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We investigate the wake structure and the three-dimensional stability of the two-dimensional von Kármán vortex
street developing in the wake of a permeable circular cylinder. The flow through the porous medium, assumed
homogenous and isotropic, is described by the Darcy law, with a Navier slip coupling condition at the interface
with the pure fluid region. The two-dimensional and steady flow past the cylinder is initially considered. Per-
meability induces a downstream displacement of the recirculation region, which reduces its dimensions until it
eventually disappears. Linear stability analysis shows that the flow is progressively stabilized as permeability
increases. We identify a critical value of permeability beyond which the steady wake is linearly stable in-
dependently of the Reynolds number. Two-dimensional, time-dependent simulations are then carried out. A
progressive downstream displacement of the region of onset of the vortex shedding is observed, together with a
decrease of the oscillation frequency. Oscillations of aerodynamic forces are progressively quenched with per-
meability owing to the downstream displacement of the onset region of the vortex shedding. At the same time,
traveling vortices are observed far downstream of the body, in opposition with the impervious case, character-
ized instead by the formation of two shear layers of opposite vorticity, at very large distances from the body.
We perform linearized simulations for the evolution of three-dimensional perturbations on the two-dimensional
von Karman vortex street. The growth rate and the spatial structure of the perturbations are extracted from
such linearized dynamics by employing a Sparsity-Promoting Dynamic Mode Decomposition (SP-DMD). As
permeability increases, the unsteady vortex street past the cylinder is progressively stabilized with respect to
three-dimensional perturbations until the transition to three-dimensionality is prevented. We identify a critical
value of the permeability beyond which the vortex shedding preserves its two-dimensionality, at least in the
considered parameters space.

I. INTRODUCTION

The interaction between fluid flows and slender bluff bodies is a classical and relevant topic in fluid mechanics. Typical
examples in civil and marine engineering are vibrations of pipelines lying on the seabed, interaction of currents and waves with
off-shore structures in ocean engineering, skyscrapers, chimney stacks and suspension bridges [1]. These slender structures are
often subject to an alternate shedding of vortices in the near wake, so-called von Karman vortex street, which may lead to large
fluctuating forces on the body along both the flow direction and transversal one and may cause structural vibrations, acoustic
noise, or resonance, with possible structural failure of the structures subject to these oscillating forces (cf. Williamson [2] and
references therein for a review). Several studies focused on the problem of reducing the coherence of vortex shedding along
the spanwise direction, often through surface modifications, e.g. appendages or helical cables [3, 4], thus reducing oscillating
forces. However, Vortex Induced Vibrations (VIV) can also be advantageously used for energy harvesting [5, 6]. Recently, also
microelectromechanical (MEMS) wind-energy harvesters composed of small cylindrical oscillators attached to piezoelectric
MEMS devices have been proposed as a potential means of powering small off-grid sensors in a cost-effective manner due to the
easy integration of the energy harvester and sensor on the same silicon chip [7]. As concerns environmental flows, deep-sea glass
sponges (E. aspergillum) are tall, permeable, cylindrical shells anchored to the seabed that extend through the benthic boundary
layer, composed of amorphous hydrated silica arranged in a highly regular and hierarchical structure. These sponges provide a
natural shelter for a family of shrimps which feed themselves through the nutrients in suspension in the benthic boundary layer.
The skeleton of E. aspergillum is characterized by exceptional structural properties, combined with remarkable hydrodynamic
properties induced by their permeable structure, e.g. reduction of hydrodynamic stresses and the support of coherent internal
recirculation patterns at low flow velocity [8].

The latter example shows how permeable structures offer an efficient way to maximize the structural and hydrodynamic
performance of a particular flow configuration [9]. Permeability of the body can be achieved through active blowing systems,
where a fixed velocity is imposed at the boundary [10], or in a passive way, e.g. exploiting the flow modifications induced
by a microscopic structure [9]. Nature is always an invaluable source of inspiration when new technical solutions for optimal
performances are needed. Dandelion seeds are spread by wind thanks to a bundle of radially oriented fibers, called pappus.
Cummins et al. [11] showed the presence of a recirculation region that, instead of being attached to the rear of the object as
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in the impervious case, moves downstream of the body. This wake configuration acts like a parachute and makes it arguably
possible for the seeds to travel for long distances under the effect of light breezes. Similar studies on idealized permeable disks
mimicking the dandelion pappus showed similar flow patterns [12], associated with hydrodynamic stability of the wake in the
range of permeability and Reynolds numbers typical of dandelions [13]. The introduction of permeability thus offers interesting
perspectives on flow control of wakes past bluff bodies. A documented study can be traced back to Castro [14], who studied the
flow past a perforated flat plate, for Reynolds numbers of the order of 104. In the considered cases, the flow exhibited a vortex
shedding, whose mean recirculation region was detached from the body. Also, Castro observed a decrease of the drag exerted
on the porous plate. A similar detachment was analytically predicted by Steiros et al. [15], for perforated plates. A theoretical
analysis on the drag exerted by perforated plates in free-flows with Re ∼ 1000 was performed by Steiros & Hultmark [16],
who showed a similar decreasing trend of the drag. The distribution of pores may also influence the aerodynamic forces [15].
The drag behavior with permeability was also analyzed in the creeping flow regime by Strong et al. [17]. Other investigations
include also the effect of the fluid–structure interaction such as flexibility of porous strips [18]. The detachment of the mean
recirculation region is associated with a downstream displacement of the vortex shedding onset, as shown by recent experimental
[19] and numerical [20] studies. Ledda et al. [21] highlighted a similar effect on the steady flow at low Reynolds numbers past
thick flat plates, characterized by the detachment and shrinking of the recirculation region as permeability was increased, until
disappearance of the counterflow. A critical permeability threshold was identified, beyond which the onset of von Karman vortex
street was prevented, regardless of the considered Reynolds number. Similar behaviors were observed in the case of permeable
disks [12, 22], spheres [23, 24] and circular cylinders [25]. In the latter paper, the authors studied the two-dimensional, steady,
flow past a circular permeable cylinder, showing the emergence of a detached recirculation region at low Reynolds numbers.

In the impervious case, it is well known that the steady flow past a circular cylinder undergoes a Hopf bifurcation at Re = 46.7,
which leads to the previously-mentioned periodic shedding of vortices [26, 27]. The periodic unsteady wake remains two-
dimensional until Re ≈ 190, beyond which the vortex shedding becomes three-dimensional, while preserving a strong two-
dimensional coherence [28, 29]. This secondary instability of the wake has been studied both experimentally [30–32] and
theoretically [28, 29, 33]. Floquet stability analysis stems from the linearization of the flow equations around a time-periodic
baseflow. The stability of the system can be inferred by studying the eigenvalues of the so-called monodromy operator, which
maps the solutions from one period to the successive one [34]. The transition to a three dimensional flow is characterized
by two different linear modes distinguished respectively by a long (mode A, at Re ≈ 190) and short (mode B, at Re ≈ 260)
wavelength in the spanwise direction [35]. Barkley & Henderson [33] numerically confirmed the experimental observations
made by Williamson [35] via a linear Floquet stability analysis on the two-dimensional, periodic, baseflow. The authors identified
mode A as the leading mode for the three-dimensional transition of the von Karman vortex street past a circular cylinder. In these
bluff body wakes [36], the physical mechanism originating in the development of mode A (the wavelength of which scales with
the vortex core size) has been associated with the so-called elliptic instability ([37, 38] and [39] for a review), while mode B,
which develops at a higher Reynolds number and has a shorter wavelength, was shown to result from the hyperbolic instability
[40]. In contrast, for slender body wakes, two competing modes of opposite symmetry dominate with comparable growth-rates
and wavelengths and they can both be unambigously and quantitatively attributed to the elliptic instability [41]. The growth rate
of the elliptic instability is proportional to the strain rate at the point of maximum vorticity, which is linked to the intensity of
the deformation of the vortex cores.

However, rather than directly evaluating the eigenvalues of the monodromy matrix, Floquet analysis is often performed by
time-marching of the linearized equations for several periods, combining it with iterative Arnoldi-like methods [33]. Such
methods are based on an approximation of the high-dimensional system matrix by projecting it onto a lower-dimensional Krylov
subspace, hence allowing a rather efficient extraction of the dominant eigenvalues. Data-driven techniques like Dynamic Mode
Decomposition (DMD) have gained attention for their ability to extract dynamic flow features from experimental or numerical
data [42–47]. The DMD algorithm allows for the data sequence to be approximated as a Krylov sequence. However, if the
dynamics is produced by a linear process, there is no approximation and the DMD eigenmodes and eigenvalues at convergence
are equivalent to those computed by a global stability analysis via Arnoldi-like methods based on a Krylov subspace [42]. In our
framework, the snapshot sequence is produced by the linear flow evolution of small perturbations around a T -periodic base-flow,
with T the oscillation period. In such a scenario, Floquet and DMD modes can be directly linked with each other [48], hence
suggesting DMD as an alternative to more classical Floquet stability analysis tools. In this work, DMD will be employed to
characterize the three-dimensional secondary instability of the flow past a permeable circular cylinder.

