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0. Introduction

Given a unital commutative (not necessarily finitely generated) R–algebra A and 
a linear subspace V of A, we say that A is generated by V if there exists a set of 
generators G of A such that V is the linear span of G, i.e., V = span(G). Equivalently, 
A is generated by V if V contains a set of generators of A. This article deals with 
the moment problem for A generated by a vector space V which is endowed with a 
topology τV compatible with the addition and the scalar multiplication, namely (V, τV )
is a topological vector space. Moreover, we always assume that the character space of A, 
i.e., the set X(A) of all R–algebra homomorphisms from A to R, is non-empty and we 
always endow X(A) with the weakest (Hausdorff) topology τX(A) on X(A) such that for 
each a ∈ A the function â : X(A) → R, α �→ α(a) is continuous and consider on X(A)
the Borel σ−algebra B(τX(A)) w.r.t. τX(A). Our main question is the following.

Main Question. Let (V, τV ) be a topological vector space and A an algebra generated by 
V such that {α ∈ X(A) : α �V is τV − continuous} �= ∅. Given a linear functional L on 
A with L(1) = 1, does there exist a Radon measure ν on X(A) with support contained 
in {α ∈ X(A) : α �V is τV − continuous} such that

L(a) =
∫

X(A)

â(α)dν(α) for all a ∈ A? (0.1)

If a Radon measure ν as in (0.1) does exist, then we call ν a representing Radon 
measure for L. We recall that a Radon measure ν on X(A) is a non-negative measure 
on B(τX(A)) that is locally finite and inner regular w.r.t. compact subsets of X(A). The 
support of ν, denoted by supp(ν), is the smallest closed subset C of X(A) for which 
ν(X(A) \ C) = 0. Given K ⊆ X(A) closed, we say that ν is a K−representing measure 
for L if both (0.1) holds and supp(ν) ⊆ K.

The main difficulty is to understand how different choices of τV as well as different 
topological properties of L impact the solvability of the Main Question and the support 
of the corresponding representing measures. In this article we first focus on the case when 
τV is the topology generated by a Hilbertian seminorm (i.e., a seminorm induced by a 
symmetric positive semidefinite bilinear form) and then consider the case when (V, τV ) is 
a nuclear space, as nuclear topologies are generated by a system of Hilbertian seminorms. 
Let us stress that in this article we also cover instances when K is non-compact and even 
non-bounded (for the compact case, see [19] and references therein).

An early study of the Main Question for (V, τV ) nuclear can be found e.g. in [13], 
[2, Chapter 5, Section 2], [3], [8], [12], [24, Section 12.5 and 15.1], [1], where A is the 
symmetric (tensor) algebra S(V ) of V . This is a very natural choice as, on the one 
hand, any algebra generated by V is isomorphic to a quotient of S(V ) by an ideal and, 
on the other hand, S(V ) is isomorphic to the ring of polynomials having as variables 
the coordinate vectors with respect to a basis of V and the character space X(S(V ))
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of S(V ) can be identified with the algebraic dual V ∗ of V . In fact, in those works the 
nuclearity assumption on V allows to get the existence of representing measures with 
support contained in V ′, where V ′ is the topological dual of V . More recently, the role 
of the nuclearity assumption on V was discussed in [26, Sections 5 and 6], [10] and [15, 
Section 3] while in [16] and [17] a better localization of the support was obtained for 
a specific choice of the nuclear space, namely V = C∞

c (Rn), i.e., the space of infinitely 
differentiable functions on Rn with compact support. Note that for V = Rn, the Main
Question for A = S(V ) coincides with the classical (finite dimensional) moment problem, 
see e.g., [21], [25], [15].

Let us describe the two main results in this article.
First, when τV is the topology generated by a Hilbertian seminorm q, we derive 

in Theorem 2.5 a criterion for the existence of a representing measure with support 
contained in the characters of A whose restrictions to V are q−continuous (see also 
Remark 2.9 and Theorem 2.8). The criterion is based on the projective limit approach to 
the moment problem introduced in [18], that is, we build the representing measure for L
on A from representing measures for L restricted to finitely generated subalgebras of A. 
In fact, we prove that a representing measure for L exists if and only if for any finitely 
generated subalgebra S of A the restriction L �S is represented by a Radon measure νS
such that the family of all νS ’s is concentrated w.r.t. another q−continuous Hilbertian 
seminorm p, which has finite trace with respect to q. The concentration of a family of 
measures is a classical concept in measure theory and is crucial for us, because it ensures 
the applicability of our projective limit approach in [18] by implying a Prokhorov type 
condition.

Second, in Theorem 2.10 we show that, when A itself is endowed with a Hilbertian 
seminorm q and there exists C > 0 such that L(a2) ≤ Cq(a)2 for all a ∈ A, it is enough to 
check the conditions in our criterion only on a dense subalgebra of A to get the existence 
of a representing measure for L with support contained in the q−continuous characters 
of A (see also Theorem 2.11).

These two main results are based on two Hilbertian seminorms q and p. We investigate 
different choices of them in terms of the functional L. For example, a natural choice for 
p is the Hilbertian seminorm induced by L, i.e., sL(a) :=

√
L(a2) for all a ∈ A. For this 

choice, the concentration of the νS’s holds automatically and so we get more concrete 
sufficient conditions for the existence of a representing measure for L in Corollary 2.13
and Corollary 2.14. We then exploit in Corollary 2.16 the choice of sL to demonstrate how 
one can give sufficient conditions only in terms of L to guarantee existence of representing
measures for L �S for all finite subalgebras S. Those corollaries all reveal the fundamental 
role played by the Hilbertian seminorm q. Thus, in Section 2.3, we explore the case when 
no Hilbertian seminorm q on V is pre-given. In particular, in Corollary 2.20 we give 
conditions under which one can construct a suitable q and derive a solution for the Main
Question in this case.

Another setting in which it is always possible to obtain a suitable q is when (V, τV ) is a 
nuclear space. Therefore, in Section 2.4, we prove analogous results for the Main Question
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when A is generated by a nuclear space (V, τV ), see Corollary 2.21, Corollary 2.22 and 
Corollary 2.23. From those corollaries, some of the results in literature mentioned above 
can be retrieved.

The structure of the paper is as follows.
In Section 1, we present our general context, thereby providing definitions and no-

tations. In particular, we review the notions of Hilbertian seminorm and nuclear space 
in Subsection 1.1. In Subsection 1.2, we state and prove Lemma 1.6 (about the sup-
port localization of a Radon probability measure on a finite dimensional space with a 
Hilbertian seminorm), which we need for the proof of our first main result Theorem 2.5. 
Section 2 contains our main results, as described above. Subsection 2.1 is dedicated to 
the concept of p-concentration of a family of Radon measures for a given seminorm p, 
which is exploited in the subsequent Subsections 2.2, 2.3 and 2.4 when studying the 
Main Question for V endowed with the topology τV induced by a Hilbertian seminorm 
(respectively, a nuclear topology). In Section 3 we apply our main results to the case 
when A is the symmetric algebra S(V ) of a nuclear space (V, τV ), see Corollary 3.1 and 
Corollary 3.2. In Theorem 3.3, we consider the case when some of the sufficient condi-
tions for the existence of the representing measure for L on S(V ) are only given on a 
total subset E of the nuclear space (V, τV ). Then the nuclearity allows us to obtain a 
Hilbertian norm q on V but, in order to apply our criterion Theorem 2.10 to the dense 
sub-algebra S(span(E)), we need a Hilbertian seminorm q̃ on S(V ), which we construct 
in Lemma 3.5. We note that Theorem 3.3 is a generalization of the classical solution to 
the Main Question when A = S(V ) with (V, τV ) nuclear due to Berezansky and Kon-
dratiev. Finally, in Subsection 4.1 of Appendix 4, we explain the relation between the 
notion of trace of a Hilbertian seminorm w.r.t. another and the classical definition of 
trace of a positive continuous operator on a Hilbert space. We then compare in Subsec-
tion 4.2 the definition of nuclear space used in this article (due to Yamasaki [30]) with 
that due to Grothendieck [11] and Mityagin [22], as well as with the definitions of this 
concept given by Berezansky and Kondratiev in [2, p. 14] and by Schmüdgen in [26, 
p. 445] (this comparison is needed in Section 3). We also provide in Subsection 4.3 a 
complete proof of the measure theoretical identity (2.7), which we exploited in the proof 
of Theorem 2.10.

1. Preliminaries

In this section we collect some fundamental concepts, notations, and results which we 
will repeatedly use in the following.

Throughout this article A denotes a unital commutative R–algebra with non-empty 
character space X(A).

A subset Q ⊆ A is a quadratic module (in A) if 1 ∈ Q, Q +Q ⊆ Q, and A2Q ⊆ Q. The 
set 

∑
A2 of all finite sums of squares of elements in A is the smallest quadratic module 

in A. The non-negativity set of a quadratic module Q is defined as
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KQ := {α ∈ X(A) : â(α) ≥ 0 for all a ∈ Q} ⊆ X(A),

which is closed. Given C ⊆ X(A) closed, the set

Pos(C) := {a ∈ A : â(α) ≥ 0 for all α ∈ C}

is a quadratic module with KPos(C) = C (see, e.g. [18, Proposition 2.1-(i)]).

Throughout this article each linear functional L : A → R is assumed to be normalized, 
that is, L(1) = 1.

Given a quadratic module Q in A, we say that a linear functional L : A → R

is Q–positive if L(Q) ⊆ [0, ∞). In particular, each 
∑

A2–positive linear functional 
L : A → R satisfies the Cauchy–Bunyakovsky–Schwarz inequality, i.e.,

L(ab)2 ≤ L(a2)L(b2) for all a, b ∈ A. (1.1)

Throughout this article we consider A generated by an R–vector space V endowed 
with a locally convex topology, namely a topology induced by a family of seminorms. 
Therefore, let us recall that a function p : V → [0, ∞) is a seminorm if p(λv) = |λ| p(v)
and p(v+w) ≤ p(v) +p(w) for all λ ∈ R and all v, w ∈ V . We denote by Br(p) the closed 
semi-ball of radius r > 0 centered at the origin in (V, p), i.e., Br(p) := {v ∈ V : p(v) ≤ r}.

A linear functional l : V → R is continuous w.r.t. a seminorm p on V if there ex-
ists C > 0 such that |l(v)| ≤ Cp(v) for all v ∈ V . We denote by V ′

p the topological 
dual of (V, p), i.e., the collection of all p−continuous linear functionals on V , while 
V ∗ denotes the algebraic dual of V . The operator seminorm p′ on V ′

p is defined as 
p′(�) := supv∈B1(p) |�(v)| < ∞. The weak topology on the algebraic dual (resp., topolog-
ical dual) of (V, p) is the weakest topology on V ∗ (resp., on V ′

p) such that for each v ∈ V

the evaluation function evv : V ∗ → R (resp., V ′
p → R) is continuous.

We will often use the restriction map φV : X(A) → V ∗ defined by φV (α) = α �V , 
∀α ∈ X(A). Note that φV is continuous as X(A) is endowed with τX(A) and V ∗ with 
the weak topology.

We recall that the spectrum of a seminorm p is defined as

sp(p) := {α ∈ X(A) : α is p–continuous}.

More generally, for each C > 0 we define

spC(p) := {α ∈ X(A) : |α(a)| ≤ Cp(a), ∀a ∈ A},

which is compact in X(A), as it is closed and continuously embeds into the product ∏
a∈A[−Cp(a), Cp(a)]. Note that the spectrum sp(p) =

⋃
n∈N spn(p), which provides 

that sp(p) is σ−compact in X(A) and so Borel measurable.
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1.1. Hilbertian seminorms and nuclear spaces

Throughout this section V will denote a real vector space.

Definition 1.1. A seminorm p on V is called Hilbertian if it is induced by a symmetric 
positive semidefinite bilinear form 〈·, ·〉 on V , i.e., p(v) =

√
〈v, v〉 for all v ∈ V .

Note that a seminorm p on V is Hilbertian if and only if p fulfills the parallelogram 
law, i.e., p(v + w)2 + p(v − w)2 = 2p(v)2 + 2p(w)2 for all v, w ∈ V , in which case the 
bilinear form 〈·, ·〉p is uniquely determined by p via the polarization identity:

〈v, w〉 = 1
2
(
p(v + w)2 − p(v)2 − p(w)2

)
for all v, w ∈ V. (1.2)

For this reason, in the following we denote the positive semidefinite bilinear form inducing 
p by 〈·, ·〉p.

The term “Hilbertian seminorm”, used e.g. in [29] and [30], is also sometimes replaced 
by the term “prehilbertian seminorm” according to the Bourbaki’s tradition [7, V.4, 
Definition 3]. Both terms hint to the fact that this type of seminorms can be always used 
to construct a Hilbert space (see Remark 4.5).

