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Abstract: Tyrosinase, a key protein in the biosynthesis of melanin pigments, is crucial in determining
skin pigmentation. Inhibiting tyrosinase activity is a promising approach for treating conditions
related to excessive pigmentation. For the synthesis of more potent tyrosinase inhibitors, we com-
bined two approaches, para-substitution and lipophilicity, to enhance the inhibitory properties of
(E)-2-(4-hydroxybenzylidene)hydrazine-1-carbotiamide, whose enzyme inhibitory properties have
been previously demonstrated. The newly synthesized compounds showed potent inhibition activity
against tyrosinase in the micromolar concentration range. The synthesised compounds were up
to 41 times more effective than kojic acid. In addition to this biological activity, all molecules were
evaluated for their sun protection factor to determine their photoprotective effects. All the com-
pounds showed higher efficacy than reference compounds, used as sunscreens in photoprotective
preparations. All compounds were noncytotoxic at the concentration required to inhibit tyrosinase
activity. With the aim of defining the potential binding modes and the kind of interactions between
the studied molecules and the catalytic site of mushroom tyrosinase, molecular docking simulations
were also performed.

Keywords: thiosemicarbazones; tyrosinase; enzyme inhibition

1. Introduction

Thiosemicarbazones constitute a class of synthetic organic compounds afforded by the
condensation of carbonyl compounds (e.g., aldehydes, ketones) with thiosemicarbazide.
These molecules are known for forming stable chelates with different metal ions, thanks
to the presence and spatial arrangements of the thiocarbonyl sulphur and hydrazino
nitrogen atoms [1,2]. Moreover, many thiosemicarbazones have been evaluated for their
anti-tyrosinase properties, observing that these molecules may show potent inhibitory
activity towards these macromolecules [3–8].

Tyrosinase (EC 1.14.18.1) (Tyr) is the key enzyme of melanogenesis. Tyr contains
copper in the active site and performs two sequential enzymatic reactions using molecular
oxygen: the ortho-hydroxylation of monophenols and the oxidation of o-diphenols to
the corresponding quinones. The reactive quinones then polymerize spontaneously into
melanins [9]. Under normal conditions, melanin protects the skin from UV radiation, but
its overproduction can cause hyperpigmentation. Different strategies can be exploited to
modulate melanogenesis, including inhibiting tyrosinase activity [10,11]. Various methods
have been employed to study the Tyr inhibitory activity of samples over the years [12].
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Although numerous studies have identified synthetic and natural tyrosinase inhibitors,
many of these potential inhibitors are not widely used due to their lack of efficacy and
associated toxicities, such as cytotoxicity.

Numerous advances in the biochemical field have allowed a more detailed and precise
study of the mechanism of Tyr inhibition [13–15]. Optimization of the expression and
purification of mushroom and human Tyr has allowed the acquisition of more information
into inhibiting these tyrosinases [12]. Depending on the research to be developed, the
choice of the appropriate enzyme should be essential. Despite this, most of the studies
have been based on in vitro inhibition tests using mushroom Tyr [12,16], which is easily
available and cheap, despite the low homology between human and mushroom Tyr and the
significant differences in their interaction patterns. However, all Tyr sources share similar
copper active sites and it is believed that thiosemicarbazones exert their anti-tyrosinase
properties by targeting the very two copper cofactors in the enzyme’s catalytic site [3–5].

Benzaldehyde-based thiosemicarbazones have proved to possess promising anti-
tyrosinase properties. In fact, the introduction of the aromatic ring might increase the
affinity between the ligand and the macromolecular target, due to the higher similarity
with natural tyrosinase substrates, such as L-Tyrosine and L-dihydroxyphenylalanine (L-
DOPA). Moreover, additional hydrophobic interactions with the enzyme’s aminoacidic
residues might take place [3]. The anti-tyrosinase activity of benzaldehyde-based thiosemi-
carbazones seems also to be tuneable according to the position of the substituents in the
phenyl ring. For instance, para-substituted derivatives proved to be effective tyrosinase
inhibitors, with IC50 values ranging in the micromolar order [17–20]. Compounds 1 (p-Cl),
2 (p-OCH3), and 3 (p-NO2) are reported as examples in Table 1.

Lipophilicity also appears to be important in the modulation of anti-tyrosinase activity.
Lee et al. observed how the substitution of the phenyl ring (4) with a naphthalene one (5)
increases the inhibitory activity in B16 melanoma cells (Table 1), while the introduction of a
more polar ring, like a pyridyl one in compound 6, determines a loss of the inhibitory activ-
ity (IC50 > 30 µM). The authors hypothesized that the higher lipophilicity introduced by the
naphthalene moiety results in a higher ability of 5 at permeating B16 cell membranes [21].

In this study, we decided to combine the two approaches described above (p-substitution +
lipophilicity) with the aim of designing and synthesizing more potent tyrosinase inhibitors.
Starting from (E)-2-(4-hydroxybenzylidene)hydrazine-1-carbothioamide (TC1, Figure 1),
whose enzymatic inhibitory properties were previously reported [20], we functionalized
the p-hydroxy group with an alkyl benzenesulfonate moiety (TCMS1, Figure 1) and an
aryl benzenesulfonate one (compounds TCBS1-5, Figure 1). The sulphonate moiety has the
main role of linker between the added alkyl/aryl moiety and the pre-existing molecular
structure. Additionally, it might also help in stabilizing the adopted bioactive conformation
by establishing additional interactions with the surrounding aminoacidic residues of the
enzyme. Moreover, we evaluated whether the nature of the substituents could influence
the activity of the p-substituted TCBS2-5 derivatives.

