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A B S T R A C T

This paper examines the conditions for the emergence of chaotic dynamics in the economy described by Parello
(2019) and the role of international labor migration on the global indeterminacy of the equilibrium resulting
from the competition in the labor market between native workers and immigrants entering a host country. The
application of the Shilnikov theorem reveals the spiraling structure of the chaotic attractor, allowing us to infer
the unpredictability of long-run policies amid international labor migration. We also propose an approach to
control this chaotic scenario and stabilize the economic dynamics towards a stable equilibrium by applying the
algorithm proposed by Ott et al. (1990), to determine the necessary conditions and exact parametric configu-
ration to redirect the economy along the optimal path that avoids the undesired indeterminate solution.

1. Introduction

Increasing global economic complexity has exposed the failure of
linear modelling in forecasting future outcomes. Several alternatives
have been proposed in the area of nonlinear dynamic systems, aiming to
confirm the existence of indeterminate equilibria and eventually chaotic
dynamics (see, for example, Barnett et al., 2022; Bella et al., 2017). This
approach is of particular interest when applied in the field of interna-
tional migration, as its complex impact on demography and economic
development could influence the dynamic path towards a long-run
economic growth in different ways. For example, if migration data are
not stationary and become highly sensitive to initial economic endow-
ments, or give rise to nonlinear evolutionary patterns, then the dynamics
resulting from the incoming migrant labor force could produce unpre-
dictable economic and social outcomes (James, 2003). This can lead to a
chaotic behavior that cannot be explained using standard economic
tools that examine the evolution of (linear) systems through a deter-
ministic set of rules. Instead, the use of alternative instruments that can
accommodate the combined presence of nonlinear systems and nonde-
terministic factors that produce undesired distortions amid unexpected
random shocks can be more insightful.

Investigating phenomena like international migration, which can be
rather episodic with seasonal ups and downs, could reveal how a

complex system can exhibit irregular equilibrium patterns when influ-
encing factors emerge. This endeavor may be able to identify the onset of
a deterministic chaos, that can undermine the predictive power for
short-term decision-making processes and the accuracy of future eco-
nomic outcomes forecasts.

This study considers the economy described by Parello (2019), who
examined the influence of international labor migration on equilibrium
indeterminacy. The basic argument is that competition in the labor
market between native workers and immigrants entering the host
country may result in equilibrium solutions that depend on the immi-
gration ratio, giving rise to different (i.e., multiple) equilibrium paths,
which is a source of indeterminacy. As a step forward, this study dem-
onstrates that this area of local indeterminacy is in fact also global,
because the application of the Shilnikov theorem allows us to show that
phenomena associated with chaotic dynamics can also emerge in a
restricted set of the structural parameters of the model (see, Shilnikov,
1965; Shang & Han, 2005; Chen & Zhou, 2011). We also propose an
approach to control this chaotic scenario by applying the algorithm
constructed by Ott et al. (1990); henceforth, OGY.

The remainder of this paper develops as follows. In section 2, we
present the variables and the system of differential equations that
characterize the Parello (2019) model. In section 3, we detail the con-
ditions for the emergence of a chaotic attractor by applying the
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Shilnikov theorem and provide an associated economic interpretation.
In section 4, we illustrate the OGY algorithm to break down the chaotic
scenario and restore stability to the dynamic system.1 Section 5 presents
a brief conclusion summarizing the main findings of the paper. The
Appendix provides all necessary proofs.

2. The model

Consider the Ramsey-like economywith endogenous labor migration
outlined by Parello (2019).2 The dynamics that characterize the
competitive equilibrium are fully described in the following system of
differential equations, henceforth named S:

k̇= k
(
q − 1
h

)

− δk

q̇=(ρ+ δ)q −
(q − 1)2

2h
− αAkα− 1(1 − θ + θmϱ)

1− α
ϱ (S)

ṁ= η(1 − α)θ Akα(1 − θ + θmϱ)
1− α− ϱ

ϱ mϱ − ηmw0,

where k is a predetermined variable representing capital per do-
mestic worker, and q and m are jump (non-predetermined) variables
indicating the relative shadow price of installed capital and the immi-
gration rate, respectively. As for the set of parameters, h > 0 measures
the sensitivity of the adjustment costs to changes in total investments,
δ ∈ (0, 1) is the depreciation rate of installed capital, ρ ∈ (0, 1) is the
subjective discount rate, α ∈ (0, 1) is the share of capital in the pro-
duction of final output, A > 0 is the productivity level, θ ∈ (0,1) is the
proportion of income earned by immigrants, ϱ∈ [1, − ∞) is a parameter
measuring the elasticity of substitution between labor inputs, η > 0
measures the sensitivity of migration to changes in wage differentials,
and w0 is the wage offered in the country of origin.