Let us also observe that there always exists an Hilbertian seminorm on every non-
trivial vector space V . Indeed, if (ei)i∈I is an algebraic basis of V then for any x =∑

i∈I xiei ∈ V and y =
∑

i∈I yiei ∈ V we can define 〈x, y〉 :=
∑

i∈I xiyi. As only finitely 
many summands are unequal to zero, the sum is finite and p(x) :=

√
〈x, x〉 defines a 

Hilbertian seminorm on V .
Let us now introduce the notion of trace of a Hilbertian seminorm w.r.t. another one 

(see [7, V.58, No. 9]) which will be fundamental in the definition of a nuclear space used 
in this article. To this purpose, let us recall that given a Hilbertian seminorm p on V , a 
subset E of V is called:

• p–orthogonal if 〈e1, e2〉p = 0 for all distinct elements e1, e2 ∈ E.
• p–orthonormal if E is p–orthogonal and p(e) = 1 for all e ∈ E.

In particular, a p–orthonormal set E is said to be a complete p−orthonormal system of 
V if E is total in V , i.e., span(E)

p
= V . Such a system is also known as orthonormal 

basis of V .

Definition 1.2. Let p and q be two Hilbertian seminorms on V . The trace of p w.r.t. q is 
denoted by tr(p/q) and defined as

tr(p/q) :=

⎧⎨⎩ sup
E∈FON(q)

∑
e∈E

p(e)2, if ker(q) ⊆ ker(p)

∞, otherwise
,

where FON(q) denotes the collection of all finite q–orthonormal subsets of V .
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When there exists C > 0 such that p ≤ Cq the following characterization of the trace 
of p w.r.t. q holds (by combining Proposition 4.6 and (4.2) in Appendix 4.1):

∀E complete q−orthonormal system in V , tr(p/q) =
∑
e∈E

p(e)2. (1.3)

The following properties are immediate from the Definition 1.2.

Lemma 1.3. Let p and q be two Hilbertian seminorms on V with tr(p/q) < ∞. Then:

(i) p2 ≤ tr(p/q)q2.
(ii) ∀ε, δ > 0, tr(εp/δq) =

(
ε
δ

)2 tr(p/q).
(iii) ∀ W subspace of V, tr(p �W /q �W ) ≤ tr(p/q).

We are equipped now with all notions needed to introduce the definition of a nuclear 
space due to Yamasaki (see [30, Definition 20.1]), which we are going to adopt in this 
article.

Definition 1.4. A locally convex space (V, τ) is called nuclear if τ is induced by a directed 
family P of Hilbertian seminorms on V such that for each p ∈ P there exists q ∈ P with 
tr(p/q) < ∞.

Definition 1.4 is equivalent to the more traditional ones in [11] and [22], which we 
report in Appendix 4.2 for the convenience of the reader (see Definition 4.10 and Defi-
nition 4.11).

Note that a nuclear topology can be always constructed on every vector space V . 
However, this nuclear topology has typically no relation with a pre-given topology τV
on V . However, when (V, τV ) is a separable locally convex space with a Schauder basis, 
there exists a dense subspace U of V on which a nuclear topology stronger than τV �U
can be constructed.

1.2. Probabilities on finite dimensional Hilbertian seminormed spaces

In the following we introduce a fundamental result about the support localization of 
a Radon measure defined on the dual of a finite dimensional real vector space, namely 
Lemma 1.6, which is inspired by [29, Fundamental lemma (p. 24)] and will play a crucial 
role in the proof of our main result Theorem 2.5. For this, let us recall two properties of 
the Gaussian measure on a finite dimensional real vector space endowed with a Hilbertian 
seminorm (see [29, p. 26-28] for a proof).

Proposition 1.5. Let q be a Hilbertian seminorm on an n−dimensional R–vector space V
with ker(q) = {0} and E a complete q−orthonormal system of V . Let γ be the Gaussian 
measure on V , i.e.,
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dγ(v) := (2π)−
n
2 exp

(
−1

2q(v)
2)dλ(v),

where λ is the measure on V corresponding to the Lebesgue measure on Rn under the 
identification V → Rn, v �→ (〈v, e〉q)e∈E. Then the following properties hold

(i)
∫
〈v, w〉2qdγ(v) = 1 for all w ∈ V such that q(w) = 1.

(ii) γ({v ∈ V : |�(v)| ≥ 1}) ≥ 7−1 for all � ∈ V ′ with q′(�) ≥ 1, where q′ denotes the 
operator seminorm on V ′.

Lemma 1.6. Let p and q Hilbertian seminorms on a finite dimensional R–vector space 
such that tr(p/q) < ∞ and let μ be a probability measure on V ′.
If for every ε > 0 there exists a δε > 0 such that μ({l ∈ V ′ : |l(v)| ≥ 1}) ≤ ε for all 
v ∈ Bδε(p), then for these ε, δε we have that

μ(B1(q′)) ≥ 1 − 7(ε + tr(p/δεq)),

where q′ denotes the operator seminorm on V ′.

Proof. Let μ be a probability measure on V ′. W.l.o.g. we can assume ker(q) = {0}, 
because otherwise for each complement W of ker(q) in V we have μ–almost surely that 
B1(q′) = {l ∈ V ′ : |l(w)| ≤ q(w) ∀ w ∈ W} holds. Indeed, on the one hand, it is im-
mediate that B1(q′) = {l ∈ V ′ : q′(l) ≤ 1} = {l ∈ V ′ : |l(v)| ≤ q(v) for all v ∈ V } ⊆
{l ∈ V ′ : |l(w)| ≤ q(w) for all w ∈ W}. On the other hand, since p2 ≤ tr(p/q)q2, 
we have that ker(q) ⊆ ker(p) ⊂ Bδ(p) for all δ > 0 and so the assumption on 
μ in Lemma 1.6 ensures that μ({l ∈ V ′ : |l(v)| ≥ 1}) = 0 for all v ∈ ker(q), 
i.e., μ({l ∈ V ′ : |l(v)| = 0, ∀v ∈ ker(q)}) = 1, which immediately provides that 
μ {B1(q′) \ {l ∈ V ′ : |l(w)| ≤ q(w) for all w ∈ W}} = 0.

Consider

D := (μ× γ)({(l, v) ∈ V ′ × V : |l(v)| ≥ 1}),

where μ × γ denotes the product measure between the given measure μ on V ′ and the 
Gaussian measure γ on V . Now, let l ∈ V ′ \ B1(q′). Then Fubini’s theorem on the one 
hand, combined with Proposition 1.5-(ii), provides that

D =
∫
V ′

γ({v ∈ V : |l(v)| ≥ 1})dμ(l) ≥ 7−1μ(V ′ \B1(q′)) = 7−1 (1 − μ(B1(q′))) ,

and, on the other hand, combined with the assumption yields that

D =
∫

μ({l ∈ V ′ : |l(v)| ≥ 1})dγ(v) ≤ εγ(Bδε(p)) + γ(V \Bδε(p)). (1.4)

V
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Moreover, by [7, V, §4.8, Theorem 2], there exists a complete q−orthonormal system E
of V that is p−orthogonal. In particular, p(v)2 =

∑
e∈E

〈v, e〉2qp(e)2 holds for all v ∈ V , 

which combined with Proposition 1.5-(i) and (1.3) gives

γ(V \Bδε(p)) ≤ δε
−2
∫
V

p(v)2dγ(v) = δ−2
ε

∑
e∈E

p(e)2
∫
V

〈v, e〉2qdγ(v) = δ−2
ε tr(p/q).

The latter together with (1.4) and Lemma 1.3-(ii) provides

D ≤ ε + δ−2
ε tr(p/q) = ε + tr(p/δεq). (1.5)

Combining (1.4) and (1.5) yields the assertion. �
2. Main results

In this section we are going to present our main results concerning the Main Question
for a unital commutative real algebra A generated by a vector space V first endowed with 
a Hilbertian seminorm q and then with a nuclear topology. More precisely, in Subsection 
2.2 we first establish a criterion for the existence of a representing measure with support 
contained in the set of characters of A whose restrictions to V are q−continuous (see 
Theorem 2.5 and Remark 2.9, as well as Theorem 2.8). When the seminorm q is defined 
on the full algebra A, i.e., A = V , this result provides in particular a criterion for the 
existence of a representing measure on the Gelfand spectrum of q. We actually show 
that when L(a2) ≤ Cq(a)2 for all a ∈ A for some C > 0 then it is enough to check 
the latter criterion just on a dense subalgebra of A (see Theorem 2.10). Moreover, in 
Lemma 2.18 we provide an explicit bound on L which guarantees the existence of a 
Hilbertian seminorm q on A satisfying our criteria.

Exploiting our general criteria, in Corollary 2.16, we identify more concrete sufficient 
conditions on L and q for the existence of such a representing measure for L. Those 
allow us to clarify in Subsection 2.4 the relation between the solvability of the Main
Question and the presence of a nuclear topology on V . Our general criteria are based 
on the projective limit approach introduced in [18] which allows to reduce the Main
Question to a family of finite-dimensional moment problems whose solutions satisfy a 
concentration condition to which we dedicate Subsection 2.1.

2.1. The concentration condition

Let A be a unital commutative R-algebra generated by a linear subspace V ⊆ A such 
that X(A) �= ∅, and L a normalized linear functional on A.

As already mentioned, in proving our main results for the Main Question we will 
exploit the projective limit approach we developed in [18]. This is based on the construc-
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tion of (X(A), τX(A)) together with the maps {πS : S ∈ J} as the projective limit of the 
projective system of Hausdorff spaces {(X(S), τX(S)), πS,T , J}, where

J := {〈W 〉 : W finite dimensional subspace of V }

is ordered by inclusion, 〈W 〉 denotes the subalgebra of A generated by W , τX(S) is the 
weak topology on X(S), for any S, T subalgebras of A with S ⊆ T the map πS,T :
X(T ) → X(S) is the natural restriction and πS := πS,A. The corresponding projective 
system of measurable spaces is given by {(X(S), B(τX(S))), πS,T , J}, where B(τX(S)) is 
the Borel σ−algebra w.r.t. τX(S). Recall that this means that πS,T is measurable for all 
S ⊆ T in J and that πS,T ◦ πT,R = πS,R for all S ⊆ T ⊆ R in J . Note that replacing 
in the above construction J by a cofinal subset J ′ of J , i.e., for every i ∈ J there exists 
some j ∈ J ′ such that j ≥ i, does not change the projective limit (see e.g. [6, III., §7.2, 
Proposition 3], [18, Proposition 1.3].)

Roughly speaking, in [18], we establish that there exists a representing Radon measure 
for L on A supported in (X(A), B(τX(A))) if and only if for each S ∈ J there exists a 
representing Radon measure νS supported in (X(S), B(τX(S))) such that {νS : S ∈ J}
fulfills the so-called Prokhorov condition. In the next subsection we will exploit this result 
when studying the Main Question for V endowed with the topology τV induced by a 
Hilbertian seminorm and we will exploit the given topological structure on V to prove 
that the Prokhorov condition (see [18, Section 1.2] and references therein) is satisfied 
whenever {νS : S ∈ J} fulfills the following concentration property.

Definition 2.1. Given a seminorm p on V and for each S ∈ J a Radon measure νS on 
(X(S), B(τX(S))), we say that {νS : S ∈ J} is p−concentrated (or concentrated w.r.t. p) 
if

∀ε > 0 ∃δ > 0: ∀S ∈ J,∀a ∈ Bδ(p) ∩ S, νS({α ∈ X(S) : |α(a)| ≥ 1}) ≤ ε. (2.1)

This definition is an adaptation to our setting of the notion of continuity for cylindrical 
measures introduced in [9, 16, Chapter IV, Section 1.4]. It also easily relates to the notion 
of concentrations of cylindrical measures in [27, Definition 1, p.192]. In fact, (2.1) is 
weaker than assuming that the cylindrical quasi-measure associated to {νS : S ∈ J}
is cylindrically concentrated on {spC(p) : C > 0}, namely ∀ε > 0 ∃δ > 0: ∀S ∈ J , 
νS(πS(spδ(p))) ≥ 1 − ε.

Let us now provide a useful characterization of the p−concentration of a collection of 
Radon measures.

Proposition 2.2. Given a seminorm p on V and for each S ∈ J a Radon measure νS
on (X(S), B(τX(S))), we have that {νS : S ∈ J} is p−concentrated if and only if the 
following holds
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∀ε > 0 ∃γ > 0: ∀S ∈ J,∀a ∈ S ∩ V, νS({α ∈ X(S) : |α(a)| ≤ γp(a)}) ≥ 1 − ε. (2.2)

Proof. Suppose (2.1) holds and fix ε > 0. Taking 0 < δ′ < δ with δ as in (2.1), we have 
that (2.2) holds for γ = 1

δ′ . In fact, for any S ∈ J , let b ∈ S ∩ V and distinguish the 
following two cases.

• If p(b) �= 0, then δ′b
p(b) ∈ Bδ(p) ∩ S and so (2.1) provides that νS({α ∈ X(S) : |α(b)| ≥

p(b)
δ }) ≤ ε, which implies νS({α ∈ X(S) : |α(b)| ≤ p(b)

δ′ }) ≥ 1 − ε.
• If p(b) = 0, then clearly span(b) ⊆ Bδ(p) ∩ V ∩ S and so (2.1) gives that 

∀λ > 0, ∀a ∈ span(b), νS ({α ∈ X(S) : |α(a)| ≥ 1}) ≤ λ, i.e., ∀a ∈ span(b), 
νS ({α ∈ X(S) : |α(a)| < 1}) = 1. Then

∀r > 0, νS

({
α ∈ X(S) : |α(b)| < 1

r

})
= 1,

and so we get νS({α ∈ X(S) : |α(b)| = 0}) = 1, which in particular gives that 
νS({α ∈ X(S) : |α(b)| ≤ p(b)

δ′ }) = 1 ≥ 1 − ε.