The objective of this paper is to explore the three-dimensional stability and transition scenarios in the wake past porous circular
cylinders. In particular, the yet unexplored role of permeability in modifying the two-dimensional von Karman vortex and its
three dimensional stability properties is investigated. The selected flow configuration, i.e. the flow past a circular cylinder, is
prototypical for bluff body wakes, and the transition scenario has been largely investigated in the literature for the impervious
case. To this purpose, the first choice concerns the method employed to describe the flow through the porous microstructure.
Direct simulations of the flow around and within the permeable matrix are cost challenging due to the large range of length
scales that characterize the flow dynamics through porous bodies [8, 49, 50] and potentially limited by the choice of a specific
microscopic configuration. Techniques based on multiscale expansions and averaging techniques (homogenization, cf. [51]) can
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FIG. 1. Sketch of (a) flow configuration and (b) computational domain.

reduce computational costs related to these multiscale problems by taking advantage of scales separation that is present in the
dynamics of a fluid phase through a solid matrix. Homogenized models effectively recover the effects of the permeability on the
whole fluid phase in terms of averaged variables, both in the case of thin [9, 52, 53] and thick [54–56] permeable objects, or when
treating slip on a rough wall [57–59] or at the interface between a porous object and a free fluid region [60, 61]. Homogenization
techniques have the great advantage to provide a rigorous framework that links the microstructure to macroscopic properties
[62]. Therefore, the homogenized model does not suffer from the limitations stemming from the choice of a particular geometry.
The calculations can be performed by employing macroscopic quantities (e.g. permeability), and the microscopic structure
reproducing a certain macroscopic flow can be retrieved a posteriori through an inverse procedure [9, 24].

In the introduced general framework, the investigation of the role of permeability in modifying the unsteady two-dimensional
wake and the emergence of three-dimensional patterns is a crucial step forward in the understanding of large Reynolds number
behavior of flows past permeable bluff bodies and the consequent three-dimensional fluid-structure interaction. The paper is
organized as follows. Section II presents the mathematical formulation and numerical approach for the flow past and through a
permeable circular cylinder. Section III is devoted to the study of the two-dimensional flow structure. We first identify the yet
unknown linear stability boundary of the steady wake, and we then investigate the vortex shedding as permeability and Reynolds
number of the flow are varied. Section IV studies, through a DMD-based algorithm, the three-dimensional stability of the two-
dimensional vortex street, identifying the unstable modes and the boundary within which the two-dimensional solution is stable
with respect to 3D perturbations.

II. PROBLEM FORMULATION AND NUMERICAL APPROACH

In this section, we introduce the equations governing the problem as well as their numerical implementation. A permeable
circular cylinder of diameter D is invested by a uniform free-stream of an incompressible Newtonian fluid with velocity U∞ and
kinematic viscosity ν , as shown in figure 1. The flow equations are solved in a Cartesian reference frame (x̄, ȳ, z̄), with the origin
on the cylinder axis, which is parallel to the z direction as show in figure 1. We denote with (ū, p̄) and (ūi, p̄i) the velocity and
pressure field outside and inside of the cylinder, respectively. The flow equations are non-dimensionalized with the free-stream
velocity and with the cylinder diameter. Dropping bars for non-dimensional variables, the Navier Stokes equations in the fluid
region Ω f outside the cylinder read:

∇ ·u = 0,
∂u
∂ t

+u ·∇u+∇p− 1
Re

∇
2u = 0, (1)

where Re = (UD)/ν is the Reynolds number. The flow in the porous cylinder Ωp is governed by the Darcy Law [54]

ui =−ReDa∇pi, ∇ ·ui = 0 (2)

coupled with the following slip condition at the interface Γint [61–64]:

u|Γint −
(
−ReDaint∇pi|Γint

)
=ΛΛΛ

(
Σ(u, p)|Γintn

)
, pi|Γint =−n ·

(
Σ(u, p)|Γintn

)
, (3)

where Λ is the slip tensor (to be defined later), Σ(u, p) = −pI+ 1
Re

(
∇u+∇uT

)
is the non-dimensional stress tensor of the

external flow, Da = κκκ
D2 and Daint =

κκκ int
D2 are respectively the Darcy tensor evaluated in the bulk and at the interface, i.e. the
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non-dimensional versions of the bulk and interface permeability tensors κκκ and κκκ int. The macroscopic flow problem is closed by
the far-field boundary conditions in the fluid domain, i.e. a uniform free stream condition u = ex at the inlet Γin and a zero-stress
condition Σ(u, p)n = 0 on the lateral and downstream boundary Γout.

The interface condition relies on a discontinuity of the velocity field related to the slip tensor ΛΛΛ = Λ̄ΛΛ

D . When represented
in cylindrical coordinates, the tensor is diagonal, with non-zero components denoted with Λt and Λs, where t and s are the
tangential vectors to the cylindrical interface. The slip tensor thus reads

ΛΛΛ = Λt t⊗ t+Λss⊗ s, (4)

where (a⊗b)i j = aib j [57]. Depending on the considered values of permeability and slip, different microscopic configurations
can be described. The imposition of zero permeability and a non-zero slip represents the case of a rough wall, which is described
through a classical Navier slip condition [57–59]. A slip velocity, in the generic case, models the viscous effects in the vicinity
of the interface, where the flow passes from the free-stream value to the one imposed by the Darcy law. The imposition of zero
slip thus neglects viscous terms in the vicinity of the interface and gives the continuity of fluid stresses.

In analogy with Ciuti et al. [24], the numerical implementation of the Darcy law is based on a second-order PDE for pi:

∇ ·ui =−Re∇ · (Da∇pi) = 0 ⇒ ∇ ·∇(Dapi) = 0. (5)

The free-fluid and porous problems are coupled via a domain decomposition method [65]. We exploit the finite element software
COMSOL Multiphysics for the numerical implementation. The numerical method relies on the weak form of equations (1,2),
together with their boundary conditions, where P2−P1 Taylor-Hood elements for the fluid domain are employed, whereas the
inner pressure pi is discretized through P1 elements. The numerical tolerance is set to 10−6, for all problems considered in this
work. The steady problem and the stability analysis are solved via the built-in Newton algorithm and eigenvalue solver, the latter
based on the ARPACK library. We employ a second-order Backward Differentiation Formula solver for the numerical solution
of time-dependent problems. The results of the convergence analysis in terms of domain size and discretization, for the various
problems considered here, are reported in Appendix A.

While representing the macroscopic effect of an actual microscopic structure, the permeability, interfacial permeability and
slip are treated as free parameters. This approach ensures that the presented results are independent of the considered microscopic
geometry. The aim of this work is to give a general picture of the flow past an isotropic and homogenous permeable circular
cylinder, i.e. we consider Da = DaI. Since the bulk and interface permeability typically scale in the same way, i.e. Da ∼ Daint
[24], here we assume Daint = Da = DaI. Following Beavers and Joseph [66], the permeability and slip properties are not
independent since they stem from the same microscopic geometry. In the following, we impose the classical scaling which
relates permeability and slip, i.e. Λt ∼ Λs ∼

√
Da. In the following, we thus assume Λt = Λs =

√
Da.

III. TWO-DIMENSIONAL FLOW

In this section, we characterize the two-dimensional flow past a permeable circular cylinder for Re < 200. We first study the
steady solution of the problem and we identify the boundaries in which this solution is linearly stable through linear stability
analysis. We then study the time-dependent solution emerging beyond these boundaries. The numerical results presented in this
section are obtained using the mesh M4, details of which are given in Table I.

A. Steady flow

In this section, we consider the steady two-dimensional solution of the flow equations and its stability with respect to two-
dimensional, time-dependent, perturbations. The steady solution of the equations (U,P,Ui,Pi), with U = (Ux,Uy) and Ui =
(Uix,Uiy) is given by

∇ ·U = 0, U ·∇U+∇P− 1
Re

∇
2U = 0, ∇

2Pi = 0, (6)

together with the boundary conditions at the cylinder interface

U|Γint −
(
−ReDa∇Pi|Γint

)
=
√

DaΣ(U,P)|Γintn, Pi =−n ·
(
Σ(U,P)|Γintn

)
. (7)

The problem is completed with the inlet free-stream U = ex and free-stress Σ(U,P)n = 0 conditions at the outlet [67] and lateral
boundaries. The latter condition is equivalent to a free-slip as long as the free-stream flow at the sides of the domain are not
influenced by the presence of the body, i.e. the blockage is negligible (see Appendix A).
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FIG. 2. Steady flow streamlines and iso-contours of the streamwise component of the velocity field for Re = 45 and (a) Da = 10−4, (b)
Da = 5×10−3, (c) Da = 7×10−3, (d) Da = 9×10−3. Note that only the region y > 0 is reported, because of symmetry. (e, f ,g) Isocontours
(e) of the length of the recirculation region LR, (f) of the distance between the recirculation region and the cylinder XR and (g) of the drag
coefficient. The red and black dashed lines denote the zero iso-contours of LR and XR, respectively.