Since, at the equilibrium, k̇ = q̇ = ṁ = 0, it follows from system S
that:

q∗ =1+ δh (1.a)
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⎡
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⎢
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(1.c)

where ζ = [2ρ(1+hδ)+δ(2+hδ)]/(2αA) and ω = w0/ [(1 − α)A].
The triplet P∗ ≡ (q∗, k∗,m∗) represents the unique steady state of the

economy described by system S, which can be approximated around the
stationary equilibrium as follows:
⎛

⎝
k̇
q̇
ṁ

⎞
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(3)

is the Jacobian matrix associated with S, at the steady state (q∗, k∗,
m∗).

The eigenvalues of J are the solutions of the following characteristic
equation:

det(λI − J )= λ3 − Tr(J )λ2 + B(J )λ − Det(J ), (4)

given the identity matrix, I, and

Tr(J )= ρ − A(1 − α)ηω[(1 − ϱ)(1 − Θ)+αΘ] (5.1)

B(J )= − A(1 − α)
{αζ
h
+ ηρω[(1 − ϱ)(1 − Θ)+ αΘ]

}
(5.2)

Det(J )=
A2(1 − α)2αη(1 − ϱ)ωζ(1 − Θ)

h
(5.3)

where Θ = ζ−
αϱ

(1− α)(1− ϱ)θ
1

1− ϱω−
ϱ

1− ϱ, and Tr(J ), Det(J ), and B(J )
represent the trace, determinant, and sum of principal minors of order 2
of J , respectively.

Applying the Routh-Hurwitz criterion, Parello (2019) demonstrated
that the number of positive roots associated with (4) is always one,
which is sufficient for concluding that the equilibrium is locally inde-
terminate. This also implies that a continuum of equilibrium trajectories
emerges around the steady state, depending on the different initial levels
of the non-predetermined variable,m(0). As noted by Parello, this is as a
novelty in the literature on migration, where unicity and determinacy of
equilibrium solution is usually expected. This also leaves space for the
possibility that similar economies, starting with different initial degrees
of immigration, might move towards the predicted long-term equilib-
rium at completely different rates.

With these results in hand, we seek to determine the conditions for
the emergence of a Shilnikov chaotic attractor, and the tools necessary
to control this scenario and restore economic stability. We also construct
some examples using the same set of parameters employed in Parello
(2019) to prove the robustness of our results, with the remainder of the
study devoted to this end.

3. Emergence of Shilnikov chaos

We first consider the result obtained by Bella et al. (2017).

Definition 1. Consider the following generic dynamic system:

dx
dt

= f(x, μ), x ∈ R3, μ ∈ R1,

where f is sufficiently smooth. Assume f has a hyperbolic saddle-
focus equilibrium point, x̂ = 0, at the (unit vector) bifurcation param-
eter μ̂, implying that the eigenvalues of the Jacobian matrix, J = Df , are
in the form α and β ± γi, where α, β, and γ are real constants with αβ < 0,
and with a saddle quantity s = |α| − |β| ∕= 0. Let

Φ≡B(J ) + Tr(J )
2
= 0 (6)

be the bifurcating condition that separates the region of parameters
where the system exhibits a saddle-focus dynamics with s > 0, from the
region where the equilibrium is saddle path stable with s < 0. Then, if
we can determine that when crossing the boundary Φ, a region exists
where ∂Φ

∂̂μ
∕= 0, which is associated with a saddle-focus dynamics with

positive saddle quantity, then a sequence of Smale-horseshoes emerges

1 We use Maple software to characterize the Shilnikov bifurcation curves and
implement the stabilizing OGY algorithm and the MatCont package for MAT-
LAB for the numerical computation of the orbits to produce the chaotic
attractor and the derivation of the associated time series of the model variables.
2 The full derivation of the model is detailed in Parello (2019). This study

examines the conditions for the emergence of chaotic dynamics, while preser-
ving the original mathematical notation used.
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along the homoclinic orbit connecting the equilibrium to itself, giving
rise to a Shilnikov chaotic attractor.

