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Abstract. In the first part of this paper we shall classify proper triharmonic isoparametric
surfaces in 3-dimensional homogeneous spaces (Bianchi-Cartan-Vranceanu spaces, shortly
BCV-spaces). We shall also prove that triharmonic Hopf cylinders are necessarily CMC.
In the last section we shall determine a complete classification of CMC r -harmonic Hopf
cylinders in BCV-spaces, r ≥ 3. This result ensures the existence, for suitable values of r ,
of an ample family of new examples of r -harmonic surfaces in BCV-spaces.

1. Introduction

In order to introduce the geometrical setting of this paper we recall that harmonic
maps are the critical points of the energy functional

E(ϕ) = 1

2

∫
M

|dϕ|2 dV , (1.1)

where ϕ : M → N is a smooth map between two Riemannian manifolds (M, g)
and (N , h). A map ϕ is harmonic if it is a solution of the Euler-Lagrange system
of equations associated to (1.1), i.e.,

− d∗dϕ = trace∇dϕ = 0 . (1.2)

The left member of (1.2) is a vector field along the map ϕ or, equivalently, a section
of the pull-back bundle ϕ−1T N : it is called tension field and denoted τ(ϕ). In
addition, we recall that if ϕ is an isometric immersion, then ϕ is a harmonic map
if and only if the immersion ϕ defines a minimal submanifold of N (see [8,9]
for background). Let us denote ∇M , ∇N and ∇ϕ the induced connections on the
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bundles T M , T N and ϕ−1T N respectively. The rough Laplacian on sections of
ϕ−1T N , denoted �, is defined by

� = d∗d = −
m∑
i=1

(
∇ϕ
ei ∇ϕ

ei − ∇ϕ

∇M
ei
ei

)
, (1.3)

where {ei }mi=1 is a local orthonormal frame field tangent to M .
Now, in order to define the notion of a polyharmonic map of order r , shortly an

r -harmonic map, we consider the following family of functionals which represent
a version of order r of the classical energy (1.1).

If r = 2s, s ≥ 1:

E2s(ϕ) = 1

2

∫
M

〈 (d∗d) . . . (d∗d)︸ ︷︷ ︸
s times

ϕ, (d∗d) . . . (d∗d)︸ ︷︷ ︸
s times

ϕ 〉N dV

= 1

2

∫
M

〈�
s−1

τ(ϕ), �
s−1

τ(ϕ) 〉N dV . (1.4)

In the case that r = 2s + 1, s ≥ 0:

E2s+1(ϕ) = 1

2

∫
M

〈 d (d∗d) . . . (d∗d)︸ ︷︷ ︸
s times

ϕ, d (d∗d) . . . (d∗d)︸ ︷︷ ︸
s times

ϕ 〉N dV

= 1

2

∫
M

m∑
j=1

〈 ∇ϕ
e j �

s−1
τ(ϕ), ∇ϕ

e j �
s−1

τ(ϕ) 〉N dV . (1.5)

We say that a map ϕ is r -harmonic if, for all variations ϕt ,

d

dt
Er (ϕt )

∣∣∣∣
t=0

= 0 .

This condition is equivalent to the vanishing of the r -tension field τr (ϕ). We recall
that the expressionswhich describe the r -tension field of a generalmapϕ : M → N
between two Riemannian manifolds were computed by Maeta (see [10]) and are
the following:

τ2s(ϕ) = �
2s−1

τ(ϕ) − RN
(
�

2s−2
τ(ϕ), dϕ(ei )

)
dϕ(ei )

−
s−1∑
�=1

{
RN

(
∇ϕ
ei �

s+�−2
τ(ϕ),�

s−�−1
τ(ϕ)

)
dϕ(ei )

− RN
(
�

s+�−2
τ(ϕ),∇ϕ

ei �
s−�−1

τ(ϕ)
)
dϕ(ei )

}
, (1.6)

where �
−1 = 0 and {ei }mi=1 is a local orthonormal frame field tangent to M (the

sum over i is not written but understood). Similarly,
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τ2s+1(ϕ) = �
2s

τ(ϕ) − RN
(
�

2s−1
τ(ϕ), dϕ(ei )

)
dϕ(ei )

−
s−1∑
�=1

{
RN

(
∇ϕ
ei �

s+�−1
τ(ϕ),�

s−�−1
τ(ϕ)

)
dϕ(ei )

− RN
(
�

s+�−1
τ(ϕ),∇ϕ

ei �
s−�−1

τ(ϕ)
)
dϕ(ei )

}

− RN
(
∇ϕ
ei �

s−1
τ(ϕ),�

s−1
τ(ϕ)

)
dϕ(ei ) . (1.7)

If r = 1, the functional (1.5) is just the energy. In the case that r = 2, the functional
(1.4) is called bienergy and its critical points are the so-called biharmonic maps.
At present, a very ample literature on biharmonic maps is available and, again, we
refer to [17] and references therein for an introduction to this topic.

More generally, the r -energy functionals Er (ϕ) defined in (1.4), (1.5) have been
intensively studied (see [2,10–15], for instance). Inspection of the Euler-Lagrange
equations for Er (ϕ) shows that a harmonicmap is always r -harmonic for any r ≥ 2.
When the target manifold is nonflat, we use to call an r -harmonic map proper if it is
not harmonic (similarly, an r -harmonic submanifold, i.e., an r -harmonic isometric
immersion, is proper if it is not minimal). As a general fact, when the ambient space
has nonpositive sectional curvature there are several results which assert that, under
suitable conditions, an r -harmonic submanifold is minimal (see [11] and [12], for
instance).

Things drastically change when the ambient space is positively curved. Let
us denote by S

m+1 the sphere Sm+1(1) of radius 1. Moreover, let A be the shape
operator of Mm into Sm+1 andH = f η the mean curvature vector field, where η is
the unit normal vector field and f is the mean curvature function. Throughout the
whole paper, when we write that Mm is a CMC hypersurface we mean that f is a
constant which will be denoted by α.

In [16] Ou derived the equation for biharmonic hypersurfaces in a generic
Riemannian manifold. More precisely, he proved:

Theorem 1.1. [16] Let ϕ : Mm → Nm+1 be an isometric immersion of
codimension-one with mean curvature vector H = f η. Then ϕ is biharmonic
if and only if:

{
� f + f |A|2 − f RicN (η, η) = 0,
2A (grad f ) + m f grad f − 2 f (RicN (η))� = 0,

(1.8)

where RicN : Tq N −→ Tq N denotes the Ricci operator of the ambient space
defined by 〈RicN (Z),W 〉 = RicN (Z ,W ) and A is the shape operator of the
hypersurface with respect to the unit normal vector η.

We point out that, contrary to [16], the sign convention for � in this paper is such
that � f = − f ′′ on R. If the mean curvature f is constant, say f ≡ α, then the
biharmonic equation reduces to

{−α|A|2 + αRicN (η, η) = 0
α (RicN (η))� = 0,

(1.9)
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from which we deduce that a non minimal CMC hypersurface Mm is proper bihar-
monic if and only if

RicN (η) = |A|2η. (1.10)

In the instance that Mm is a hypersurface of Sm+1 the biharmonic condition (1.10)
reduces to

|A|2 − m = 0. (1.11)

As for the r -harmonic case, condition (1.11) was generalized in [13]:

Theorem 1.2. Let Mm be a non-minimal CMC hypersurface in S
m+1 and assume

that |A|2 is constant. Then Mm is proper r-harmonic (r ≥ 3) if and only if

|A|4 − m|A|2 − (r − 2)m2α2 = 0. (1.12)

As an application of Theorem 1.2, several new examples of isoparametric r -
harmonic hypersurfaces were illustrated in [13], where it was stressed that the value
of r , r ≥ 2, plays a crucial role when the ambient is positively curved. By con-
trast, when the target space form has nonpositive curvature, generally non-existence
results are confirmed for all values of r , r ≥ 2.

