped SWCNT fibres 5 3.4 × 10−7 3.57 × 103 1.4 [28,73]

HSO3Cl–Iodine doped SWCNT 5 2 × 10−7 4.18 × 103 - [28,72]
DWCNT fibres HCl, H2SO4 2 5 × 10−7 7.1 × 103 0.28 [74,75]

Iodine doped DWCNT fibres 6.7 5 × 10−7 1.96 × 104 0.33 [74]

The particular conductivity ensures the reliability of the specific conductivity, which is
due to non-uniformity in the cross-sectional area of the conductors. The specific conductiv-
ity is calculated as

κ =
G × l
LD

(2)

where κ is the specific conductivity, G is conductance (Siemens), l is material length (metre),
and LD is linear density (tex). The doped materials have a high specific conductivity com-
pared to conventional conducting materials such as copper and aluminium (Tables 1 and 2).
The undoped material has lower specific conductivity than conventional conductors; this
reduces the material’s electrical conductivity. To increase the specific conductivity of the
material, optimization in CNT fibres is required [76].

2.2. Temperature Coefficient of Resistivity

The temperature coefficient influences the electrical properties of the materials. The
temperature coefficient affects the resistivity of the materials. Electrical transport mainly
depends on the resistivity of the material. Conventional metals’ resistivity increases with
an increase in temperature [77]. The resistivity of conventional and non-conventional
materials is summarized in Tables 1 and 2. The resistivity of the materials depends on the
collision of the electrons in the material. Increasing temperatures raise the collision of the
electrons of the materials. The temperature coefficient of the copper at room temperature
is 3.886 × 10−3 K. The density of silver is high compared to copper. Still, it has nearly the
same temperature coefficient as silver at 3.8 × 10−3 K. Aluminium has a higher resistivity
than copper and silver, and the temperature coefficient of aluminium is 3.9 × 10−3 K.
The temperature coefficient of CNTs is negative at a temperature of −0.2 × 10−3 K. This
temperature coefficient reduces the resistivity of the CNT fibres, which improves the
electrical characteristics of the CNT in terms of electrical conductivity [78]. The temperature
coefficient of CNT-Cu at room temperature is 1.7 × 10−3 K. The temperature coefficient of
CNT-Al is 1.7 × 10−3 K.
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Figure 2 shows the materials’ (conventional materials and CNT) electrical conduc-
tivity with the temperature coefficient of the materials at room temperature. It is evident
from Figure 2 that the CNT fibre has higher electrical conductivity (100 MS/m) for the
lower temperature coefficient (−0.2 × 10−3/K). The electrical conductivity of conventional
materials relatively varies with the temperature coefficient [20].
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Tables 1 and 2 present the electrical conductivity and resistivity of different conven-
tional and non-conventional materials. As seen in Table 1, the conventional material silver
has the highest conductivity among all the materials. However, silver is vast in volume,
so copper has been used commercially. It can be inferred from Table 2 that CNTs have the
highest conductivity compared to CNT composite materials and conventional materials.
Moreover, CNTs have the lowest volume density compared with all other materials.

3. Mechanical Properties of the Materials

The material’s mechanical properties must consider replacing conventional materials
with new materials. Any material’s tensile strength and stiffness decide the electrical
wires’ strength and elasticity. The minimum tensile strength of conventional cables used in
electrical machines is 43 Gpa [21].

The uniform initial strains and length of CNTs and CNT composite materials increase
their tensile strength to 89 Gpa, two times the conventional material’s tensile strength.
The stiffness of copper and aluminium is 48 Gpa and 69 Gpa, respectively. Moreover, the
stiffness of the CNT fibre is 46.56 Gpa [21,79]. The stiffness of the CNT fibre is nearly equal
to that of copper and has more elasticity (3.67%) than copper wires. Several CNT composite
materials’ tensile strength and stiffness are given in Table 3 with various manufacturing
techniques [80].

The thermal and insulation properties of the materials, connecting wires, and overall
efficiency of the different conventional and non-conventional materials were reviewed to
analyse the mechanical properties of the other materials.
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Table 3. Mechanical properties of CNT and CNT composite materials.