Applying condition (6) to system S allows us to characterize a
bifurcating surface in terms of some critical parameters. For conve-
nience, we keep the triplet of parameters (ρ, η, ϱ) free, setting all the
others as in Parello (2019).

Denote the set of the parameters Δ ≡ {(A, α, θ,w0, h, δ, ρ, ϱ, η)}, and
assume the following:

Δ ≡(1, 0.3, 0.3,0.75,0.05,0.4,15,0.05, ρ, ϱ, η) ∈ Δ (7)

Then, equation (6) reduces to a nonlinear function of the remaining
parameters, Φ ≡ Φ(ρ,ϱ,η) = 0, which is represented as the red curve in
Fig. 1 (panel a). Assume choosing ϱ from Definition 1 as the convenient
unit vector bifurcation parameter. Since can be easily determined that
equation (6) monotonically increases in ϱ (with ∂Φ

∂ϱ > 0 and ∂s
∂ϱ > 0), we

can infer that equilibrium P∗ undergoes a saddle-focus dynamics with
s > 0 above the red surface.3 Additionally, the gray curve in Fig. 1 (panel
a) represents the bifurcating curve Φ(ρ, η), for the given value of ϱ
assumed in Parello (2019), which subsequently represents an upward
boundary for the region of parameters of interest in our analysis, at
which indeterminacy of equilibrium occurs for a parametric combina-
tion satisfying Φ > 0. The reason for this choice will be clarified in the
following sections.

As it is clear from the three-dimensional graph in panel a of Fig. 1, a
very narrow combination of the pair of parameters (ρ, η) lies between the
two curves, that allows to stay simultaneously above the red curve (at
which the equilibrium is a saddle-focus) and below the boundary of the
gray curve (where the constraints given by ϱ < 1 and Φ > 0 hold).

The parametric area of interest for the onset of Shilnikov chaos is also
depicted in the bidimensional diagram in panel b of Fig. 1using gray-
shaded lines. Therefore, the region where convergence towards the
steady state appears through damping oscillating behavior occurs when
ρ ∈ (0.2,1) and η ∈ (0,1), at any given ϱ < 1.

The results in panel b suggest some interesting economic interpre-
tation concerning the restrictions obtained on the chosen parameters.
Given the sensitivity of migration to changes in wage differences below
unity (η< 1), if the discount rate (ρ) is high and above 0.2, economic
agents value the current generation more, although the entry of a
migrant labor force requires a reduction in wage differences (ϱ < 1) to
increase the produced output level and favor economic growth. In this
scenario, agents might also exhibit a desire not to smooth consumption
and prefer to expend the higher wealth achieved today, leaving less for
future generations perhaps with more migrant citizens in the host
country; however, chaotic dynamics could then emerge. Hence, the
unpredictability of policy actions to restore long-term stability becomes
a problem that policymakers must address to avoid continuous and
irregular episodes of oscillatory economic activity.

To ease the numerical computation required to draw the resulting
chaotic attractor, we must first put system S in the following convenient
normal form:
⎛

⎝
ẋ
ẏ
ż

⎞

⎠=

⎡

⎣
0 1 0
0 0 1
ε1 ε2 ε3

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠+

⎛

⎝
0
0

dx2 + gx3

⎞

⎠ (8)

where (x, y, z) is a new set of coordinates that arise from the near-
identity transformation, ε1 = Det(J ), ε2 = − B(J ), and ε3 = Tr(J ),
and where d and g are combinations of the coefficients of the nonlinear
terms, as demonstrated by Freire et al. (2002).4