To give an overall view of the characteristics of the synthesized molecules, several
chemical, biological, and theoretical studies were carried out, in particular: X-ray diffrac-
tion study, Hirshfeld analysis and molecular descriptors calculations, Tyr inhibition, sun
protection factor (SPF), cytotoxicity, antioxidant activity, and copper chelation ability. All
these experiments were carried out to obtain useful information on the compound stability
and the drug-likeness of the studied molecules, to foresee their behaviour in solution or in
polar/apolar media and to ascertain the kind of interaction with the tyrosinase enzyme. All
these properties are, in fact, all related to a potential use as drug or in cosmetic formulation.
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Table 1. Tyrosinase inhibitory activity (using L-DOPA as substrate), expressed as IC50, for p-
substituted 1–3 thiosemicarbazones and anti-melanogenesis activity (on B16 melanoma cells), re-
ported as IC50, expressed as a function of lipophilicity for 4–6 thiosemicarbazones.

Molecule Tyrosinase Inhibitory
Activity IC50 (µM)

Anti-Melanogenesis Activity
IC50 (µM) cLogP References
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2. Results and Discussion
2.1. Synthesis and Chemical Characterisation

Target compounds TCMS1 and TCBS1-5 were easily synthesized (Scheme 1) by react-
ing 4-hydroxybenzaldehyde (A) with the corresponding aryl sulfonyl chlorides, affording
the aryl sulfonate intermediates B–G. These compounds (as crudes) were then converted
to the desired thiosemicarbazones in the presence of a catalytic amount of acetic acid.
The reference molecule TC1 was obtained by directly converting A to the correspondent
thiosemicarbazone derivative, using the synthetic approach just discussed. The yields of
the final products ranged from moderate to good. To our knowledge, compounds TCMS1
and TCBS1-5 have been used as intermediates for the preparation of enzymatic inhibitors
(e.g., towards glucosidase, carbonic anhydrase, acetylcholine esterase, butyrylcholine es-
terase), but their chemical characterization has not been performed [22,23]. For this reason,
we characterized the TCMS1 and TCBS1-5 molecules employing different techniques
(melting point, NMR, HR-ESI-MS). In the 1H-NMR spectra of all the reported compounds,
characteristic broad singlets from -NH and -NH2 protons were visible. Their chemical
shift values were in accordance with those reported for TC1 and other structurally related
thiosemicarbazones [19,20,24,25]. The -NH protons were highly de-shielded and fell in
the 10.5 ÷ 11.5 ppm range since they were included in a highly conjugated structure. The
-NH2 protons typically showed up as two separate broad singlets around 8 ppm due to
their magnetic inequivalence. This behaviour can be attributed to the partially restricted
rotation around the C-N bond due to the mesomeric effect [25], as well as the potential
intramolecular hydrogen bonding between one of the NH2 hydrogens and the sp2 (imino)
nitrogen, which resulted in the formation of a five-membered ring. In order to further
prove the nature of these hydrogens, we performed a hydrogen exchange experiment
by recording the 1H NMR spectrum of TCBS5 in deuterated acetone before (Figure S12)
and after (Figure S14) the addition of D2O. As can be seen, addition of deuterium oxide
determined a hydrogen/deuterium exchange, which resulted in the disappearance of the
aforementioned signals.
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Scheme 1. Reaction schemes and structures of the synthesized compounds. Reaction conditions were
(i) R−SO2Cl, triethylamine, dichloromethane, r.t. overnight; (ii) thiosemicarbazide, absolute ethanol,
glacial acetic acid, rf 6 h.

Interestingly, the positive HR-ESI-MS spectra of the TCMS1 and TCBS1-5 molecules
showed a peak at M+17 mass-to-charge ratio (m/z), corresponding to the protonated S-
oxide derivative obtained in the ESI phase. Redox phenomena in positive ESI-MS were
already observed for many classes of organic ligands and metal complexes depending
on experimental conditions (solvent, needle voltage, housing temperature, etc.) [26–31].
The parent ions at M+17 m/z showed a common loss of 18 Da, corresponding to a water
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molecule. When the spectra of the same compounds were recorded in negative mode
(absence of an oxidizing environment), the analytes did not undergo any redox phenom-
ena and were visible as deprotonated molecular ions ([M−H]−) or chlorinated adducts
([M+Cl]−). HR-ESI mass spectra in both positive and negative mode for compound TCMS1
are shown in the Supplementary Material (Figures S15 and S16) as an example. The crys-
tal structure of the TCBS1 was determined by means of single-crystal X-ray diffraction
(SC-XRD).

2.2. Crystal Structure

Single crystals of TCBS1 were successfully grown by slow evaporation from chloro-
form. SC-XRD analysis of a colourless needle-shaped crystal confirmed the nature and
chemical connectivity of TCBS1 that crystallized in the triclinic P1− space group with two
crystallographically independent molecules in the asymmetric unit (Figure 2, Table S1).
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Displacement ellipsoids are drawn at the 50% probability level.

Thiosemicarbazone moieties in the two molecules of TCBS1 were coplanar with
the plane defined by the vicinal aromatic ring and were in excellent agreement with
the geometrical parameters found in this family of structurally characterized derivatives
deposited at the CSD (Table S2). On the other hand, the main conformational differences
were observed for the dihedral angles C–S–O–C being about 68 and 79◦ (for C9–S2–O1–C6
and C23–S4–O4–C20, respectively) and for the angle between the planes defined by the two
aromatic rings belonging to the same TCBS1 molecule being about 60 and 82◦, respectively.
Both molecules of TCBS1 interacted via N–H···S between the sulphur atom and both the
amines of the thiosemicarbazone moieties defining a set of R_22 (8) hydrogen-bonding
motifs [32] that led to the formation of undulated ribbons developing along the a-axis
(Figure S17). The two crystallographically independent molecules of TCBS1 are depicted as
units A (light blue) and B (green) according to Figure S17 and Table S5. The crystal packing
was further decorated by slipped π-π stacking interactions between the aromatic rings of
the tosyl groups belonging to different units (Figure S18), increasing the dimensionality of
the final network (Figure S19).