Conversely, suppose (2.2) holds and fix ε > 0. Taking γ as in (2.2), we have that (2.1)
holds for δ ≤ 1

γ . In fact, for any S ∈ J , let b ∈ Bδ(p) ∩ S and distinguish the following 
two cases.

• If p(b) �= 0, then (2.2) provides that νS({α ∈ X(S) : |α(b)| ≤ γp(b)}) ≥ 1 − ε which 
implies νS({α ∈ X(S) : |α(b)| < 1}) ≥ 1 − ε.

• If p(b) = 0, then (2.2) provides that νS({α ∈ X(S) : |α(b)| = 0}) ≥ 1 − ε, i.e., 
νS({α ∈ X(S) : |α(b)| > 0}) ≤ ε, which implies νS({α ∈ X(S) : |α(b)| ≥ 1}) ≤ ε. �

Remark 2.3. If ν is a Radon measure on X(A) s.t. {πS#ν : S ∈ J} is p−concentrated, 
then

ν({α ∈ X(A) : |α(b)| = 0 ∀b ∈ ker(p)}) = 1, (2.3)

where πS#ν denotes the pushforward measure of ν w.r.t. πS . Indeed, using the same 
argument as in the proof of Proposition 2.2, we can show that ∀b ∈ ker(p), ν({α ∈
X(A) : |α(b)| = 0}) = π〈b〉#ν({α ∈ X(〈b〉) : |α(b)| = 0}) = 1. This together with the 
fact that {α ∈ X(A) : |α(b)| = 0} is a closed subset of X(A) and ν a Radon measure 
yields (2.3) by [27, Part I, Chapter I, 6.(a)].

Let us establish now a sufficient condition for the p−concentration of a collection of 
representing measures, which we will often exploit in the rest of the article.
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Lemma 2.4. Let A be an algebra generated by a linear subspace V , p a seminorm on V
and L a normalized linear functional on A. If for each S ∈ J there exists a representing 
measure νS for L �S and

∃ C > 0 : L(a2) ≤ Cp(a)2 for all a ∈ V (2.4)

holds, then {νS : S ∈ J} is p−concentrated.

Proof. Let ε > 0 and take δ :=
√

ε
C . Then for all a ∈ Bδ(p) ∩ S

νS({α ∈ X(S) : |α(a)| ≥ 1}) ≤
∫

X(S)

â2dνS = L(a2) ≤ Cp(a)2 ≤ Cδ2 ≤ ε

i.e., {νS : S ∈ J} fulfills (2.1). �
With a similar proof Lemma 2.4 holds with (2.4) replaced by the following condition:

∀ε > 0 ∃ C > 0 : L(a2) ≤ Cp(a)2 + ε for all a ∈ V. (2.5)

2.2. The case when τV generated by a Hilbertian seminorm

Theorem 2.5. Let A be an algebra generated by a linear subspace V ⊆ A, q a Hilbertian 
seminorm on V such that {α ∈ X(A) : α �V is q–continuous} �= ∅ and J := {〈W 〉 :
W finite dimensional subspace of V }. Let L be a normalized linear functional on A.

There exists a representing Radon measure ν for L with support contained in {α ∈
X(A) : α �V is q–continuous} if and only if there exists a Hilbertian seminorm p on V
with tr(p/q) < ∞ and for each S ∈ J there exists a representing Radon measure νS for 
L �S with support contained in X(S) and such that {νS : S ∈ J} is p−concentrated.

Proof. For each S ∈ J , let νS be a representing Radon measure for L �S with support 
contained in X(S) and p be a Hilbertian seminorm p on V with tr(p/q) < ∞ such that 
{νS : S ∈ J} is p−concentrated. Let us first show that the family {νS : S ∈ J} fulfills the 
so-called Prokhorov condition by means of the characterization in [18, Proposition 1.18], 
that is, we aim to show that for all ε > 0 and for all S ∈ J , there exists K(S) ⊆ X(S)
compact such that νS(K(S)) ≥ 1 − ε and πS,T (K(T )) ⊆ K(S) for all T ∈ J with S ⊆ T .

For any ε > 0, since {νS : S ∈ J} is p−concentrated and tr(p/q) < ∞, we can take 
δε > 0 as in (2.1) and set rε := (δε

√
ε)−1

√
tr(p/q) q. For each S ∈ J , define K(S) :=

{α ∈ X(S) : |α(v)| ≤ rε(v) for all v ∈ S ∩ V }. Then K(S) is compact in X(S) as it is 
closed and embeds into the compact product 

∏
v∈S∩V [−rε(v), rε(v)] via the continuous 

map α �→ (α(v))v∈S∩V . Now for any S ⊆ T in J the inclusion πS,T (K(T )) ⊆ K(S) holds 
by definition and for each S ∈ J the estimate νS(K(S)) ≥ 1 − 14ε holds by Lemma 2.6
below. Hence, the family {νS : S ∈ J} fulfills Prokhorov’s condition and so we can 
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apply [18, Theorem 3.9-(ii)], which guaranteed the existence of a representing Radon 
measure ν for L with support contained in X(A). It remains to show that the support 
of ν is contained in {α ∈ X(A) : α �V is q–continuous}. For this, set φV : X(A) →
V ∗, α �→ α �V and

Kε := {α ∈ X(A) : |α(v)| ≤ rε(v) for all v ∈ V } =
⋂
S∈J

π−1
S (K(S)).

Then [5, Propositions 7.2.2-(i) and 7.2.5-(iii)] and Lemma 2.6 imply that

ν(Kε) = lim
S∈J

νS(K(S)) ≥ 1 − 14ε.

Since Kε ⊆ φV
−1(V ′

rε) = φV
−1(V ′

q ) for all ε > 0 this yields that ν(φV
−1(V ′

q )) = 1, i.e., 
ν has support contained in φV

−1(V ′
q ) = {α ∈ X(A) : α�V is q–continuous}.

Conversely, let ν be a representing Radon measure for L with support contained in 
{α ∈ X(A) : α�V is q–continuous}. Then, for each S ∈ J , the push-forward νS := πS#ν

is a representing Radon measure for L �S with support contained in X(S). For each 
n ∈ N, set Kn := φV

−1(Bn(q′)) and define

p(v)2 :=
∞∑

n=1

1
n4

∫
Kn

v̂2dν for all v ∈ V. (2.6)

It is easy to verify that p defines a Hilbertian seminorm on V . Then for each E ∈ FON(q)
we have that

∑
e∈E

p(e)2 (2.6)=
∞∑

n=1

1
n4

∫
Kn

∑
e∈E

ê2dν
Lemma 2.7

≤
∞∑

n=1

1
n4

∫
Kn

n2dν ≤
∞∑

n=1

1
n2 < 2,

that is, tr(p/q) ≤ 2 < ∞. To show that {νS : S ∈ J} is p−concentrated, let ε > 0
and take n ∈ N such that ν(X(A) \ Kn) ≤ 2−1ε. Then there exists δ > 0 such that 
n4δ2 ≤ 2−1ε and so, for each S ∈ J and each v ∈ Bδ(p) ∩ S, we obtain that

νS({α ∈ X(S) : |α(v)| ≥ 1}) ≤ ν({α ∈ X(A) : |α(v)| ≥ 1} ∩Kn) + ν(X(A) \Kn)

≤
∫
Kn

v̂2dνS + 2−1ε ≤ n4p(v)2 + 2−1ε ≤ ε,

i.e., (2.1) holds. �
Lemma 2.6. For each S ∈ J , the estimate νS(K(S)) ≥ 1 − 14ε holds.

Proof. Let S ∈ J and I := {W ⊆ S ∩ V : W finite dimensional subspace of S ∩ V }. 
Let W ∈ I and consider the continuous restriction map φW : X(S) → W ′. Then the 
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push-forward μ′
W := φW #νS is a probability measure on W ′ satisfying the following 

inequality for the ε and δε as in the first part of the proof of Theorem 2.5:

μ′
W ({l ∈ W ′ : |l(w)| ≥ 1}) = νS({α ∈ X(S) : |α(w)| ≥ 1}) ≤ ε

for all w ∈ Bδε(p �W ). Hence, the assumption of Lemma 1.6 holds for these ε and δε and 
thus,

νS(φW
−1(B1(rε �′W ))) = μ′

W (B1(rε �′W ))) ≥ 1 − 7(ε + tr(p�W /δεrε �W )) = 1 − 14ε

as tr(p �W /δεrε �W ) ≤ tr(p/δεrε) and, by Lemma 1.3-((ii)), tr(p/δεrε) ≤ ε.
Since K(S) =

⋂
W∈I φW

−1(B1(rε �W ′)) by definition, [5, Propositions 7.2.2-(i) 
and 7.2.5-(iii)] imply that νS(K(S)) = limW∈I νS(φW

−1(B1(rε �W ′))) ≥ 1 − 14ε. �
Lemma 2.7. Let n ∈ N and E ∈ FON(q). Then 

∑
e∈E

ê(α) ≤ n2 for all α ∈ Kn.

Proof. Let α ∈ Kn and set H := span(E) (for convenience, set α = α �H and q =
q �H). Since E ∈ FON(q) is finite, the space (H, q) is Hilbertian and E is a complete 
q−orthonormal system. In particular, α �H∈ Bn(q �′H) and by the Riesz representation 
theorem there exists a ∈ H such that α(x) = 〈x, a〉q for all x ∈ H and q(a) = q′(α) ≤ n. 
Therefore, ∑

e∈E

ê(α)2 =
∑
e∈E

α(e)2 =
∑
e∈E

〈e, a〉2q = q(a)2 ≤ n2

yields the assertion. �
Using exactly the same proof scheme but exploiting [18, Corollary 3.11-(ii)] instead 

of [18, Theorem 3.9-(ii)], it is easy to obtain the following more general version of The-
orem 2.5 including the localization of the support of the representing measure.

Theorem 2.8. Let A be an algebra generated by a linear subspace V ⊆ A, K ⊆ X(A)
closed, q a Hilbertian seminorm on V such that {α ∈ K : α �V is q–continuous} �= ∅
and J := {〈W 〉 : W finite dimensional subspace of V }. Let L be a normalized linear 
functional on A and Q a quadratic module such that K = KQ.

There exists a representing Radon measure ν for L with support contained in {α ∈
K : α�V is q–continuous} if and only if there exists a Hilbertian seminorm p on V with 
tr(p/q) < ∞ and for each S ∈ J there exists a representing Radon measure νS for L �S
with support contained in KQ∩S and such that {νS : S ∈ J} is p−concentrated.

Remark 2.9.

(1) If in Theorem 2.5 (resp. Theorem 2.8) we assume for each S ∈ J the uniqueness of the 
representing measure for L �S with support contained in X(S) (resp. in KQ∩S), then 
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by [18, Remark 3.12-(ii)] we get the uniqueness of the corresponding representing 
measure for L.

(2) If in Theorem 2.5 (resp. Theorem 2.8) we take V = A, we obtain a criterion for the 
existence of a representing measure for L with support contained in sp(q) (resp. on 
KQ ∩ sp(q)).

(3) Combining Theorem 2.5 (resp. Theorem 2.8) and Remark 2.3, it is easy to see that 
if there exists a representing measure for L with support contained in {α ∈ X(A) :
α �V is q−continuous} then L vanishes on ker(p) and so on ker(q).

When A is endowed with a Hilbertian seminorm q and there exists C > 0 such that 
L(a2) ≤ Cq(a)2 for all a ∈ A, we can characterize the representing measures for L with 
support contained in sp(q) only through conditions on a dense subalgebra of A.

Theorem 2.10. Let A be an algebra, q a Hilbertian seminorm on A with sp(q) �= ∅, 
B a subalgebra of A which is dense in (A, q) and I := {〈W 〉 : W finite dimensional
subspace of B}. Let L be a normalized linear functional on A for which there exists 
C > 0 such that L(a2) ≤ Cq(a)2 for all a ∈ A.

There exists a representing Radon measure ν for L with support contained in sp(q) if 
and only if there exists a Hilbertian seminorm p on B with tr(p/q �B) < ∞ and for each 
S ∈ I there exists a representing Radon measure νS for L �S with support contained in 
X(S) such that {νS : S ∈ I} is p−concentrated.

Proof. By the density of B in (A, q), there is a one-to-one correspondence between the 
set of all q−continuous characters of A and the set of all q−continuous characters of B, 
which will therefore both denote simply by sp(q). Moreover, let τsp(q)A (resp. τsp(q)B ) 
be the weakest topology on sp(q) which makes â : sp(q) → R, α �→ α(a) continuous for 
all a ∈ A (resp. for all a ∈ B) and by B(τsp(q)A) (resp. B(τsp(q)B )) the associated Borel 
σ-algebra. We refer to Appendix 4.3 for the proof that

B(τsp(q)A) = B(τsp(q)B ), (2.7)

and so we will not distinguish between the measurable spaces (sp(q), B(τsp(q)A)) and 
(sp(q), B(τsp(q)B )), which will be both simply denoted by (sp(q), B(τsp(q))).