Example 1. Consider the set of parameters Δ . Assume (ρ, η) = (0.4,
0.3), to support the shaded area explained in Fig. 1, and ϱ = 0.75 as in
Parello (2019). The equilibrium implies the triplet (q∗, k∗,m∗) = (1.75,
0.3030035104, 0.427744831). Obtaining that (α, β) =
(− 0.34661948,0.20483097) and s = 0.14178851 > 0 with Φ =

0.22475 > 0, the requirements in Definition 1 for Shilnikov theorem are
satisfied. Given that ε1 = − 0.084125, ε2 = 0.00341, ε3 = 0.375 and
(d, g) = (1.75,0.1096947638) the numerical computation of the chaotic
attractor is obtained in Fig. 2.

The dynamics of the economy along the spiraling structure of the
chaotic attractor reveals periods of irregular oscillatory activity as the
phase dynamics start to move away from the saddle-focus point, as
confirmed by the computation of the associated Lyapunov exponent
(l = 0.00141652182839505), where the positive result demonstrates
the divergence of the equilibrium trajectories from the implied steady
state, indicating an unstable dynamical system with chaotic behavior.5

The economic implication of this result leads us to conclude that a small
change in the initial conditions in the degree of incoming migrants in
presence of a chaotic attractor can cause a considerable change in the
model dynamics over time.

This behavior is clearly outlined in Fig. 3, where we simulate the
equilibrium trajectories by imposing different initial degrees of migra-
tion, m(0), and prove that the chaotic attractor is robust to small vari-
ations in the bifurcation parameter. The experiment reveals that, in
response to a change in the value of ϱ within the interval (0.034,0.048),
solution trajectories initialized at different values ofm begin to exhibit a
different oscillating behavior, which remains confined in a bounded
attracting region off the steady state level m∗ = 0.427744831 found in
Example 1.6

Therefore, we confirm that economies that start with the same set of
initial conditions can follow completely different paths to achieve a
common long-term equilibrium level. Moreover, given the initial value
of our non-predetermined variable within the obtained chaotic attrac-
tor, a continuum of initial values of the jump variables emerges giving
rise to a pattern of unpredictable admissible equilibria, which implies
global indeterminacy of the equilibrium. This is clarified in Fig. 4, which
presents the time profile of the migration rate, m, along the Shilnikov
chaotic scenario.

The waves generated by the spiral attractor clearly exhibit periods in
which the migration ratio lowers when approaching the equilibrium
point through the stable arm of the saddle-focus dynamics. In this case,
let us assume that the economy is stable but stagnant because of inad-
equate labor force. In contrast, bursts of oscillatory activity suddenly
follow when the economy is in a phase of growth expectations, with an
increasing need for immigrant workers to sustain the production pro-
cess, which, unfortunately, push back the dynamics on the divergent
spiral branch of the saddle-focus. Therefore, the policy actions adopted
in presence of the economic uncertainty of achieving a stable and
intended steady state, could be problematic if the economy is trapped in
a chaotic attractor.

4. A way to end the chaos

This section presents the OGY algorithm, which allows us to establish
the necessary parametric conditions to force a chaotic trajectory onto a
desired target (a periodic orbit or a steady state of the system) using a
correction mechanism, which takes the form of a small, time-dependent,

3 Note that B(J ) and Tr(J ) are increasing in ϱ, which will be the same for Φ.
4 As demonstrated by Wiggins (1991) and Freire et al. (2002), the hyper-

normal form in equation (8) is topological equivalent to S. Therefore, the
change of parameters in the transformed system is a local diffeomorphism, that
preserves the dynamics of the original system in the new ambient space.

5 We use a standard routine in R software to compute the Lyapunov
exponent.
6 We conduct this simulation using R software, to demonstrate the mutual

movement of different initial conditions of m(0) in the full range of (0, 1) for
different levels of the bifurcation parameter ϱ along the region of the chaotic
attractor.

G. Bella et al.
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perturbation of a certain control parameter of the model. We also
reference Bella andMattana (2020) for a detailed application of the OGY
setting for controlling chaos due to bubbles in the financial markets.

Recalling the bifurcating equation (6), it is easy to understand that a

convenient parameter to be tuned to change the sign of the eigenvalues
is the elasticity of substitution between labor inputs, ϱ.

