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During last decades, the constant evolution of the construction systems
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has led to the possibility of carrying out increasingly complex architectural
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project. Among the wide range of construction systems, concrete thin corrugated-
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edge shells stand out for their relevance. In this paper, the mechanical be-
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haviour of thin concrete corrugated-edge shell inspired by Nervi’s Flaminio
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dome has been analysed in detail, considering different load configurations
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(self-weight, uniform vertical pressure and antisymmetric vertical load) and
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constrains (pure membrane and displacements restrained boundary condi-

w
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tions). Non-linear static analysis has been performed to assess the vertical

[T
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load-bearing capacity of the corrugated-edge shell considering Concrete Dam-
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aged Plasticity (CDP) constitutive model and linear and non-linear buckling
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analyses have been carried out to evaluate the effects of the corrugation on

IS
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buckling behaviour. The results obtained from linear and non-linear anal-
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yses have been compared with those obtained for a concrete thin smooth-
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edge shell having the same geometric global characteristics. The comparison
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highlighted improvements provided by corrugated-edge in terms of structural

behaviour.

Keywords: shells, concrete shells, corrugated dome, domes, Flaminio dome,

Pier Luigi Nervi

1. Introduction

Thin concrete shells constitute a paramount illustration of how theory and
practice are encountered. The use of concrete shells started at the beginning
of the XX century simultaneously with concrete technology development,
particularly for special purpose buildings such as gas tanks and thin-walled
domes. The theory foundations were laid by numerous scholars in the latest
part of XIX century [1], lately by [2]. Between the late 30s and 60s of
XX century, shell construction lived its most spreading period, due to the
cheap workforce and the use of wood and pneumatic formwork. Usually, they
were built for large roofs, silos for powder materials, reservoirs and tanks
for liquids, dams, chimneys, and cooling towers. The superior aesthetics
and the ability of such structures to span large spaces avoiding intermediate
support made this solution a very popular one. Besides, from a Structural
Mechanics point of view shell structures are characterized by high strength-
to-weight and stiffness-to-weight ratios. In pursuing the most effective shape
accounting for both mathematical and mechanical solutions and construction
feasibility, the most noteworthy designers were Eduardo Torroja in Spain,
Felix Candela in Mexico, Pier Luigi Nervi in Italy and Heinz Isler in Germany.
A look into the attitude of that time could be given looking at [3, 4]. Since

the 60s shell constructions have declined due to the upsurge of the formwork
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price for curved surfaces, especially when compared with the development of
steel-spatial structures that can solve most of the issues for the long-spanning
building in a more cost-effective way.

Attention must be paid to the smoothness condition at the boundary. It
is well known that to ensure a pure membrane regime, the constraints must
be such that they do not perturb the stress distribution that would occur in
an indefinitely extended membrane. To that aim, restraints must act along
the meridian direction only. As a consequence, reaction must not have any
components in the normal direction to the shell. Other different boundary
configurations disturb the membrane state and lead to relevant bending mo-
ments concentrated nearby the edge. A well-established analysis tecniques
of shell structure in scientific literature relies on the decoupling of membrane
and flexural regimes. A simplified analytical solution for the latter problem
is provided by [5]; another contribution is given by [6]. From a practical
point of view the perturbation occurring at the edge is unavoidable: in the
field of civil engineering structures, it is difficult to technically realize the
constraints needed for a purely membrane regime. Considering that bend-
ing effects are restricted to a limited zone near the edge, among the various
solutions adopted by designers, there are i) increasing the shell thickness or
ii) building a ring beam at the edge. When Nervi found himself involved
in the structural design of the Flaminio’s dome for the Olympic Game in
1960, the contractors’ demands were for a 60-metre roof for a stadium in
the Flaminio district in Rome to host boxing matches. The architectural de-
sign was commissioned to Annibale Vitellozzi and Nervi was involved in the

structural design in order to find an optimized shape for such a large span.
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An innovative solution for limiting the bending moment near the edge was
proposed; it consisted in increasing the inertia of the shell section nearby
the edge adopting a smooth wavy shape without increasing the thickness.
Historical pieces of information about the building techniques are elucidated
in Nervi’s books |7, 8] and [9]. Besides, SIXXI project has given new light to
the Italian concrete engineering school, of which Nervi was one of the pre-
eminent representatives (see [10]). The evidence of the recent refurbishment
undertaken by the Municipality of Rome is reported in [11]. The Palazzetto
Flaminio, is a sport facility, whose rooftop is a shallow spherical dome made
of low-reinforced concrete —patented by Nervi— referred to as ferrocemento.
It is supported by 36 equally spaced radial pillars, that are inclined to catch
the shell slope at the edge and lie on a circular ring foundation. The dome
is made by assembling the pre-cast individual pieces at ground level, then
they are singularly placed upon a scaffolding. Once all the pieces were in
place, a connecting casting was executed. From a qualitative point of view,
the corrugation built on the edge of the shell draw to two major structural