Figure 2(a-d) shows the steady flow streamlines past an increasingly permeable circular cylinder, for fixed Re = 45. While at
low permeability Da = 10−4 the flow features are analogous to the solid case, at Da = 5×10−3 a slightly smaller recirculation
region, detached from the body, is observed. As permeability further increases, the recirculation region moves away from the
cylinder, becomes smaller and disappears. Even in the absence of a recirculation region (subfigure (d)), there is a region of very
low velocity downstream of the cylinder. The behavior of the recirculation region is summarized in figure 2(e-f), which shows
the iso-contours of its length LR (i.e. the streamwise distance between the two points on the axis y = 0 on which the streamwise
velocity is identically zero) and its distance from the rear of the cylinder XR (i.e. the distance x from the rear of the cylinder
at which the streamwise velocity becomes negative). At low Reynolds numbers, an increase in Da leads to a decrease of LR.
However, for large enough Re, the length of the recirculation region shows an initial increase with Da followed by a decrease,
until it disappears. For Da > 0.004, LR presents a non-monotonous behavior for increasing Re, with an initial increase followed
by a rapid decrease, until disappearance of the recirculation region. The distance of the recirculation region increases with the
permeability and reaches very large values, of the order of ≈ 4 diameters at large Reynolds numbers.

In analogy with other permeable bodies studied in the literature [9, 13, 21, 24], the two-dimensional steady flow past a
permeable cylinder presents a detached recirculation region. In general, the recirculation region shrinks and disappears as Da
increases. The shrinking and detachment of the recirculation region stem from the intensity of vortical layers generated by the
flow separation. An increase in permeability leads to larger velocities through the body and to a less perturbed flow, with respect
to the free-stream condition. Therefore, the strength of vortical layers induced by flow separation is reduced, leading to a lower
counterflow and smaller recirculation regions. This effect is combined with the presence of a positive bleeding flow through
the cylinder which leads to a downstream displacement of the recirculation. The non-monotonous behavior of the length of the
recirculation region with increasing Re is related to the competition between the increase of the flow inertia (which tends to
increase LR), in analogy with what happens in the case of impervious bodies, and the decrease of the microscopic viscous drag
u/(ReDa) 1/Re exerted by the porous structure (which tends to decrease LR), since the velocity through the pores increases with
Re (see equation (2)) [9].

The modifications of the flow morphology also affect the behavior of the drag coefficient CD = 2
∫

Γint
Σ(U,P)n · exdΓ The

drag coefficient monotonically decreases at low Reynolds numbers. However, for Re > 100, a clear peak in the iso-contours is
visible, thus highlighting a non-monotonous behavior with permeability. This behavior is analogous to the one of LR, since both
are related to the intensity of vorticity in the field, which in turn relates to the microscopic drag at the pore scale.

These analyses have been performed by considering the steady solution of the flow equations. However, not all described
flow configurations are likely to be observed, since the steady wake may be unstable to perturbations. In the solid case, the wake
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FIG. 3. (a) Neutral curve in the (Da,Re) plane, together with the values of St following the marginal stability (colored dots). In the inset:
zoom in the region 0.0035 < Da < 0.008 (black solid line), together with the iso-contours of the length of the recirculation region LR. (b,c)
Streamwise component of the velocity eigenmode at the marginal stability, for Da = 5.032×10−3 and (b) Re = 85, (c) Re = 130.

past a circular cylinder undergoes a Hopf bifurcation at Re ≈ 46.7, leading to the well-known von Karman vortex street, i.e. an
alternate shedding of vortices with a well-defined frequency [26]. Linear stability analysis can be used to identify the critical
conditions which lead to the instability of the steady flow and the onset of an unsteady wake. Linear stability techniques rely on
the introduction of the following decomposition in the flow equations (1) and (2), with ε ≪ 1:

u(x,y, t) = U(x,y)+ εu′ (x,y, t) , p(x,y, t) = P(x,y)+ ε p′ (x,y, t) , pi (x,y, t) = Pi (x,y)+ ε p′i (x,y, t) . (8a)

While at O(1) one recovers the steady equations satisfied by (U,P,Pi), a time-dependent linear problem is obtained at order
O(ε). Upon introduction of a normal mode ansatz, i.e.

(
u′(x,y, t), p′(x,y, t), p′i(x,y, t)

)
= (û(x,y), p̂(x,y), p̂i(x,y))exp(σt), (9)

the following eigenvalue problem is obtained:

∇ · û = 0, σ û+U ·∇û+ û ·∇U+∇p̂− 1
Re

∇
2û = 0, ∇

2 p̂i = 0, (10)

together with the interface condition

û|Γint −
(
−ReDa∇p̂i|Γint

)
=
√

Da
(
Σ(û, p̂)|Γintn

)
, p̂i|Γint =−n ·Σ(û, p̂)|Γintn, (11)

completed with the homogenous condition û = 0 at the inlet and the stress-free condition Σ(û, p̂)n = 0 on the lateral and outlet
boundaries. The real and imaginary parts of the complex eigenvalue σ = Re(σ)+ iIm(σ) are the growth rate and oscillation
frequency of the global mode. Modes with Re(σ) > 0 grow exponentially with time and are thus unstable. In this work,
we identify the critical value of Re and Da for which Re(σ) = 0, together with the corresponding spatial distribution of the
marginally stable mode. The grid convergence analysis of the eigenvalue problem is reported in Appendix A.

Figure 3(a) shows the marginal stability curve for the onset of the vortex shedding, i.e. the couples (Re,Da) for which the
flow presents null growth rate. The marginal stability curve divides the parameters’ space into a stable and unstable region.
For Da = 10−4, the critical Reynolds number for the marginal stability is analogous to the solid case, i.e. Recr = 46.7. As
permeability increases, Recr remains constant until Da = 10−3, beyond which it starts to increase. The marginal stability curve
presents an inversion point for Da ≈ 6× 10−3. Close to this value, an increase of Re with constant Da leads to an initial
destabilization, followed by a re-stabilization at larger Reynolds numbers. The non-dimensional frequency, expressed in terms
of Strouhal number St = Im(σ)/(2π), does not show strong variations with Da and Re, when considered along the marginal
stability curve, even if a slight increase with Da is observed. In the inset of figure 3, the marginal stability curve is overlaid with
the iso-contours of the length of the recirculation region. The marginal stability curve follows the iso-contour LR ≈ 3 before the
inversion point. After the inversion point, the marginal stability curve crosses decreasing isolevels of LR. For large enough Re,
the neutral curve is located in a region where the recirculation region is absent.

The highlighted behavior of the marginal stability curve is analogous to the one observed for different shapes[24] and per-
meable models [9, 13, 21]. Since the neutral curves reasonably follow the iso-contours of the length of the recirculation region
[21], the inversion point observed in figure 3 is due to the non-monotonous behavior of the recirculation region with Re, related
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FIG. 4. Spanwise base-flow vorticity snapshots for (a) Re= 215, Da= 1×10−4, (b) Re= 200, Da= 2×10−3 and (c) Re= 215, Da= 3×10−3,
normalized with the corresponding maximum absolute value, i.e. (a) max(|ωz|) = 27.3 , (b) max(|ωz|) = 8.3, (c) max(|ωz|) = 6.1.

to the competition between the flow inertia and the decrease of the drag through the pores. The presence of an unstable region
without recirculation was already highlighted in Ledda et al. [21]. Despite the absence of a recirculation region, there is a strong
wake defect past the cylinder (as shown in figure 2(d)) which is enough to trigger the oscillatory instability [68, 69].

The properties of the recirculation region also influence the spatial structure of the critical modes, shown in figure 3(b). We
consider two cases for fixed Da ≈ 5× 10−3 and increasing Re. The case Re = 85 shows a spatial distribution very similar to
the solid case, with a slight downstream displacement of the onset region of the vortex shedding. However, for Re = 130, the
onset region moves further downstream. While the length of the recirculation region LR modifies the stability properties of the
wake, its distance from the cylinder XR has a deep influence on the vortex-shedding onset region. The onset region is typically
related to the position of the instability, so-called wavemaker [69], that, with a good approximation, corresponds to where the
recirculation region or the wake defect is located [21, 69]. Therefore, the downstream displacement of the wake defect of the
steady flow moves downstream the vortex shedding onset location. This downstream displacement may have a profound impact
on the non-linear unsteady flow and in particular on the forces acting on the cylinder, analyzed in the next section.