Suppose that there exists a representing Radon measure ν for L with support con-
tained in sp(q). Then, applying Theorem 2.5 for V = A = B, we get that there exists 
a Hilbertian seminorm p on B with tr(p/q) < ∞ and for each S ∈ I there exists a 
representing Radon measure νS for L �S with support contained in X(S) such that 
{νS : S ∈ I} is p−concentrated.

Conversely, suppose there exists a Hilbertian seminorm p on B with tr(p/q) < ∞
and for each S ∈ I there exists a representing Radon measure νS for L �S with support 
contained in X(S) such that {νS : S ∈ I} is p−concentrated. Then, applying Theorem 2.5
for V = A = B (see also Remark 2.9-(2)), we obtain that there exists a representing 
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measure ν for L �B with support contained in sp(q). We aim to prove that ν is actually a 
representing measure for L, so it remains to show that L(a) =

∫
â(α)dν(α), ∀a ∈ A \B.

Let a ∈ A \ B. By the density of B in (A, q), there exists a sequence (bn)n∈N ⊆ B

such that q(bn − a) → 0 as n → ∞. Hence, for any α ∈ sp(q) we get α(bn) → α(a) as 
n → ∞, i.e., limn→∞ b̂n(α) = â(α). Then, using Fatou’s lemma, we obtain that∫

sp(q)

â(α)2dν =
∫

sp(q)

lim
n→∞

b̂n(α)2dν ≤ lim inf
n→∞

∫
sp(q)

b̂n(α)2dν = lim inf
n→∞

L(b2n) = L(a2),

where in the last equality we used the Cauchy–Bunyakovsky–Schwarz inequality and the 
existence of C > 0 such that L(a2) ≤ Cq(a)2 for all a ∈ A. Hence, â ∈ L2(sp(q), B(τsp(q)))
and so â ∈ L1(sp(q), B(τsp(q))).

Then for any M > 0 we have that∫
sp(q)

|â(α) − b̂n(α)|dν(α) ≤
∫

sp(q)

∣∣∣â(α)1{β:|â(β)|≤M}(α) − b̂n(α)1{β:|b̂n(β)|≤M}(α)
∣∣∣ dν(α)

+
∫

sp(q)

∣∣â(α)1{β:|â(β)|≤M}(α) − â(α)
∣∣ dν(α)

+
∫

sp(q)

∣∣∣b̂n(α)1{β:|b̂n(β)|≤M}(α) − b̂n(α)
∣∣∣ dν(α)

=
∫

sp(q)

∣∣∣â(α)1{β:|â(β)|≤M}(α) − b̂n(α)1{β:|b̂n(β)|≤M}(α)
∣∣∣ dν(α)

+
∫

sp(q)

|â(α)|1{β:|â(β)|>M}(α)dν(α)

+
∫

sp(q)

∣∣∣b̂n(α)
∣∣∣1{β:|b̂n(β)|>M}(α)dν(α) (2.8)

Using that 1{β:|b̂n(β)|>M}(α) ≤ 1
M |b̂n(α)| and that ν is a representing measure for 

L �B , we easily see that:∫
sp(q)

∣∣∣b̂n(α)
∣∣∣1{β:|b̂n(β)|>M}(α) ≤ 1

M

∫
sp(q)

b̂n(α)2dν(α) = L(b2n)
M

→ L(a2)
M

, as n → ∞.

Therefore, passing to the limit for n → ∞ in (2.8), we get that for any M > 0:

lim
n→∞

∫
|â(α) − b̂n(α)|dν(α) ≤

∫
|â(α)|1{β:|â(β)|>M}(α)dν(α) + L(a2)

M
(2.9)
sp(q) sp(q)
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Since â ∈ L1(sp(q), B(τsp(q))) and |â(α)|1{β:|â(β)|>M}(α) ≤ |â(α)| for all M > 0, we 
can apply the dominated convergence theorem, which ensures that:

lim
M→∞

∫
sp(q)

|â(α)|1{β:|â(β)|>M}(α)dν(α) =
∫

sp(q)

lim
M→∞

|â(α)|1{β:|â(β)|>M}(α)dν(α) = 0

Hence, passing to the limit for M → ∞ in (2.9), we obtain that:

lim
n→∞

∫
sp(q)

|â(α) − b̂n(α)|dν(α) = 0

and so

L(a) = lim
n→∞

L(bn) = lim
n→∞

∫
sp(q)

b̂n(α)dν(α) =
∫

sp(q)

â(α)dν(α). �

With a similar proof, it is possible to show the following more general version of 
Theorem 2.10.

Theorem 2.11. Let A be an algebra, K ⊆ X(A) closed, q a Hilbertian seminorm on A
with sp(q) ∩ K �= ∅, B a subalgebra of A which is dense in (A, q) and I := {〈W 〉 :
W finite dimensional subspace of B}. Let L be a normalized linear functional on A for 
which there exists C > 0 such that L(a2) ≤ Cq(a)2 for all a ∈ A and Q a quadratic 
module such that K = KQ.

There exists a representing Radon measure ν for L with support contained in sp(q) ∩K
if and only if there exists a Hilbertian seminorm p on B with tr(p/q) < ∞ and for each 
S ∈ I there exists a representing Radon measure νS for L �S with support contained in 
KQ∩S such that {νS : S ∈ I} is p−concentrated.

Remark 2.12. All the results in this subsection also hold if the index set J (respectively I) 
is replaced by a cofinal subset of it as the correspondent projective limit does not change 
(see e.g. [6, III., §7.2, Proposition 3], [18, Proposition 1.3].)

2.3. A natural choice of a Hilbertian seminorm on A

Given a normalized 
∑

A2–positive linear functional L, the map (a, b) �→ L(ab) de-
fines a symmetric positive semidefinite bilinear form and so the following is a natural 
Hilbertian seminorm on A

sL(a) :=
√
L(a2) for all a ∈ A. (2.10)

Then, combining Lemma 2.4 with our main results Theorem 2.8 and Theorem 2.11, we 
easily obtain the following two results.
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Corollary 2.13. Let A be an algebra generated by a linear subspace V ⊆ A, K ⊆ X(A)
closed and J := {〈W 〉 : W finite dimensional subspace of V }. Let L be a normalized ∑

A2–positive linear functional L on A and Q a quadratic module such that K = KQ.
If there exists a Hilbertian seminorm q on V such that tr(sL �V /q) < ∞ and {α ∈

K : α �V is q–continuous} �= ∅ and for each S ∈ J there exists a representing Radon 
measure νS for L �S with support contained in KQ∩S, then there exists a representing 
measure for L with support contained in {α ∈ K : α�V is q–continuous}.

Proof. Since L(a2) = sL(a)2 for all a ∈ V , (2.4) holds for p = sL and C = 1. Hence, 
Lemma 2.4 ensures that {νS : S ∈ I} is sL−concentrated. This together with the 
assumption tr(sL �V /q) < ∞ allows us to apply Theorem 2.8 for p = sL, ensur-
ing that there exists a representing Radon measure ν for L with support contained in 
{α ∈ K : α�V is q–continuous}. �
Corollary 2.14. Let (A, τ) be a locally convex topological algebra, B a sub-algebra of A
which is dense in (A, τ) and I := {〈W 〉 : W finite dimensional subspace of B}. Let L be 
a normalized 

∑
A2–positive linear functional on A and Q a quadratic module such that 

K = KQ.
If there exists a τ−continuous Hilbertian seminorm q on A with tr(sL/q) < ∞ and 

sp(q) ∩ K �= ∅ and if for each S ∈ I there exists a representing Radon measure νS for 
L �S with support contained in KQ∩S, then there exists a representing measure for L with 
support contained in sp(q) ∩K.

Proof. The τ–continuity of q and the density of B in (A, τ) provide that B is dense 
in (A, q). Moreover, since L(a2) = sL(a)2 for all a ∈ A, (2.4) holds for p = sL, C =
1 and V = A, so Lemma 2.4 ensures that {νS : S ∈ I} is sL−concentrated. Then, 
by Theorem 2.11, there exists a representing measure for L with support contained in 
sp(q) ∩K. �
Remark 2.15. In Corollary 2.13 and Corollary 2.14 we could actually replace A with 
A/ ker(sL), because it is readily seen from the Cauchy-Schwartz inequality that L van-
ishes on ker(sL). Moreover, we have that V/ ker(sL �V ) = V/(ker(sL) ∩ V ) = V/ ker(sL)
and, whenever tr(sL �V /q) < ∞ for some Hilbertian norm q, the space V/ ker(sL) en-
dowed with the quotient seminorm induced by sL (and also denoted by sL with a slight 
abuse of notation) is separable. Hence, whenever these techniques work, (V, sL �V ) is 
essentially a separable space.

Let us now exploit Corollary 2.13 to obtain more concrete sufficient conditions for the 
existence of a representing measure for L in presence of a fixed Hilbertian seminorm q
on A.
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Corollary 2.16. Let A be an algebra generated by a linear subspace V ⊆ A, L a normalized 
linear functional on A, Q a quadratic module in A and q a Hilbertian seminorm on A
with {α ∈ KQ : α�V is q–continuous} �= ∅. If

(a) L(Q) ⊆ [0, ∞),
(b) for each v ∈ V , 

∞∑
n=1

1
2n√L(v2n) = ∞,

(c) tr(sL �V /q) < ∞,

then there exists a unique representing Radon measure ν for L with support contained in 
{α ∈ KQ : α�V is q–continuous}.

Proof. Let J := {〈W 〉 : W finite dimensional subspace of V }. By [18, Theorem 3.17-
(i)], the assumptions (a) and (b) guarantee that for each S ∈ J there exists a unique 
representing Radon measure νS for L �S with support contained in KQ∩S. This together 
with the assumption (c) allows us to apply Corollary 2.13, ensuring that there exists 
unique representing Radon measure ν for L with support contained in {α ∈ KQ : α �V
is q–continuous}. �
Remark 2.17. Corollary 2.16 still holds if we replace the assumptions (a) and (b) with 
the assumption (a’) L(Pos(KQ)) ⊆ [0, +∞) and in the proof we use [18, Theorem 3.14]
instead of [18, Theorem 3.17]. However, under this replacement, the uniqueness is not 
anymore ensured.

The following lemma provides an explicit construction of a Hilbertian seminorm q as 
required in Corollary 2.13 and so in Corollary 2.16.

Lemma 2.18. Let A be an algebra generated by a linear subspace V ⊆ A and p a Hilbertian 
seminorm on V such that there exists a complete p−orthonormal system {en : n ∈ N}
in V . Choose (λn)n∈N ⊆ R>0 such that 

∑∞
n=1 λ

2
n < ∞. Then

q(v) :=

√√√√ ∞∑
n=1

λ−2
n 〈v, en〉2p, ∀v ∈ V

defines a Hilbertian seminorm on U :=
{
v ∈ V :

∞∑
n=1

λ−2
n 〈v, en〉2p < ∞

}
such that 

tr(p �U /q) < ∞ and U is dense in (V, p).

Proof. For each a, b ∈ U , let us define 〈a, b〉q :=
∞∑

n=1
λ−2
n 〈a, en〉p〈b, en〉p (note that the 

Cauchy-Schwartz inequality provides that 〈a, b〉q < ∞, since 〈v, v〉q < ∞ for all v ∈ U

by the definition of U). Then 〈·, ·〉q is a symmetric positive semidefinite bilinear form on 
U × U and thus, q(v) =

√
〈v, v〉q for all v ∈ U defines a Hilbertian seminorm on U .
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As {en : n ∈ N} is a complete p−orthonormal system in V , we have that Parseval’s 
equality holds and so

∀ v ∈ U, p(v)2 =
∞∑

n=1
〈v, en〉2p =

∞∑
n=1

λ2
nλ

−2
n 〈v, en〉2p ≤

(
sup
n∈N

λ2
n

)
q(v)2,

i.e., ∀v ∈ U , p(v) ≤ Cq(v) where C := supn∈N λ2
n is finite because of the assumption ∑∞

n=1 λ
2
n < ∞.

Moreover, since for all i, j ∈ N we have

〈λiei, λjej〉q =
∞∑

n=1
λ−2
n 〈λiei, en〉p〈λjej , en〉p =

∞∑
n=1

λ−2
n (λiδi,n)(λjδj,n) = δi,j ,

the set {λnen : n ∈ N} is q−orthonormal. Moreover, for all v ∈ U and all n ∈ N we have 
that 〈v, λnen〉q = λ−1

n 〈v, en〉p and so

∀ v ∈ U, 〈v, v〉2q =
∞∑

n=1
λ−2
n 〈v, en〉2p =

∞∑
n=1

〈v, λnen〉2q,

i.e., Parseval’s equality is satisfied, which is equivalent to say that {λnen : n ∈ N} is 
a complete q−orthonormal system in U by [7, Chapter 5, §2.3, Proposition 5]. Hence, 
using (1.3), we get that

tr(p �U /q) =
∞∑

n=1
p(λnen)2 =

∞∑
n=1

λ2
np(en)2 =

∞∑
n=1

λ2
n < ∞ (2.11)

As U contains {en : n ∈ N}, we get that U is dense in V . �
Remark 2.19.