enhancements:

e firstly, the behaviour improves the membrane regime and reduces the
bending effect at the edge. Corrugation provides a stiffness increase
without the need of increasing the thickness. A simple model that

illustrates the idea behind this option can be found in [3][;

e secondly, it is a well established fact that surfaces with free edges are
weak and subjected to inextensional deformation, i.e. the surface bends
without evoking significative strains in the middle surface. A complete

mathematical description of this phenomenon is given in [1], while some

4
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Figure 1: (Above) View of the dome during in-between stages of construction, and of the

scaffolding system used to build it. (Below) View of the completed dome.

remarks about it can be found in [12].

A framework of theory of shells is given in [2, 13-15]. A deep study about
the behaviour of concrete made shells is reported in [16, 17, 12, 17, 18]. Par-
ticular attention about instability phenomena in concrete shells is drawn in
[19]. The attention for such aspects are highlighted in the European design
recommendations [20]. Finally, a thorough coverage about construction de-
tails for concrete shell can be found in [21-23|. [24] reports a parametric
analysis concerning the role of corrugation in improving the seismic resis-

tance of vaults and domes, inspired by Eladio Dieste’s works of architecture.
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Attention to purely compressed shells is highlighted in [25].

This study addresses the effect of boundary conditions on shells be-
haviour, as it is well-known that different boundary conditions lead to differ-
ent stress distributions. Besides, the effect of the combination of boundary
conditions and different edge geometry is highlighted. Moreover, a detailed
analysis is presented for the design of the edge and of the supports, since dif-
ferent restraint conditions may affect the buckling ultimate load. This aspect
should carefully be tackled, because such kind of structures are really thin in
comparison with the span, and the assessment of the buckling behaviour is
an uttermost part of the design process [26]. The correct evaluation of static
stresses serves as the backdrop of a buckling analyses, as it has been stressed
in [27] and [28] especially with regard to sudden collapse.

Specifically, the case of a wavy-corrugated edge shell is exploited. In
Section 2 the geometrical representation of the corrugated edge shell is intro-
duced in such a way that mathematical parametric equations are given. In
Section 3 the linear elastic structural behaviour is addressed with respect to
three load cases: pressure load, self-weight load and antisymmetric vertical
load. Furthermore, two boundary conditions are considered: pure membrane
boundary condition and fully restrained displacements. The discussion pro-
vides a comparison with a geometrically comparable spherical dome. In
Section 4 such a comparison is carried out with regard to the ultimate load
bearing capacity in the plastic range. In Section 5 the effects of corrugation
on buckling behaviour is evaluated. Finally, Section 6 provides some con-

cluding remarks about the structural improvement of shell edge corrugation.
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2. Dome geometry

In this section, a mathematical description of a wavy-edge surface is pro-
vided. The shape is inspired by Nervi’s Flaminio dome in Rome. Equations
for edge-corrugated surface are described in [29]; in the following discussion,
a more adherent shape to the original one is presented, where the merid-
ian passing through the support is perfectly spherical. This update allows
highlighting the membrane state of the shell. The adopted spherical polar
reference system is depicted in Fig. 2, where r is the radial distance from the
pole, 9 is the colatitude angle (the complement to the latitude angle) and ¢
the longitude angle. Therefore, a point P in a 3-D space is uniquely identi-
fied by its spherical coordinates (7,1, ). A parametric representation of the
corrugated-edge spherical surface can be given by introducing a parametriza-
tion of its radius. Introducing the equation for a spherical shell, whose radius
is Ry, the parametric equations are:

z

X

Figure 2: Spherical coordinate system.
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x = Rysinvcosp

y= Rysindsing v €[0,7/2],¢€[0,27). (1)

| 2= Ry cos .

Starting from Eq. (1) by squaring and summing up both sides, parameter
¥ and ¢ can be eliminated and the resulting ¢mplicit representation of the

spherical surface is obtained:
P +yt+ 22— Ry =0. (2)

Now, recalling that the radial distance r is given, in terms of Cartesian

coordinate, by
r =22 +y>+ 22 (3)

an explicit representation of the spherical surface results: r = Ry.