2.3. Hirshfeld Surface

Hirshfeld surface (HS) analysis is a modern and powerful tool to analyse the inter-
molecular interactions present inside the crystal by a simple 3D visualization [33–35]. HSs
are mapped with respect to four principal parameters, i.e., dnorm (Figure 3a), shape index
(Figure 3b), curvedness (Figure 3c), and void (Figure 4). In the dnorm surface, white, red,
and blue areas represent contacts close to, shorter than, and longer than the sum of the
van der Waals radii, respectively [36–38]; the red circles on the surface are indicative of
the hydrogen bonding between S1 or S3 sulphur atoms (H acceptors) and the NH groups
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of neighbouring molecules. The size of the red circle is related to the strength of the
interactions, with distance varying from 2.303 Å of S3-HN5 to 2.497 Å of S1-HN1.
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Figure 4. Graphical views of voids in the crystal packing of TCBS1, along the projections of [100] (a),
[010] (b), and [001] (c). Void volume is 188.45 Å3.

The HSs mapped over shape index (Figure 3b) and curvedness (Figure 3b) are useful
to describe the effect of weak intermolecular interactions in the crystal. The shape index
surface showed complementary depressions indicating the contact areas between two
Hirshfeld surfaces [39–42]. In this map, adjacent red and blue triangular regions are
consistent with the presence of π-π stacking: the red triangles are concave zones related to
the π-π stacked rings located above, while the blue triangles are convex zones representative
of the aromatic rings within the surface. The last map, plotted over the curvedness, depicts
the planarity and the sharp edges within the surface. The blue zones are related to the
curved surface and large blue areas are indicative of strong hydrogen bonding interactions.
The flat zones are due to weak and low-energy interactions [39].

The HS mapped over the void [43,44] shows regions with low electron density. The
calculated void volume occupies 12.2% of the total volume of the unit cell, indicating a not
rigid crystal packing.

In conclusion, dnorm and curvedness parameters accounted for close and long con-
tacts, π-π stacking, and hydrogen bonding. All these features were involved in the chemical
and biochemical reactivity, affecting also the solubility of the compound in different media
(polar or apolar). The void percentage is an index of the softness or hardness of the crystal,
and this information is useful in the preparation of formulations where the compound
could be present in a dispersed phase.

2.4. Molecular Descriptors

The preliminary evaluation of the drug-likeness of the studied molecules was per-
formed by means of different molecular descriptors. Results are summarized in Table 2.
All the compounds here reported adhered to the Lipinski’s rule of five [45] and showed
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TPSA values (sum of the surface occupied by polar functional groups) of (i) lower (or
almost equal in the case of TCBS2) than the upper limit of 140 Å2, symptomatic of an oral
bioavailability from good to moderate, and (ii) higher than 60 Å2, indicative of a modest
blood–brain barrier (BBB) permeability [46,47].

Table 2. Calculated molecular descriptors for the studied compounds.

TC1 TCMS1 TCBS1 TCBS2 TCBS3 TCBS4 TCBS5

miLogP a 1.40 1.31 2.85 2.81 2.90 3.30 3.52
TPSA (Å2) b 70.64 93.79 93.79 139.61 103.02 93.79 93.79

n-atoms c 13 17 22 25 24 23 23
MW (Da) 195.25 273.34 335.41 380.41 365.44 349.44 369.86
n-ON d 4 5 5 7 6 5 5

n-OHNH e 4 3 3 3 3 3 3
n-violations f 0 0 0 0 0 0 0

n-rotb g 3 5 6 7 7 6 6
volume (Å3) h 166.87 215.83 270.68 294.01 296.23 287.24 284.22

a Calculated logarithm of the partition coefficient between n-octanol and water (miLogP); b topological polar
surface area (TPSA); c number of atoms in the molecule (n-atoms); d number of hydrogen bond acceptors (n-ON);
e number of hydrogen bond donors (n-OHNH); f number of violations of the Lipinski’s rule of five; g number of
rotatable bonds (n-rotb); h molecular volume.

2.5. Tyrosinase Inhibition

All compounds were evaluated for their inhibitory effect on the tyrosinase enzyme. As
can be observed in Table 3, all the tested compounds were found to be significantly more
effective than kojic acid. TC1 had a significantly higher IC50 value than other compounds
in the series, being only 2.5 times more effective than kojic acid, while the other compounds
were up to 41 times more effective than the standard inhibitor.

Table 3. Half maximal inhibitory concentration (IC50) values of TC1, TCMS1, and TCBS1-5 com-
pounds against mushroom tyrosinase activity (data are given as mean ± standard deviation (SD) of
triplicate experiments).

Compound IC50 µM *

TC1 7.1 ± 0.2 a

TCMS1 1.6 ± 0.02 b

TCBS1 0.44 ± 0.03 b

TCBS2 0.66 ± 0.05 b

TCBS3 0.44 ± 0.01 b

TCBS4 0.44 ± 0.01 b

TCBS5 0.71 ± 0.02 b

Kojic acid 18 ± 1 c [48]
* Different letters indicate statistically significant differences between compounds (p < 0.001).

The results highlighted that the functionalization of the hydroxyl group of TC1 with
a -SO2R moiety plays a crucial role in enhancing the anti-tyrosinase activity. Specifically,
the -SO2R modification appeared to facilitate better binding to the enzyme’s active site.
Furthermore, replacing a methyl (TCMS1) with a more lipophilic phenyl group in deriva-
tives such as TCBS1-5 did not significantly reduce the IC50 value. The inhibitory activity
did not appear to be influenced by the presence and nature of the substituents in the para
position of the phenylsulfonyl moiety (TCBS1-5). All these considerations suggest that,
among the structural modifications made in the studied compounds, introducing sulfonyl
groups could be a promising strategy to improve the efficacy of tyrosinase inhibitors.
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2.6. Antioxidant Activity

Two methods, with DPPH and ABTS, were used to evaluate the antioxidant activity of
the synthesized compounds, resulting in similar values for each compound analysed (see
Table 4).

Table 4. Free radical scavenging activity (TC1, TCMS1, and TCSB1-5) as a percentage of inhibition
of free radicals (I). The data of triplicate experiments are given as mean ± standard deviation (SD).