As a natural further step, in this paper we shall focus on the study of r -harmonic
surfaces into 3-dimensional homogeneous spaces with group of isometries of
dimension 4.

It is well-known (see, e.g., [1], [3], [4], [6]) that 3-dimensional homogeneous
spaces with group of isometries of dimension 4 admit, as a local canonical model,
the so called Bianchi-Cartan-Vranceanu spaces (shortly, BCV-spaces)

M3
m,� =

(
M̄ × R, g = dx2 + dy2

[1 + m(x2 + y2)]2 +
[
dz + �

2

ydx − xdy

1 + m(x2 + y2)

]2)
,

(1.13)

where M̄ = {(x, y) ∈ R
2 : 1 + m(x2 + y2) > 0}.

The space M3
m,� is the total space of the following Riemannian submersion over

a simply connected surface M2(4m) of constant curvature 4m, see [6]:

π : M3
m,� −→ M2(4m) =

(
M̄, h = dx2 + dy2

[1 + m(x2 + y2)]2
)

, π(x, y, z) = (x, y).

(1.14)

Wepoint out thatwhile inSn(ρ) the letterρ indicates the radius, inM2(4m), H2(4m)

the real number within the brackets represents the sectional curvature.
These BCV-spaces are also a local model for Thurston’s eight 3-dimensional

geometries with the exception of the hyperbolic spaceH3 and Sol. More precisely,
we have the following cases:

(1) when � = m = 0, then M3
m,� is R

3;

(2) when �2 = 4m > 0, then M3
m,� is a local model of S3(1/

√
m);
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m

Nil3Nil3

S
3( 1√

m
)

S
2( 1

2
√
m
) \ {∞} × R

H
2(4m) × R

2 = 4m

SU(2)SU(2)

SU(2)SU(2)

R
3

SL(2,R)SL(2,R)

Fig. 1. Distribution of BCV-spaces with respect to the values of � and m

(3) when � = 0 and m < 0, then M3
m,� is the product space H

2(4m) × R;

(4) when � = 0 and m > 0, then M3
m,� is the product space S

2( 1
2
√
m

) \ {∞} × R;

(5) when � �= 0, then M3
m,� is Nil3;

(6) when � �= 0 and m < 0, then M3
m,� is S̃L(2,R);

(7) when � �= 0, m > 0 and �2 �= 4m, then M3
m,� is a local model of SU (2) with

a Berger metric.

See Fig. 1 for a representation of the BCV-spaces with respect to the values of
the parameters � and m.

In their paper [18], Ou and Wang used equation (1.8) to study biharmonic
surfaces in BCV-spaces. They first showed that a totally umbilical biharmonic
surface in any 3-dimensional Riemannian manifold has constant mean curvature.
Then they used this to show that the only totally umbilical proper biharmonic surface
in 3-dimensional geometries is a part of S2(1/

√
2m) in S3(1/

√
m).

Moreover, they proved the following characterization of CMC biharmonic sur-
faces:

Theorem 1.3. (see [18]) A CMC surface in a 3-dimensional Bianchi-Cartan-
Vranceanu space is proper biharmonic if and only if it is a part of one of the
following:

(i) S2( 1√
2m

) in S3( 1√
m

),

(ii) S1( 1
2
√
2m

) × R in S2( 1
2
√
2m

) × R,

(iii) a Hopf cylinder in SU (2) with 4m − �2 > 0 over a circle of radius R =
1/

√
8m − �2 in the base sphere M2(4m) = S

2( 1
2
√
m

).

The main aim of our paper is to investigate the existence of triharmonic and,
more generally, r -harmonic surfaces in this geometric setting (r ≥ 3).
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Our paper is organised as follows. In Section 2 we state our main results on
triharmonic surfaces in BCV-spaces. These results will be proved in Sects. 4 and
5. Finally, in Sect. 6, we shall determine a complete classification of proper CMC
r -harmonic Hopf cylinders in Bianchi-Cartan-Vranceanu spaces, r ≥ 3. As an
application, we shall be able to describe, for suitable values of r , an ample family
of new examples of r -harmonic surfaces in BCV-spaces.

2. Statement of the results on triharmonic surfaces in BCV-spaces

In order to state our results, it is convenient to recall first some basic facts and
terminology.

For a Bianchi-Cartan-Vranceanu 3-space given in (1.13), one can easily check
that the vector fields

E1 = F
∂

∂x
− �y

2

∂

∂z
, E2 = F

∂

∂y
+ �x

2

∂

∂z
, E3 = ∂

∂z
,

where F = 1 + m(x2 + y2), form a global orthonormal frame field (see [3,18]).
Now, let γ (s) = (x(s), y(s)), s ∈ I be a smooth curve in the base space

M2(4m) of the Riemannian submersion (1.14). Then the Hopf cylinder �γ = �

over the curve γ is defined as

� = ∪s∈Iπ−1(γ (s)). (2.1)

Then the surface � can be parametrized as r(s, t) = (x(s), y(s), t) since the fiber
of π over a point (x0, y0) is π−1(x0, y0) = {(x0, y0, t) : t ∈ R}.

It is convenient to assume that the base curve γ is parametrized by arc length,
i.e.,

ẋ2 + ẏ2

F2 = 1.

Next, we define:

X = ẋ

F
E1 + ẏ

F
E2, η = ẏ

F
E1 − ẋ

F
E2. (2.2)

Then the unit vector field η is normal to the Hopf cylinder � and {X, E3, η} is a
global orthonormal frame field adapted to �.

Our first result is:

Theorem 2.1. Let � be a triharmonic Hopf cylinder in a BCV-space M3
m,�. Then

� is CMC.

The analysis in the proof of Theorem 2.1 shows that, if � is a Hopf cylinder, then
its tension field is τ = −κgη, where κg denotes the geodesic curvature of its base
curve.

Our second result is:
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Theorem 2.2. Let � be a CMC Hopf cylinder in a BCV-space M3
m,�.

(i) If 4m ≤ �2 and � is triharmonic, then � is minimal.
(ii) If 4m > �2 and the geodesic curvature κg of its base curve verifies

κ2
g = 2(4m − �2), (2.3)

then � is proper triharmonic.

Remark 2.3. The base curve of a proper triharmonic Hopf cylinder in SU (2) as in
Theorem 2.2 (ii) is a circle of radius R = 1/

√
12m − 2�2 in S

2(1/(2
√
m)) and so

these Hopf cylinders are tori.

The analysis of the Hopf cylinders fits naturally into the context of the study of
isoparametric surfaces. We recall that, in a general Riemannian manifold, a hyper-
surface is said to be isoparametric if itself and its locally defined nearby equidis-
tant hypersurfaces have constant mean curvature. In the 30’s, Cartan characterized
isoparametric hypersurfaces in space forms as those with constant principal curva-
tures and achieved their classification in hyperbolic spaces Hn . Segre obtained a
similar result for Euclidean spaces Rn . In both cases, isoparametric hypersurfaces
are also open parts of extrinsically homogeneous hypersurfaces, that is, codimen-
sion one orbits of isometric actions on the ambient space. By contrast, the classi-
fication problem in spheres Sn is much more complicated and rich, and there are
inhomogeneous examples (see [5] and references therein, for instance).