Fibres
Linear

Density (Tex)
Volume Density

(gcm−3)

Mechanical Properties
ReferenceTensile Strength

(GPa)
Stiffness

(GPaSG−1)

PVB annealed at 400 ◦C 5.01 0.47 0.0127 ± 0.0014 3.48 ± 0.28 [81]
CNT–HNO3 - - >4 - [82]

Wet spun CNT at 280 ◦C - - 0.15 ± 0.06 69 ± 41 [83]
Nitrogen deposited CNT fibre - - 0.17 ± 0.07 142 ± 70 [83]

102% H2SO4 deposited - 0.87–1.1 0.116 ± 0.01 120 ± 10 [84]
Vacuum annealed CNT at 1100 ◦C - - 0.05–0.32 120 [84]

CNT HSO3Cl, H2SO4 - 1.3 ± 0.1 1 ± 0.2 120 ± 50 [85]
CNT deposited HSO3Cl and iodine - 1.4 0.116 ± 0.01 120 ± 20 [86]

CNT/PVV - 1.3–1.5 0.15 9–15 [28]
CNT–HCL annealed at 1000 ◦C - - 0.65 12 [28]

CNT annealed at 320–350 ◦C - - 0.101 14.5 [28,87]
CNT–HNO3 as coagulant - - 0.11 ± 0.003 13 ± 1 [74]

Metallic CNT 0.03–0.05 - 0.17 ± 0.07 142 ± 10 [74]
CNT oxidation at 400 ◦C - 0.28 0.32 1.14 [88,89]

CNT–iodine doped at 200 ◦C - 0.33 0.64 1.94 [90,91]
CNT–DW annealed at 200 ◦C - 1.8 - - [90,91]

CNT–KAuBr4 0.35–0.9 0.38–0.84 0.65 18 [92]
CNT–KAuBr4 (twisted) - 0.38–0.64 1.56–1.71 87 [92]

3.1. Thermal and Electrical Insulation Properties of the Materials

The material’s thermal conductivity depends on the thermal diffusivity with a specific
temperature and constant pressure. The thermal conductivity of the metals/materials
mainly depends on water content, pressure applied to the material, and the physical
properties of the materials. The cooling arrangement of the electrical machine winding
primarily depends on the material’s thermal conductivity. The thermal conductivity of
the materials increases with the increase in thermal diffusivity [21,93]. The high thermal
conductivity of the material increases the efficiency of the wires. The thermal conductivity of
copper is 385 W/m K. The thermal conductivity of aluminium varies from 88 to 251 W/m K.
The thermal conductivity value of steel and silver are measured as 419 W/m K and
45 W/m K, respectively. Copper has high thermal conductivity and is an economical
material compared to other conventional materials. The copper does not require additional
cooling arrangements in the electrical machine windings [94].

The developing CNT and CNT composite materials’ thermal conductivity properties
have yet to be analysed. The thermal diffusivity of MWCNT fibres and SWCNT fibres was
explored during wiring. The SWCNT has a thermal diffusivity of 62 mm2 s−1, and the
MWCNT fibre has a thermal diffusivity of 2.96 mm2 s−1. The thermal diffusivity of CNT
composite materials varies with the temperature and manufacturing procedures; electrical
conductivity is the main parameter of any material used in electrical machines [94,95].

The thermal conductivity of SWCNTs was analysed and measured as 3000 W/m K.
This is much higher than conventional materials such as copper. MWCNT material CNT
was also measured as 2000 W/m K. This is higher than the conductivity of the conventional
material and lower than the SWCNT materials. The thermal conductivity of different
composite materials with CNTs varies with the manufacturing process [96]. However, the
thermal conductivity of simple CNT fibres was not measured because of the unavailability
of measuring devices for nano fibres. Additionally, theoretical and experimental analyses
still need to be proposed to understand the thermal diffusivity and thermal conductivity of
the CNT fibres’ electrical conductivity [94,97].

The insulation is mandatory for the conducting materials/wires to prevent the leak-
age of current from the wires, to provide isolation during the multiple current-carrying
conductors in the same terminal, to provide human safety issues, and to protect the current-
carrying wires from external disturbances such as heat, water, and dust [98]. In addition,
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insulation prevents the current-carrying conductors from corrosion and protects the wind-
ings during short circuit conditions. The insulating materials are used to withstand the
electrical, mechanical, and thermal stresses caused by the machines and external conditions.
Insulating materials are non-metallic, organic or inorganic, uniform or heterogeneous in
composition, and natural or synthetic. Most insulating materials are manufactured from
resins, insulating films, etc. A wide variety of inorganic insulating materials such as glass,
mica, and ceramics are used for electrical appliances. The insulating materials should have
the properties of high dielectric strength, the ability to be sustained at elevated temperature,
high resistivity or specific resistance, low dielectric hysteresis, good thermal conductivity,
and a high degree of thermal stability [97]. The type of insulation material depends on the
maximum temperature caused by the electrical machines. The size of the insulation materi-
als not only depends on the electrical stress but also on the mechanical stress. For example,
for the same operating voltage, thicker insulation has been used for large-size conductors
and smaller-size conductors. The increase in temperature causes insulation failure, and
the excessive temperature also affects the mechanical operating point of the machines. For
example, the rising temperature changes the shape in commutator segments [99].