This formulation is used to introduce corrugation on the surface. It is
worth noting that in the case of a spherical shell, the radius r is constant
and does not depend on the coordinates, whereas in the case of a wavy shape,
the radius changes periodically depending on the coordinates ¢, ¢. For such
kind of surface, the radius will be r = r(1J, ); besides, one could introduce
the corrugation as a perturbation added to the constant radius Ry of the
sphere:

r=Ro[l+ f(P)g(e)]. (4)
In Eq. 4 the perturbation is composed by two elements: the first one is

f(¥) that controls at which colatitude angle the perturbation starts (i.e. the

8
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Table 1: Geometry of Flaminio’s Dome in Rome

Lo Ry f ¢

span [m| radius [m| rise [m| thickness [cm]

598.5 48.5 2.8 20

opening angle 1y), the second one relies on longitude angle ¢ and controls
the shape of the parallels. In order to get a cyclic symmetry on the surface,
function g(¢) must be periodic; consequently an appropriate choice to obtain

a smooth repetition by a number of waves equal to n is:

9(p) = cos(nyp) (5)

Function f(19), which controls the perturbation of the radius along the merid-
ian with reference to that of a perfect sphere, Ry, can be chosen in several

ways. A possible choice is:

F(9) = aH (9 — ) (19 ;;90)2 . (6)

Where a is a parameter controlling the amplitude of the perturbation, ¥,
is the colatitude angle where the perturbation begins, 9 is the colatitude
angle corresponding to the surface edge and H (9 — 1) is the Heaviside’s step

function defined as:

1, if 9>
H(9 — o) = (7)

0, it <.

The role of H( — 1) is to switch on the radius perturbation in correspon-

dence of the angle vy, namely the colatitude angle at which such perturbation



O J oy U WD

DA TN TR TGOS DDA DLDDAEDLDDAEDNWWWWWWWWWWWWNNNONMNNONNNNMNONNNR R R R R PR e
O WNRFROWVWO-JATDdWNROW®O-IAAUBRWNROW®OW-JdANU D WNRFROW®OW-TJNUP®WNR OWW-I0U D WN R O WO

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

originates. Summing up all these ingredients, the following expression for the

dome radius is proposed:

r= Ry {1 + %H(ﬁ — %) <19 ;fﬁo) 1 — cos (mp)]} . (8)

The main advantage of this formulation is that the amplitude of corrugation
at the dome edge can be easily controlled. For the undulated part of the

shell, the radius expression is:

T:Ro{l—Fg(Wﬁ—_f&)) [1_(305(71@)]}‘ (9)

So, the function describing the undulated shape of the edge varies between

two extrema: for ¢ = 2km (k € N) one obtains:
n
2k
ro=r (go = —7T> = Ry, (10)
n
2k+1)m

while for ¢ = the result is:

r1:r<4p:@>:Ro{l%—a(ﬂfﬁ_fﬁo)z}. (11)

Let h be the maximum amplitude of corrugation at the edge for ¥ = ;; then

h = (r1 — ro)/2. To set this amplitude h of the cosine curve to an assigned

value, it has to be either:

Oy —9\° I\’
2h = =2 ) 12
h a( 7, ) or a h(ﬁf—ﬁo (12)

Returning now the example problem, the dimension of the Nervi’s dome are

listed in Table 1; a comprehensive reference source for the survey of dome

dimensions is [30].

10
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Figure 3: Plot of the cross-sections of the corrugated shell equations with Heaviside’s func-
tion for three selected values of the longitude angle producing the maximum perturbation
(blue dotted curve), zero perturbation (black curve) and intermediate perturbation (red
dashed curve). These values of the parameters have been adopted: Ry = 1, a = 0.6,
n =36, Yo = §, Uy = . Dimensionless coordinates have been used, by adopting the ratio

between the actual values and the radius.

Figure 4: (left) Plot of the corrugated shell surfaces r(1¥,¢) with Heaviside’s function.

us

These values of the parameters have been adopted: Ry = 1, a = 0.6, n = 36, ¥ = ,

¥y = %; (right) a magnified part of the dome, where the selected meridians are highlighted.

3. Evaluation of structural behaviour

It has been assumed that the dome is made of C20/25 reinforced concrete.

The material behaviour is analysed only with regard to the linear-elastic part
11
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of constitutive behaviour, hence, plasticity is disregarded in this Section.
Density v is assumed to be 2500 kg/m?, Young’s modulus is 30 GPa, and
Poisson’s coefficient is 0.2. Furthermore, for sake of simplicity the RC is
always assumed to be uncracked, and time depending effects (fluage) are not
taken into account. Ref. [31] explains the special construction techniques
adopted by Nervi, and their application in some major Nervi’s works and
how ferrocemento made structure can now be refurbished with reference to
two buildings.