(i) If (V, p) is Hausdorff and contains a countable total subset, then the existence of a 
complete p−orthonormal system in V is guaranteed by [7, Chapter 5, §2.4, Corollary 
p. V.24]. In particular, such a system exists when (V, p) is Hausdorff and separable.

(ii) If {fn : n ∈ N} is another complete p−orthonormal system in V , then we get 
that 

∑∞
n=1 λ

−2
n 〈v, fn〉2p < ∞ for all v ∈ TU where T is the linear operator 

T : V → V given by en �→ fn for all n ∈ N. Indeed, since T maps a complete 
p−orthonormal system to another complete p−orthonormal system, T is orthogo-
nal and so for all v ∈ U we get that 

∑∞
n=1 λ

−2
n 〈Tv, fn〉2p =

∑∞
n=1 λ

−2
n 〈Tv, Ten〉2p =∑∞

n=1 λ
−2
n 〈v, en〉2p < ∞.

(iii) Iterating the construction in Lemma 2.18, we can show that there exists a dense 
subset U of (V, p) such that U can be equipped with a nuclear topology stronger 
than the one inherited from p.
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Combining Lemma 2.18 with Corollary 2.13, we obtain the following corollary.

Corollary 2.20. Let A be an algebra generated by a linear subspace V ⊆ A and L a 
normalized 

∑
A2–positive linear functional on A such that there exists a complete sL−or-

thonormal system {en : n ∈ N} in V . Choose U and q as in Lemma 2.18, and set 
J(U) := {〈W 〉 : W finite dimensional subspace of U}.

If {α ∈ X(A) : α �U is sL–continuous} �= ∅ and for each S ∈ J(U) there exists a 
representing Radon measure νS for L �S, then there exists a representing measure for 
L �〈U〉 with support contained in {α ∈ X(〈U〉) : α�U is q–continuous}.

Proof. The assumptions ensure that we can apply Lemma 2.18 to (V, sL �V ), which 
provides a Hilbertian seminorm q on a dense subset U of (V, sL �V ) such that 
tr(sL �U /q) < ∞. Then {α ∈ X(A) : α �U is sL–continuous} ⊆ {α ∈ X(〈U〉) : α �U
is q–continuous} and so {α ∈ X(〈U〉) : α �U is q–continuous} �= ∅. Hence, we can apply 
Corollary 2.13 to L �〈U〉 and get the conclusion. �

In the above corollary the Hilbertian seminorm q on V is not pre-given as in Theo-
rem 2.5 (resp. Theorem 2.8), but explicitly constructed through Lemma 2.18. The price 
to pay for this is that we obtain an integral representation for the starting linear func-
tional L not on the whole of A but just on the subalgebra 〈U〉 of A. Note that the 
latter subalgebra is actually dense in (A, sL) (or more in general in (A, p) when p is 
defined on the whole of A, see Lemma 4.17 in the Appendix) and so Corollary 2.20 pro-
vides a representing measure for L restricted to a dense subalgebra of (A, sL). However, 
the representing measure is supported on characters whose restrictions to U lie in the 
topological dual of (U, q) and the density of 〈U〉 in (A, sL) does not allow us to show 
that is supported on characters whose restrictions to V are in the topological dual of 
(V, sL �V ) and so to get an integral representation for L on the full A. The latter ef-
fect is not an artefact of the techniques used here. Indeed, if V = �2 is endowed with 
the usual norm ‖ · ‖�2 which makes it a Hilbert space, then the associated Gaussian 
measure (which is the product of infinitely many one-dimensional standard Gaussian 
measures) gives rise to a functional L on S(V ) and the Gaussian measure is the only 
measure representing L. As sL �V = ‖ · ‖�2 , the Gaussian measure cannot be supported 
on {α ∈ X(S(V )) : α �V is sL �V −continuous} because it is well-known that this set 
has measure zero (see e.g. [2, Theorem 1.3].

In the case when U = V , Corollary 2.20 provides a representing measure for the 
starting L on the whole A. This is for example the case when (V, τV ) is separable nuclear 
and sL �V is τV −continuous, as analyzed in more details in the next subsection.

2.4. Results on the Main Question for τV nuclear

Corollary 2.13 and Corollary 2.16 nicely apply to the case when the generating sub-
space of the algebra is endowed with a nuclear topology.
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Corollary 2.21. Let (V, τV ) be a nuclear space, A an algebra generated by V , J :=
{〈W 〉 : W finite dimensional subspace of V } and K ⊆ X(A) closed. Let L be a nor-
malized 

∑
A2–positive linear functional L on A and Q a quadratic module such that 

K = KQ.
If for each S ∈ J there exists a representing Radon measure νS for L �S with support 

contained in KQ∩S and sL �V is τV –continuous, then for each Hilbertian seminorm q
on V s.t. {α ∈ K : α �V is q–continuous} �= ∅ and tr(sL �V /q) < ∞, there exists a 
representing measure for L with support contained in {α ∈ K : α�V is q–continuous}.

Proof. As (V, τV ) is nuclear and sL �V is τV –continuous, using Lemma 1.3 and the 
directedness of the generating family for τ , we can easily derive that there exists a 
τV –continuous Hilbertian seminorm q on V such that tr(sL �V /q) < ∞. Thus, we can 
apply Corollary 2.13 and get the desired conclusion. �

Using exactly the same argument but replacing Corollary 2.13 with Corollary 2.16, 
we obtain the following.

Corollary 2.22. Let (V, τV ) be a nuclear space, A generated by V , L a normalized linear 
functional on A such that L(

∑
A2) ⊆ [0, ∞) and Q a quadratic module in A. If

(a) L(Q) ⊆ [0, ∞),
(b) for each v ∈ V , 

∞∑
n=1

1
2n√L(v2n) = ∞,

(c) sL �V is τV –continuous,

then, for each Hilbertian seminorm q on V s.t. {α ∈ KQ : α �V is q–continuous} �= ∅
and tr(sL �V /q) < ∞, there exists a unique representing Radon measure ν for L such 
that ν({α ∈ KQ : α�V is q–continuous}) = 1.

We can retrieve [26, Theorem 13] from Corollary 2.22 applied to Q =
∑

A2. Indeed, in 
[26, Theorem 13] the assumption (ii) exactly corresponds to (a) and (b) of Corollary 2.22
for Q =

∑
A2 (the alternative assumption (i) corresponds to (a’) in Remark 2.17), 

and the assumption of the existence of a τ−continuous seminorm q on V such that 
L(v2) ≤ q(v)2 for all v ∈ V guarantees that sL �V (a) ≤ q(v) for all v ∈ V , i.e., also (c) 
in Corollary 2.22 is satisfied.

Note that if there exists a τ−continuous Hilbertian seminorm q on A such that 
L(a2) ≤ q(a)2 for all a ∈ A, then not only sL is τ−continuous but also L itself is 
τ–continuous, since by the Cauchy-Schwarz inequality we have that

|L(a)|2 = |L(1 · a)|2 ≤ L(1)L(a2) ≤ q(a)2 for all a ∈ A.

Viceversa, the continuity of L on certain classes of nuclear topological algebra provides 
the continuity of sL, allowing us to establish the following result.
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Corollary 2.23. Let (A, τ) be a locally convex nuclear topological algebra which is also 
barrelled (respectively, has also jointly continuous multiplication), L a τ−continuous 
linear functional on A and Q a quadratic module in A. If

(a) L(Q) ⊆ [0, ∞),
(b) for each v ∈ V , 

∞∑
n=1

1
2n√L(v2n) = ∞,

then, for each Hilbertian seminorm q on V s.t. KQ ∩ sp(q) �= ∅ and tr(sL/q) < ∞, there 
exists a unique (KQ ∩ sp(q))–representing Radon measure ν for L.

Proof. Let us first observe that the τ–continuity of sL is ensured both when (A, τ) is bar-
relled and has jointly continuous multiplication. Indeed, in the first case the τ–continuity 
of L ensures the existence of a Hilbertian seminorm q on A such that L(a2) ≤ q(a)2 for 
all a ∈ A (see, e.g. [26, Lemma 14]) and so, as observed above, sL is τ–continuous. 
In the second case, the joint continuity of the multiplication provides the existence of 
a τ–continuous seminorm p on A such that L(ab) ≤ p(a)p(b) for all a, b ∈ A and so 
sL(a)2 = L(a2) ≤ p(a)2 for all a ∈ A, which shows that sL is τ–continuous.

Hence, in both cases we can apply Corollary 2.22 for V = A and get the desired 
conclusion. �

We can easily retrieve [26, Theorem 15] from Corollary 2.23 applied to Q =
∑

A2.

3. The case of the symmetric algebra of a nuclear space

Let us apply the results of Section 2 to the case when A is the symmetric algebra 
S(V ) with (V, τV ) nuclear. Corollary 2.22 immediately gives the following result.

Corollary 3.1. Let (V, τV ) be a nuclear space, L a normalized linear functional on S(V )
and Q a quadratic module in S(V ). If

(a) L(Q) ⊆ [0, ∞),
(b) for each v ∈ V , 

∞∑
n=1

1
2n√L(v2n) = ∞,

(c) sL �V is τ–continuous

then, for each Hilbertian seminorm q on V such that tr(sL �V /q) < ∞ and {α ∈ KQ :
α �V is q–continuous} �= ∅, there exists a unique representing Radon measure ν for L
such that ν({α ∈ KQ : α�V is q–continuous}) = 1.

We can retrieve [26, Theorem 16] from Corollary 3.1 applied to Q =
∑

A2. Indeed, 
the definition of nuclear space in [26, p. 445] is covered by Definition 1.4 (for more details 
see Remark 4.16), [26, Theorem 16] the assumption (ii) exactly correspond to (a) and 
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(b) of Corollary 3.1 for Q =
∑

A2 (the alternative assumption (i) corresponds to (a’) in 
Remark 2.17), and the assumption of the existence of a τ−continuous seminorm q on V
such that L(v2) ≤ q(v)2 for all v ∈ V guarantees that sL �V (a) ≤ q(v) for all v ∈ V , i.e., 
also (c) in Corollary 3.1 is satisfied.

If to each v ∈ V we associate the operator Av(w) = vw for any w ∈ S(V ), then 
we can also retrieve [8, Theorem 4.3, (i) ↔ (iii)] for such operators from the version of 
Corollary 3.1 with (a) and (b) replaced by (a’) in Remark 2.17 by taking L = T and 
K = Z (see also [15, Theorem 3.11]).

Corollary 3.1 also allows to easily prove the following result.

Corollary 3.2. Let (V, τV ) be a nuclear space with τV induced by a directed family of 
seminorms P on V , L a normalized linear functional on S(V ) and Q a quadratic module 
in S(V ). If

(a) L(Q) ⊆ [0, ∞),
(b) for each v ∈ V , 

∞∑
n=1

1
2n√L(v2n) = ∞,

(c) for each d ∈ N, there exists p ∈ P such that the restriction L : S(V )d → R is 
pd–continuous, where pd is the quotient seminorm on the d−th homogeneous compo-
nent S(V )d of S(V ) induced by the projective tensor seminorm p⊗d,

then, for each Hilbertian seminorm q on V such that tr(sL �V /q) < ∞ and {α ∈ KQ :
α �V is q–continuous} �= ∅, there exists a unique representing Radon measure ν for L
such that ν({α ∈ KQ : α�V is q–continuous}) = 1.

Proof. Since L �S(V )2 is p2–continuous for some p ∈ P, there exists C > 0 such that 
L(v2) ≤ Cp2(v) for all v ∈ V . Moreover, as pd comes from the projective tensor seminorm 
p⊗d, we easily get that pd(vd) ≤ p(v)d holds for all v ∈ V and all d ∈ N, see e.g. [10, 
Lemma 3.1]. Using the latter for d = 2, we obtain that L(v2) ≤ Cp2(v) ≤ Cp(v)2 for all 
v ∈ V , namely that the Hilbertian seminorm sL �V is p–continuous and so τV –continuous. 
Hence, the conclusion follows at once from Corollary 3.1. �

Using Theorem 2.10 instead of Corollary 2.22, we can prove a slight generalization of 
the classical solution to the Main Question for (V, τV ) nuclear in [2, Chapter 5, Theorem 
2.1] (cf. [2, Chapter 5, Section 2.3] and [3]).

Theorem 3.3. Let (V, τV ) be a Hausdorff separable nuclear space with τV induced by a 
directed family P of Hilbertian seminorms on V , L a normalized linear functional on 
S(V ) and K a closed subset of V ∗. For any n ∈ N and s ∈ P, let s̃(n) the Hilbertian 
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seminorm on S(V )n given by s̃(n)(b) :=
√

N∑
i=1

N∑
j=1

〈bi1, bj1〉s · · · 〈bin, bjn〉s for any b :=

N∑
i=1

bi1· · ·bin∈ S(V )n with N ∈ N and bik ∈ V for k = 1, . . . , n. If

(1) L(Q) ⊆ [0, ∞), where Q is a quadratic module of S(V ) such that K = KQ

(2) there exists a countable subset E of V whose linear span is dense in (V, τV ) such 
that 

∑∞
k=1

1
2k√L(v2k) = ∞ for all v ∈ E

(3) For any d ∈ N, there exists p2d ∈ P such that the restriction L : S(V )2d → R is 
p̃2d

(2d)–continuous
(4) K ∩ V ′

q2 �= ∅, where q2 ∈ P is such that tr(p2/q2) < ∞,

then there exists a representing Radon measure μ for L with support contained in K∩V ′
q2 .