We find that system stabilization is obtained by searching values of ϱ
at which the eigenvalues of the original system S exhibit the following
structure: one negative eigenvalue and two with positive real part,
which implies equilibrium stability (see Appendix 1.a). This is accom-
plished if we allow ϱ > 1, which is in contrast with Parello (2019),
where it is assumed ϱ < 1. Our choice finds support in Behar (2023),
where a new analysis and estimation procedure was constructed to
determine variations in different countries’ income levels based on the
elasticity of substitution between skilled (residents) and unskilled (im-
migrants) labor. Following a recent body of research on the topic, the
author’s assumption is motivated by the effect of technology on the
choice of labor force composition and the role of wage differences be-
tween the two cohorts of workers. The author concludes that values of
ϱ < 1 will result in a much higher reduction in inequality, whereas
values of ϱ > 1 would have a larger effect on the demand for skilled and
unskilled workers and magnify the wage differences (see, for example,
Borjas et al., 2012; Caselli & Coleman, 2006). The resulting
bias-adjusted estimates provide evidence of ϱ = 1.7 for the whole sam-
ple of countries analysed. In brief, we summarize this trajectory as fol-
lows. When native residents save more, a higher level of capital is
accumulated, which produces a need for increased labor, which may
increase the need to attract immigrants. As output grows, wages also

Fig. 1. The Shilnikov bifurcation curve.

Fig. 2. The Shilnikov chaotic attractor.

Fig. 3. Sensibility of the initial condition m(0) along the chaotic attractor.

G. Bella et al.
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grow for migrants that cost less in the labor market, and the wage dif-
ferential tends to be reduced. However, when marginal productivity of
capital lowers, this displaces native residents from the labor, who start to
save less and consume more. This lower output pushes migrants out of
the market. Marginal productivity of capital begins to increase and calls
back natives, which favors the desire for savings and investments, and
migrants at higher wage entry levels are once again needed. And the
cycle starts anew.

We can now state the following.

Definition 2. Consider an economy with a high discount factor and
low sensitivity to wage differences between natives and immigrants.
Furthermore, assume that the economy evolves within a chaotic
attractor. Then, if the elasticity of substitution between skilled (resi-
dents) and unskilled (immigrants) labor moves above unity, the econ-
omy can avoid irregular and cyclical behavior and steadily approaches
the intended long-term equilibrium.

Appendix 1.a proves this mathematically by first looking at the re-
gion of parameters that guarantee the existence of real solutions to the
cubic characteristic equation in (4). This implies a negative discriminant
D ≡ D(ϱ) < 0, which in our case occurs at the restricted range ϱ ∈ (1.1,
1.15), as shown in Fig. 5.

Then, within this region, the OGY algorithm permits to determine the
exact value of the parameter that will allow for one negative eigenvalue
and two positive real solutions, which is confirmed by the following
example.

Example 2. Let us denote a set of parameters for the emergence of a
chaotic attractor, at which system S has a saddle-focus equilibrium with
positive saddle quantity and the Shilnikov theorem is satisfied as in
Example 1. Let us select ϱ ≡ ϱ̂ = 1.1, which is derived by the algorithm
presented in Appendix 1.b to obtain the controlled system. Then D(ϱ̂) ≃
− 3.928 • 10− 9, and J has one negative eigenvalue (λ1 = −

0.2456906395) and two eigenvalues with positive real parts (λ2 =

0.02542180378,λ3 = 3.490975040).

Fig. 6 illustrates the time profile of the migration ratio in presence of
a chaotic attractor (blue curve), obtained with ϱ = 0.75 < 1 in Example
1, and the stabilized series (red curve) obtained with ϱ = 1.1 > 1 in
Example 2.

The economic interpretation of the result obtained in Example 2 is
straightforward, and implies that an increase in the wage difference
between natives and migrants produces a drop in the marginal product
of installed capital and to the associated market interest rate, which also
pushes higher consumption and less savings. This turns economic ac-
tivity downward and restores stability by pushing the unnecessary
migrant labor force out of the labor market. However, if the subsequent

fall in wages due to economic crisis pushes back in favor of a less skilled
labor force and immigration rates rise again, then the cyclical chaotic
scenario might return. However, as outlined by the red curve in Fig. 6, if
the elasticity of substitution between skilled (residents) and unskilled
(immigrants) labor is set above unity, as suggested by the OGY algo-
rithm, damping is finally minimized and the economy will avoid the
previous irregular and cyclical behavior, subsequently converging to the
steady state along a stable equilibrium trajectory.