B. Two-dimensional von Karman vortex street

In the previous section, we characterized the steady flow and identified the boundaries in the (Da,Re) plane where this
solution can be observed. In this section, we cross this threshold in the parameters’ space and consider the unsteady, non-linear
solution of the flow equations introduced in Section II. The numerical results presented in this section are obtained adopting a
mesh derived from mesh M4 (see Table I) with a reduced outflow length x+∞ = 90 according to results given in Table II. For
further details in terms of numerical convergence, we refer to Appendix A. The field is initialized with the initial condition
u = (1,0); the first 100 time units are discarded to let transient effects fade away and results are presented after a periodic
state (observed through the monitoring of aerodynamic forces) in the near wake is attained. Figure 4 presents typical vorticity
patterns observed by progressively increasing the cylinder permeability. For Da = 10−4, the flow features are analogous to the
solid case, with vortices that are shed from the cylinder. However, for Da = 2×10−3, two shear layers of opposite vorticity are
observed just downstream of the body. At x ≈ 2, the shear layers become unstable and vortices are shed in the wake, with larger
spacing between the vortical structures of opposite signs, compared to the previous case. A further increase in Da moves further
downstream the onset region, and the distance between vortical structures increases. In addition, the wavelength (and the period
as seen below) of the shedding increases with increasing Da.

The downstream displacement of the onset region induces a variation of the periodic aerodynamic forces exerted on the
cylinder. Figure 5(a) shows the variation with time of the drag coefficient, rescaled with its mean value in the plotted time range,
and of the lift coefficient CL, for increasing values of Da and fixed Re = 200. In all cases, a well-defined oscillation frequency
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(a) (b) St

FIG. 5. (a) Drag coefficient rescaled with its mean value (on the top) and lift coefficient (on the bottom) as functions of time, for Re = 200 and
Da = 10−4 (blue), Da = 10−3 (orange), Da = 2×10−3 (yellow). (b) Scatter plot in the (Re,Da) plane of the Strouhal number obtained from
the DNS (colored dots in the black circles). The black solid line denotes the marginal stability curve while the colored dots on it the values of
St obtained from the linear stability analysis. Crosses instead denote nonlinear simulations which converged to a steady solution.

is identified. In the almost-solid case, the oscillation frequency of the drag coefficient is twice the one of the lift coefficient, in
agreement with the solid case [2]. For both quantities, the frequency slightly decreases as permeability increases. An increase
of permeability also leads to a decrease of the amplitude of the oscillations of the drag coefficient with respect to its mean value.
At the same time, the lift oscillations amplitude decreases. For Da ≈ 2× 10−3, the CD oscillations are almost damped, while
those of CL are reduced by two orders of magnitude.

The presence of a well-defined frequency in the time history of the aerodynamic forces allows us to use them in evaluating the
Strouhal number of the wake. In particular, we employ the lift coefficient, to this purpose. Figure 5(b) shows the values of St in
the (Da,Re) plane, together with the values obtained from the linear stability analysis, which lie on the marginal stability curve.
The crosses identify cases in which the non-linear time-dependent simulations lead to a steady flow. These results agree with
the linear stability analysis of the previous section. Overall, St increases as Da and Re progressively depart from the marginal
stability curve. At low permeability, an increase in the Reynolds number leads to a monotonic increase of St, from ≈ 0.1 to
≈ 0.22. For fixed Re, instead, the Strouhal number decreases with permeability. For Da = 4×10−3, a non-monotonous behavior
of St with Re is observed, starting from the initial marginal stability at Re ≈ 60 to the recovered neutral curve at Re ≈ 250, in
analogy with the behavior of recirculation region and drag coefficient.

The non-linear unsteady simulations show that the von Karman vortex street forms in a region which progressively moves
downstream as permeability increases. This result, experimentally observed by [19] at larger Reynolds numbers, is in agreement
with the spatial distribution of the linear stability modes and is related to the downstream displacement of the recirculation region.
Since the onset of shedding can take place significantly downstream of the cylinder, the intensity of the flow oscillations in the
vicinity of the cylinder decrease. As a consequence, the drag and lift oscillation amplitudes decrease, until an almost constant
value of drag and a vanishing lift are reached, although vortex shedding is still present (see figure 5). The decrease of Strouhal
number for increasing Da is indirectly visible in figure 4. The vortices present a larger spacing as permeability increases, for
fixed Re. Therefore, the vortices are shed with a lower frequency since the advection velocity of these vortices, related to the free-
stream velocity, is the same in all cases. An increase in permeability reduces the intensity of the separation since more fluid can
pass through the body, reducing the adverse pressure gradients. Amplification of perturbations is thus reduced and the unstable
region moves downstream, as shown by [21] with local stability analysis for a permeable rectangle. Therefore, perturbations
grow to significant amplitude only further downstream from the cylinder, with a consequent frequency reduction. This analysis
is confirmed by observing figure 4, in which the maximum value of vorticity decreases and shear layers destabilize further
downstream as permeability increases. Permeability reduces the intensity of produced vorticity, with a consequent downstream
displacement of vortex shedding onset region and a decrease of the shedding frequency, since perturbations need to be advected
more downstream to be sufficiently amplified. These flow modifications damp and eventually suppress the oscillations of the
aerodynamic forces acting on the cylinder.

Figure 6 shows the mean flow streamlines, obtained by averaging the time-dependent periodic flow over one period. In
analogy with the steady case, the mean flow presents a recirculation region that detaches from the body and moves downstream
as permeability increases. The behavior of the recirculation region of the mean flow in terms of length LR and distance XR is
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summarized in figure 7(a,b). Its presents a non-monotonous behavior with Da, for fixed Re, with an initial increase followed by
a very steep decrease until disappearance of the recirculation. The maximum values reached are of the order of LR ≈ 1−2. The
distance instead always increases with Da, reaching a maximum value of ≈ 2.5, for the considered cases. These results are in
line with the experiments of Castro [14], where a detached mean recirculation region past a perforated plate was observed, at
Reynolds numbers of the order of 104. The presence of a detached recirculation region of the mean flow is thus a footprint of
the permeability of the bluff body penetrated by the flow, in addition to the behavior observed in the steady case.

The mean values of the drag coefficient and the maximum lift coefficient are reported in figure 7(c,d). The maximum lift
coefficient monotonically decreases with Da, reaching very small values (≈ 0.01) for Da > 3× 10−3. The values of lift are
intrinsically related to the oscillations in the near wake. Since, as Da increases, the onset region of the vortex shedding is moved
downstream, oscillations of the lift coefficient decrease until they become negligible. Similarly, for large enough permeability,
no significant drag oscillations are observed. Interestingly, the mean drag coefficient presents a maximum for intermediate
permeability, in the vicinity of Da ≈ 10−3, beyond which it decreases monotonically. This maximum of drag is realized for
slightly lower values of permeability, when compared to the steady baseflow.

We conclude our analysis of the two-dimensional vortex shedding by showing the far-wake behavior of the von Karman
vortex street. Figure 8(a) shows the far wake distribution of the vorticity field, for Da = 9× 10−4 and Re = 195. In analogy
with the solid case [70], the vortex street past the cylinder decays and two shear layers of opposite vorticity emerge. The shear
layers are known to be convectively unstable and amplify a broad band of frequencies [70]. However, an increase in Da (figure
8(b,c)) leads to a downstream displacement of the vortex shedding decay region, and vortices are observed for a much larger
downstream extent. The long distance behavior is related to the streamwise spacing of the vortices. In panel (a), vortices are less
spaced than in panel (c). As the spacing increases, vortices of opposite sign present a weaker interaction, and these structures
thus annihilate at larger distances from the cylinder. Since the shedding frequency decreases with increasing permeability, also
the spacing of vortices increases with permeability, which survive longer downstream. Therefore, when compared to impervious
obstacles, permeable bodies present a spatially-retarded emergence of the far-field shear layers associated to a longer region of
influence of the shedding extending further downstream. This observation is in agreement with the results of [21], where the
authors showed that the core of the instability (i.e. the wavemaker [69], see Section III A) extends several diameters downstream
of the body.