The investigated dome analyses are carried out with different boundary

conditions, namely:

1. pure membrane boundary conditions: supports restrain displacements
only along the tangent direction. Rotations are allowed (see Fig. 5 (a)).
2. displacements fully restrained: the displacements along the x, y and
z directions are restrained. Rotations are allowed (see Fig. 5 (b)). In

this case, flexural effects are not negligible.

(a) (b)

Figure 5: Adopted boundary conditions: (a) pure membrane; (b) fully restrained displace-

ments.

The constrains are discretely applied on the 36 supports, so the edge between
two subsequent supports is free.
Structural behaviour in the two different boundary conditions has been

compared considering the two proposed shapes of the dome (the smooth and

12
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the corrugated one). Thus, several load-cases (uniform normal pressure, self-
weight and antisymmetric vertical load) are addressed in order to compare
comprehensively the structural improvement provided by the corrugation at
the edge with respect to the smooth shell. The adopted FE model has 30564
8-nodes shell elements.

A simplified structural analysis of Nervi’s dome has been already carried
out in [32], but without considering edge-corrugation; besides a different
opening angle has been assumed in the above-mentioned reference, which,
however, does not seem to agree with the architectural blueprints reported

in [30].

3.1. Pressure load

The structure is loaded by a uniform external normal pressure gy whose
magnitude is 5 kPa, applied inwards to the whole surface. Since the extension
of the shell is such that its rise to span ratio makes it rather shallow, it is
possible to approximate the self-weight load condition with such pressure.
This approximation allows tackling the problem of edge-corrugated shells
in an easier framework. Nevertheless, it constitutes a significant load-case
for pressurized vessels or maritime applications. Let N, and Ny be the
membrane forces acting in the meridional and parallel directions. The stress
oy and o, are:

(13)

Oy = y Op =

z
~|=

Where ¢ is the shell thickness, whose value is constant and equal to 0.20 m.
The numerical outcome of the analyses are presented in terms of membrane

stresses, 0y and o,. The former represents the stress along the meridian

13
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direction and the latter one the hoop stress. All numerical results related to
stress are presented in dimensionless form: stress value are divided by the
applied external pressure gy = 5 kN, while the angular position is given in
the dimensionless form /9, where 9, is the colatitude value corresponding
to the position of the edge, which is assumed to be the same in all considered
cases. Fig. 7 shows an example of the reaction forces for both shapes of the
shell in pure membrane conditions.

A common drawback occurs when shell stresses are evaluated in a re-
strained node, because of the chosen discrete boundary conditions at the
edge, which produces stress singularities. This issue is well-known in the

frame of FE analyses with shell elements [33|. Fig. 8 (left) shows the distri-

% ®

kS

»

Figure 6: Load cases.

bution of oy /qy for the analysed four cases. As expected, the behaviour does

14
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not depend on boundary conditions if the dimensionless colatitude angle is
less than 0.75, and the four curves practically coincide. The aforementioned
notation will be used henceforth in all the analysed load-cases. For colati-
tude values larger than 0.75, the curves for the pure membrane example are
not significantly affected by a change of shape, whereas, for the restrained
displacement example the corrugated-edge shape presents a significant re-
duction of the stress in comparison with the smooth shape nearby the edge.
Similar considerations can be made for Fig. 8 (right), that shows o,/qo; here
indeed, the effect of stress decreasing due to edge-corrugation is evident in
both constrained displacements and pure membrane boundary conditions.

Let My be the section moment (which is dimensionally expressed as the
ratio moment /thickness, thus being homogeneous to a force) along the ¥
direction and M, be the section moment along the ¢ direction. The output
is shown in Fig. 9 in dimensionless form, by dividing the relevant values by
a constant M, equal to 5000 kN.

Fig. 9 (left) shows My/My: the pure membrane behaviour is granted
until ¥/9 reaches the value 0.8, apart from the case of corrugated-edge and
restrained displacements boundary conditions, where the behaviour deviates
from pure membrane already for values close to 0.6. Beyond these values
the flexural effect is not negligible. For both cases the edge-corrugated shape
yields a reduction of nearly one-half of the bending moment values at the
edge with respect to the smooth shell.

Fig. 9 (right) shows M,/My; the pure membrane behaviour stands until
¥/ reaches a value of about 0.7; beyond that value the bending effect is

relevant. The effect of the shape change at the edge is less relevant than

15
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Figure 7: Trust network of the smooth shell (left) and of the corrugated shell (right).

&—— Smooth edge, pure membrane
[3—F] corrugated edge, pure membrane

Q@ - © Smooth edge, restrained disp.
%/ Corrugated edge, restrained disp.
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Figure 9: Pressure Load - Section moments My (left) and M, (right) along a meridian

passing through a support.