In spaces of nonconstant curvature, very few classification results are known.
In the case of interest for us we have the following important result:

Theorem 2.4. [7] Let � be an immersed surface in M3
m,�, 4m − �2 �= 0. Then the

following assertions are equivalent:

(i) � is an open subset of a homogeneous surface.
(ii) � is isoparametric.
(iii) � has constant principal curvatures.
(iv) � is an open subset of one of the following complete surfaces:

(a) a Hopf cylinder over a complete curve of constant curvature in M2(4m);
(b) a horizontal slice M2(4m) × t0 with � = 0;
(c) a parabolic helicoid Pα,m,� with α2 + m < 0.

Remark 2.5. We point out that in references [4,6,7] the authors use parameters κ, τ

instead of m, �. The relationship between these parameters is κ = 4m, τ = �/2.
Also, in these papers our constant α is denoted by H .

The parabolic helicoids Pα,m,� will be described explicitly in Sect. 4.
Our main result in the context of isoparametric surfaces is the following:

Theorem 2.6. Let� be an isoparametric immersed surface in M3
m,�, 4m−�2 �= 0.

If � is proper triharmonic, then it is an open part of a Hopf cylinder as in (ii) of
Theorem 2.2.

Remark 2.7. If 4m − �2 = 0, then M3
m,� is a space form with nonnegative sectional

curvature and in this case the only proper triharmonic isoparametric surface is
S
2( 1√

3m
) in S3( 1√

m
) (see [11]).
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3. Preliminaries

In order to prepare the ground for our proofs we need to carry out some preliminary
work. Generally, the use of a bar over a symbol indicates that we refer to an object
of the ambient space. We adopt the following notation and sign convention for the
Riemannian curvature tensor field:

R(X,Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z .

Moreover,

R(X,Y, Z ,W ) = 〈R(X,Y )W, Z〉,

Ric(X,Y ) = ∑3
i=1 R(X, ei ,Y, ei ) = ∑3

i=1〈R(X, ei )ei ,Y 〉.
A straightforward computation shows that

[E1, E2] = −[E2, E1] = 2mxE2 − 2myE1 + �E3,

all others [Ei , E j ] = 0, i, j = 1, 2, 3. (3.1)

Then, using the Koszul formula

2〈Z ,∇Y X〉 = X〈Y, Z〉 + Y 〈Z , X〉 − Z〈X,Y 〉
−〈[X, Z ],Y 〉 − 〈[Y, Z ], X〉 − 〈[X,Y ], Z〉, (3.2)

it is easy to compute:

∇E1E1 = 2myE2, ∇E2E2 = 2mxE1,

∇E1E2 = −2myE1 + �

2
E3, ∇E2E1 = −2mxE2 − �

2
E3,

∇E3E1 = ∇E1E3 = −�

2
E2, ∇E3E2 = ∇E2E3 = �

2
E1,

all others ∇Ei E j = 0, i, j = 1, 2, 3.

(3.3)

Similarly, a further computation gives the possible nonzero values of the sectional
curvatures:

R1212 = 〈R(E1, E2)E2, E1〉 = 4m − 3�2

4
,

R1313 = 〈R(E1, E3)E3, E1〉 = �2

4
,

R2323 = 〈R(E2, E3)E3, E2〉 = �2

4
.

(3.4)

The Riemannian curvature tensor field R of M3
m,� can be described as follows

(see [6], where the opposite sign convention for the curvature tensor is adopted).
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R(X, Y )Z =
(
4m − 3�2

4

) ( − 〈X, Z〉Y + 〈Y, Z〉X) − (4m − �2)

(〈Y, E3〉〈Z , E3〉X + 〈Y, Z〉〈X, E3〉E3 − 〈X, E3〉〈Z , E3〉Y − 〈X, Z〉〈Y, E3〉E3
)
.

(3.5)

Another useful formula is the following (see [6]):

∇X E3 = �

2
X × E3, (3.6)

where × here has the following meaning:

〈X × Y, Z〉 = det (E1,E2,E3)(X,Y, Z) .

We shall study oriented immersed surfaces ϕ : M2 → M3
m,� and denote by η the

unit normal vector field.
The vector field E�

3 = E3 − ν η, where we have set

ν = 〈E3, η〉, (3.7)

will play a basic role in our analysis. This vector field plays an important part also
in the previous literature on this subject. For our purposes, it is useful to recall (see
Proposition 3.3 of [6]):

∇X E�
3 = ∇X E�

3 + B(X, E�
3 ) = ν

(
A(X) − �

2
J (X)

)
+ 〈A(X), E�

3 〉 η,

(3.8)

where J denotes the π/2 rotation on T M2.
If p is an arbitrarily fixed point of M2, then, as ∇ J = 0, we can consider a

geodesic frame field {X1, X2} such that, in a small neighbourhood of p, J (X1) =
X2, J (X2) = −X1.

Moreover, taking into account the definition (3.7), we compute:

X (ν) = −〈A(X) − �

2
J (X), E3〉 = −〈A(X) − �

2
J (X), E�

3 〉. (3.9)

4. Proof of Theorems 2.1 and 2.2

Let {T, N } denote the canonically oriented unit tangent and normal fields to γ in
the base space M2(4m) = (M̄, h), i.e.,

T = (ẋ, ẏ), N = (−ẏ, ẋ),

so that the geodesic curvature κg of γ is defined in the base space by means of

∇T T = κgN , ∇T N = −κgT .
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Note that we denote ∇ = ∇g, ∇ = ∇� . A computation shows that

κg = 2m

F
(ẋ y − ẏx) + ÿ ẋ − ẍ ẏ

F2 .

Our first lemma is:

Lemma 4.1. Let X, η be the vector fields defined in (2.2). Then

(i) ∇X X = −κgη (ii) ∇Xη = κg X − �

2
E3 (iii) ∇E3X = �

2
η

(iv) ∇E3η = −�

2
X (v) ∇E3E3 = 0 (vi) ∇X E3 = �

2
η

(4.1)

Proof. We note that X = TH, i.e., X is the horizontal lift of T and, similarly,
η = −NH. Because π is a Riemannian submersion, we know that

dπ
(
∇VHWH)

= ∇dπ(VH)dπ(WH). (4.2)

By way of example, we prove (ii):

dπ
(∇Xη

) = −∇T N = κgT = dπ(κg X).

It follows that

∇Xη = κg X + cE3,

where

c = 〈∇Xη, E3〉 = −〈η,∇X E3〉.
Next, using (3.6), we deduce that

c = −�

2
〈η, X × E3〉 = −�

2
.

The other computations of this lemma are similar and so we omit them. ��
It is easy to deduce from Lemma 4.1 that the tension field of the Hopf cylinder is

τ = −κgη.

In particular, the Hopf cylinder� is CMC (α = −κg/2) if and only if its base curve
γ has constant geodesic curvature. Next, we need:

Lemma 4.2.