Compound DPPH (% I ± SD) ABTS (% I ± SD)

TC1 74 ± 3 74 ± 1
TCMS1 20 ± 2 42 ± 4
TCBS1 26 ± 2 39 ± 1
TCBS2 16 ± 2 25 ± 4
TCBS3 33 ± 4 35 ± 1
TCBS4 20 ± 1 30 ± 2
TCBS5 32 ± 5 22 ± 2

As shown in Table 4, the tests highlighted an antioxidant power between 16% and 74%
among the compounds examined. Compound TC1, which has a hydroxyl group, showed
the highest value.

2.7. Sun Protection Factor

In addition to all the biological activities examined, all molecules were evaluated for
their sun protection factor (SPF) to determine their skin photoprotective effects. Deter-
mining the SPF value of compounds with possible skin application could be important
since UV rays trigger oxidative stress reactions and progressive skin aging. The SPF values
are reported in Table 5. The studied compounds were compared to caffeic acid (CA),
ferulic acid (FA), and cinnamic acid (CI), natural components that are used as sunscreens in
photoprotective preparations [49], resulting as being more effective.

Table 5. Sun protection factor (SPF) values of thiosemicarbazone derivates (TC1, TCMS1, TCBS1-5
compounds) and ferulic acid (FA), caffeic acid (CA), and cinnamic acid (CI).

Compound SPF *

TC1 11.0 ± 0.4 a,b

TCMS1 11 ± 2 a,b

TCBS1 11 ± 2 a,b

TCBS2 13 ± 2 a

TCBS3 10 ± 2 a,b

TCBS4 14 ± 2 a

TCBS5 11 ± 2 a,b

FA # 7.5 ± 0.2 b

CA # 6.6 ± 0.4 b

CI # 2.0 ± 0.2 d

* Different letters indicate statistically significant differences between compounds (p < 0.001). # Data taken from
reference [49].

2.8. Copper Chelation Studies

It is well known that Cu(II), as borderline species according to Hard and Soft Acid
and Basis Theory (HSAB), can form stable metal complexes with both hard donors (e.g.,
oxygen) and soft ones (e.g., sulphur) [50]. Many bioactive Cu(II) complexes bearing
sulphur-containing functional groups (e.g., thioamides, thiosemicarbazones) or oxygen-
based donors (e.g., polyphenols, carboxylates) have been studied at both solution and
solid states [51–54]. Hence, the design of tyrosinase inhibitors having metal chelating
groups might be useful thanks to their capability to target the enzyme’s metal cofactors.
Based on these premises, we aimed to preliminarily evaluate the capability of the studied
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molecules to form copper complexes in solution at the same pH used for enzymatic
inhibition experiments (6.8), using Job’s method. We selected compound TCBS4 as a model
for the copper chelation study. The Job’s Plots (Figure S20A,B), carried out for this molecule,
were obtained from absorbance data recorded at 310 and 318 nm (Figure S20C). The
experimental results evidenced the formation of a 1:3 (metal:ligand) complex (χL = 0.75).
Uncorrected absorbance data as a function of ligand’s molar fraction are also shown
(Figure S21). It is important to note that these results refer to the metal chelating capabilities
of TCBS4 in a model solution containing Cu2+ ions (derived from Cu(II) chloride). In
tyrosinase’s catalytic site, the two metal ions were already coordinated by six histidine
residues (three for each metal ion). Hence, based on these data, we can assume that the
studied molecules might interact with the two metal cofactors by forming mixed complexes
with different molar ratios, due to the steric hindrance introduced by the surrounding
residues in the enzyme’s catalytic site. This hypothesis seems to be corroborated by
molecular theoretical simulations (See Section 2.10).

2.9. Cytotoxicity Analysis

Based on the promising results from earlier experiments, we conducted further eval-
uations to determine the compounds’ biosafety effectiveness. The results are depicted in
Figure 5. Our findings demonstrated that all compounds were noncytotoxic to HaCaT cells
at the concentration required to inhibit tyrosinase activity.
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2.10. Molecular Docking

With the aim of assessing the potential binding modes and interactions of the studied
molecules in the catalytic site of mushroom tyrosinase (MTa), molecular docking simula-
tions were performed starting from the X-ray structure of the complex (PDB: 2Y9X) between
mushroom tyrosinase (from Agaricus bisporus) and the natural inhibitor tropolone (OTR).
As previously reported [55], the suitability of the computational protocol was verified by
redocking the cognate OTR ligand in the enzyme’s binding pocket, affording an acceptable
root mean square deviation (RMSD) between the atomic positions of docked and crystal-
lized ligands (2.3 Å). Docking scores and intermolecular interactions are summarized in
Table S6. All the studied thiosemicarbazones fit the catalytic site of mushroom tyrosinase,
showing two possible binding orientations. In the case of compound TC1 (Figure 6), its
docked pose projected the thiosemicarbazone group towards the enzyme’s outer surface
with the p-hydroxyphenyl ring collocated in the enzyme’s binding pocket. This conforma-
tion was further stabilized by a hydrogen bond between the ligand’s hydrazido nitrogen
and the Gly-281 residue (D-H--A distance: 2.01 Å) and by π-π stacked interactions with the
Hys-263 ring (centroid distance: 3.89 Å), as shown in Figure S22.
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the MTa site.

In the opposite, when the hydroxyl group was functionalized with a -SO2R moiety, as
in TCMS1 and TCBS1-5, their docked poses underwent a 180◦ twist, with their thiosemi-
carbazone groups involved in the coordination of the two copper ions through the ligands’
sulphur atoms (Figures 7 and S23). The conformations of all the thiosemicarbazones were
further stabilized by a series of hydrophobic interactions, as observed from a lipophilic anal-
ysis of the enzyme’s surrounding residues. In particular, all of them shared hydrophobic
interactions between the ligands’ phenyl ring (bonded to the thiosemicarbazone group) and
the Val-283 (Figure S24). This residue was involved in stabilizing the bioactive conforma-
tion of the tropolone molecule in the 2Y9X complex [55–57]. In addition, molecular docking
simulations of different inhibitors in the catalytic site of mushroom tyrosinase showed an
involvement of the Val-283 residue as well [7,55,57–60]. Substitution of the methylsulfonyl
fragment in TCMS1 with a more lipophilic phenylsulfonyl one, as in TCBS1-5, led to
additional hydrophobic interactions between this phenyl ring and the aminoacidic residues
Val-248 and Phe-264. These findings might help in explaining the similar anti-tyrosinase
potency of the phenyl (TCBS1-5) thiosemicarbazone derivatives.
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3. Materials and Methods
3.1. Chemicals