3.2. Self-weight load

The most relevant load-case for concrete domes is the self-weight load,
hereby computed using the standard practice and design density value. Fig. 10
shows the distribution of oy/qo for the analysed four cases. Again, the be-
haviour does not depend on the boundary condition if the dimensionless
colatitude angle is less than 0.75. Beyond such value, no advantages are
provided by corrugation of the edge, both in the case of pure membrane and
restrained displacements boundary conditions.

The corrugated-edge shell stress curve outlines an inversion from compres-
sive to tensile values close to the edge, but vanishes in correspondence to the

edge. On the contrary, for such effect the restrained displacements case the
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stress is always on compressive, even on the nearby support. Different con-
siderations can be made for Fig. 10 (right), that shows o,/qo; the membrane
state here is reliable until 9/, reaches 0.6; indeed, the edge-corrugation
does not improve significantly the hoop stresses, it rather worsens the stress
concentration in the case of restrained displacements boundary condition.
Fig. 11 (left) shows My/My; the pure membrane behaviour stands until ¢/9
reaches the value 0.6. From that point on significant bending moments oc-
cur. While for the pure membrane boundary condition the edge-corrugation
does not provide remarkable improvements, in the restrained displacements
case there is a noteworthy reduction of the bending moment values at the
edge with respect to the smooth shell. Fig. 11 (right) shows M,/M; the
pure membrane behaviour is confirmed until ¥/9; reaches the value 0.7. As
previously stated in Sec. 3.1, and as expected, the effect of a shape change
at the edge is less relevant than for the case of My, apart from the case of

pure membrane boundary condition.

3.8. Antisymmetric load

It is of interest in practical design to carry out extensive analyses of domes
subjected to non symmetrical loads: for instance, wind load and special com-
bination involving snow load should be carefully considered. The structure
will be now analysed under an antisymmetric vertical load, 7.e. a distributed
load applied only on a semi-cap, whose magnitude is 5kN/m? (see Fig. 6).
Due to the lack of symmetry of the problem, results will be shown along
three different meridians, named A, B, and C' corresponding to longitude
angles ¢ equal to respectively of 7/2, 3/4w, and m, (see Fig. 12) this time

considering that angular coordinate ¥ takes values between —v; and 9y, al-
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Figure 10: Self-weight Load - Stress components oy (left) and o, (right) along a meridian

passing through a support.

lowing the effect of the load to be read in both the loaded and unloaded parts.
The same figure also depicts the loaded portion of the shell. Thence, merid-
ian A is symmetrically loaded for the whole length, meridian B is loaded
only in the second quadrant and meridian C' is loaded anti-symmetrically.
Fig. 13 (left) shows the membrane stress oy for meridian A, whose behaviour
is as expected perfectly symmetrical. The behaviour does not depend on
the boundary condition for dimensionless colatitude within +£0.8 and the
four curves practically coincides. Beyond +0.8, only the curve for the re-
strained displacements condition in the corrugated-edge shell, the stress re-
mains compressive, whereas the other three curves show tensile stresses near

the edge, with possible crack issues if no tension material were considered.
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Figure 11: Self-weight Load - Section moments My (left) and M, (right) along a meridian
passing through a support.

Fig. 13 (right) shows the membrane stress o, for meridian A. The perfectly
symmetrical behaviour, is independent from the shape of the shell and from
its boundary conditions and follows a pure membrane regime within the val-
ues of dimensionless colatitude angle equal to +0.8. Beyond +0.8, only the
curve for restrained displacements condition and corrugated edge shell shows,
this time, a relevant tensile stress nearby the constrains.

Fig. 14 (left) shows the membrane stress oy for meridian B. The effect
of the load is noticeable for /9, between 0 and 1 and particularly intense
on the edge; on the other half it is practically irrelevant except near the con-
straint, where some minor stress peaks are detected. Fig. 14 (right) shows the

membrane stress o, for meridian B. The effects due to the load are the same
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Figure 12: Upper view of the dome, where the positions of the selected meridians for the

anti-symmetric load case are highlighted.

as discussed before and shape and kind of constraints do not substantially
affect the stresses.

Fig. 15 (left) shows the membrane stress oy for meridian C. Again, the
effect of the load is remarkable for /9 between 0 and 1, while on the
opposite side it is practically negligible except near the constraint, where
stress peaks are localised. Fig. 15 (right) shows the membrane stress o, for
meridian C'. The situation is the same as discussed before and no substantial
differences can be observed between the four curves.