�τ = AX + BE3 + Cη, (4.3)

where

A = 3κg κ̇g, B = −�κ̇g, C = κ̈g − �2

2
κg − κ3

g .
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Proof. We compute:

�τ = −
{
∇X∇Xτ − ∇∇X Xτ + ∇E3∇E3τ − ∇∇E3 E3τ

}
.

Since τ is orthogonal to �, we deduce from Lemma 4.1(i) that ∇X X = 0. Also,
∇E3E3 = 0 and so, using again Lemma 4.1, we compute:

�τ = −
{
∇X∇Xτ + ∇E3∇E3τ

}

= ∇X

[
κ̇gη + κg(κg X − �

2
E3)

]
− ∇E3

[
κg

�

2
X

]

= κ̈gη + κ̇g

(
κg X − �

2
E3

)
+ 2κg κ̇g X − κ3

gη

−�

2
κ̇gE3 − �2

4
κgη − �2

4
κgη

and the conclusion follows readily. ��
Now, we compute:

Lemma 4.3. Let A, B,C be the function defined in Lemma 4.1. Then

�
2
τ =

[�2

4
A + Aκ2

g − Ä − �

2
Bκg − 2Ċκg − C κ̇g

]
X

+
[

− �

2
Aκg + �2

4
B − B̈ + �Ċ

]
E3

+
[
2 Ȧκg + Aκ̇g − �Ḃ − C̈ + Cκ2

g + �2

2
C
]
η. (4.4)

Proof. Obviously,

�
2
τ = �(AX) + �(BE3) + �(Cη).

Computing as in Lemma 4.1 we find:

�(AX) =
[�2

4
A + Aκ2

g − Ä
]
X −

[�

2
Aκg

]
E3 +

[
2 Ȧκg + Ak̇g

]
η

�(BE3) = −
[�

2
Bκg

]
X +

[�2

4
B − B̈

]
E3 −

[
�Ḃ

]
η

�(Cη) = −
[
2Ċκg + C κ̇g

]
X +

[
�Ċ

]
E3 +

[�2

2
C + Cκ2

g − C̈
]
η.

Adding up these three terms we obtain (4.4). ��
Now, using again Lemma 4.1 and the explicit expression (3.5) of the Riemannian
curvature tensor field, we can compute the two curvature terms of the 3-tension
field (1.7) and we find:
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Lemma 4.4.

−R
(
�τ(ϕ), dϕ(ei )

)
dϕ(ei ) = −�2

4
AX − �2

4
BE3 +

(
−4m + �2

2

)
Cη;

− R
(
∇ϕ
ei τ(ϕ), τ (ϕ)

)
dϕ(ei ) =

(
4m − 3�2

4

)
κ3
gη.

Finally, adding up the terms computed in Lemmata 4.3–4.4 and simplifying using
the explicit expression of the functions A, B,C defined in Lemma 4.1, we obtain
the explicit expression of the 3-tension field of a Hopf cylinder. This is summarized
in the following

Proposition 4.5. As in (2.1), let � be a Hopf cylinder in a BCV-space M3
m,�. Then

its 3-tension field is given by

τ3 =
[
2κ̇g(�

2κg + 5κ3
g − 5κ̈g) − 5κgκ

(3)
g

]
X

+ �

2

[
− (�2 + 9κ2

g )κ̇g + 4κ(3)
g

]
E3

+1

4

[
κg

(
60κ̇2

g − (�2 + 4κ2
g )(2�

2 − 8m + κ2
g )

)
+ 2(5�2 − 8m + 20κ2

g )κ̈g − 4κ(4)
g

]
η.

(4.5)

We deduce from (4.5) that a Hopf cylinder � is 3-harmonic if and only if the
geodesic curvature κg of its base curve γ verifies:

⎧⎪⎪⎨
⎪⎪⎩

2κ̇g(�2κg + 5κ3
g − 5κ̈g) − 5κgκ

(3)
g = 0

−�(�2 + 9κ2
g )κ̇g + 4�κ(3)

g = 0

κg

(
60κ̇2

g − (�2 + 4κ2
g )(2�

2 − 8m + κ2
g )

)
+ 2(5�2 − 8m + 20κ2

g )κ̈g − 4κ(4)
g = 0.

(4.6)

Proof of Theorem 2.1. Because τ = −κgη, the proof amounts to showing that the
base curve γ of � has constant geodesic curvature κg . We denote by K1, K2, K3
respectively the left-hand sides of the three equations in (4.6).
Case � �= 0
We argue by contradiction. So, let us suppose that (4.6) admits a nonconstant
solution. It follows that there exists an open interval I such that κg(s), κ̇g(s) are
both different from zero on I . We work on I . First, from

4�K1 + 5κgK2 = 0

we deduce that

κ̈g = κg

40
(3�2 − 5κ2

g ). (4.7)

Next, replacing the derivative of (4.7) into K2 gives

− 7

10
�(�2 + 15κ2

g )κ̇g = 0,
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Thus, since � �= 0, we must have that κ̇g = 0 obtaining a contradiction.
Case � = 0
In this case (4.6) is equivalent to

{
(i) 2κ̇g(κ3

g − κ̈g) − κgκ
(3)
g = 0

(ii) 15κg κ̇2
g − κ3

g (κ
2
g − 8m) + 2(5κ2

g − 2m)κ̈g − κ
(4)
g = 0.

(4.8)

Explicit integration of (4.8) (i) yields

2κg κ̈g = κ4
g − κ̇2

g + c, (4.9)

where c is a real constant. Taking the first and the second derivative of (4.9) we
obtain the expression of κ̈g , κ

(3)
g and κ

(4)
g in terms of κg , κ̇g and c. Substituting these

expressions in (4.8) (ii) we obtain

c2 + 12mκ6
g + 7κ8

g − 8cκ̇2
g + 7κ̇4

g + 4mκ2
g (κ̇

2
g − c) + 2κ4

g (5c + 7κ̇2
g ) = 0.

(4.10)

If m = c = 0, then (4.10) becomes

7(κ2
g + κ̇2

g )
2 = 0

from which we obtain a contradiction. Now, let (m, c) �= (0, 0). From (4.10) we
obtain

κ̇2
g = 1

7

(
4c − 2mκ2

g − 7κ4
g ±

√
9c2 + 12cmκ2

g + (4m2 − 126c)κ4
g − 56mκ6

g

)
.

(4.11)

We can restrict our attention to an open subinterval of I where

9c2 + 12cmκ2
g + (4m2 − 126c)κ4

g − 56mκ6
g

is positive. Taking the derivative of (4.11) (we choose the solution with the sign +
before the square root, the other case is similar) we obtain an expression of κ̈g as
a function of κg and c. Substituting this expression and (4.11) into (4.9) we easily
obtain that κg is a root of the following polynomial with constant coefficients

7056mκ10
g + 196(81c + 26m2)κ8

g

+384(42cm − m3)κ6
g + 12c(945c − 121m2)κ4

g − 1764c2mκ2
g − 567c3.

Since (m, c) �= (0, 0), it follows again that κg is constant, a contradiction. Thus the
proof is ended. ��
Proof of Theorem 2.2. The proof follows easily from Proposition 4.5 using the
assumption that κg is a constant. ��
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5. Proof of Theorem 2.6

Our first goal is to compute all the terms which occur in the expression of the
3-tension field

τ3(ϕ) = �
2
τ(ϕ) − R

(
�τ(ϕ), dϕ(ei )

)
dϕ(ei ) − R

(
∇ϕ
ei τ(ϕ), τ (ϕ)

)
dϕ(ei ).