The 4-hydroxybenzaldehyde was purchased from Eastman Organic Chemicals (King-
sport, TN, USA). Absolute ethanol, dichloromethane, sodium sulphate, copper(II) chloride,
triethylamine, thiosemicarbazide, p-chlorobenzenesulfonyl chloride, p-toluenesulfonyl
chloride, methanesulfonyl chloride, p-nitrobenzenesulfonyl chloride, isopropanol, ace-
tonitrile, methanol, deuterated dimethyl sulfoxide (DMSO d-6), deuterium oxide (D2O),
deuterated acetone (Acetone d-6), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
(ABTS) were purchased from Merck (Milan, Italy). The 4-methoxybenzenesulfonyl chlo-
ride, sodium dihydrogen phosphate, sodium hydrogen phosphate, and glacial acetic acid
were purchased from Thermo Fischer (Kandel, Germany). Benzenesulfonyl chloride was
purchased from TCI Europe (Zwijndrecht, Belgium).

3.2. Instrumentation Techniques

Melting points were measured on a Kofler Hot Stage (Rochford, UK) and were un-
corrected. Proton and Carbon-13 NMR spectra were acquired with a Bruker Advance III
HD 600 spectrometer (Rheinstetten, Germany) at room temperature with tetramethylsilane
(TMS) as the internal standard in DMSO-d6 or Acetone d-6. Low-resolution ESI mass
spectra were acquired with a triple quadrupole (QqQ) Varian 310-MS mass spectrometer
(Palo Alto, CA, USA) using previously optimized parameters [61]. High-resolution ESI
mass spectra were registered on a Thermofisher ORBITRAP-ELITE instrument (Waltham,
MA, USA). The fitting of the isotopic patterns was verified using the mmass 5.5.0 software
package [62,63]. UV-vis spectra were recorded using an Agilent Cary 60 spectrophotometer
(Palo Alto, CA, USA) with a 1.0 cm quartz cuvette.

3.3. General Procedure for the Synthesis of Intermediates B–G

Compounds B–G (Scheme 1) were synthesized by adapting a previously reported
method [64]. In brief, to a suspension of p-hydroxybenzaldehyde (2.0 mmol, 1 eq) in
dichloromethane (8.0 mL) was added at room temperature triethylamine (2.4 mmol, 1.2 eq)
followed by the proper sulphonyl chloride derivative (4.0 mmol, 1 eq). The mixture was
left under stirring overnight at room temperature, then treated with a saturated aqueous
solution of sodium bicarbonate. The organic phase was separated, and the aqueous layer
was extracted multiple times with dichloromethane. The combined organic phases were
dried over sodium sulphate and evaporated, affording the desired B–G intermediates
as solids. The compounds were used as such for the subsequent step, with no further
purification procedures.

3.4. General Procedure for the Synthesis of Target Compounds TC1, TCMS1, TCBS1-5

The proper aldehyde derivative A-G (1.9 mmoles, 1 eq) was dissolved in ethanol
(7.6 mL), then thiosemicarbazide (1.9 mmoles, 1 eq) and glacial acetic acid (0.095 mL) were
added. The reaction mixture was refluxed for 6 hrs, then cooled to room temperature,
affording a solid that was recovered by filtration. Recrystallization from isopropanol
(TC1), acetonitrile (TCMS1, TCBS2), methanol (TCBS1), or ethanol (TCBS3-5) afforded
the desired products as solids.

(E)-2-(4-hydroxybenzylidene)hydrazine-1-carbothioamide (TC1). Yield: 81%. Exper-
imental results were following those reported in the literature [65], m.p. 221–223 ◦C; 1H
NMR (600 MHz, DMSO-d6, Figure S1): δ 11.23 (s, 1H), 9.84 (s, 1H), 8.04 (s, 1H), 7.95 (s,
1H), 7.81 (s, 1H), 7.63–7.58 (m, 2H), 6.80–6.75 (m, 2H); LR-ESI-MS (m/z) found (calculated):
196.3 (196.0) [M+H]+, 217.7 (218.0) [M+Na]+.

(E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl methanesulfonate (TCMS1).
Yield: 78%; m.p. 224–226 ◦C; 1H NMR (600 MHz, DMSO-d6, Figure S2) δ 11.48 (s, 1H), 8.23
(s, 1H), 8.06 (s, 2H), 7.95–7.90 (m, 2H), 7.40–7.34 (m, 2H), 3.40 (s, 3H); 13C NMR (151 MHz,
DMSO d6, Figure S3) δ 178.1, 149.9, 140.8, 133.4, 129.0, 122.5, 37.5; HR-ESI-MS (m/z),
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found (calculated): 272.0141 (272.0164) [M−H]−, 290.0285 (290.0269) [MS-Ox+H]+ (oxidized
product).

(E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl benzenesulfonate (TCBS1).
Yield: 63%; m.p. 159–160 ◦C; 1H NMR (600 MHz, Acetone-d6, Figure S4) δ 10.49 (s, 1H),
8.14 (s, 1H), 7.91 (s, 1H), 7.89–7.87 (m, 2H), 7.84–7.78 (m, 3H), 7.68 (t, J = 7.7 Hz, 2H),
7.50 (s, 1H), 7.07 (d, J = 8.5 Hz, 2H); 13C NMR (151 MHz, Acetone d6, Figure S5) δ δ

180.7, 151.4, 141.7, 136.1, 135.6, 134.5, 130.5, 129.5, 129.3, 123.5; HR-ESI-MS (m/z), found
(calculated): 334.0305 (334.0320) [M−H]−, 370.0066 (370.0087) [M+Cl]− with the expected
isotopic pattern, 352.0450 (352.0426) [MS-Ox+H]+ (oxidized product).