Another interesting flow feature appears in the far wake, at large times: the shear layers resulting from the annihilation of the
vortex street destabilize and vortical structures are advected downstream, which constitute the so-called secondary vortex street.
Mittal et al. [70] also observed, in the impervious case for a circular cylinder, that the vortical structures in the far wake region
lack of the periodicity typical of the near wake region and that the size of these structures grow as they are advected downstream.
A work carried out by Vorobieff et al. [71] confirmed such a flow pattern trough a PIV analysis of experimental data. Figure 9
shows the frequency spectra of the cross-stream component of the velocity for the flow case corresponding to Da = 1× 10−4

and Re = 188.5 and Da = 9×10−4 and Re = 240 sampled at various streamwise locations. As described in [70], the near-wake
dominant frequency corresponds to the von Kármán shedding frequency (StV K) and the flow locally is exactly periodic. Moving

FIG. 6. Mean flow streamlines and iso-contours of the mean streamwise velocity for Re = 200 and (a) Da = 10−4, (b) Da = 10−3, (c)
Da = 2×10−3.
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FIG. 7. (a) Length of the recirculation region of the mean flow L̄R (on the top) and its distance from the cylinder X̄R (on the bottom) in the
(Da,Re) plane. (b) Mean drag C̄D (on the top) and maximum lift Cmax

L (on the bottom) coefficients in the (Da,Re) plane. The black line
denotes the marginal stability curve.
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FIG. 8. Vorticity field (rescaled with the maximum absolute value) iso-contours at large times for (a) Da = 9×10−4, (b) Da = 2×10−3 and
(c) Da = 3×10−3 for Re = 200 at a non-dimensional time t = 180.

downstream, the velocity spectra exhibit a gradual shift to broad-band frequencies centered around a frequency lower than fV K
for a wide range of parameters in the Re−Da plane. Figure 10 shows the behavior of the far wake for the case Re = 240 and
Da = 9×10−4. Although the near-wake is essentially periodic, the overall flow looses periodicity due to the far-wake convective
disturbance growth.

IV. DMD-BASED ANALYSIS OF THE TRANSVERSE SECONDARY INSTABILITY OF THE VON KARMAN VORTEX
STREET

In the previous section, we investigated the structure of the two-dimensional flow past a permeable cylinder. However, actual
flow configurations are intrinsically three-dimensional. In particular, the presence of modulations of the vortex shedding along
the z (denoted as spanwise) direction is a crucial issue to characterize the behavior of cylindrical structures. In this perspective,
we aim at understanding the conditions which lead to a destabilization of the two-dimensional von Karman vortex street along
the spanwise direction through a secondary stability analysis of this periodic flow. The analysis of the emergence of three-
dimensional instabilities of the two-dimensional von Kármán vortex street (secondary instability) typically relies on the Floquet
analysis (see [33], [72]), whose formalism assumes a perfectly periodic vortex shedding in the whole domain, which is not
the case in the present configuration. As a consequence, classical Floquet theory for the study of the secondary instability
cannot be rigorously applied, unless one artificially filters out this far wake dynamics. This aspect does not affect the analysis
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FIG. 9. Flow past a permeable circular cylinder: frequency spectra of the cross-stream component of velocity at different sample points in the
streamwise locations and y = 0 for (a) Da = 1×10−4, Re = 188.5 and (b) Da = 9×10−4, Re = 240.

of the impervious case, but it may be important for the permeable case as the vortex street can originate significantly further
downstream of the cylinder. A way to overcome this issue consists in applying an Arnoldi-like algorithm procedure only on a
sub-domain of the field solution, specifically where the base-flow preserves the T -periodicity. As an alternative stability tool
to study the emergence of these three-dimensional secondary modes, which reduces to the classical Floquet analysis when the
flow is perfectly periodic but can handle cases with imperfect periodicity of the base flow, we propose here a procedure based
on Dynamic Mode Decomposition (DMD), which also allows one to easily analyze smaller portions of the actual domain, so as
to separate diverse dynamical behaviors occurring at different spatial locations, e.g. in the near and far wake.

It is well assessed in the literature [33] that the two-dimensional von Karman vortex street past a solid circular cylinder
becomes unstable to transverse perturbations at Re = 188.5, leading to modulations of the vortex street past the cylinder. While
the solid case has been widely investigated, similar studies in the permeable case are still lacking. In this section, we investigate
the modifications induced by permeability on this transverse, secondary, instability. Following Barkley et al. [33], the three-
dimensional instability is first induced by a long-wavelength mode A, which becomes unstable at Re = 188.5. A second family
of modes (B), is characterized by shorter wavelengths and become unstable for Re > 250. Since we study the case Re < 250, we
focus on the family of modes A, responsible for the first three-dimensional instability, in the impervious limit.

A. Linearized 3D equations

By introducing a O(ε) three-dimensional perturbation (u′ (x,y,z, t) , p′ (x,y,z, t) , p′i (x,y,z, t)), equations (1)-(3) are lin-
earized around the time-dependent two-dimensional flow described in Section III B, i.e.

u(x,y,z, t) = U(x,y, t)+ εu′(x,y,z, t), p(x,y,z, t) = P(x,y, t)+ ε p′(x,y,z, t), pi(x,y,z, t) = Pi(x,y, t)+ ε p′i(x,y,z, t), (12)

Substitution into (1)-(3) leads to the following O(ε) linearized equations

∇ ·u′ = 0,
∂u′

∂ t
+u′ ·∇U+U ·∇u′−∇p′− 1

Re
∇

2u′ = 0, ∇
2 p′i = 0, (13)

with homogeneous Dirichlet condition at the inlet and free-stress condition at the outlet and on the lateral boundaries. At the
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FIG. 10. Snapshots of the vorticity field iso-contours for Da = 9×10−4 and Re = 240.

interface Γint, the conditions below govern the dynamics of the three dimensional perturbation

u′|Γint =−ReDa∇p′i|Γint +
√

DaRe
(
Σ
(
u′, p′

)
|Γintn

)
, p′i|Γint =−

(
Σ
(
u′, p′

)
|Γint n

)
·n, (14)

The small perturbation is given by the following real-valued ansatz:

u′ = (ũ(x,y, t)cos(β z), ṽ(x,y, t)cos(β z), w̃(x,y, t)sin(β z)) , (15a)

p′ = p̃(x,y, t)cos(β z), p′i = p̃i (x,y, t)cos(β z). (15b)

Hence, for any combination (Re,Da), the three-dimensional linearized dynamics reduces to a one-parameter (the spanwise
wavenumber β ) family of two-dimensional problems.

Upon spatial discretization (see Section II for details), the linear system is conveniently rewritten as a dynamical system of
ODEs:

dq̃
dt

= A (t) q̃, (16)

where q̃ = {ũ, p̃, p̃i}T , subjected to the initial condition q̃(t = 0) =q̃ic which satisfies the boundary conditions. The temporal
dependence of the unsteady two-dimensional base-flow is embedded in the linear operator A . Note that if such operator is
T -periodic, i.e. A (t) = A (t +T ), Floquet theory ensures an ansatz as [33]

q̃(x,y, t) = q̂F (x,y, t)exp(σF t), (17)

with q̂F (x,y, t) = ∑
k=+∞

k=−∞
φF,k (x,y)eikωt the Floquet mode associated with the potentially complex Floquet multiplier µF =

exp(σF T ) = exp(σF(2π/ω)), and where the real part of the Floquet exponent, Re(σF ), is related to the growth/decay rate of the
perturbation. We also recall that a value of Im(σF )= 0 would mean that the unstable perturbation is synchronous with respect to
the T -periodic base-flow [33].

B. SP-DMD algorithm for secondary stability analysis

The stability properties of the linear problem (16) are investigated through a Sparsity-Promoting Dynamic Mode Decompo-
sition (SP-DMD) algorithm [42–44], whose essential points are introduced below. Dynamic Mode Decomposition relies on the
formulation of the data-sequence as a Krylov sequence of snapshots q̂m

Qm = {q̂0, q̂2, ..., q̂m} ∈ Rn×m, (18)
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where n denotes the number of degrees of freedom and m is the number of equally spaced time-snapshots (separated by a
constant time-step ∆t). The data-sequence is assumed here to be real-valued, i.e. ∈ Rn×m. Here snapshots q̂m are obtained
by time-integrating (16) for a fixed set of parameters, i.e. (Re,Da,β ), starting from an initial condition

{
ûic, p̂ic, p̂i

ic}. The
maximum time-step for time integration is 0.01. The time evolution of the perturbation field {û, p̂, p̂i} is then temporally
sampled with constant frequency with the constraint that f > 2/T according to the Nyquist theorem, so as to obtain equally
spaced temporal snapshot separated by a time-step ∆t = 1/ f . In our specific case the value f = 10 is employed, corresponding
to about 50 snapshots per shedding cycle. Moreover, as we are mainly interested in characterizing the stability properties of the
near wake two-dimensional time-periodic flow dynamics, we can take advantage of the DMD technique to limit the analysis
only to a sub-portion of the actual domain, specifically, where the base flow is T -periodic. The sensitivity analysis to the size
of such a sub-domain reported in Appendix A shows that a spatial frame of extension x ∈ (−1,15) and y ∈ (−4,4) is a suitable
choice for the computation of the relevant DMD eigenvalues. For the sake of convenience, within this spatial window, the
flow fields corresponding to each temporal snapshot were interpolated from the original finite element grid onto a uniform grid
with ∆x = ∆y = 0.8. For specific cases, we employed a domain of streamwise extent up to x = 60, so as to better visualize the
downstream structure of the perturbation. Note that this does not affect the convergence of the results, as shown in Appendix A.