(5.1)

For this purpose, we now establish a series of useful preliminary lemmata.

Lemma 5.1. Let ϕ : M2 → M3
m,� be an oriented surface. Let A denote the shape

operator, f = (1/2) trace A the mean curvature function and η the unit normal.
Then

(a) (∇A)(X,Y ) = (∇A)(Y, X) − (R(X,Y )η)�;
(b) 〈(∇A)(X,Y ), Z〉 = 〈(∇A)(X, Z),Y 〉;
(c) trace(∇A)(·, ·) = 2 grad f + (4m − �2) ν E�

3 .

Proof. (a) This is just the Codazzi equation.
(b)

〈(∇A)(X,Y ), Z〉 = 〈∇X A(Y ) − A(∇XY ), Z〉
= 〈∇X A(Y ), Z〉 − 〈A(∇XY ), Z〉
= X〈A(Y ), Z〉 − 〈A(Y ),∇X Z〉 − 〈∇XY, A(Z)〉.

Because the above expression is symmetric with respect to Y, Z the conclusion
follows.

(c) Let p ∈ M2 be an arbitrarily fixed point and consider a geodesic frame field
{Xi }2i=1 around p. At p we have:

Trace(∇A)(·, ·) =
2∑

i=1

(∇A)(Xi , Xi ) =
2∑

i=1

(∇Xi A)(Xi ) =
2∑

i=1

∇Xi A(Xi )

=
2∑

i, j=1

∇Xi (〈A(Xi ), X j 〉X j ) =
2∑

i, j=1

∇Xi (〈Xi , A(X j )〉X j )

=
2∑

i, j=1

〈Xi ,∇Xi A(X j )〉X j =
2∑

i, j=1

〈Xi , (∇A)(Xi , X j )〉X j .

Now, first using (a) and then the explicit expression of the curvature tensor field
(3.5), we continue the previous sequence of equalities as follows:

Trace(∇A)(·, ·) = . . . =
2∑

i, j=1

〈Xi ,∇X j A(Xi ) − R(Xi , X j )η〉X j
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=
2∑

i, j=1

〈Xi ,∇X j A(Xi )〉X j − 〈Xi , R(Xi , X j )η〉X j

=
2∑

i, j=1

(
X j 〈Xi , A(Xi )〉

)
X j

+
2∑

i, j=1

(4m − �2)
[
〈X j , E3〉ν − 〈Xi , E3〉νδi j

]
X j

= 2
2∑
j=1

X j ( f )X j + (4m − �2)
[
2νE�

3 − νE�
3

]

= 2 grad f + (4m − �2)νE�
3

and so the proof of the lemma is ended. ��
Next, we compute:

Lemma 5.2. Let ϕ : M2 → M3
m,� be an oriented surface and denote by H = f η

its mean curvature vector field. Then

�H = (� f + f |A|2)η + 2A(grad f ) + 2 f grad f + (4m − �2) f ν E�
3 .

(5.2)

Proof. We work with a geodesic frame field {Xi }2i=1 around an arbitrarily fixed

point p ∈ M2. Again, we simplify the notation writing ∇ for ∇M2
. SinceH = f η,

around p we have:

∇ϕ
Xi
H = ∇⊥

Xi
H − AH(Xi ) = (Xi f ) η − f A (Xi ) .

Then, denoting by B the second fundamental form, at p we have:

∇ϕ
Xi

∇ϕ
Xi
H = (Xi Xi f ) η − (Xi f ) A (Xi ) − (Xi f ) A (Xi ) − f

(∇Xi A (Xi )

+B (Xi , A (Xi ))
)

= (Xi Xi f ) η − 2 (Xi f ) A (Xi ) − f (∇A)(Xi , Xi ) − f |A (Xi ) |2η.

Now, taking the sum over i and using Lemma 5.1, we obtain (5.2) (note that the
sign convention for � and � is as in (1.3)). ��
In the special case that the surface is CMC, say f = α, then (5.2) becomes:

�H = α |A|2η + α (4m − �2) ν E�
3 . (5.3)

Since themean curvature vector field and the tension field are related by τ(ϕ) = 2H,
setting for convenience of notation τ(ϕ) = τ and

V = ν E�
3 , (5.4)

we rewrite (5.3) as

�τ = 2α |A|2η + 2α (4m − �2) V . (5.5)

Next, from (5.5) and performing a computation as in Lemma 5.2 we find:
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Lemma 5.3. Let ϕ : M2 → M3
m,� be an oriented surface and assume that f ≡ α.

Then

�
2
τ = 2α(|A|4 + �|A|2) η + 4αA(grad |A|2) + 2α|A|2(4m − �2) V + 2α(4m − �2) � V .

(5.6)

The first difficulty is to compute in a convenient way � V . We have

Lemma 5.4.

� V = 2ν
(
2A2(E�

3 ) + 3�

4

(
A(J (E�

3 )) − J (A(E�
3 )

))

+
{
(4m − �2)(|E�

3 |2 − ν2) + |A|2 + 5�2

4

}
νE�

3

+
{
2|A(E�

3 )|2 + �〈J E�
3 , A(E�

3 )〉 − 2ν2|A|2 − (4m − �2)ν2|E�
3 |2

}
η.

(5.7)

Proof. We can work with a geodesic frame field {Xi }2i=1 such that J (X1) = X2,
J (X2) = −X1 around an arbitrarily fixed point p ∈ M2. Taking into account (3.8)
and (3.9) we obtain around p:

∇ϕ
Xi
V = ν2

(
A(Xi ) − �

2
J (Xi )

)
− 〈A(Xi ) − �

2
J (Xi ), E

�
3 〉E�

3 + ν〈A(Xi ), E
�
3 〉η.

Next, in a similar fashion, we compute at p:

∇ϕ
Xi

(∇ϕ
Xi
V
) = 2ν Xi (ν)

(
A(Xi ) − �

2
J (Xi )

)

+ν2
[
(∇A)(Xi , Xi ) + |A(Xi )|2η − �

2
〈A(Xi ), J (Xi )〉η

]

+
[
〈−(∇A)(Xi , Xi ), E

�
3 〉 − ν

∣∣A(Xi ) − �

2
J (Xi )

∣∣2]E�
3

−〈A(Xi ) − �

2
J (Xi ), E

�
3 〉

[
ν
(
A(Xi ) − �

2
J (Xi )

) + 〈A(Xi ), E
�
3 〉η

]

+Xi (ν)〈A(Xi ), E
�
3 〉η + ν〈(∇A)(Xi , Xi ), E

�
3 〉η

+ν2〈A(Xi ), A(Xi ) − �

2
J (Xi )〉η − ν〈A(Xi ), E

�
3 〉A(Xi ).