Remark 3.4. If for each d the map V → R, v �→ L(vd) is τV −continuous, then the 
assumption (3) in Theorem 3.3 holds. Indeed, the τV −continuity of the map V → R, v �→
L(vd) implies that for any d there exists a rd ∈ P such that |L(vd)| ≤ 1 for all v ∈ V

with rd(v) ≤ 1. Then 

∣∣∣∣L(( v
rd(v)

)d)∣∣∣∣ ≤ 1 for all v ∈ V and so

∣∣L(vd)
∣∣ ≤ rd(v)d,∀v ∈ V.

By using the multivariate polarization identity, this in turn provides that

|L(v1 · · · vd)| ≤
dd

d! rd(v1) · · · rd(vd),∀v1, . . . , vd ∈ V.

Then, since (V, τ) is nuclear, Lemma 3.5-(1) below ensures that for any pd ∈ P with 
tr(rd/pd) < ∞ we have

|L(a)| ≤ (tr(rd/pd)d)d

d! p̃
(d)
d (a),∀a ∈ S(V )d

and hence, in particular, L �S(V )2d is p̃(2d)
2d −continuous.

Lemma 3.5. Let (V, τV ) be a separable nuclear space with τV induced by a directed family 
of Hilbertian seminorms P on V and L a normalized linear functional.

(1) If for some d ∈ N, there exists r ∈ P and C̃L,d, such that

|L(v1 . . . vd)| ≤ C̃L,d r(v1) . . . r(vd) ∀v1, . . . , vd ∈ V,

then for any s ∈ P with tr(r/s) < ∞ we have that

|L(a)| ≤ C̃L,d (tr(r/s))d s̃(d)(a) ∀a ∈ S(V )d.
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(2) Let � ∈ V ∗ for some r ∈ P and α� the character on S(V ) associated to �, which 
is uniquely determined by defining α�(v1 . . . vd) := �(v1) . . . �(vd) for all d ∈ N and 
v1, . . . , vd ∈ V . If � ∈ V ′

r for some r ∈ P, then the associate character α� on S(V )
is such that for any s ∈ P with tr(r/s) < ∞ and any d ∈ N the following holds

|α�(a)| ≤ (r′(�)tr(r/s))d s̃(d)(a) ∀a ∈ S(V )d.

(3) If the assumption (3) in Theorem 3.3 holds with continuity constant CL,2d and 
(λd)d∈N0 is a sequence of real numbers such that

∞∑
d=0

λ−2
d < ∞, (3.1)

then the seminorm defined by

p̃(a)2 := λ2
0|a(0)|2 +

∞∑
d=1

λ2
dCL,2d

(
p̃2d

(d)(a(d))
)2

, ∀ a :=
∞∑
d=0

a(d) ∈ S(V ) (3.2)

is Hilbertian and

|L(a)|2 ≤ L(a2) ≤
( ∞∑

d=0

λ−2
d

)
p̃(a)2 for all a ∈ S(V ).

(4) Let CL,d, (λd)d∈N0 and p̃ as in (3), and for each d ∈ N take a seminorm q2d ∈ P such 
that tr(p2d/q2d) < ∞ (such a seminorm always exists by nuclearity). If (ηd)d∈N0 is 
a sequence of real numbers such that

∞∑
d=1

λ2
d

η2
d

CL,2dtr(p2d/q2d)d < ∞, (3.3)

then the seminorm defined by

q̃(a)2 := η2
0 |a(0)|2 +

∞∑
d=1

η2
d

(
q̃2d

(d)(a(d))
)2

, ∀ a :=
∞∑
d=0

a(d) ∈ S(V ) (3.4)

is Hilbertian and such that tr(p̃/q̃) < ∞.
(5) Let CL,d, (λd)d∈N0 and p̃ as in (3), and for each d ∈ N take a seminorm q2d ∈ P such 

that tr(p2d/q2d) < ∞ for all d ∈ N and also tr(q2/q2d) < ∞ for all d ∈ N with d ≥ 2
(such a seminorm always exists by nuclearity). If (ηd)d∈N0 is a sequence of real 
numbers fulfilling (3.3) and

∞∑ c2d

η2 < ∞,∀c > 0, (3.5)

d=1 d
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then � ∈ V ∗ is q2-continuous if and only if α� is q̃ continuous, i.e., V ′
q2 and sp(q̃)

are isomorphic, where q̃ is as in (3.4).

Proof.

(1) This is a direct consequence of the multilinear Schwartz kernel theorem for nuclear 
spaces, see e.g. [4, Lemma 6.1 and Theorem 6.1].

(2) By the r−continuity of �, we obtain that |α�(v1 . . . vd)| ≤ r′(�)dr(v1) . . . r(vd) for all 
v1, . . . , vd ∈ V . Hence, the result directly follows from (1) applied for L replaced 
with α�.

(3) Let d ∈ N and b :=
N∑
i=1

bi1 · · · bid ∈ S(V )d with N ∈ N and bik ∈ V for k = 1, . . . , d. 

Since the assumption (3) of Theorem 3.3 holds and b2 ∈ S(V )2d, we have that 

L(b2) ≤ C2dp̃2d
(2d)(b2). Moreover, since b2 =

N∑
i=1

N∑
h=1

bi1 · · · bidbh1 · · · bhd, we obtain 

that

p̃2d
(2d)(b2) =

√√√√ N∑
i=1

N∑
h=1

〈bi1, bj1〉p2d · · · 〈bid, bjd〉p2d

N∑
j=1

N∑
k=1

〈bh1, bk1〉p2d · · · 〈bhd, bkd〉p2d

=

√√√√(
N∑
i=1

N∑
h=1

〈bi1, bj1〉p2d · · · 〈bid, bjd〉p2d

)2

=
N∑
i=1

N∑
h=1

〈bi1, bj1〉p2d · · · 〈bid, bjd〉p2d = p̃2d
(d)(b)2

Hence, we get that

L(b2) ≤ C2dp̃2d
(2d)(b2) ≤ C2dp̃2d

(d)(b)2, ∀b ∈ S(V )d. (3.6)

Let (λd)d∈N0 as in (3.1) and a :=
∑∞

d=0 a
(d) ∈ S(V ). Then there exists Da ∈ N

such that a(d) = 0 for all d > Da and so we get that

|L(a)|2 ≤ |L(a2)| ≤
Da∑
d=0

Da∑
j=0

|L(a(d))L(a(j))| ≤
Da∑
d=0

Da∑
j=0

√
L
((

a(d)
)2)√

L
((

a(j)
)2)

=
(

Da∑
d=0

√
L
((

a(d)
)2))2

≤
( ∞∑

λ−2
d

)(
Da∑

λ2
dL

((
a(d)

)2
))
d=0 d=0
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(3.6)
≤

( ∞∑
d=0

λ−2
d

)(
λ2

0|a(0)| +
Da∑
d=1

λ2
dC2dp̃2d

(d)
(
a(d)

)2
)

=
( ∞∑

d=0

λ−2
d

)
p̃(a)2.

(4) Since (V, τV ) is Hausdorff and separable, we have that for each d ∈ N there exists a 
complete q2d−orthonormal system Ed in V (see Remark 2.19).

Then B :=
{

1
ηn

ei1 · · · ein : n ∈ N0, ei1 , . . . , ein ∈ En

}
is a complete q̃−orthonor-

mal system in S(V ) and thus, for any (λd)d∈N0 as in (3.1) and (ηd)d∈N0 as in (3.3), 
we obtain that

tr(p̃/q̃) =
∑
e∈B

p̃(e)2 = λ2
0

η2
0

+
∞∑
d=1

∑
ei1 ,...,eid∈Ed

λ2
dC2dp̃2d

(2d)(ei1 · · · eid)2
η2
d

= λ2
0

η2
0

+
∞∑
d=1

∑
ei1 ,...,eid∈Ed

λ2
dC2dp2d(ei1)2 · · · p2d(eid)2

η2
d

= λ2
0

η2
0

+
∞∑
d=1

λ2
d

η2
d

C2d
∑

ei1∈Ed

p2d(ei1)2 · · ·
∑

eid∈Ed

p2d(eid)2

= λ2
0

η2
0

+
∞∑
d=1

λ2
d

η2
d

C2dtr(p2d/q2d)d < ∞.

Hence, tr(p̃/q̃) < ∞.
(5) Let us first show why the existence of a seminorm q2d with the properties as in the 

statement is guaranteed by the nuclearity of V . As P is directed, for each d ≥ 2
there exists a seminorm r2d ∈ P such that p2d ≤ r2d and q2 ≤ r2d. Then, by the 
nuclearity of V , we can choose a q2d ∈ P such that tr(r2d/q2d) < ∞ and hence, by 
definition of trace, tr(p2d/q2d) < ∞ and tr(q2/q2d) < ∞ for all d ≥ 2.

Let � be q2-continuous. Then, for any d ≥ 2, we get that

|α�((a(d))2)|
(2)
≤ (q′2(�)tr(q2/q2d))

2d
q̃2d

(2d)((a(d))2), ∀a(d) ∈ S(V )d,

while, for d = 1, we have that

|α�((a(1))2)| = �(a(1))2 ≤ q′2(�)q2(a(1))2, ∀ a(1) ∈ S(V )1 = V.

Moreover, arguing as in (3), it is easy to see that for all d ∈ N

q̃2d
(2d)((a(d))2) = q̃2d

(2d)(a(d))2, ∀a(d) ∈ S(V )d.



M. Infusino et al. / Advances in Mathematics 448 (2024) 109677 29
Now, for any a :=
∑∞

d=0 a
(d) ∈ S(V ), there exists Da ∈ N such that a(d) = 0 for 

all d > Da. Thus, setting η̃d := ηdq
′
2(�)−d (1 + tr(q2/q2d))−d for all d ∈ N0 and 

exploiting the previous three inequalities, we get that

|α�(a)|2 ≤ |α�(a2)| ≤
( ∞∑

d=0

η̃−2
d

)(
Da∑
d=0

η̃2
d α�

((
a(d)

)2
))

≤
( ∞∑

d=0

η̃−2
d

)(
η̃2
0 |a(0)| + η̃2

1q
′
2(�)2q2(a(1))2

+
Da∑
d=2

η̃2
d (q′2(�)tr(q2/q2d))

2d
q̃2d

(d)
(
a(d)

)2
)

≤
( ∞∑

d=0

η̃−2
d

)
q̃(a)2,

which provides the q̃−continuity of α� since 
(∑∞

d=0 η̃
−2
d

)
< ∞ by (3.5).

Conversely, if α� is q̃−continuous, then there exists C ≥ 0 such that

|�(v)| = |α�(v)| ≤ Cq̃(v) = Cη1q2(v), ∀v ∈ V. �
Proof of Theorem 3.3. Let I ′ := {〈F 〉 : F finite subset of E}.

Recall that (X(S(V )), τX(S(V ))) is isomorphic to V ∗ equipped with the weak topology. 
Then, by the generalization of the classical Nussbaum theorem to any finitely generated 
algebra (see e.g. [18, Theorem 3.16]), the assumptions (1) and (2) ensure that for each 
S ∈ I there exists a unique KQ∩S–representing measure νS for L �S . Moreover, the 
separability and the nuclearity of (V, τV ) as well as the assumptions (1) and (3) ensure 
that we can apply Lemma 3.5 and get two Hilbertian seminorms p̃ and q̃ on S(V ) such 
that tr(p̃/q̃) < ∞ and L(a2) ≤

(∑∞
d=0 λ

−2
d

)
p̃(a)2 for all a ∈ S(V ). Thus, by Lemma 2.4, 

{νS : S ∈ I} is p̃-concentrated.
Also the density of span(E) in (V, τV ) given by assumption (2) implies the density 

of S(span(E)) in (S(V ), q̃). Then, by Lemma 3.5-(5) we have that sp(q̃) is isomorphic 
to V ′

q2 . Thus, exploiting also the assumption (4), the conclusion follows by applying 
Theorem 2.11 to A := S(V ), q = q̃, B := S(span(E)), p = p̃ but with I replaced by its 
cofinal subset I ′ (cf. Remark 2.12). �

We can retrieve [2, Chapter 5, Theorem 2.1] from Theorem 3.3, because their definition 
of nuclear space (V, τ) is covered by Definition 1.4 (for more details see Remark 4.14), 
their regularity assumption on the starting sequence [2, Chapter 5, Section 2.1, p.52]
corresponds to Theorem 3.3-(3), their positivity assumption [2, Chapter 5, (2.1)] is 
equivalent to Theorem 3.3-(1), and those together with their growth condition in [2, 
Chapter 5, (2.5)] imply that Theorem 3.3-(2) holds (see Proposition 3.6 below). For the 
convenience of the reader, we restate their growth condition in our setting:
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∃ E ⊆ V countable s.t. span(E) is dense in (V, τ) and C{zk} is quasi-analytic,(3.7)

where zk :=
(

sup
v∈E

p2k(v)
)k

√√√√ sup
v1,...,v2k∈E

(
|L(v1 · · · v2k)|

p̃2k
(2k)(v1 · · · v2k)

)
∀k ∈ N,

p2k and p̃2k
(2k) are as in Theorem 3.3-(3).