Without lack of generality, we chose as initial condition for the linearized simulations the time derivative of the base flow
∂U/∂ t, which naturally satisfies the boundary conditions and which essentially corresponds to a marginally stable Floquet mode
for a spanwise wavenumber β = 0 [33]. This choice helps in reducing the initial transient, which is then discarded.

We first introduce the two sub-snapshot matrices, Qm
1 = (q̂0, q̂1, ..., q̂m−1) and Qm

2 = (q̂1, q̂2, ..., q̂m)∈ Rn×m−1. A pre-processing
step is performed, which employs the economic-size SVD decomposition of the data sequence Qm

1 , i.e. Qm
1 = UΣW H (the

superscript "H" notes the conjugate transpose). The companion matrix S̃ = UHQm
2 WΣ−1 is then computed, whose eigenvalues

and eigenvectors are solution of the following standard eigenvalue problem

S̃y j = µ jy j, φ j (x,y) =Uy j, σ j = log µ j/∆t, (19a)

and represent the DMD eigenvalues and modes respectively. Quantities Re(σ j) and Im(σ j) have the meaning of a growth/decay
rate and oscillation frequency, respectively, associated with the jth DMD mode. As an example, the DMD spectrum computed
for the parameter setting (Re,Da,β )=

(
200,9×10−4,1.5

)
is reported as black circles in figure 11. The data-sequence can be

then represented as

Qm
1 ≈

r=m

∑
j=1

α jφ jµτ
j = φDαVand , (20)

with τ ∈ (0,1, ...,m−1), φ = (φ1,φ2, ...,φr) (spatial structures), Dα = diag(α) (amplitudes) and Vand ∈ Cr×m the Vandermonde
matrix (temporal dynamics) [44].

At this stage, the vector of amplitudes, α = (α1,α2, ...,αr), is still unknown. In general, their determination requires solving
the following optimization problem,

min
α

J (α) := ||Qm
1 −φDαVand ||2F = ||ΣW H −Y DαVand ||2F , (21)

where the subscript "F" denotes the Frobenius norm and J (α) is the objective function.
In the present framework where DMD is used as a stability analysis tool to determine the eigenvalues and eigenmodes of the
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system, we are not interested in reconstructing the original time process produced via linearized simulations, thus the determi-
nation of these amplitudes is not strictly relevant. However, it is known that the DMD algorithm presented above, requiring a
matrix or pseudo-matrix inversion, often experiences numerical difficulties, due to the presence of several spurious modes [48].
In many cases, such modes can be successfully removed through an optimization process, i.e. Sparsity-Promoting (SP) algo-
rithm [44], which identifies the modes that have the most profound influence on the quality of the approximation of the original
snapshot-sequence. In practice, this is done by introducing a user-defined trade-off between the number of extracted modes and
the approximation error with respect to the original data sequence, i.e. sparsity is induced by augmenting the objective function
with an additional term that penalizes the l1-norm of the vector of unknown amplitudes α . Hence, the amplitude calculation is
still useful in this context so to filter out spurious modes and to highlight the dominant modes in the eigenvalue spectrum of fig-
ure 11. The problem of computing these amplitudes takes the form of a constrained convex optimization problem (solvable via
Alternating direction method of multipliers (ADMM) [44]). Further details are given in [44]. The Matlab function implementing
the Sparsity Promoting algorithm, used in the present work, can be found in [73].

The optimized SP-DMD eigenvalues are reported in figure 11 as red crosses. We recall that the DMD analysis is performed
in a sub-domain where the unsteady two-dimensional base flow is T -periodic so to filter our the secondary dynamics in the far
wake base flow. Then, for the parameter configuration of figure 11, the SP algorithm identifies as dominant a series of aligned
modes sharing the same growth rate Re(σ j)= σDMD, e.g. zero in this case (marginally stable at β = 1.5), and corresponding to
consecutive harmonics, i.e. Im(σ j)= lω , l = . . . ,−2,−1,0,1,2, . . ., with the first harmonic for l = ±1, synchronized with the
oscillation frequency of the T -periodic base flow.

Thus, given the properties of the SP-DMD spectrum of figure 11, from equation (20) one can readily construct a basis of
DMD modes in the following form

exp(σDMD(τ∆t))
l=+Nh

∑
l=−Nh

φl (x,y)eilω(τ∆t), (22)

where Nh denotes the number of harmonics considered in the computation whereas the index l is here used to refer to the SP-
DMD mode corresponding to each of those harmonics. Note that the amplitudes have been omitted for the sake of clarity. As
already outlined in [48], the close connection with Floquet modes appears straightforward once recalling the standard Floquet
ansatz

exp(σF t)
k=+∞

∑
k=−∞

φF,k (x,y)eikωt , (23)

with Im(σF )= 0 for a synchronous instability. Essentially, the set of DMD modes identified by the SP algorithm gives an
approximation of the dominant Floquet mode. Note that it is only an approximation because of the truncated series in (22).
Furthermore, for τ∆t = T , exp(σDMD (τ∆t)) = exp(σDMDT ) precisely corresponds to the Floquet multiplier µF = exp(σF T ),
which we will denote hereinafter simply as µ ∈ R and that will be used as criterion for the determination of the instability onset,
e.g. µ < 1 stable, µ = 1 marginally stable and µ > 1 unstable, keeping in mind that this calculation is not performed via standard
Floquet analysis, but rather through a SP-DMD algorithm that post-processes linearized simulations.

In summary, the DMD computation provides several harmonics, all associated with the same multiplier, which composed
together provide the Floquet eigenmode.

In Appendix A we validate the outcomes of our DMD-base procedure with those of Barkley & Henderson [33], for the case
of a solid cylinder, from a standard Floquet analysis. To this end we replicated their exact domain size and we employed a
comparable mesh. In Table III is reported the variation of the multiplier µ with respect to the spatial window employed for
the assembling of the snapshot matrix Qm. The grid coincides with the one employed for the two-dimensional time-dependent
nonlinear simulations.

C. Results

Figure 12 shows the spatial distributions of the late-time z-vorticity, obtained from the linearized model, for Da = 9× 10−4

and for increasing Reynolds numbers, while figure 13 shows the associated time-evolution of the y-component of velocity
of the three-dimensional perturbation sampled at x = 2.5. In case (a), we report a snapshot for a case in which the three-
dimensional perturbation is decaying with time. We observe the presence of two regions. In the vicinity of the body, the vorticity
distribution is similar to that of mode A for impervious cylinders [33]. Conversely, far downstream, vorticity cores stretch along
the streamwise direction and get closer to the axis y = 0. In panels (b,c), we instead report two unstable cases. The pattern of
streamwise vorticity in the near-wake is similar to that of mode A past impervious cylinders [33]. In case (b), the amplitude of
vorticity is spatially decaying while moving downstream, in opposition to case (c), where the amplitude of vortical structures
increases with x.
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FIG. 12. Spanwise (z) component of vorticity (rescaled with its maximum absolute value) from the linearized simulations at t = 100 and
Da = 9×10−4": (a) Re = 195, β = 1.56, (b) Re = 230, β = 1.5 and (c) Re = 250, β = 1.5.
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FIG. 13. Da = 9×10−4. Transversal velocity ṽ sampled at (x = 2.5, y = 0) as a function of time. The red dashed line denotes the exponential
growth or decay obtained from DMD. (a) Re = 195 and β = 1.56, (b) Re = 230 and β = 1.5, (c) Re = 250 and β = 1.5.

The downstream displacement in the onset of the three-dimensional perturbation is related to the downstream shift in the
formation of the two-dimensional vortex shedding, induced by the permeability of the cylinder. The evolution of the 3D pertur-
bation is reminiscent of the three regions observed in figure 8. Initially, the perturbation vorticity follows the vortex shedding
pattern. For 10 < x < 20, the transitional behavior is observed both for the base flow and perturbation. At large distances,
the baseflow presents two shear layers of opposite vorticity. The perturbation is instead characterized by patches of opposite
vorticity on each half-plane that progressively stretch.

As seen in figure 13, case (a) is characterized by a decreasing amplitude of the oscillations with time, while cases (b,c) are
unstable and the perturbation grows. The temporal evolution is a T -periodic function modulated by a decaying or growing
exponential. Upon employment of the DMD-based procedure on the linearized simulations, one obtains the Floquet multiplier
µ and the associated eigenvectors, for each value of β , Re and Da considered. The Floquet multiplier allows for the temporal
reconstruction of the envelope of the perturbation, reported with the dashed line in figure 13, which shows that the exponential
growth predicted using the DMD technique is in excellent agreement with the envelope of the decaying or growing perturbation.