Figure 3 shows the relation between the temperature rise and the lifespan of the
insulating material. The lifespan of the insulating material is expressed in Equation (3).

Tu f s = 72 × 100 e−0.09θ (3)

where Tufs is the lifespan of insulating material, and θ is the continuous temperature applied
to the insulating materials (◦C). As seen in Figure 3 and Equation (3), for θ = 90 ◦C, the
lifespan of the insulating material is 22 years. If we increase the temperature to θ = 97 ◦C,
the lifespan of the insulating material is reduced by almost 50% (11.6 years). If we increase
the operating temperature θ = 150 ◦C, the lifespan of the insulating material is reduced to
36 days. Based on the operating temperature and materials used, the insulating materials
are classified as class Y, A, B, C, E, and H. Since the initial days, class A types of insulating
materials such as cotton, silk, and paper are immersed with dielectric oils and are used in
electrical machines. In recent years, insulating materials such as mica, mica folium, fibrous
glass, cotton fibres, polyamides, and synthetic resins have been used in modern electrical
machines with high operating temperatures [85,99].

Generally, polyvinyl chloride is used as the insulating material for conventional
materials. Polyvinyl chloride can withstand a high temperature of 180 ◦C. However, simple
CNT fibre insulation is much more complex than copper wires because of the high porosity
structure of the CNT wires [100]. Heat shrink is an insulating material for small-length CNT
fibres and small-scale applications. The ready-insulating materials are used for small-length
CNT fibres [101]. The liquid polymers used in these methods minimize the electrical and
mechanical properties of the CNT fibres. Therefore, to overcome the issues mentioned
above, wet polyvinyl chloride is replaced with polyurethane materials with high viscosity
materials. Figure 4 [20] shows the insulated CNTs with low-density polyurethane (LDPE).

CNTs are insulated with LDPE manufactured from first-grade polyurethane. LDPE is
non-reactant at room temperature. It can be used as an insulator up to the temperature of
90 ◦C of electrical conductors and CNTs. Because of its low-density properties, it is easily
breakable and increases the surface area. LDPE is highly resistant to chemical reactions [20].
However, further research is required for CNT insulation and LDPE materials at a high
operating temperature of conductors. The polyurethane material withstands a temperature
of 150 ◦C. Polyurethane costs less than polyvinyl chloride, which reduces the insulation
cost of the CNT material to less than conventional materials. This method will be suitable
for insulation material manufacturing for simple CNT fibre production, which should
briefly place the study in a broad context and highlight why it is important [99].
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3.2. Electrical Connection of Wires

The electrical connections of CNT fibres with other circuit elements need to be user-
friendly. This electrical connection process must have low resistivity, be mechanically
robust, have high reliability, and be cost-effective [99,102]. In addition, the connecting
method must be suitable for simple nanowires and groups of nanowires. Recently, many
connecting methods have been proposed for electrical connections of CNT fibres. Most of
the proposed methods are based on ion beam lithography, which only suits high volume
CNT fibres and is unsuitable for macroscopic CNT fibres [20]. Copper materials are used for
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electrical connections of CNT fibres with other circuit elements. However, these materials
create considerable losses in CNT electrical conducting properties [24]. Graphite material
was later used as connecting material in CNT fibre with a high temperature of 800 ◦C.
This process is called brazing. During the procedure, only a tiny amount of power is
consumed, which is more efficient than copper-connecting materials but requires a high
temperature [99,103]. Figure 5 [104] shows the machine prototype and assembly of CNT
electrical wires.
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In Figure 5, conventional copper wires are replaced by CNT wires in the axial flux
permanent magnet (AFPM) motor. The coreless AFPM motor has been proposed for the
comparative analysis of copper and CNT wires. This machine has a coreless stator structure
with a lightweight supporting disc structure. This machine has a high power density; the
conductors are directly placed in the air gap flux, which causes high eddy current losses. In
order to overcome this, the copper wires have been replaced with CNT wires [104]. Hence,
eliminating eddy current losses is an additional advantage of replacing copper wires with
CNT wires.