Note that this stronger condition is introduced in [2, Chapter 5, Theorem 2.1] to face the 
problem that the sum of two infinitely differentiable functions each belonging to a maybe 
different quasi-analytic class is not necessarily belonging to one of the two quasi-analytic 
classes or to any quasi-analytic class at all, see [20, Theorem XII].

We now prove in detail the above mentioned implication.

Proposition 3.6. Let (V, τV ) be a separable nuclear space with τV induced by a directed 
family of seminorms P on V , L : S(V ) → R linear such that (1) and (3) of Theorem 3.3
hold. If (3.7) is fulfilled, then Theorem 3.3-(2) holds.

Proof. Let us preliminarily observe that for each k ∈ N and each v ∈ V we have√
L(v2k) ≤ zk. (3.8)

Since the class C{zk} is quasi-analytic and (3.8) holds, also C{
√
L(v2k)} is quasi-analytic. 

This together with the log-convexity of (
√
L(v2k))k∈N ensures, by the Denjoy-Carleman 

theorem, that 
∞∑
k=1

1
2k√L(v2k) = ∞ holds, which provides the conclusion. (For a review 

about log-convexity and quasi-analyticity see e.g. [14]) �
4. Appendix

In the following we first explain the relation between the notion of trace of a Hilbertian 
seminorm w.r.t. to another and the classical definition of trace of a positive continuous 
operator on a Hilbert space. Then we compare the definition of nuclear space used in 
this article due to Yamasaki [30] with the more traditional ones due to Grothendieck 
[11] and Mityagin [22], and with the definitions of this concept given by Berezansky and 
Kondratiev in [2, p. 14] and by Schmüdgen in [26, p. 445], whose results we compared 
to ours in Section 3. Finally, we provide a complete proof of the measure theoretical 
identity (2.7), which we exploited in the proof of Theorem 2.10.

4.1. Trace of positive continuous operators on Hilbert spaces

Let us start by recalling the definition of trace of a positive continuous operator on a 
Hilbert space, which we also denote with the symbol tr.
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Definition 4.1 (cf. [7, V.50, (24’)]). Given a Hilbert space (H, 〈·, ·〉), the trace of a con-
tinuous and positive operator f : H → H is defined as

tr(f) := sup
e1,...,en

n∑
i=1

〈ei, f(ei)〉, (4.1)

where n ranges over N and e1, . . . , en ∈ H ranges over the set of all finite sequences that 
are orthonormal w.r.t. 〈·, ·〉.

In fact, by [7, V.48, Lemma 2], we have that for every complete orthonormal system 
{ei : i ∈ Ω} in H the following holds

tr(f) =
∑
i∈Ω

〈ei, f(ei)〉. (4.2)

If D ⊆ H is dense, then there exists a complete orthonormal system in H that is 
contained in D. Therefore, in (4.1) it suffices to let e1, . . . , en ∈ H range over the set of 
all finite sequences in D that are orthonormal w.r.t. 〈·, ·〉.

For the convenience of the reader, we also recall here some fundamental classes of 
operators that will be needed in showing the relation between traces mentioned above.

Definition 4.2. Given a Hilbert space (H, 〈·, ·〉), we say that a bounded linear operator 
f : H → H is trace-class if tr(

√
f∗f) < ∞, where f∗ denotes the adjoint of f . The 

positive bounded operator 
√
f∗f is called absolute value of f .

Definition 4.3. Given two Hilbert spaces (H1, p1) and (H2, p2), we say that a continuous 
operator f : H1 → H2 is

(1) Hilbert-Schmidt (or quasi-nuclear) if tr(f∗f) < ∞.
(2) nuclear if there exist (vn)n∈N ⊆ H1 and (wn)n∈N ⊆ H2 such that

∞∑
n=1

p1(vn)p2(wn) < ∞ and f(·) =
∞∑

n=1
〈·, vn〉p1wn.

Note that (vn)n∈N ⊆ (H1, p1) and (wn)n∈N ⊆ (H2, p2) can be chosen to be orthogonal 
(see, e.g., [28, Corollary, p. 494]).

Proposition 4.4. Let f : (H1, p1) → (H2, p2) be a nuclear operator. If H ⊆ H1 closed, 
then f �H : H → f(H) is also nuclear.

Proof. Since f is nuclear, there exists (vn)n∈N ⊆ (H1, p1) and (wn)n∈N ⊆ (H2, p2)
orthogonal such that f(·) =

∑∞
n=1〈·, vn〉p1wn and 

∑∞
n=1 p1(vn)p2(wn) < ∞. Then 
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f(vn) = 〈vn, vn〉p1wn for all n ∈ N, since (vn)n∈N ⊆ (H1, p1) is orthogonal, and so 
(wn)n∈N ⊆ f(H). Furthermore, for each n ∈ N there exist xn ∈ H, yn ∈ H⊥ such that 
vn = xn + yn. Thus,

f(x) =
∞∑

n=1
〈x, xn + yn〉p1wn =

∞∑
n=1

〈x, xn〉p1wn for all x ∈ H.

Moreover, 〈xn, yn〉p1 = 0 implies that p1(xn) ≤ p1(xn + yn) = p1(vn) for all n ∈ N and 
hence, 

∑∞
n=1 p1(xn)p2(wn) ≤

∑∞
n=1 p1(vn)p2(wn) < ∞. �

We are ready now to relate Definition 1.2 and Definition 4.1.

Remark 4.5. A Hilbertian seminorm p on a real vector space V can be always used to 
construct a Hilbert space out of V . Indeed, p induces a seminorm on Vp := V/ ker(p)
given by v+ker(p) �→ p(v) and denoted, with a slight abuse of notation, also by p. Thus, 
(Vp, p) is a pre-Hilbert space, as p clearly induces an inner product on Vp. Now, Vp is 
dense in the completion V p of (Vp, p) and so p extends to a norm p on V p which makes 
(V p, p) a Hilbert space.

Proposition 4.6. Let p and q be two Hilbertian seminorms on a real vector space V .

(1) If ker(q) ⊆ ker(p) then u : Vq → Vp, v+ker(q) �→ v+ker(p) is well-defined. Note that 
u is injective iff ker(q) = ker(p).

(2) If there exists C > 0 such that p ≤ Cq, then u is continuous and uniquely contin-
uously extends to u : (V q, q) → (V p, p). Moreover, u is injective iff for any Cauchy 
sequence (vn) in Vq s.t. u(vn) converges to 0 in p we have that vn converges to 0 in 
q.

(3) tr(p/q) < ∞ if and only if u is Hilbert-Schmidt, i.e., tr(u∗u) < ∞, where u∗ denotes 
the adjoint of u.

Proof. (1) For any v ∈ V , let us set for convenience [v]q := v + ker(q) and [v]p :=
v+ker(p). Recalling the notation and the properties introduced in Remark 4.5, it is easy 
to see that ker(q) ⊆ ker(p) implies (1), because under this assumption [x]q = [y]q implies 
x − y ∈ ker(p) and so [x]p = [y]p, i.e., u([x]q) = u([y]q).

Moreover, suppose that u is injective and that there exists v ∈ ker(p) \ ker(q). Then 
[v]q �= [0]q and [v]p = [0]p. Hence, on the one hand the injectivity of u ensures that 
u([v]q) �= [0]p, but on the other hand u([v]q) = [v]p = [0]p which leads to a contradiction. 
Conversely, if ker(p) = ker(q), then u is the identity which is clearly injective.

(2) Suppose there exists C > 0 such that p ≤ Cq. Then ker(q) ⊆ ker(p) and so u is 
well-defined by (1). Also, for any [v]q ∈ Vq we have p(u([v]q)) = p([v]p) = p(v) ≤ Cq(v) =
Cq([v]q), i.e., u is continuous and so can be uniquely extended to the completions giving 
the desired u.
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For proving the second part of (2), suppose that u is injective and let (vn) be a 
Cauchy sequence in Vq s.t. p(u(vn)) → 0. Then, by completeness, there exists w ∈ V q

such that q(vn − w) → 0 and so, by continuity of u, p(u(vn) − u(w)) → 0. Therefore, 
p(u(w)) ≤ p(u(vn) −u(w)) +p(u(vn)) = p(u(vn) −u(w)) +p(u(vn)) → 0, i.e., p(u(w)) = 0
that is u(w) = 0. Hence, the injectivity of u implies that w = 0 and so that q(vn) =
q(vn) = q(vn − w) → 0.

Conversely, suppose that for any Cauchy sequence (vn) in Vq s.t. p(u(vn)) → 0 we have 
q(vn) → 0. If w ∈ ker(u) ⊆ V q, then there exists a Cauchy sequence (wn) in Vq converging 
to w, i.e., q(wn − w) → 0. By continuity of u, we have that p(u(wn) − u(w)) → 0 but 
u(w) = 0 and so p(u(wn)) = p(u(wn)) → 0. Hence, our assumption implies q(wn) → 0
and so q(w) ≤ q(wn −w) + q(wn) → 0, which is equivalent to w = 0 and so provides the 
injectivity of u.

(3) directly follows from the following observation

tr(u∗u) (4.1)= sup
e1,...,en

n∑
i=1

〈[ei]q, u∗u([ei]q)〉q

= sup
e1,...,en

n∑
i=1

〈u([ei]q), u([ei]q)〉p

= sup
e1,...,en

n∑
i=1

〈[ei]p, [ei]p〉p = sup
e1,...,en

n∑
i=1

〈ei, ei〉p Def.1.2= tr(p/q),

where n ranges over N and e1, . . . , en ∈ V ranges over the set of all finite sequences that 
are orthonormal w.r.t. 〈·, ·〉q. �
Proposition 4.7. Let p and q be two Hilbertian seminorms on V . If ker(p) = ker(q) and 
tr(p/q) < ∞, then Vq is separable.

Proof. Suppose that Vq is not separable. Then there exists (ej)j ∈ J orthonor-
mal basis of Vq with J uncountable. Since q(ej) = 1 for all j ∈ J and ker(p) =
ker(q), we have that p(ej) > 0 for all j ∈ J . However, tr(p/q) < ∞ implies that 
supn∈N supj1,...,jn∈J

∑n
k=1 p(ejk)2 < ∞ and so for all but countably many n−tuples 

in (ej)j ∈ J we have 
∑n

k=1 p(ejk)2 = 0, which contradicts the fact that p(ej) > 0 for all 
j ∈ J . �
Corollary 4.8. Let p and q be two Hilbertian seminorms on V s.t. there exists C > 0 such 
that p ≤ Cq then u injective and Hilbert-Schmidt implies that Vq is separable.

Corollary 4.9. Let A be an algebra generated by a linear subspace V ⊆ A, and L a 
normalized linear functional on A such that L(

∑
A2) ⊆ [0, ∞). If q is a Hilbertian 

seminorm q on V such that tr(sL �V /q) < ∞, then the space V/ ker(sL) endowed with 
the quotient seminorm induced by sL (and also denoted by sL with a slight abuse of 
notation) is separable.
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Proof. Let us endow Vq with the quotient seminorm induced by q, which we also denote 
by q with a slight abuse of notation. As tr(sL �V /q) < ∞, Lemma 1.3-(i) ensures the 
q−continuity of sL �V and so that ker(q) ⊂ ker(sL). Then the quotient seminorm induced 
on Vq by sL �V actually reduces to itself, i.e., ∀v ∈ V, inf{sL(v+w) : w ∈ ker(q)} = sL(v), 
and can be continuously extended to a norm pL on the completion Vq of Vq. Hence, both 
(Vq, pL) and (Vq, q) are Hilbert spaces.

Consider ker(sL) in (Vq, q) and denote by q̃ the quotient norm induced on Vq/ker(sL)
by q (respectively by s̃L the quotient norm induced on Vq/ker(sL) by sL). Then q̃ is 
a Hilbertian norm as (Vq, q) is a Hilbert space and we have the following orthogonal 
decomposition Vq = ker(sL) ⊕ ker(sL)

⊥
. Then (Vq/ker(sL), q̃) is a Hilbert space. Hence, 

denoting by π the orthogonal projection Vq onto ker(sL)
⊥

, we get Vq/ ker(π) ∼= π(Vq), i.e., 
Vq/ker(sL) ∼= ker(sL)

⊥
. Exploiting this isomorphism and the fact that ker(sL) is closed 

in (Vq, q), it is easy to see that any finite q̃-orthonormal subset {ẽj}j=1,...,J with J ∈ N

in Vq/ker(sL) provides a finite q−orthonormal subset {hj}j=1,...,J := π−1 ({ẽj}j=1,...,J)
in Vq. By density, for each n ∈ N and each j ∈ {1, . . . , J}, we can choose h(n)

j ∈ V

such that q(hj − h
(n)
j ) ≤ 1/n. Orthogonalizing {h(n)

j }j∈{1,...,J} via the Gram-Schmidt 
process, we obtain a q−orthogonal subset {e(n)

j }j∈{1,...,J} in V defined inductively by 

e
(n)
1 := h

(n)
1 and e(n)

k := h
(n)
k −

∑k−1
j=1

〈h(n)
k ,e

(n)
j 〉q

〈e(n)
j ,e

(n)
j 〉q

e
(n)
j for all k ≥ 2. Defining ẽ(n)

k := e
(n)
k

q(e(n)
k )

for all k ∈ N, we get a q−orthonormal subset in V. So for each k ∈ {1, . . . , J} as n → ∞
we get inductively that q(e(n)

k − hk) → 0 and hence sL(e(n)
k − hk) → 0. Thus, for each 

ε > 0 there exists N ∈ N such that sL(e(N)
j − hj) ≤ ε/J for all j and so

∑
j=1,...,J

s̃L(ẽj) =
∑

j=1,...,J
sL(hj) ≤

∑
j=1,...,J

sL(e(N)
j ) + ε ≤ tr(sL �V /q) + ε.