(E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl 4-nitrolbenzenesulfonate
(TCBS2). Yield: 61%; m.p. 226–228 ◦C; 1H NMR (600 MHz, DMSO-d6, Figure S6) δ 11.47 (s,
1H), 8.48–8.43 (m, 2H), 8.23 (s, 1H), 8.21–8.14 (m, 2H), 8.04 (s, 1H), 8.00 (s, 1H), 7.87–7.82
(m, 2H), 7.13–7.08 (m, 2H); 13C NMR (151 MHz, DMSO d6, Figure S7) δ 178.2, 151.1,
149.3, 140.4, 139.4, 133.9, 130.1, 129.0, 125.0, 122.4; HR-ESI-MS (m/z), found (calculated):
379.0145 (379.0171) [M−H]−, 414.9907 (414.9938) [M+Cl]− with the expected isotopic
pattern, 397.0312 (397.0277) [MS-Ox+H]+ (oxidized product).

(E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl 4-methoxylbenzenesulfonate
(TCBS3). Yield: 48%; m.p. 154–156 ◦C; 1H NMR (600 MHz, Acetone-d6, Figure S8) δ
10.50 (s, 1H), 8.14 (s, 1H), 7.91 (s, 1H), 7.82–7.76 (m, 4H), 7.50 (s, 1H), 7.18–7.13 (m, 2H),
7.08–7.03 (m, 2H), 3.93 (s, 3H); 13C NMR (151 MHz, Acetone d6, Figure S9) δ δ 180.7,
165.4, 151.6, 141.8, 134.3, 131.7, 129.5, 127.3, 123.6, 115.6, 56.4; HR-ESI-MS (m/z), found
(calculated): 364.0406 (364.0426) [M−H]−, 400.0162 (400.0193) [M+Cl]− with the expected
isotopic pattern, 382.0562 (382.0531) [MS-Ox+H]+ (oxidized product).

(E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl 4-methylbenzenesulfonate
(TCBS4). Yield: 76%; m.p. 195–197 ◦C; 1H NMR (600 MHz, Acetone-d6, Figure S10) δ
10.49 (s, 1H), 8.13 (s, 1H), 7.90 (s, 1H), 7.83–7.77 (m, 2H), 7.76–7.72 (m, 2H), 7.52–7.46 (m,
3H), 7.09–7.04 (m, 2H), 2.46 (s, 3H); 13C NMR (151 MHz, Acetone d6, Figure S11) δ 180.7,
151.5, 146.9, 141.8, 134.4, 133.2, 130.9, 129.5, 129.3, 123.5, 21.6; HR-ESI-MS (m/z), found
(calculated): 348.0454 (348.0477) [M−H]−, 384.0214 (384.0243) [M+Cl]− with the expected
isotopic pattern, 366.0608 (366.0582) [MS-Ox+H]+ (oxidized product).

(E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl 4-chlorobenzenesulfonate
(TCBS5). Yield: 76%; m.p. 194–196 ◦C; 1H NMR (600 MHz, Acetone-d6, Figure S12) δ
10.47 (s, 1H), 8.14 (s, 1H), 7.92–7.86 (m, 3H), 7.85–7.80 (m, 2H), 7.75–7.70 (m, 2H), 7.49 (s,
1H), 7.13–7.07 (m, 2H); 13C NMR (151 MHz, Acetone d6, Figure S13) δ 180.7, 151.2, 141.7,
141.6, 134.7, 134.6, 131.1, 130.7, 129.6, 123.5; HR-ESI-MS (m/z), found (calculated): 367.9898
(367.9930) [M−H]− with the expected isotopic pattern, 403.9659 (403.9697) [M+Cl]− with
the expected isotopic pattern, 386.0067 (386.0036) [MS-Ox+H]+ (oxidized product) with the
expected isotopic pattern.

3.5. Crystal Structure

Single-crystal X-ray diffraction data of TCBS1 were collected at 100 K on a Bruker
D8 Venture diffractometer equipped with a PHOTON II detector. The structure was
solved with the ShelXT [66] solution program using dual methods and developed by
iterative cycles of least-squares refinement on F2 using ShelXL 2018/3 [66]. Olex2 1.5 [67]
was used as the graphical interface and for the preparation of figures. Hydrogen atoms
were placed geometrically and refined isotropically riding on their parent C atom with
Uiso(H) = 1.2Ueq(C). H atoms bonded to heteroatoms were located from the difference
Fourier map and their positions were refined freely. Crystallographic data were deposited
at the Cambridge Crystallographic Data Center (CCDC) under deposition number: 2374503.
These data can be obtained free of charge at: https://www.ccdc.cam.ac.uk/structures.

3.6. Hirshfeld Analysis

Hirshfeld analysis was carried out on structural data with Crystal Explorer software
(v. 21.5, Rev. 608bb.32) [32].

https://www.ccdc.cam.ac.uk/structures
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3.7. Molecular Descriptors

All the calculations were performed using the Molinspiration property engine (v2022.08,
accessed on 16 May 2024).

3.8. Tyrosinase Inhibition Assay

Mushroom Tyr inhibition was assessed as described previously [11] with minor modi-
fications. A solution consisting of 50 mM of phosphoric acid buffer (pH 6.8), mushroom
tyrosinase solution (Sigma Chemical Co., Milan, Italy) at a final concentration of 72 U/mL,
and DMSO or the compounds tested was incubated at 37 ◦C for 10 min; L-DOPA was then
added and the dopachrome formation was monitored at 492 nm. The measurements were
taken using a FLUOstar OPTIMA (BMG Labtech, Offenburg, Germany). The IC50 value
was determined by analysing dose–response curves. Kojic acid was used as a reference
tyrosinase inhibitor.

3.9. Antioxidant Assays
3.9.1. DPPH

Radical scavenging activity of the thiosemicarbazone derivatives was estimated ac-
cording to the previously reported method [68] with slight modification using the stable
DPPH radical. A solution of 0.1 mM DPPH radical was added to various concentrations of
the compounds. The absorbance of the DPPH radical without an antioxidant, i.e., blank,
was also measured. The mixture was shaken vigorously and kept at room temperature
for 30 min in the dark. The absorbance of the reaction mixture was measured at 517 nm
spectrophotometrically. All the determinations were performed in triplicate.