Now, since {Xi }2i=1 is a geodesic frame field, we have at p:

�V = −
2∑

i=1

∇ϕ
Xi

(∇ϕ
Xi
V
)
.
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Therefore,

�V = −2ν
(
A(grad ν) − �

2
J (grad ν)

)

−ν2
[
(4m − �2)νE�

3 + |A|2η − �

2

2∑
i=1

〈A(Xi ), J (Xi )〉η
]

+
[
(4m − �2)ν|E�

3 |2 +
2∑

i=1

ν
∣∣A(Xi ) − �

2
J (Xi )

∣∣2]E�
3

+
2∑

i=1

〈A(Xi ) − �

2
J (Xi ), E

�
3 〉

[
ν
(
A(Xi ) − �

2
J (Xi )

) + 〈A(Xi ), E
�
3 〉η

]

−〈A(grad ν), E�
3 〉η − (4m − �2)ν2|E�

3 |2η

−ν2
2∑

i=1

〈A(Xi ), A(Xi ) − �

2
J (Xi )〉η + ν

2∑
i=1

〈A(Xi ), E
�
3 〉A(Xi ). (5.8)

Now (5.7) can be computed using (3.9) and performing some simplifications such
as:

〈A(X1), J (X1)〉 + 〈A(X2), J (X2)〉 = 0
2∑

i=1

|A(Xi ) − �

2
J (Xi )

∣∣2 = |A|2 + �2

2

2∑
i=1

〈Xi , J (E�
3 )〉〈Xi , A(E�

3 )〉η = 〈J (E�
3 ), A(E�

3 )〉η

grad ν = −
2∑

i=1

〈A(Xi ) − �

2
J (Xi ), E

�
3 〉Xi = −A(E�

3 ) − �

2
J (E�

3 ).

Indeed,

�V = 2νA2(E�
3 ) + �νA(J (E�

3 )) − �ν J (A(E�
3 )) + ν

�2

2
E�
3

−ν2
[
(4m − �2)νE�

3 + |A|2η
]

+
[
(4m − �2)ν|E�

3 |2 + ν

(
|A|2 + �2

2

)]
E�
3

+νA2(E�
3 ) + ν

�

2
A(J (E�

3 )) − ν
�

2
J (A(E�

3 )) + ν
�2

4
E�
3

+
[
|A(E�

3 )|2 + �

2
〈J (E�

3 ), A(E�
3 )〉

]
η

+|A(E�
3 )|2η + �

2
〈J (E�

3 ), A(E�
3 )〉η − (4m − �2)ν2|E�

3 |2η
−ν2|A|2η + νA2(E�

3 ) (5.9)
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from which (5.7) follows immediately (note that each line of (5.8) is equal to the
corresponding line of (5.9)). ��
Now, we can state the main result which is of independent interest and summarizes
the preliminary work which we have carried in this section.

Proposition 5.5. Let M2 be an oriented surface in M3
m,�. Assume that M

2 has CMC
equal to α. Then its 3-tension field is

τ3 = α
{
2�|A|2 + 2|A|4 + |A|2[�2(1 + 2ν2) − 8m(1 + ν2)

]
+4(4m − �2)|A(E�

3 )|2 + 2�(4m − �2)〈J (E�
3 ), A(E�

3 )〉
−4α(4m − �2)〈A(E�

3 ), E�
3 〉

+2α2�2(3 + 4ν2) − 32mα2(1 + ν2)
}
η

+2α(4m − �2)ν
{
3|A|2 + 4α2 + 3�2ν2 + m(4 − 12ν2)

}
E�
3

+4α(4m − �2)ν
{
2A2(E�

3 ) − 3�

4
J (A(E�

3 )) + 3�

4
(A(J (E�

3 ))
}

−4α2(4m − �2)νA(E�
3 )

+4αA(grad |A|2), (5.10)

where ν is defined in (3.7).

Proof. The explicit expression of the curvature tensor field is given in (3.5) and so
we have all the ingredients to compute the 3-tension field (5.1). More in detail:

(I) �
2
τ is given in Lemmata 5.3 and 5.4.

(II) Here we compute the first curvature term

R
(
�τ(ϕ), dϕ(ei )

)
dϕ(ei ),

which we rewrite as
2∑

i=1

R
(
(�τ)⊥, Xi

)
Xi +

2∑
i=1

R
(
(�τ)�, Xi

)
Xi , (5.11)

where, according to (5.5), we have

(�τ)⊥ = 2α |A|2η, (�τ)� = 2α (4m − �2) V . (5.12)

Then, using the general expression (3.5) for the curvature tensor field, we find:

2∑
i=1

R
(
(�τ)⊥, Xi

)
Xi = 2α|A|2

{
2

(
4m − 3�2

4

)
η

−(4m − �2)
[
(|E�

3 |2 + 2ν2)η + νE�
3

]}
. (5.13)

2∑
i=1

R
(
(�τ)�, Xi

)
Xi = 2α(4m − �2)ν

{(
4m − 3�2

4

)
E�
3

−(4m − �2)
[|E�

3 |2E�
3 + |E�

3 |2ν η
]}

. (5.14)
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Adding up the results in (5.13) and (5.14) we can easily handle the term in (II).
(III) Here we deal with the other curvature term, i.e.,

R
(
∇ϕ
ei τ(ϕ), τ (ϕ)

)
dϕ(ei ).

Using again the general expression (3.5) for the curvature tensor field and observing
that

∇ϕ
Xi

τ = −2αA(Xi )

we find (slight abuse of notation: we identify Xi and dϕ(Xi )):

2∑
i=1

R
(
∇ϕ
Xi

τ, τ
)
Xi = −4α2

2∑
i=1

R (A(Xi ), η) Xi

= −4α2
{

− 2α

(
4m − 3�2

4

)
η

+(4m − �2)
[
νA(E�

3 ) − 〈A(E�
3 ), E�

3 〉η − 2ανE�
3 − 2αν2η

]}

(5.15)

Using the results obtained in the three cases (I), (II), (III) we can easily compute
the 3-tension field described explicitly in (5.1). More precisely, after some routine
simplifications we obtain (5.10) (where we have used that |E�

3 |2 = 1− ν2) and so
the proof of Proposition 5.5 is completed. ��
Proof of Theorem 2.6. According to Theorem 2.4, we just have to study the three
possible cases (iv)(a),(b),(c). Case (iv)(a) is analysed in detail in Theorem 2.2 and
provides examples of proper triharmonic surfaces. By contrast, horizontal slices of
the type (iv)(b) are totally geodesic and therefore there exists no proper triharmonic
surface of this type. By way of summary, the proof will be complete if we show
that any parabolic helicoid Pα,m,� as in Theorem 2.4 (iv)(c) cannot be proper trihar-
monic. Despite the simplicity of this plan for the proof, the involved computations
are quite long and will be carried out using the half-space model for M3

m,�. More
precisely, recalling that in the case of parabolic helicoids m < 0 by assumption,
we shall work in

M̃3
m,� =

(
{(x̃, ỹ, z̃) ∈ R

3 : ỹ > 0}, dx̃2 + d ỹ2

−4mỹ2
+

(
dz̃ + �

4mỹ
dx̃

)2
)

.

Now, we recall (see [4]) some basic facts about the half-space model. We have an
explicit isometry � : M3

m,� → M̃3
m,� given by

�(x, y, z) =
(

2y√−mG2
,
1 + m(x2 + y2)

−mG2 , z + �

2m
arccos

( y

G

))
,

where we have set

G =
√(

1√−m
+ x

)2

+ y2.
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Moreover, an explicit positively oriented global orthonormal frame field on the
half-space model is:

Ẽ1 = 2
√−m ỹ ∂x̃ + �

2
√−m

∂z̃, Ẽ2 = 2
√−m ỹ ∂ỹ, Ẽ3 = ∂z̃ .

For future use, we observe that d�(E3) = Ẽ3. Next, we compute

[Ẽ1, Ẽ2] = −2
√−mẼ1 + �Ẽ3; [Ẽ1, Ẽ3] = [Ẽ2, Ẽ3] = 0.