Fig. 16 (left) displays My/M, distribution along meridian A. The pure
membrane behaviour is confirmed until ¥/9; reaches values £0.8. Outside

this range the bending effect is relevant and peaks are localized on the con-
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Figure 13: Anti-symmetric Load - Stress components oy (left) and o, (right) for a meridian

A passing through two supports located at ¢ = 90°.

straints for all the four curves, especially for the corrugated-edge shell in pure
membrane boundary condition. Fig. 16 (right) shows M, /M. The pure
membrane behaviour stands in the range —0.8 < J/9 < 0.8, then bending
effects are remarkable. The effect of boundary conditions at the edge is not
relevant at the edge. On the contrary, corrugation modifies considerably the
moment distribution.

Fig. 17 (left) shows My/M, along meridian B. The pure membrane be-
haviour is limited to 9/9 ranges of [0.3,0.7] and [—0.7, —0.3]. Outside these
intervals the bending effect is relevant. Peaks of section moments are ob-
served in apex because of the sudden change of load distribution. The four

curves do not show significant change due to shape. Fig. 17 (right) illustrates
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Figure 14: Anti-symmetric Load - Stress components oy (left) and o, (right) for a meridian

B passing through two supports located at ¢ = 135°.

M, /M, distribution. Along the same meridian B the behaviour is similar to
the previous, since pure membrane behaviour is enclosed in narrow intervals
and bending effects are not negligible. Again, no enhancement is provided
by corrugated shape.

Fig. 18 (left) shows My/M, distribution. Lack of symmetry is evident
and pure membrane behaviour is limited to minor part of the meridian.
Mainly the bending effects are relevant, with section moment peaks located
around the apex and near the edge. The corrugated edge shell shows highly
localized bending moment at the edge in both boundary conditions. Finally,
Fig. 18 (right) reports M, /M, distribution. Along the same meridian C' the

pure membrane behaviour is recognisable in a wider range of ¥/9;, except
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Figure 15: Anti-symmetric Load - Stress components oy (left) and o, (right) for a meridian

C passing through two supports located at ¢ = 180°.

for the smooth edge with restrained displacements where the bending effect
starts earlier. Large values of bending moment are observed at the edge,

especially in the loaded part of the shell.

4. Assessment of load-bearing capacity by means of nonlinear anal-

ysis

To evaluate the influence of corrugated edge in the vertical load-bearing
capacity of the dome, a non-linear static analysis has been performed. The
constitutive law of the material adopted is based on the Concrete Damage
Plasticity (henceforth CDP) law, that has been first developed by [34] and
later improved by [35]. CDP is a plasticity and-damage-based model that
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Figure 16: Anti-symmetric Load - Section moments My (left) and M, (right) for a merid-

ian A passing through two supports and located at ¢ = 90°.

takes into account cracking in tension and crushing in compression for defin-
ing failure mechanisms.

The model is geometrically isotropic but is able to take into consider-
ation the tensile and compressive behaviour independently, using different
parameters which regulate plasticity and damage. Fracture is implemented
according to concrete-like smeared crack model with fixed crack orientation,
that tackles Hilleborg’s theory of fictitious crack [36], thus governed by a
strain softening behaviour and Mode I fracture energy. The latter is in-
tended to regularize the mesh dependency of the computational FE model
due to damage and strain localization, in conjunction with the elements size,

regarded as a characteristic crack band length for the material [37].
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Figure 17: Anti-symmetric Load - Section moments My (left) and M, (right) for meridian
B, passing through two supports and located at ¢ = 135°.

Model parameters and adopted values are reported in Table 2. In par-
ticular: W is the dilatancy angle; e (0.1 < e < 0.3) is the eccentricity that
smooths the meridian section in proximity of the Drucker-Prager cone vertex
to avoid convergence issues in the flow potential; f,/ f., is the ratio of biaxial
compressive to uniaxial compressive yield stress, whose value is defined ac-
cording to that suggested for concrete-like materials [34]; K. (0.5 < K. < 1)
is the parameter that adapts the shape of the triaxial yield surface in such
a way that in the deviatoric plane it varies from the classic Drucker-Prager
circle for K, = 1, to a Rankine-like triangle when lower values are assumed;
v is the viscosity parameter. The stress-strain curves for compression and

tension implemented in the FE model are reported in Fig. 19, while Fig. 20
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Figure 18: Anti-symmetric Load - Section moments My (left) and M, (right) for meridian
C, passing through two supports and located at ¢ = 180°.

shows the related damage curves, which describe the evolution of the dam-
age variables in tension and compression affecting the elasticity matrix. The
structure has been subjected to its self-weight ¢, regarded as the most rep-
resentative load-case, then to an incremental vertical load ¢ = Aqg, where
lambda is a load multiplier (> 1). The non-linear behaviour is assessed by

increasing the vertical load ¢ up to collapse. To highlight the influence of cor-

Table 2: Parameters of Concrete Damage Plasticity model

Ul e

Joo
ch

K.