3.9.2. ABTS

Samples of each compound (10 µL) were added to 990 µL of ABTS, and the reduction
in the blue-green radical ABTS+• by hydrogen-donating antioxidants was evaluated by
measuring the absorbance at 734 nm after 1 min of incubation. All the measurements were
carried out at least three times.

3.10. Sun Protection Factor (SPF)

The sun protection factor of thiosemicarbazone derivatives was measured by the UV
absorbance method, as previously reported [11]. The absorbances of the compounds (50 µM)
were recorded in the range of 290–320 nm, with 5 nm increments, and three measurements
were performed at each point. The SPF was calculated by using the Mansur Equation:

SPF = CF ×
290

∑
320

EE(λ)× I(λ)× Abs(λ)

where CF = correction factor (10); EE (λ) = erythemogenic effect of radiation with wave-
length λ; I(λ) = solar intensity spectrum; and Abs(λ) = spectrophotometric absorbance
values at wavelength λ. The values of EE (λ)× I(λ) are constant, as determined by Sayre
et al. [69].

3.11. Copper Chelation Studies

Stock solutions of TCBS4 and Copper(II) chloride dihydrate 3.20 mM were prepared
in DMSO, then diluted to 32 µM in 50 mM Phosphate buffer pH 6.8 (percentage of DMSO
in the diluted solutions ≈ 1%). Eleven solutions having a variable molar ratio of the two
components (from 0:10 to 10:0) but fixed final volume (2.0 mL) and total molar concentration
(32 µM) were prepared, and the UV-vis spectra were recorded in the 250–500 nm range.
Absorbance data were corrected from the contribution of the pure reactants.
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3.12. Cell Viability Assay

The cellular cytotoxicity of compounds was investigated using a 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay [70]. The HaCaT cell line of human
keratinocytes was obtained from CLS-Cell Line Services in Eppelheim, Germany. The cells
were exposed for 24 h to compounds at concentrations ranging from 0.5 to 50 µM. Then,
MTT reagent (0.5 mg/mL in DMEM) was added to each well. The plate was incubated for
3 h at 37 ◦C. The MTT solution was removed from the culture plate, and 100 µL of DMSO
solvent was added to solubilize the water-insoluble formazan crystals formed in the cells.
The absorbance was determined at 570 nm using a microplate reader (VANTAstar_BMG
LABTECH GmbH, Offenburg, Germany).

3.13. Docking Calculations

Molecular docking simulations were performed using the CCDC GOLD software
(v2024.1.0, Cambridge, UK) [71]. The crystal structure of the adduct formed between
mushroom tyrosinase (from Agaricus bisporus) and the tropolone (OTR) inhibitor (PDB
code: 2Y9X) was chosen as receptor [56]. Equilibrium conformer of each molecule was
assessed at molecular mechanics level and optimized at PM3 level [72,73] using Spartan
v.2014. The resulting structures was then optimized at the Density Functional Theory
(DFT) level with Orca 5.0.4 [74,75] (PBE0 density functional [76], def2-SVP basis set [77]).
The nature of the minima achieved after the optimization procedures was confirmed by
the absence of negative IR frequencies in the Hessian matrix. The computational setup
adopted for the molecular docking simulations was already described and validated [55].
The conformations adopted by the docked poses and their intermolecular interactions were
analysed using Biovia Discovery studio viewer 2021, USCF Chimera v. 1.8 [78] and USCF
ChimeraX v. 1.8 [79]. Analysis of the hydrophobic interactions was performed by colouring
the surrounding residues according to the Kyte–Doolittle hydrophobicity scale values [80].

3.14. Statistical Analysis

Statistically significant differences were assessed by calculating a one-way ANOVA
followed by the Tukey Multiple Comparisons Test, both using the Graph Pad INSTAT
software v8.2 (GraphPad Software, San Diego, CA, USA).

4. Conclusions

In this work, we have reported the design and synthesis of a new series of tyrosinase
inhibitors bearing the thiosemicarbazones fragment, by introducing the combination of
para-substitution and lipophilicity-exploiting strategies. This approach enabled the de-
velopment of compounds with inhibitory effects on tyrosinase significantly higher than
those shown by the standard inhibitor kojic acid, highlighting their potential for treating
hyperpigmentation and related skin problems. With a view to the possible dermatological
use, it is worthy to remark that the synthesized thiosemicarbazones show promising photo-
protective properties, with SPF values higher than those of the commonly used sunscreen
agents. Importantly, cytotoxicity experiments verified the non-toxicity of our compounds
at concentrations efficient for tyrosinase inhibition.

Molecular docking experiments revealed useful information about these compounds’
binding interactions with the active site of mushroom tyrosinase, clarifying their mechanism
of action as possible anti-tyrosinase drugs. The capability of selected compounds to chelate
critical copper ions in the enzyme increases their inhibitory potency and applications.