Then, using the Koszul identity (3.2), it is easy to verify that the version of (3.3) in
this context is:

∇ Ẽ1
Ẽ1 = 2

√−mẼ2, ∇ Ẽ1
Ẽ2 = −2

√−mẼ1 + �

2
Ẽ3, ∇ Ẽ1

Ẽ3 = −�

2
Ẽ2,

∇ Ẽ2
Ẽ1 = −�

2
Ẽ3, ∇ Ẽ2

Ẽ2 = 0 ∇ Ẽ2
Ẽ3 = �

2
Ẽ1,

∇ Ẽ3
Ẽ1 = −�

2
Ẽ2, ∇ Ẽ3

Ẽ2 = �

2
Ẽ1, ∇ Ẽ3

Ẽ3 = 0.

(5.16)

The parabolic helicoids Pα,m,� (see [7]) are the CMC surfaces in M̃3
m,� parametrized

by

X (u, v) = (u, v, a log v) , v > 0,

where a is non-vanishing real constant whose relation with the geometrical param-
eters α,m, � will be made explicit in (5.21) below.

We have to verify that a parabolic helicoid Pα,m,�,α �= 0, cannot be triharmonic.
For this purpose, we apply Proposition 5.5. In order to compute all the terms which
appear in the expression of the 3-tension field τ3 (see (5.10) it is convenient to
express and compute all the relevant quantities with respect to the global orthonor-
mal frame field {Ẽ1, Ẽ2, Ẽ3}. Writing [x̃1, x̃2, x̃3] for x̃1 Ẽ1 + x̃2 Ẽ2 + x̃3 Ẽ3, we
compute:

Xu =
[

1

2
√−m v

, 0,
�

4mv

]

Xv =
[
0,

1

2
√−m v

,
a

v

]

η = 1

L

[
�, 4am, 2

√−m
]
, (5.17)

where we have set

L =
√

�2 + 4m(4a2m − 1) (5.18)

Note that

ν = η · Ẽ3 = 2
√−m

L
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and so we can compute E�
3 = Ẽ3 − νη. We find

E�
3 =

[
−2�

√−m

L2 ,
8a(−m)3/2

L2 ,
4m

L2 + 1

]
.

Moreover,

J (E�
3 ) = η × E�

3 =
[
4am

L
,− �

L
, 0

]
.

Now, we recall that A(X) = −∇Xη and J (X) = η× X for all X tangent to Pα,m,�.
Next, we observe that all the coefficients of η, E�

3 , J (E�
3 ) are constant. Therefore,

using (5.16) it is not difficult to compute:

A(E�
3 ) =

[
−2a�m

L
,

�2

2L
, 0

]

A(J (E�
3 )) =

[√−m
(
32a2m2 + �2

)
L2 ,

4a�(−m)3/2

L2 ,−16a2�m2 + �3

2L2

]

A2(E�
3 ) =

[
−�2

√−m

L2 ,
4a�(−m)3/2

L2 ,
16a2�m2 + �3

2L2

]

J (A(E�
3 )) =

[
−�

√−m
(
32a2m2 + �2

)
2L2 ,−2a�2(−m)3/2

L2 ,
16a2�2m2 + �4

4L2

]

(5.19)

Using (5.19), we are in the right position to compute the mean curvature α and
|A|2. We have

2α = 1

|E�
3 |2

(〈A(E�
3 ), E�

3 〉 + 〈A(J (E�
3 )), J (E�

3 )〉) = 8a(−m)3/2

L
. (5.20)

Inverting (5.20), together with (5.18), we deduce that the relationship between a
and the geometrical parameters α, �,m is:

a = α

4m

√
4m − �2

m + α2 . (5.21)

As for |A|2, using (5.21) and (5.18) a straight computation returns

|A|2 = 1

|E�
3 |2

(〈A(E�
3 ), A(E�

3 )〉 + 〈A(J (E�
3 )), A(J (E�

3 ))〉) = 1

2
(8α2 + �2).

(5.22)

Next, using (5.19), (5.21) and (5.22) all the terms in (5.10) can be easily computed
and, after adding up and simplifying, we find
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τ3 = α

⎡
⎣ 1√−m

√
α2 + m

4m − �2
T 1,

α√−m
T 2,−2

√
α2 + m

4m − �2
T 3

⎤
⎦ ,

where

T 1 = �
[
�4 + �2(−16m + 6α2) + 32(2m2 − 3mα2 − 2α4)

]
;

T 2 = �4 + �2(−16m + 6α2) + 32(2m2 − 3mα2 − 2α4);
T 3 = �4 + �2(−8m + 2α2) + 64α2(m + α2).

By way of summary, a parabolic helicoid Pα,m,� is proper triharmonic if and only
if

⎧⎨
⎩
T 1 = 0
T 2 = 0
T 3 = 0.

(5.23)

Now, if � = 0, the third equation of system (5.23) becomes

64α2(m + α2) = 0,

which has not relevant solutions since in our constructionm+α2 < 0 by hypothesis.
Next,wehandle the case � �= 0. First,weobserve that the conditionT 2−T 3 = 0

implies

�2 = −8(−2m2 + 5mα2 + 4α4)

2m − α2 . (5.24)

Now, replacing this value of �2 into T 2 and simplifying we find that necessarily

(2m + 3α2)(−2m2 + 9mα2 + 8α4) = 0.

Because m < 0, the only possibilities are:

m = −3α2

2
or m = α2

4
(9 − √

145). (5.25)

The first value for m is not acceptable because, if we replace it into (5.24), we find

�2 = −16α2,

a contradiction. As for the second value of m into (5.25), it suffices to observe that
it would imply m + α2 > 0, a fact which contradicts our assumption.

Therefore, there exists no proper triharmonic parabolic helicoid Pα,m,� and so
the proof of Theorem 2.6 is completed. ��
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6. Proper CMC r-harmonic Hopf cylinders

In this section we focus on the study of proper CMC r -harmonic Hopf cylinders.
We shall show that the existence of such submanifolds depends not only on the
curvature of the ambient space, but also on the value of r . This will be illustrated
in Corollary 6.3 which is a consequence of the following theorem.

Theorem 6.1. Assume that r ≥ 2. Let � be a non minimal CMC Hopf cylinder
in a BCV-space M3

m,�. Then � is proper r-harmonic if and only if the geodesic
curvature κg of its base curve γ is a non zero constant which verifies

κ4
g +

[
−4m(r − 1) + 3�2r

4

]
κ2
g − �2

2
(4m − �2) = 0. (6.1)

Remark 6.2. From (4.1) (ii) and (iv), the norm |A|2 of the shape operator of � is
(see also [18]):

|A|2 = κ2
g + �2

2
. (6.2)

Using (6.2), condition (6.1) is equivalent to

|A|4 −
(
4m − �2

2

)
|A|2 − (r − 2)

(
4m − 3�2

4

)
κ2
g = 0. (6.3)

Thus, setting r = 2 into (6.3), it is immediate to recover the result of Ou and Wang
[18] concerning CMC biharmonic Hopf cylinders. Also, in the special case r = 3
in (6.1), it is easy to recover the statement of Theorem 2.2.