As this holds for an arbitrary finite q̃-orthonormal subset {ẽj}j=1,...,J , we have by the defi-
nition of the trace that tr(s̃L/q̃) ≤ tr(sL �V /q) +ε, which together with tr(sL �V /q) < ∞
implies tr(s̃L/q̃) < ∞. Then, since the kernel of s̃L in Vq/ker(sL) is clearly trivial, so it is 
the kernel of q̃ in Vq/ker(sL). Hence, Proposition 4.7 provides that 

(
Vq/ker(sL)

)
/ ker(q̃)

is separable, i.e., Vq/ker(sL) is separable. As the latter space is also metric, we have that 
its subspace Vq/ker(sL) is also separable. Moreover, since ker(q) ⊆ ker(sL) ⊆ V , we get 
that Vq/ker(sL) ∼= V/ ker(sL) and so V/ ker(sL) is also separable. �
4.2. Other definitions of nuclear space

The definition of nuclear space used in this article, namely Definition 1.4, is due to 
Yamasaki but it is equivalent to the more traditional definitions of nuclear space due to 
Grothendieck [11] and Mityagin [22], which we report here for the convenience of the 
reader (see e.g. [30, Theorems A.1, A.2] for a proof of these equivalences).
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Definition 4.10. A TVS (V, τ) is called nuclear if τ is induced by a family P of semi-
norms on V such that for each p ∈ P there exists q ∈ P and there exist sequences 
(vn)n∈N ⊆ V, (ln)n∈N ⊆ V ∗ with the following property

∞∑
n=1

p(vn)q′(ln) < ∞ for all v ∈ V with v =
∞∑

n=1
ln(v)vn w.r.t. p,

here q′ denotes the dual norm of q.

Definition 4.11. A TVS (A, τ) is called nuclear if τ is induced by a family P of seminorms 
on V such that for each p ∈ P there exists q ∈ P with dn(Uq, Up) ∈ O(n−λ) for some 
λ > 0, where Up denotes the (closed) semiball of p and dn(Uq, Up) denotes n–dimensional 
width of Uq w.r.t. Up, that is dn(Uq, Up) is defined as

inf{c > 0 : Uq ⊆ Vn−1 + cUp for some Vn−1 ⊆ V with dim(Vn−1) = n− 1}.

Using Proposition 4.6, it is easy to establish that Definition 1.4 coincides with the 
following one.

Definition 4.12. A TVS (V, τ) is called nuclear if τ is induced by a directed family 
P of Hilbertian seminorms on V such that for each p ∈ P there exists q ∈ P with 
ker(q) ⊆ ker(p) and the continuous extension u : (V q, q) → (V p, p) of the canonical map 
u : (Vq, q) → (Vp, p) is Hilbert-Schmidt, i.e., tr(u∗u) < ∞.

This equivalent reformulation of Definition 1.4 allows more easily to see its relation 
with the definitions of this concept given by Berezansky and Kondratiev in [2, p. 14] and 
by Schmüdgen in [26, p. 445] whose results we compare to ours in Section 3.

Definition 4.13 (cf. [2, p. 14]). Let I be a directed index set and (Hi, pi)i∈I a family of 
Hilbert spaces such that V :=

⋂
i∈I Hi is dense in each (Hi, pi) and for all i, j ∈ I there 

exists k ∈ I with i, j ≤ k and (Hk, pk) ⊆ (Hi, pi) as well as (Hk, pk) ⊆ (Hj , pj). The 
space V endowed with the topology τ induced by P := {pi : i ∈ I} is called nuclear 
if for each i ∈ I there exists j ≥ i in I such that the embedding (Hj , pj) ⊆ (Hi, pi) is 
Hilbert-Schmidt.

Remark 4.14. Berezansky and Kondratiev’s Definition 4.13 of nuclear space is covered 
by Definition 4.12 (and thus, by Definition 1.4). Indeed, let (V, τ) be a nuclear space 
with defining family (Hi, pi)i∈I in the sense of Definition 4.13. Since for each i ∈ I we 
have that ker(pi) = {o}, we get Vpi

= V . This together with the fact that V is dense in 
each (Hi, pi) ensures that the completion (V pi

, pi) is isomorphic to (Hi, pi) for all i ∈ I. 
Thus, for i ≤ j in I the embedding (Hj, pj) ⊆ (Hi, pi), which is Hilbert-Schmidt by 
assumption, coincides with u : (V pj

, pj) → (V pi
, pi). Hence, (V, τ) is nuclear in the sense 

of Definition 4.12.
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Definition 4.15 (cf. [26, p. 445]). Let (Hn, pn)i∈N be a sequence of Hilbert spaces such 
that (Hn, pn) ⊆ (Hm, pm) for all m ≤ n in N. The space V :=

⋂∞
n=1 Hn endowed with the 

topology τ induced by P := {pn : n ∈ N} is called nuclear if for each m ∈ N there exists 
n ∈ N such that the embedding (Hn, pn) ⊆ (Hm, pm) is nuclear (see Definition 4.3-(2)).

Remark 4.16. Schmüdgen’s Definition 4.15 of nuclear space is covered by Definition 4.12
(and thus, by Definition 1.4). Indeed, let (V, τ) be a nuclear space with defining family 
(Hn, pn)n∈N in the sense of Definition 4.15. For each n ∈ N, since ker(pn) = {o}, 
we get that Vpn

= V ⊆ Hn and so that the completion (V pn
, pn) is isomorphic to a 

closed subspace of (Hn, pn). As the embedding (Hm, pm) ⊆ (Hn, pn) is nuclear, also its 
restriction r to V pm

is nuclear by Proposition 4.4. The continuity of r guarantees that 
r(V pm

) ⊆ r(Vpm
) = r(V ) = V = V pn

and so the map r coincides with u : (V pm
, pm) →

(V pn
, pn). Hence, u is nuclear. Then [28, Theorem 48.2] ensures that tr(

√
u∗u) < ∞, i.e., 

u is a trace-class operator (see Definition 4.2). Since the family of trace-class operators 
on a Hilbert space forms an ideal in the space of bounded operators on the same space 
(see e.g. [23, Theorem VI.19]), we have that tr(u∗u) < ∞, i.e., u is Hilbert-Schmidt. 
Thus, (V, τ) is also nuclear in the sense of Definition 4.12.

4.3. Two auxiliary results

We provide here a proof of (2.7), which we used in the proof of Theorem 2.10 as well as 
a result Lemma 4.17 about dense subalgebras of topological algebras which we exploited 
in the analysis of Corollary 2.20.

Proof of (2.7). For notational convenience, let τA := τsp(q)A and τB := τsp(q)B . We 
preliminarily observe that

q′(α) := sup
a∈A : q(a)≤1

|α(a)| = sup
a∈B : q(a)≤1

|α(a)|, ∀α ∈ sp(q)

and so q′ is lower semi-continuous w.r.t. both τA and τB. Hence, all sublevel sets of q′ are 
closed in both (sp(q), τA) and (sp(q), τB), i.e., Bn(q′)c ∈ τA ∩ τB , for all n ∈ N, which 
gives in turn Bn(q′) ∈ B(τA) ∩ B(τB). This together with the following two properties

(i) τA ∩Bn(q′) = τB ∩Bn(q′), ∀ n ∈ N.
(ii) B(τC) ∩Bn(q′) = B(τC ∩Bn(q′)), ∀ n ∈ N, C ∈ {A, B},

provide that

B(τA) ∩Bn(q′) (ii)= B(τA ∩Bn(q′)) (i)= B(τB ∩Bn(q′)) (ii)= B(τB) ∩Bn(q′) ⊆ B(τB).
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The latter ensures that if Y ∈ B(τA) then Y ∩ Bn(q′) ∈ B(τB) for all n ∈ N and so 
that Y =

⋃
n∈N Y ∩Bn(q′) ∈ B(τB), i.e., B(τA) ⊆ B(τB). The opposite inclusion easily 

follows from τB ⊂ τA. Hence, B(τA) = B(τB). �
It remains to show (i) and (ii).

Proof of (i). Let n ∈ N. Since τB ⊂ τA, we have that τA ∩ Bn(q′) ⊇ τB ∩ Bn(q′). For 
the opposite inclusion, let α ∈ sp(q) ∩Bn(q′) and recall that for any C ∈ {A, B} a basis 
of neighborhoods of α in the topology τC ∩Bn(q′) is given by

{Uc1,...,ck;λ : k ∈ N, c1, . . . , ck ∈ C, λ > 0} ,

where

Uc1,...,ck;λ(α) := {γ ∈ sp(q) : |ĉj(γ) − ĉj(α)| < λ for j = 1, . . . , k and q′(γ) < n}

We need to show that for any k ∈ N, a1, . . . , ak ∈ A and ε > 0 there exist b1, . . . , bk ∈ B

and δ > 0 such that Ub1,...,bk;δ(α) ⊆ Ua1,...,ak;ε(α).
Fixed k ∈ N, a1, . . . , ak ∈ A and ε > 0, by the density of B in (A, q) we can always 

choose b1, . . . , bk ∈ B such that q(aj − bj) < ε
3n for j = 1, . . . , k. Then taking δ < ε

3 we 
have that for any β ∈ Ub1,...,bk;δ(α) and any j ∈ {1, . . . , k} the following holds:

|β(aj) − α(aj)| ≤ |β(aj) − β(bj)| + |β(bj) − α(bj)| + |α(bj) − α(aj)|
≤ nq(aj − bj) + δ + nq(bj − aj) < ε

i.e., β ∈ Ua1,...,ak;ε(α) and hence Ub1,...,bk;δ(α) ⊆ Ua1,...,ak;ε(α). �
Proof of (ii). Let n ∈ N and C ∈ {A, B}.

We have already showed that Bn(q′) ∈ B(τC) and so τC ∩Bn(q′) ⊆ B(τC), which in 
turn implies that B(τC) ∩Bn(q′) ⊇ B(τC ∩Bn(q′)).

Now let i : sp(q) ∩ Bn(q′)∩ → sp(q) be the identity map. On the hand, the 
continuity of i :

(
sp(q) ∩Bn(q′), τC ∩Bn(q′)

)
∩ →

(
sp(q), τC

)
provides that i :(

sp(q) ∩Bn(q′),B(τC ∩Bn(q′))
)
∩ →

(
sp(q),B(τC)

)
is measurable. On the other hand, 

B(τC) ∩Bn(q′) is the smallest σ−algebra on sp(q) ∩Bn(q′) making i measurable. Hence, 
we have that B(τC) ∩Bn(q′) ⊂ B(τC ∩Bn(q′)). �
Lemma 4.17. Let A be an algebra generated by a linear subspace V ⊆ A and τ a topology 
on A such that (A, τ) is a topological algebra. If U is a subspace of V which is dense in 
(V, τ �V ), then 〈U〉 is dense in (A, τ).

Proof. Let w ∈ U and v ∈ V . Then there exists a net (vα)α∈I with vα ∈ U such that 
vα → v. Since the multiplication is separately continuous, we have that wvα → wv and 
hence wv ∈ 〈U〉.
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Now let us take also u ∈ V .
We will show by induction on n that

v1, . . . , vn ∈ V ⇒ v1 · · · vn ∈ 〈U〉,∀n ∈ N, (4.3)

which implies that 〈V 〉 = 〈U〉 and so the conclusion A = 〈U〉.
Let us first show the base case n = 2. If v1, v2 ∈ V then there exist nets (uα)α∈I and 

(wβ)β∈J with uα, wβ ∈ U such that uα → v1 and wβ → v2. Since the multiplication is 
separately continuous, for each u ∈ U , we have that uwβ → uv2 and hence uv2 ∈ 〈U〉. In 
particular each uαv2 ∈ 〈U〉 and, using again the separate continuity of the multiplication, 
uαv2 → v1v2. Hence, v1v2 ∈ 〈U〉.

Suppose now that (4.3) holds for a fixed n and let v1, . . . , vn+1 ∈ V . Then there 
exists (gα)α∈I with gα ∈ U such that gα → vn+1. Moreover, by inductive assumption, 
v1 · · · vn ∈ 〈U〉 and so there exists (hβ)β∈J with hβ ∈ 〈U〉 such that hβ → v1 · · · vn. 
Then for any u ∈ U , by the separate continuity of the multiplication, we have that 
hβu → v1 · · · vn · u and hence v1 · · · vn · u ∈ 〈U〉. In particular for each α ∈ I we get that 
v1 · · · vn · gα ∈ 〈U〉. Thus, using again the separate continuity of the multiplication, we 
obtain that v1 · · · vn · gα → v1 · · · vn · vn+1 and so v1 · · · vn · vn+1 ∈ 〈U〉. �
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