',\' frontiers
in Materials

ORIGINAL RESEARCH
published: 07 November 2019
doi: 10.3389/fmats.2019.00277

OPEN ACCESS

Edited by:
Xiaogan Li,
Dalian University of Technology
(DUT), China

Reviewed by:
Yangong Zheng,
Ningbo University, China
Haiying Du,
Dalian Nationalities University, China
Han Jin,
Ningbo University, China

*Correspondence:
Matteo Tonezzer
matteo.tonezzer@cnr.it

Specialty section:
This article was submitted to
Functional Ceramics,
a section of the journal
Frontiers in Materials

Received: 20 May 2019
Accepted: 21 October 2019
Published: 07 November 2019

Citation:
Tonezzer M, Izidoro SC, Moraes JPA
and Dang LTT (2019) Improved Gas
Selectivity Based on Carbon Modi ed
SnO, Nanowires. Front. Mater. 6:277.
doi: 10.3389/fmats.2019.00277

Check for
updates

Improved Gas Selectivity Based on
Carbon Modi ed ShO > Nanowires

Matteo Tonezzer *, Sandro C. Izidoro 2, Jo&o P. A. Moraes 2 and Le Thi Thanh Dang ®

1 IMEM-CNR, Sede di Trento - FBK, Trento, Italy, Institute of Technological Sciences (ICT), Advanced Campus #abira,
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The analysis of ambient (home, of ce, outdoor) atmosphereni order to check the

presence of dangerous gases is getting more and more importat. Therefore, tiny sensors
capable to distinguish the presence of speci ¢ pollutants $ crucial. Herein, a resistive
sensor based on a carbon modi ed tin oxide nanowires, able taclassify different gases
and estimate their concentration, is presented. The C-Sn® nanostructures are grown
by chemical vapor deposition and then used as a conductomefc sensor under a
temperature gradient. The device works at lower temperat@s than pure SnQ, with

a better response. Five outputs are collected and combinedd form multidimensional
data that are speci c of each gas. Machine learning algoritms are applied to these
multidimensional data in order to teach the system how to reagnize different gases. The
six tested gases (acetone, ammonia, CO, ethanol, hydrogerand toluene) are perfectly
classi ed by three models, demonstrating the goodness of tle raw sensor response.
The gas concentration can also be estimated, with an averagerror of 36% on the low
concentration range 1-50 ppm, making the sensor suitable flodetecting the exceedance
of the danger thresholds.

Keywords: metal oxide, tin oxide, carbon, hybrid material, ga s sensor, selectivity

INTRODUCTION

Increasing pollution is following the progressive urbaniaatof green areas. Respiratory diseases
are increasing due to air contamination in urbanized are&sr(g et al., 2016; Mo et al., 2018
Consequently, a large number of sensors able to monitor thejulity in workplaces, public
places, and residential buildings is required. Such devieeslg need to be tiny, cheap and easy-
to-use. A good option could be using metal oxide semicondugts sensors, due to their strong
corrosion resistance, low cost, simple fabrication, andgality. The huge surface-to-volume ratio
of nanostructures improves the sensing performance of metales very much, consenting to
detect a gas down to concentrations lower one part per milligong). Furthermore, metal oxides
(MOs) are sensitive to a wide range of volatile compounds aisgégaand this makes them useful
for a variety of applications: medical diagnostsdi et al., 20)3defense against terrorist threats
(Konstantynovski et al., 20),8agriculture Gabir et al., 20)4and food and beverages quality
(Miller et al., 2013 Finally, adjusting the size and shape of MO nanostructuremjie to tune
their sensing parameters, owed to their structure-depengeoperties {onezzer and lannotta,
2019. Unfortunately, these materials show two weak points: higinking temperature and poor
selectivity. In order to reduce the MO sensor working temperaf many groups are focusing on
decorating it with catalyst. Typical catalysts for Srgas sensors are noble metals such as Pt, Ag,
Au, and Pd that increase the sensors response at the same taomeg(ftekhar Uddin et al., 2015;
Zhou et al., 2018 This method is e ective, but its high cost limits its applicati

Frontiers in Materials | www.frontiersin.org

1 November 2019 | Volume 6 | Article 277


https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2019.00277
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2019.00277&domain=pdf&date_stamp=2019-11-07
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:matteo.tonezzer@cnr.it
https://doi.org/10.3389/fmats.2019.00277
https://www.frontiersin.org/articles/10.3389/fmats.2019.00277/full
http://loop.frontiersin.org/people/118429/overview
http://loop.frontiersin.org/people/835354/overview
http://loop.frontiersin.org/people/832385/overview

Tonezzer et al. Gas Selectivity From C-Sn@ Nanowires

Selectivity, on the other hand, can be achieved combining Eabrication of the Sensor
set of these sensors in an electronic noséés et al., 1999; Small drops of silver paste were dropped on the nanostructured
Lee et al., 2002; Tai et al., 2004; Gulbag and Temurtas, 200f in order to get electrical contacts. The resistive sensor is
Wolfrumetal., 2006; Cho etal., 2008, 2012; Marco and Getzer then measured with two micromanipulators in order to measure
Galvez, 2012; Zhao et al., 2016; Chen et al., 2017; Jiang et thle resistance of the C-Sa@anostructures as the surrounding
2017; Moon et al., 2018; Zhang and Gao, Jpdhich howeveris atmosphere changes.
more cumbersome, complex and expensive. Herein we overcome
these problems using carbon modi ed tin oxide nanowirgs({

et al., 2011Koo et al., 201,/Wang et al., 200)9and operating Gas Sensors Measurements

them in a temperature gradient. This approach should contalnl_ . . .
. . he resistive gas sensor was measured in a home-built system
costs much lower than those of an electronic nose, usingakve . . )
. . The apparatus includes measuring chamber, sensor holder with
di erent materials. . . .
The idea (a virtual sensor array induced by a thermal ramienmtegrated heater, four micromanipulators, mass ow coritecs
Y y 9 gonnected to high purity gas bottles, and Keithley 2410

is indeed in between the simple MO resistive sensor an . e )
. - . ultimeter connected to a data acquisition system (LabView
the electronic nose, summarizing the best properties of both .
ational Instruments).