In the following corollary we shall indicate for which values of the parameters
�,m and r there are acceptable solutions of (6.1).We suggest that the reader keeps in
mind the geometrical counterpart of the cases (i), (ii), (iii) of Corollary 6.3 referring
to the diagram in Fig. 1.

Corollary 6.3. Let M3
m,� be a BCV-space. Then there exists a proper CMC r-

harmonic Hopf cylinder if and only if one of the following holds:

(i) 4m − �2 > 0 and r ≥ 2;
(ii) 4m − �2 = 0, � �= 0 and r ≥ 5;
(iii) 4m − �2 < 0, R1212 = 4m − 3�2/4 > 0 and

r ≥
4
(√

2
√

�4 − 4�2m + 4m
)

16m − 3�2
. (6.4)

Remark 6.4. The assumptions 4m−�2 < 0 and R1212 = 4m−3�2/4 > 0 in Case
(iii) of Corollary 6.3 have a geometrical meaning because they state that the ambient
space is SU (2) endowed with a metric with positive sectional curvature. Here we
point out that from the analytical view point these hypotheses are equivalent just
to the condition (3/4)�2 < 4m < �2 which corresponds to the region between the
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m

4m = 2 – solutions if r ≥ 5

4m = 3
4

2 – no solutions

4m = 2 – solutions if r ≥ ra

solutions if r ≥fisnoitulos 2r ≥ 2

snoituloson snoituloson

snoituloson snoituloson

no solutions

Fig. 2. Distribution of proper CMC r -harmonic Hopf cylinders in BCV-spaces with respect
to the values of �, m and r

two parabolas 4m = (3/4)�2 and 4m = �2 (see Fig. 2). It is convenient to describe
this region as the union ∪aγa, 3/4 < a < 1, where γa is the parabola 4m = a�2.
Now, on γa the lower bound for r in (6.4) becomes

ra = 4
(
a + √

2 − 2a
)

4a − 3
.

We observe that on (3/4, 1) ra is a strictly decreasing function of a with
lima→3/4+ ra = +∞ and lima→1− ra = 4. Therefore, the more we approach
γ3/4, the larger r must be in order to have a proper CMC r -harmonic Hopf cylinder.

Now, we prove the results of this section.

Proof of Theorem 6.1. We know that τ = −κgη and κg is constant. To simplify the
notation, we set

c = κ2
g + �2

2
(= |A|2).

We know from Lemma 4.2 that �τ = −κgcη and then we deduce that

�
r
τ = −κgc

rη. (6.5)

Next, using Lemma 4.1, we obtain:

∇X (�
r
τ) = −κ2

gc
r X + �

2
κgc

r E3; ∇E3(�
r
τ) = �

2
κgc

r X. (6.6)

We shall also need the following equalities which can easily by derived from (3.5):

R(η, X)X =
(
4m − 3�2

4

)
η ; R(η, E3)E3 = �2

4
η ; R(X, η)E3 = 0.

(6.7)
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Now, using (6.5), (6.6) and (6.7), we can compute the r -tension field whose expres-
sion is given in (1.6), (1.7). We have:

τ2s(ϕ) = �
2s−1

τ(ϕ) − RN
(
�

2s−2
τ(ϕ), dϕ(ei )

)
dϕ(ei )

−
s−1∑
p=1

{
RN

(
∇ϕ
ei �

s+p−2
τ(ϕ),�

s−p−1
τ(ϕ)

)
dϕ(ei )

− RN
(
�

s+p−2
τ(ϕ),∇ϕ

ei �
s−p−1

τ(ϕ)
)
dϕ(ei )

}

= −κgc
2s−1η + κgc

2s−2
[
R(η, X)X + R(η, E3)E3

]

−
s−1∑
p=1

{
κ3
gc

2s−3R(X, η)X − �

2
κ2
gc

2s−3R(E3, η)X

−�

2
κ2
gc

2s−3R(X, η)E3 − κ3
gc

2s−3R(η, X)X

+�

2
κ2
gc

2s−3R(η, E3)X − �

2
κ2
gc

2s−3R(η, X)E3

}

= −κgc
2s−1η + κgc

2s−2
[(

4m − 3�2

4

)
η + �2

4
η
]

−c2s−3
s−1∑
p=1

{
− κ3

g

(
4m − 3�2

4

)
η − κ3

g

(
4m − 3�2

4

)
η
}

= −κgc
2s−3

[
c2 −

(
4m − �2

2

)
c − (2s − 2)

(
4m − 3�2

4

)
κ2
g

]
η.

It follows from the last equality that the Hopf cylinder � is proper r -harmonic
(r = 2s) if and only if

c2 −
(
4m − �2

2

)
c − (r − 2)

(
4m − 3�2

4

)
κ2
g = 0. (6.8)

Finally, using c = κ2
g + (�2/2) in (6.8) we obtain (6.1).

The computations for τ2s+1 are analogous and so we omit further details. ��
Proof of Corollary 6.3. Wewill proceed by an accurate analysis of the dependence
of the roots of equation (6.1) on the values of the parameters �, m and r . Putting
x = k2g in (6.1), the existence of a proper r -harmonic CMC Hopf cylinder is
equivalent to the existence of a positive solution of the equation

x2 +
[
−4m(r − 1) + 3�2r

4

]
x − �2

2
(4m − �2) = 0. (6.9)

We divide the analysis in a series of cases.
If m ≤ 0, then the coefficients of (6.9) are nonnegative and thus there exists no

positive solution.
Thus, from now on, we assume that m > 0. Then we have the following

subcases:
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(i) If 4m − �2 > 0, then there exists a unique positive solution κ2
g of (6.9) for all

r ≥ 2.
(ii) If 4m − �2 = 0, then equation (6.9) admits the positive solution

κ2
g = r − 4

4

if and only if r ≥ 5. We point out that this result is in accordance with the
discussion in Remark 1.3 of [14].

(iii) If 4m − �2 < 0, then replacing R1212 = 4m − 3�2/4 in (6.9) we obtain

x2 + [
4m − r R1212

]
x − �2

2
R1212 + �4

8
= 0. (6.10)

Thus, if R1212 ≤ 0 there exists no acceptable solution. Finally, if R1212 =
4m − 3�2/4 > 0, then a straightforward check shows that (6.9) admits two
distinct positive solutions if and only if

r >
4
(√

2
√

�4 − 4�2m + 4m
)

16m − 3�2
, (6.11)

and only one positive solution when

r =
4
(√

2
√

�4 − 4�2m + 4m
)

16m − 3�2
. (6.12)

��
Remark 6.5. (i) We observe that, for all r ≥ 5, there always exist suitable couples
m, � such that (6.11), or (6.12), is verified. In the case that (6.11) holds the corre-
sponding two solutions give rise to two non-congruent r -harmonic Hopf cylinders.

(ii) Concerning the case 4m − �2 > 0, if r = 2 we find κ2
g = 4m − �2. On the

other hand, Ou and Wang (see Theorem 1.3 (iii)) find that γ must be a circle of
radius

R = 1√
8m − �2

(6.13)

in the base space S2
(

1
2
√
m

)
= M2(4m). In order to check that our result is coherent

with that of Ou andWang, we observe that a curve of constant curvature κg in S2(ρ)

is a plane curve in R3 with constant curvature κ and radius

R = 1

κ
= ρ√

κ2
gρ

2 + 1
. (6.14)

Substituting ρ = 1/(2
√
m) and κ2

g = 4m − �2 in (6.14) we recover (6.13).
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