1%

35 0.10 1.16 0.667 0.007985

27



O J oy U WD

DA TN TR TGOS DDA DLDDAEDLDDAEDNWWWWWWWWWWWWNNNONMNNONNNNMNONNNR R R R R PR e
O WNRFROWVWO-JATDdWNROW®O-IAAUBRWNROW®OW-JdANU D WNRFROW®OW-TJNUP®WNR OWW-I0U D WN R O WO

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

Table 3: ¢S and dzg, the values for corrugated and smooth edge.

Edge shape ¢oS [kN] dzy [mm]

smooth 15792.89 1.91
corrugated  15628.33 1.71

rugation, a comparison between the capacity curves obtained for the smooth
and the corrugated edge shells is provided in Fig. 21. In the curves the dome
apex is chosen as a control point, whose vertical displacement dz has been
monitored. In the curves the displacement is normalized with respect to the
initial vertical displacement dzy due to self-weight, as well as the vertical load
q is normalized with respect to the self-weight ¢y, so that the load multiplier
A is directly reported in the graph. Since smooth and corrugated edge domes
have different volumes, their total weights ¢o.S (where S stands for shell
area), along with the relative initial vertical displacements dzy, are reported
in Table 3. Due to convergence drawbacks, related to the concentration of
damage at the supports the analyses stopped prematurely. Nevertheless, the
subsequent considerations can be highlighted. The obtained curves show dif-
ferences in terms of slope of the linear elastic branch. In fact, it is possible to
notice that the corrugated edge dome exhibits a linear elastic behaviour for
values of the load multiplier larger than the smooth dome, with an increase
equal to about 1.6 times. This difference is due to the greater gecometrical
stiffness provided by the corrugation at the edge. This increase in stiffness
can be also evaluated looking at the apex displacements at the end of the

elastic phase: in the case of the smooth dome the apex displacement is about
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1.8 times larger than that of the corrugated edge dome. Furthermore, the
corrugated edge dome shows a vertical load-bearing capacity greater than
the smooth edge dome. In both domes, the collapse is reached with the same
mechanism, where the damaged zones are concentrated in correspondence to
the supports, as reported in Fig. 22. The occurring of the same mechanism of
failure, but associated to different values of load multipliers suggests that the
larger geometrical stiffness due to corrugation at the edge plays an effective

role also in the load bearing capacity of the dome.
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Figure 19: Stress-strain curves: compression (left) and tension (right) branches.

5. Effect of corrugation on buckling behaviour

This section deals with the assessment of the edge-corrugated shell per-
formance in comparison with the smooth shape, with respect to instability
issues. The effects of bending stiffness increment in spherical shells towards
buckling has been envisaged in [38|. The presented analyses are inspired by

the works [39—41|. The theoretical critical load for a complete spherical shell
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Figure 20: Damage curves: compression (left) and traction (left) branches.

has been widely treated in the scientific literature, among the several sources,
[42] is selected as the preferred one.

The main problem when dealing with spherical shell instability issues is
that the theoretical load is not reliable for design purposes; in fact, experi-
mental campaigns carried out over the last century have widely proven that
designers should adopt precautions against the actual ultimate load. This
discrepancy is triggered essentially by geometry and material imperfections,
as clearly elucidated by the eminent work of Koiter [43]. Recent studies
about spherical shells buckling have been carried out making use of FE cal-
culation, see for instance [44—46]|. The American Code assessment procedure
against instability is based upon [47, 48|. The method consists in employing
several empirical knock-down factors that decrease the theoretical buckling
load by globally taking into account the presence of: imperfections, creep,
plasticity, cracking and, eventually, of reinforcements. To each of these ef-

fects corresponds an appropriate partial factor. This method has a major
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Figure 21: Capacity curve for the dome modelled with CDP.

drawback, 7.e. it is too conservative and the ultimate load may result as low
as 20 % of theoretical load, with a considerable increase of building costs.
Research is ongoing on ascertaining a less conservative approach without
jeopardising structural safety (see [49]). In this section, a non-linear insta-
bility analysis of the corrugated dome will be shown, taking into account
only geometrical imperfections. In order to understand the effects of shell

edge-corrugation towards instability, imperfections have been accounted in
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Figure 22: Damage zones highlighted for both domes (left): smooth edge (right): corru-
gated edge.

the form of eigen-shapes provided by a FE linear buckling analysis. The geo-
metrical and mechanical properties used for the model are the same already
employed throughout the previous Sections. This time, only the restrained
displacements boundary condition has been employed at supports.