5. Conclusions

The application of the standard Shilnikov theorem to the economy
described by Parello (2019), has proved that a chaotic attractor might
appear in the plausible settings of the model parameters. The existence
of a chaotic attracting set has different policy implications, since the
choices policy actions to achieve economic stability might be misleading
and can produce undesired and uncontrollable fluctuations depending
on the evolution of the migration ratio, which can generate a series of
complex and even seemingly stochastic behavior in transitional

Fig. 4. Time profile of the chaotic migration rate.

Fig. 5. Discriminant of the characteristic equation when ϱ > 1.

G. Bella et al.
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dynamics. This confirms why different countries that are similar in their
fundamental structure may nevertheless save, consume and perform at
extremely different growth rates.

In this regard, Fig. 1 identifies a critical surface in the parameter
space, indicating that if parameters are chosen in the region outside the
area formed by the implied bifurcation curves then convergence towards
a unique steady state can be achieved along a stable path of the equi-
librium trajectory. In contrast, if parameters fall within the narrow area
between the two curves, the dynamics around the equilibrium form a
saddle-focus that is associated with damped oscillating paths that pro-
duce a self-sustaining set of aperiodic cycles around the steady state.
This phenomenon is of a global nature, implying that for any given
initial condition of the immigration ratio, the economy is driven away
from the long-term steady state along the unstable manifold of the
saddle-focus and starts to fluctuate in the neighborhood of the steady
state in a perpetual oscillating pattern. Therefore, any small initial dif-
ference in the non-predetermined variable of the immigration ratio will
magnify over time, and economies that are initially close in terms of
fundamentals will begin to follow completely different equilibrium
paths. This means that policy actions intended to restore stability that
are calibrated to similar economies in terms of initial endowments may
produce completely different long-term outcomes, perhaps without ever
attaining the intended steady state and confining the economy to the
trapped region.

As commonly accepted in the literature, chaos is an especially odd
outcome that may occur in nonlinear models and is associated with a
motion of the dynamic trajectories towards the equilibrium that never
exactly repeat themselves (e.g., Boldrin et al., 2001). High sensitivity to
initial conditions makes it impossible to anticipate the future economic
outcome, since any small initial unanticipated perturbation in the initial
conditions could result in a permanent departure from the actual motion
towards the steady state. To this end, the numerical simulation pre-
sented in Fig. 2 demonstrates that equilibrium trajectories follow
different oscillating patterns at different initial degrees of immigration,
which remain confined in a bounded attracting region off the steady
state level for a given region of the bifurcation parameter within the
critical surface implied by the Shilnikov bifurcation theorem.

Finally, applying of the OGY algorithm, we demonstrate the role of
the elasticity of substitution between the two labor inputs as the
appropriate policy instrument for controlling chaos and achieving the
conditional saddle-path stability of the equilibrium. Furthermore, we
show that if the elasticity of substitution between skilled (residents) and
unskilled (immigrants) labor is set above unity, the economy will avoid
the irregular and cyclical behavior associated with Shilnikov chaos, and
will instead approach the intended steady state along a stable unique

equilibrium trajectory.
A possible evolution of the present version of the model could

attempt to reformulate the analysis introducing heterogeneous agents to
overcome possible limitations due to the representative agent setting,
try to endogenize the stochastic process migrants’ randomly-distributed
labor productivities in a nondeterministic framework, and once again
investigate the conditions to ensure the uniqueness of the equilibrium to
prevent unwanted self-fulfilling fluctuations. Even more interestingly,
future studies could consider whether the correlation of such distribu-
tions of idiosyncratic productivities can extend the interpretation of our
work in the spirit of a quantum entanglement theory by analyzing
economic system entropy amid international migration. We leave these
considerations to potential future research.
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