The higher conductivity material silver paint has been considered as a connecting
material. In this process, silver nanoparticles are doped with organic solvent [105]. These
silver paints provide low resistivity and high efficiency during the connecting process of
CNT fibres with electrical elements. The drawback of silver paint is its high cost and poor
mechanical performance. Even though this method has low resistivity, it is not applicable
for medium- and high-scale industrial wire because of its manufacturing complexity [106].
Another method also approached for connecting CNT fibres is called electrical crimping.
This method increases the connecting area between the CNT fibres and electrical elements
by reshaping the CNT fibres. This method also reduces the material’s resistivity by adding
metal to the CNT fibres. This method requires high pressure on the materials during the
reshaping process, which might damage the electrical elements [30,99]. Carbon solder
has been proposed with a temperature range of 350–450 ◦C. A standard soldering iron is
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used for the carbon solder, and this method provides low resistivity with high mechanical
performance. All the above-mentioned processes are cost-effective with low resistance for
CNT fibres compared to conventional metals [107].

3.3. Efficiency of the Materials

The efficiency of any machine should be high to reduce the running cost of electrical
appliances. In order to improve the efficiency of the machine, the magnetic and electrical
loading should be reduced. However, reducing the machine’s running cost increases the
machine’s investment cost by increasing the material cost [108].

The efficiency of conventional and non-conventional materials/wires mainly depends
on the temperature variations of the material during a wide range of operating condi-
tions [108]. The electrical machine wires are operated at different temperatures during
various load conditions. The conventional material copper provides 100% efficiency at the
maximum temperature of 120 ◦C. A temperature increase to 150 ◦C reduces the copper
wire efficiency to 72%. Nearly 45% of the total loss is attributed to the copper wires in the
electrical machines [106]. The power loss of conducting material can be calculated using
Equation (4):

PL = I2R = (δa)2 × ρl
a

= δ2ρla (4)

where I is the current carried by the conductor, R is the conductor’s resistance, δ is the
current density of the conducting material, l is the conductor’s length, a is the conductor’s
area, and ρ is the conductor’s resistivity [104]. The conductor power loss of the aluminium
is 1.62 times that of copper for the same machine. The maximum efficiency of aluminium
is 35%, which is lower than copper wire. The CNT fibres give 100% efficiency up to
the temperature rise of 150 ◦C during variable load conditions. Among all the conven-
tional and non-convention wires, the CNT fibres provide higher efficiency with increasing
temperature [109].

The mechanical properties of different conventional and non-conventional materials
were reviewed regarding thermal and electrical insulation and electrical connections of
wires. The efficiency of materials was also analysed. It was inferred that CNT wires have
high thermal and electrical insulation and good tensile strength compared to conventional
materials. However, the CNT wires’ electrical wire connections with other circuit elements
must be improved regarding low resistivity and reliability. During variable temperature
conditions, the efficiency of CNT material is comparatively higher than that of copper and
conventional materials.

4. Conclusions

The generation of electrical power and the utilization of generated power is the main
key factor for improving the efficiency and performance of the system. The optimization
of the materials and technology provides a reliable and cost-efficient approach. The CNT
and CNT composite materials ensure the replacement of conventional wires for the next
generation of electrical machines. In this review article, the electrical and mechanical
properties of conventional and non-conventional wires are examined. The electrical con-
ductivity of carbon and carbon nanocomposite materials are discussed and compared with
conventional materials. CNTs provide higher conductivity with less density than other
CNT composite and conventional materials. The specific conductivity of CNT fibre is
higher than that of aluminium, copper, and silver. The manufacturing process of CNT
and CNT materials is more straightforward than conventional materials. The resistivity
of the CNT fibre increases significantly with the increasing temperature coefficient, which
improves the electrical properties of the CNT fibres more than conventional wires. Indeed,
this finding has been validated in various literature surveys. The current density of CNT
fibre is high. The mechanical properties of CNT fibres increase with composite materials,
but this significantly reduces the electrical properties of the materials.
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Further research is required to improve the electrical properties of composite materials.
The CNT fibre has maximum tensile strength and stress, increasing the materials’ strength
and flexibility. Existing research has tested small power transformers and electronic devices
with CNT fibres. This experimental investigation showed that the CNT fibres improve
efficiency and reduce the overall cost of the system. Other mechanical properties such as
thermal insulation of the material, electrical connections, and efficiency of the wires are
reviewed. The manufacturing process of insulation material for CNT fibre is cost-effective.
The discussed insulation materials are suitable for many applications but are unsuitable for
simple CNT fibres. The insulation of simple CNT fibres requires further research. Various
connecting methods and materials were reviewed for connecting the CNT fibres with electri-
cal circuits. Carbon-doped conventional materials provide better efficiency for CNT fibres.
All the proposed connecting methodologies are cost-effective for CNT fibres compared to
copper wires. All the reviewed articles ensure the CNT wires are next-generation materials
for electrical machines and equipment. The encouragement of the research on CNT fibre
with electrical conductivity, optimization, and manufacturing of insulation materials and
connecting materials replaces the conventional conducting materials.
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