A finite strain 4-nodes shell element has been adopted for the post-
buckling analysis [50], which has been carried out by means of Riks’ arc-
length incremental algorithm [51-53].

Hereafter, the analysed load-case is the dome self-weight, qo = ¢, where
7 is the specific weight. Fig. 23 compares the first five buckling eigen-shapes
for a smooth edge shallow dome (left) and for the corrugated-edge one (right).
The contour plot depicts the displacement magnitude distribution upon the
deformed shape. Table 4 reports the corresponding first five eigenvalues,
highlighting the percentage difference in the third column. As shown, there
is always an improvement in the critical load due to the edge-corrugation,

which varies from 3.6/ up to 6.0/ for the fifth mode. It is noteworthy that the
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presence of the corrugation breaks the symmetry coupling of eigenvalues in
the spherical case. Moreover, the increased stiffness of the corrugated edge
prevents the occurrence of instability nearby the edge, which is shifted to
higher modes. That is why the first three eigen-modes of the corrugated-
edge shell are far different from those of the smooth one.

Fig.24 shows the outcomes of non-linear stability analyses with descrip-
tion of post-buckling behaviour with regards to the cases of smooth spherical
dome (left) and corrugated-edge dome (right) for perfect ideal shapes (black
line) and imperfect real shapes (blue line). The presented curves are the
equilibrium path identified by means of an arc-length incremental procedure
in large displacements. Geometrical imperfections have been modelled for
both shells according to the respective first buckling mode-shapes scaled by
a factor of 0.1 and assumed as the undeformed initial geometry. As antici-
pated, y-axis reports the load-multiplier applied to the structure self-weight.
Regarding the smooth shell case on the left, the description of the ideal case,
i.e. with no imperfections, has encountered irrecoverable convergence issues,
probably due to the presence of a bifurcation equilibrium point, therefore
no critical load and no post-buckling mode have been evaluated. On the
other hand, the case of geometrically imperfect shell has been completely
exploited and both the buckling load and the post-buckling behaviour have
been clearly determined, the latter showing a snap-through response. Hence,
it is still possible to argue that the buckling load has consistently decreased
due to the imperfection introduced in the model with respect to the per-
fect case and further reduction is to be expected if the imperfection scaling

factor is amplified. Analogous comments can be outlined for the case of
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Table 4: Eigenvalues of the linear buckling analysis

smooth corrugated difference [/]

1t 99.804 104.66 3.6 %
2rd 99 804 104.67 3.7 %
34 99.923 104.81 3.9 %
4th 99,923 106.52 56 %
5% 99.994 106.93 6.0 %

the corrugated-edge shell, which has been completely developed both in the
case of perfect geometry and of imperfect geometry. Hence, it is possible to
evaluate the effect of such an imperfection, in terms of a knock-down factor
of about 0.60 on the critical load, but, even for the ideal case, it has been
possible to point out a remarkable critical load reduction, about 35/, with
respect to the first eigen-value determined via the linear procedure. Since
the presented cases are based on geometrical imperfections modelled on the
respective the first buckling mode-shapes, in this section no meaningful com-

parison is possible between smooth and corrugated-edge shells behaviours.

6. Conclusion

This paper addresses the effects of an edge shape modification on the
structural behaviour of shallow spherical shells under discrete support bound-
ary conditions. In particular, the introduced geometrical perturbation con-

sists of a wavy co-sinusoidal corrugation applied nearby the supported bound-
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ary, whose mathematical representation is given in Sec 2. The structural be-
haviour modification and possible improvement caused by this geometrical
perturbation have been evaluated from different points of view and concern-
ing several load scenarios and boundary conditions. Numerical analyses pre-
sented here support Nervi’s insight of Flaminio stadium reinforced concrete
rooftop.

In Section 3 the linear elastic structural behaviour has been analysed with
respect to several typical load-cases under pure membrane and displacements
restrained boundary conditions. The comparison between the spherical and
the corrugated dome reports of a prevalent improvement for the pressure
load case and a less significative one for the self-weight load. On the whole,
the section moments for the corrugated shape denote a moderate reduction.
In the case of anti-symmetrical distributed load no major improvements are
observed, apart from a slight decrease in the stresses at supports. Ultimate
load bearing capacity has been compared in Section 4, taking into account
plasticity of reinforced concrete. This time the enhancement of the structural
performance has been clearly disclosed in terms of stiffness and collapse load.
Section 5 deals with the influence of the shape corrugation on buckling be-
haviour in linear and non-linear fields. Given the relevance of this problem
in thin-shell structures, the buckling behaviour will be studied more compre-
hensively in a forthcoming paper, to ascertain how the discussed geometry
affects the stability of such shells and to discuss a prospective corrugation

optimisation.
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