The Floquet multipliers and modes depend on the spanwise wavenumber β . For varying β , one obtains the dispersion relation,
which relates the behavior in space (z) and time of the growing or damped perturbation. Figure 14 presents diverse dispersion
relations for different values of permeability and Reynolds number. All dispersion relations have a similar behavior, characterized
by a maximum of µ in an intermediate range of β . We begin by considering subfigure (a), i.e. Da = 10−4. For this value of
permeability, the dispersion relation is analogous to the one of an impervious cylinder. For Re = 180, the maximum value of µ
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FIG. 14. Dispersion relations for different cases. (a) Da = 10−4 and increasing Reynolds number; Re = 180 (blue), Re = 185 (orange), Re =
200 (yellow), Re = 215 (purple), Re = 230 (green). (b) Da = 9×10−4 and increasing Reynolds number; Re = 195 (blue), Re = 200 (orange),
Re = 215 (yellow), Re = 230 (purple), Re = 250 (green). (c) Re = 180 and increasing Darcy number; Da = 10−4 (blue), Da = 2.5× 10−4

(orange), Da= 5×10−4 (yellow), Da= 7×10−4 (purple). (d) Re= 195 and increasing Darcy number; Da= 2.5×10−4 (blue), Da= 7×10−4

(orange), Da = 9×10−4 (yellow).Note that the solid lines are obtained via spline-interpolation and only serve to guide the eye.

is less than unity. A slight increase in the Reynolds number (Re = 185) increases the value of the Floquet multiplier, and there is
a small range of β for which µ > 1. We identify the presence of two cut-off wavenumbers which identify the crossing µ = 1. A
further increase in Re leads to a progressive enlargement of the region with µ > 1, and at the same time the maximum value of
the Floquet multiplier increases. An increase in permeability (subfigure (b)) leads to similar trends, although the maximum value
of µ decreases. Subfigure (c) instead shows the dispersion relations for fixed Reynolds number Re = 180 and increasing values
of permeability. As Da increases, the maximum value of µ increases. For Da = 2.5×10−4, a range with µ > 1 appears, which
enlarges for Da = 5× 10−4 and eventually shrinks for Da = 7× 10−4, as the maximum value of µ decreases. For Re = 195
(subfigure (d)), a stabilizing effect with increasing Da is observed.

In summary, an increase in Reynolds number leads to an overall increase of µ . Conversely, an increase in Da instead leads
to a non-monotonous behavior of µ , characterized by an initial increase for low permeabilities followed by a decrease at large
permeabilities, as shown in figure 14(c). The dispersion relations show the typical behavior described by Barkley [33] for the
impervious case, with a maximum µ and two cut-off wavenumbers for which µ = 1. Therefore, the two cut-offs define the
unstable range of wavenumbers. Figure 15 summarizes the behavior of the maximum value of µ (obtained through the spline
interpolation shown in figure 14) and the associated β in the (Da,Re) plane, for the studied cases in the range 175 < Re < 250,
together with a linear interpolation to µ = 1 (red line) that indicates the location of the marginal stability conditions. As
already observed, the unstable range of wavenumbers where µ > 1 initially slightly increases with the permeability. This is
correlated to the slight decrease of the critical Reynolds number observed in the (Da,Re) plane. However, for Da > 5×10−4, the
critical Reynolds number presents a very steep increase. This steep increase allows us to define a critical value of permeability
Da ≈ 10−3, valid at least in the considered range of Reynolds numbers. Beyond this value, no growing perturbations have
been observed in our linearized simulations performed for Da = 2× 10−3, 3× 10−3 and Re = 200, 215, 230. The value of
the estimated wavenumber associated with the maximum Floquet multiplier shows only a variation of ≈ 6% near the marginal
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FIG. 15. Scatter plot of (a) the maximum value of µ and (b) its associated wavenumber β , in the (Da,Re) plane. The red line sketches the
marginal stability curve for three-dimensional instability inferred from the values of µ . The black line instead denotes the marginal stability
curve for the onset of the two-dimensional von Karman vortex street. These lines define three regions with different patterns in the Da−Re
plane: steady and two-dimensional wake (white), unsteady 2D von Karman vortex street (cyan), unsteady 3D wake (light red).
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FIG. 16. Modal form of (a,d,g) first, (b,e,h) second and (c,f,i) third harmonic of the linearized velocity field, for Re = 195, Da = 9×10−4, and
β = 1.5. Each harmonic is scaled with the corresponding maximum absolute value.

stability conditions.
Figure 15 defines three regions in the (Da,Re) space. The first one is bounded by the black curve and corresponds to the

region where the steady two-dimensional wake is linearly stable, and it has been confirmed using time-dependent, non-linear,
simulations. The black and red lines instead define a region in which the two-dimensional periodic vortex shedding past a
permeable cylinder is linearly stable with respect to the 3D A-mode. Interestingly, there is a range of permeability for which
the steady two-dimensional wake appears to be linearly stable, for Re < 250 at least, as investigated in this study. Finally, the
region enclosed by the red curve identifies the parameter combinations in which spanwise modes are amplified and lead to three-
dimensional dynamics. The marginal curve which separates the two-dimensional and three-dimensional dynamics obtained
through linear stability analysis resembles the one which separates steady and unsteady two-dimensional wake. It delineates a
minimal permeability which suppresses three-dimensional instabilities. The presence of a region in which the two-dimensional
von Karman vortex street appears to be stable is associated with negligible lift forces on the body (see figure 7). Therefore,
highly permeable three-dimensional cylinders are characterized by a stable two-dimensional vortex shedding, but there are no
significant oscillating forces acting on the body.

To complete our characterization of the three-dimensional instability, we now turn to describe the spatial structure of the modes
near the marginal stability curve. Figure 16 shows the first three harmonics of the velocity field, for Re= 195 and Da= 9×10−4.
The first harmonic of the x and y components of velocity strongly resembles the vortex shedding mode obtained through linear
stability analysis (see figure 8), in the vicinity of the body. However, the modes significantly change when moving downstream.
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FIG. 17. Modal form of (a,d,g) first, (b,e,h) second and (c,f,i) third harmonic, for Da = 9×10−4 and Re = 195 (top), Re = 230 (center) and
Re = 250 (bottom), rescaled with the corresponding maximum absolute value.

The streamwise component of the velocity field re-organizes in the region 10 < x < 20. For x > 20, structures of alternating signs
dominate the dynamics, antisymmetric with respect to y = 0 and of larger amplitude and with shorter streamwise extent than
the structures observed upstream. These structures progressively re-align along the downstream direction while they decrease
their amplitude. A similar behavior is observed for the first harmonic of the y component of velocity. A mode reminiscent of the
vortex shedding re-organizes in structures of alternating sign, symmetric with respect to the y axis. Their maximum amplitude
is located in the vicinity of the cylinder, in opposition to the streamwise component. Also the spanwise component of velocity
exhibits a re-organization for 10 < x < 20, which leads to structures of large amplitude and alternating sign, antisymmetric with
respect to the y axis, that are damped for x > 50. The velocity components of the second and third harmonics instead present
structures of smaller streamwise extent, rapidly damped when moving downstream, in the transition region of the first harmonic.
Moreover, the third harmonic decays at a distance from the cylinder smaller than the second harmonic case. The effect of
the Reynolds number on the spatial structure of the modes, in the vicinity of the marginal stability conditions, is reported in
figure 17, for the y component of the velocity field. An increase in Re does not modify qualitatively the observed behavior,
with an upstream region reminiscent of the vortex shedding mode and a downstream one characterized by alternating structures
symmetric with respect to the y axis, of smaller streamwise extent. However, the amplitude of the first harmonic in the upstream
region reduces (with respect to the maximum absolute value of velocity) and, at Re = 250, becomes larger in the downstream
region. The second and third harmonic remain similar when the Reynolds number increases.

The analysis of the spatial structure of the modes identified by DMD shows that the first harmonic is persistent for approx-
imately x < 60, while the harmonics are rapidly damped when moving downstream. Therefore, the downstream linearized
dynamics is dominated by a mode whose frequency coincides with the one of the vortex shedding. The effect of harmonics is
appreciable in the region where the vortices form and detach. The harmonics present alternating structures of smaller streamwise
extent since an increase in the shedding frequency, with the same advection, leads to smaller structures shed from the cylinder.
In the vicinity of the marginal stability threshold, Re does not strongly affect the observed patterns. It is also interesting to
note that the instability is present also in the vicinity of the cylinder, while the marginally stable two-dimensional modes of the
steady baseflow were localized more downstream. This is due to the fact that the suppression of the three-dimensional instability
occurs at values of permeability significantly lower than the ones for the quenching of the von Karman vortex street, where
the recirculation region of the mean flow is localized in the vicinity of the body. The primary effect of permeability on the
three-dimensional instability is the modification of the threshold for the instability, while the unstable wake patterns are similar
to the impervious case.