In conclusion, the thiosemicarbazone derivatives synthesized in this study represent a
promising class of compounds for potential therapeutic and cosmetic applications aimed at
regulating melanin production and providing UV protection. The results obtained open
promising perspectives for further in vitro studies with human tyrosinase and on cellular
systems for melanogenesis studies.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29235629/s1: Figure S1: 1H NMR spectrum of TC1, (E)-
2-(4-hydroxybenzylidene)hydrazine-1-carbothioamide (600 MHz, DMSO d-6); Figure S2: 1H NMR
spectrum of TCMS1, (E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl methanesulfonate
(600 MHz, DMSO d-6); Figure S3: 13C NMR spectrum of TCMS1, (E)-4-((2-carbamothioylhydrazineyli-
dene)methyl)phenyl methanesulfonate (151 MHz, DMSO d-6); Figure S4: 1H NMR spectrum
of TCBS1, (E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl benzenesulfonate (600 MHz,
Acetone-d6); Figure S5: 13C NMR spectrum of TCBS1, (E)-4-((2-carbamothioylhydrazineylidene)meth-
yl)phenyl benzenesulfonate (151 MHz, Acetone-d6); Figure S6: 1H NMR spectrum of TCBS2, (E)-4-
((2-carbamothioylhydrazineylidene)methyl)phenyl 4-nitrobenzenesulfonate (600 MHz, DMSO d-6);
Figure S7: 13C NMR spectrum of TCBS2, (E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl
4-nitrobenzenesulfonate (151 MHz, DMSO d-6); Figure S8: 1H NMR spectrum of TCBS3, (E)-4-((2-
carbamothioylhydrazineylidene)methyl)phenyl 4-methoxybenzenesulfonate (600 MHz, Acetone d-6);
Figure S9: 13C NMR spectrum of TCBS3, (E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl 4-
methoxybenzenesulfonate (151 MHz, Acetone d-6); Figure S10: 1H NMR spectrum of TCBS4, (E)-4-((2-
carbamothioylhydrazineylidene)methyl)phenyl 4-methylbenzenesulfonate (600 MHz, Acetone d-6);
Figure S11: 13C NMR spectrum of TCBS4, (E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl 4-
methylbenzenesulfonate (151 MHz, Acetone d-6); Figure S12: 1H NMR spectrum of TCBS5, (E)-4-((2-
carbamothioylhydrazineylidene)methyl)phenyl 4-chlorobenzenesulfonate (600 MHz, Acetone d-6);
Figure S13: 13C NMR spectrum of TCBS5, (E)-4-((2-carbamothioylhydrazineylidene)methyl)phenyl
4-chlorobenzenesulfonate (151 MHz, Acetone d-6); Figure S14: 1H NMR spectrum of TCBS5, (E)-4-
((2-carbamothioylhydrazineylidene)methyl)phenyl 4-chlorobenzenesulfonate after addition of D2O
(600 MHz, Acetone d-6); Figure S15: High-Resolution ESI mass spectrum (positive mode) of com-
pound TCMS1; Figure S16: High-Resolution ESI mass spectrum (negative mode) of compound
TCMS1; Table S1: Crystal data and structure refinement parameters for TCSB1; Table S2: Bond
lengths (Å) for compound TCSB1; Table S3: Bond angles (◦) for compound TCSB1; Table S4: Com-
parison between the mean bond distances (Å) calculated for the thiosemicarbazone moieties in the
two units in TCBS1 and the mean values retrieved from the CSD (version 5.45 updated Mar 2024);
Figure S17: Hydrogen bonding network found in the crystal structure of TCBS1: (a) partial view on
the relative orientation between units A and B. (b,c) show the infinite hydrogen-bonded network for
units A and B, respectively. Interactions are labelled according to Table S5; Table S5: Intermolecular
hydrogen bonding interactions of TCBS1; Figure S18: Intermolecular π-π stacking interactions be-
tween tosyl groups in the crystal structure of TCBS1. Intercentroid distance: 3.90 Å; shift distance:
1.46 Å; plane to plane angle: 9◦; Figure S19: Partial view of the packing diagrams of TCBS1 along
the a- (left) and b-axis (right). Units A and B are depicted in light blue and green, respectively;
Figure S20: Job’s plot of Cu2+ and TCBS4 at 310 nm (A) and 318 (B); (C) Absorption spectra collected
by varying Cu2+and TCBS4 molar ratios in in PB 0.05 M, pH 6.8, 25 ◦C, 1 cm optical path length;
Figure S21: Uncorrected absorbance data at 310 nm (A) and 318 nm (B) recorded by varying Cu2+and
TCBS4 molar ratios; Figure S22: Docked pose of TC1 in the MTa site and intermolecular interactions
with the surrounding residues. Hydrogen bonds are represented using light blue solid lines, while
metal coordinating bonds are shown as violet dashed ones (A). π-π interaction between the docked
pose of TC1 and the Hys-263 residue; Figure S23: Docked poses of TCMS1 (A), TCBS1-5 (B-F) in
the MTa site and intermolecular interactions with the surrounding residues. Hydrogen bonds are
represented using light blue solid lines, while metal coordinating bonds are shown as violet dashed
ones; Figure S24: Hydrophobic interaction analysis between the docked poses of TC1 (A), TCMS1 (B),
TCBS1-5 (C-G) and the surrounding residues of mushroom tyrosinase (MTa site). The aminoacidic
residues are coloured according to the Kyte-Doolittle hydrophobicity scale values; Table S6: Scores,
molecular interactions and distances between the highest-rated docked poses of compounds TC1,
TCMS1, TCBS1-5 and the surrounding residues of mushroom tyrosinase (MTa).
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37. Şahin, S.; Dege, N. Hirshfeld Surface, ADMET, Boiled-Egg Model Properties and Molecular Docking Studies with Human

Cyclophilin D (CypD) of a Schiff Base Methanimine. Polyhedron 2021, 205, 115320. [CrossRef]
38. Allali, M.; Dege, N.; Karrouchi, K.; Benchat, N. Synthesis, Spectroscopy, Crystal Structure, TGA/DTA Study, DFT and Molecular

Docking Investigations of (E)-4-(4-Methylbenzyl)-6-Styrylpyridazin-3(2H)-One. J. Mol. Struct. 2021, 1228, 129435. [CrossRef]
39. Yuan, F.; Zhang, R.; Qiao, C.; Luo, X.; Zhou, C. Series of Ln-Metal Organic Frameworks: Photocatalytic Performance and Hirshfeld

Surface Analyses. J. Mol. Struct. 2022, 1251, 131956. [CrossRef]
40. Pinto, C.B.; Dos Santos, L.H.R.; Rodrigues, B.L. Understanding Metal—Ligand Interactions in Coor-Dination Polymers Using

Hirshfeld Surface Analysis Research Papers. Crystallogr. Sect. C Struct. Chem. 2019, 75, 707–716. [CrossRef]
41. Turner, M.J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M.A. Accurate and E Ffi Cient Model Energies for Exploring Intermolecular

Interactions in Molecular Crystals. J. Phys. Chem. Lett. 2014, 5, 4249–4255. [CrossRef] [PubMed]
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