The physical mechanism underlying this stabilization of the 3D instability tentatively lies in the weakening of the deformation
of the vortex cores, which can be qualitatively appreciated in figure 8. Comparing for instance panels (c) and (a), vortices
forming in the wake of the more permeable cylinder are less stretched along the streamwise direction. This decreased stretching
effect is caused by a lower strain rate in the vortex centers with increasing permeability. When the strain rate becomes too small
(i.e. the more permeable case), the inviscid elliptic instability mechanism becomes too weak to overcome viscous damping [74]
and the instability is quenched.

V. CONCLUSION

In this work, the two-dimensional flow in the wake past a permeable circular cylinder and its stability properties are studied.
Two subsequent instabilities are investigated, i.e. the primary instability leading to a two-dimensional vortex shedding and
the three-dimensional instability of the wake. The steady two-dimensional flow presents a recirculation region that detaches
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from the cylinder and is shifted downstream as permeability is increased. The length of the recirculation region and the drag
coefficient are correlated and they are non-monotonous with respect to permeability, the drag coefficient having a maximum
at intermediate permeabilities before decreasing monotonically. Linear stability analysis of the steady two-dimensional flow is
applied for the identification of the stable and unstable regions in the (Da,Re) parameter space. The primary instability, when
present, leads to the formation of vortex shedding. Since vortex shedding is related to the recirculation region of the unstable
steady configuration, it is observed that the formation of alternate vortices starts progressively more downstream as permeability
increases. As a result, while in the impermeable case vortices form in the rear of the cylinder, the permeable case shows the
formation of two vorticity layers which extend at a distance of some diameters past the cylinder, beyond which alternating
vortices emerge. This downstream displacement implies a progressive damping of the oscillations of aerodynamic forces acting
on the body. However, the mean value of drag coefficient shows a maximum at intermediate permeabilities, before decreasing
monotonically. Finally, the shedding frequency increases moving away from the marginal stability conditions, both in terms of
permeability and Reynolds number.

The strong modifications of the vortex shedding underlies different stability properties with respect to spanwise, three-
dimensional perturbations. On this regard, a Sparsity-Promoting Dynamic Mode Decomposition (SP-DMD) is applied to snap-
shot sequences produced by the linear temporal evolution of three-dimensional disturbance. Hence, SP-DMD is used here as an
alternative linear stability analysis tool, since it is capable of predicting the relevant structures and growth rates, in the form of
DMD eigenmodes and eigenvalues, respectively, as well as the most unstable wavenumbers. The resulting dispersion relations,
which are derived here as a function of Da, are similar to those of the impervious case, although the growth rate significantly
depends on the permeability. Besides the quantitative differences in the growth rates, the critical Reynolds number for the
three-dimensional instability is affected by permeability. In particular it slightly decreases at intermediate permeabilities while,
for Da ≈ 10−3, it strongly increases, identifying this as an approximate critical value of permeability beyond which the vortex
shedding remains two-dimensional in the explored range of flow parameters.

The present work aims at giving an insight into unsteady patterns of the wake past a permeable circular cylinder, with focus
on its three-dimensional stability and how this depends on permeability. Moreover, it demonstrates that SP-DMD can be used as
an effective tool to perform the stability analysis of complex flows involving three-dimensional instabilities as the one at issue
here. As possible extensions of this research activity toward Reynolds numbers larger than the one considered here, we believe
that an important improvement, both in the analysis and from a methodological viewpoint, would be the inclusion of inertia
through the pores by considering a steady flow at the microscopic scale in the limit of Rep = O(1) within the pores, through
an Oseen approximation [54]. This extension would help in better describing the flow past bodies of large permeability and/or
microscopic characteristic length (see [9] for thin permeable bodies), and extend the range of considered Reynolds number. This
could pave the way toward the analysis of phenomena such as air-grass interactions (honami-flows), water-seagrass interactions
(monami-flows) [75, 76], flows within catalytic reactors and through heat exchangers [77] or flows over built-up urban areas
[78]. Moreover, larger Reynolds numbers could lead to unsteadiness and even three-dimensionality at the pore level and further
studies may include these effects stemming from the structure arrangement at the pore level over the macroscopic problem.
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Appendix A: Grid convergence analysis and verification of the numerical approach

In this section, we first report the mesh convergence analysis for the linear stability analysis, performed with respect to the
critical Reynolds number and frequency for the primary instability. For primary instability, we intend the plane two-dimensional
instability that leads the flow from steady to unsteady (periodic-in-time). While a first verification was made on the impervious
value of critical Reynolds number for the onset of vortex shedding, for the grid convergence analysis, we consider a case with
large permeability and Reynolds number. To verify the mesh convergence, we (i) vary the downstream, upstream and lateral
position of the boundary, and (ii) increase the mesh resolution. In table I (upper part) results for different domains are reported,
obtained by progressively increasing each side of the rectangular domain. The progressive variation of the computational domain
is performed with constant resolution along the domain’s edges. In the lower part of table I, we instead report the results with
varying mesh resolution. The critical Reynolds number is well predicted with mesh M4, with a tolerance on the value of Re < 1
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FIG. 18. Computational domain and refinements for mesh M4.

Mesh name x−∞ x+∞ y∞ Nel Recr Im(σ)
M4-downstream A 30 160 35 116154 204 0.82
M4-downstream B 30 180 35 123528 204 0.82
M4-downstream C 30 220 35 137928 204 0.83

M4-upstream A 40 140 35 113064 205 0.82
M4-upstream B 50 140 35 116970 205 0.82

M4-lateral 30 140 45 127526 205 0.83
M1 30 140 35 41426 204 0.83
M2 30 140 35 52874 204 0.83
M3 30 140 35 78914 204 0.83
M4 30 140 35 108834 204 0.82
M5 30 140 35 186138 204 0.83
M6 30 140 35 284234 204 0.83

TABLE I. Mesh convergence for the case Da = 4.6×10−3. The upstream and downstream boundary locations are denoted as x−∞ and x+∞,
respectively, while y∞ denotes the position of the lateral boundaries. The total number of elements of the mesh is denoted as Nel .

and relative error less than 1%, between all considered mesh and the one with finest resolution. A similar result is obtained for
the oscillation frequency. Therefore, we conclude that mesh M4 (reported in figure 18) is suitable for the linear stability analysis
parametric study with, at most, a relative tolerance of 1% on the critical value of Reynolds and Strouhal numbers. This mesh has
been employed for the stability analysis.

A similar analysis on the domain size with grids derived from mesh M4 is performed for the time-dependent non-linear
simulations, as reported in table II. Variations of the Strouhal number are negligible, while the drag and lift coefficients vary less
than 0.1%.

Figure 19 shows the domain employed for the DMD-based algorithm, which is applied in a subdomain of the domain employed

x+∞ St C̄d Cmax
L

90 0.199 1.435 0.256
120 0.199 1.434 0.256
140 0.199 1.434 0.256

TABLE II. Variation of Strouhal number, drag and lift coefficients with respect to the domain size, for Da = 9× 10−4 and Re = 195. The
non-linear time-dependent simulations are performed adopting a grid derived from mesh M4 where elements are progressively subtracted in
the outflow region decreasing the outflow length up to x+∞ = 90.
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FIG. 19. Spatial subdomain used in the DMD analysis together with relevant dimensions.

x+∞ Ldmd
out Tf in µ

140 30 120 0.97823
140 30 100 0.97824
140 30 80 0.97821
140 75 120 0.97823
140 50 120 0.97823
140 30 120 0.97823
140 15 120 0.97823
140 7.5 120 0.9782
140 15 120 0.97823
120 15 120 0.97803
90 15 120 0.97997

TABLE III. Convergence of the multiplier µ calculated through the DMD algorithm, Re=195, Da = 9×10−4 and β = 1.5. x+∞ denotes the
outlet position employed in the linearized simulations for 3D perturbations, while Ldmd

out the outlet employed for the DMD frame; Tf in instead
denotes the final time considered in the linearized simulations and for the DMD-based analysis.

for the linear, time-dependent, simulations. The variation of the Floquet multiplier between all cases, reported in table III, is less
than 0.1% and thus acceptable for the considered parametric study.

Lastly, in figure 20 we report a verification of our DMD-based procedure used in the computation of the Floquet multipliers µ
as outlined in Sec.IV B. More precisely, by setting the Darcy number to a value Da= 1×10−4, which approximately corresponds
to the case of a solid cylinder, we reproduce pointwise the results extracted by figure 5 of Barkley & Henderson [33]. We see
that the red filled markers, which have been produced by our DMD-based eigenvalue calculation, are in fairly good agreement
with those of Ref.33 for different Reynolds numbers Re and spanwise wavenumbers β .
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