T I, 2018, 2 i ) . . —
\(/vi:)hnzzsziir leet ia’no(s)tri’ctuoré%%%dz;gfug;J;:; Buk:etr?aﬁh;\tlsd ilso First, the device was kept at 5@in N for 3 h while biased
g ' b at 1V in order to improve its base resistance and the stabifity o

harder to obtain and di cult to replicate for practical purposeu . .
P P purp © the nanostructures. This treatment reduces the drift of¢basor

of t_he Iaborgtory. Using carbon modi ed SQQanowwes as an response during the measuremenEschner et al., 2008A good
active material, we could decrease the working temperaange . . . .
linear relation of the I-V curves was found, proving a good abm

down to 150-270C. Combining ve responses, the nanosensor -
. . . . contact between the nanostructures and the silver paste. The
is able to perfectly classify the six target gases (acetomeoaia,

- device was operated under a continuous voltage of 1V in the
CO, ethanol, hydrogen, and toluene). It also estimates de gezemperature range of 150-270. At di erent times, six di erent

. ) .
concentration of each gas with a good average error (36% ases (acetone, ammonia, CO, ethanol, hydrogen, and ®juen

This performance is not as good as that of electronic nos . ! ; D .
. - : were inserted into the measuring chamber, adjusting their
but comes from one tiny single material nanosensor that can

L . L . concentration through mass ow controllers. The concetiwa
be easily integrated into distributed networks, mobilesd an )
. values were the same for all the gases: 1, 5, 10, 20, and 5pgrarts
wearable electronics.

million (ppm). The total gas ow (target gaS dry air) was kept
constant at 400 sccm. Along this paper, the sensor response S is

MATERIALS AND METHODS de ned as D RyadRair, Where Rasand Ry are the resistance of
] ] the sensor in presence of the target gas or in dry air, respgtiv
Synthesis of Nanowires This choice was made because all the target gases werengduci

The tin oxide-carbon nanostructures were grown by chemicaSelectivity to a target gas A toward any interfering gas B is
vapor deposition (CVD) in a horizontal quartz tube positioned traditionally de ned as the ratio of the sensor response toAjas
inside a Lindberg Blue M furnace. The tin oxide evaporatiorto the response to gas Bdlantar-zadeh, 20)3The selectivity
source (an alumina boat lled with SnO powder) was put at theof the sensor is de ned as the ratio of its best response to its
center of the furnace, where the temperature has its maximAim. second-best response.

Si/SIQ substrate, deposited with a very thin Im of gold catalyst
(3-5nm) was placed at 1 cm from the alumina source.

The quartz tube was pumped down to 80 Pa, and purged wit
high purity (99.999%) argon. The pump-purge step was cycIeIEI
three times, and then the tube was pumped down to its Iimit2
pressure. The temperature was raised from 25 to 80 a rate

achine Learning Algorithms

ach measurement set (the ve response values at 150, 180, 210

40, and 270C) relative to a gas and its concentration, is used

of 25 C per min. After 5min at 800C, an oxygen ow of 0.5 as a ve-dimensional point, fed .to classi ers and theq tg the
support vector regressor that estimates gas concentratiin T

standard cubic centimeters (sccm) was inserted into theeluband test datasets were composed by 10 and 5 points for each gas
After 20 min, 1 sccm of acetylene was added to the process for P y P gas,

10min, and then the equipment was switched o and coole espectively. The Cl‘?‘SSi ers use the label "gas” g‘iverltogwﬁtfe
down naturally. he measuremgnts in the train set qnq return a “gas .IabedHer
new measures in the test set, classifying the new points. Aleer t
classi cation, the dataset was split in sub-datasets, ealeltive
Material Characterization to a classi ed gas, and fed to a support vector regressor with
The Im grown by CVD was investigated by X-ray diraction linear kernel using R software. The regressor gave an dstijas
(XRD) using a Philips Xpert Pro working with CuKradiation = concentration that was compared with the true value in order t
at 40 kV. The morphology of the nanostructures was studied Py B G 2
by secondary electron microscopy (SEM) with a Hitachi S-480@alculate its RMS relative error as RMSE 'Dl% where
Transmission electron microscopy (TEM) was accomplishedl is the number of data in the sub-dataset aBdandE; are the

with a JEM-100CX operated at 90 kV. gas concentration and gas estimate, respectively.
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FIGURE 1 | (a) SEM image of the sensor: nanorods and nanowires with differ¢ diameters. Inset: The Sn@ nanorods grown without carbon modi cation.
(b) HR-TEM image of two nanowires from the same sample ofa).

800
700 -
600 -
500 -
400 -
300 -
200 -

110 Experimental data
101

211

Intensity (counts)

2000 SnO2 (JCPDS 14-1445)

(&)}
o

o O
1

[, . L, 1 11

30 40 50 60 70
2Theta (deg.)

Intensity (counts)
)
8
P

N
o

FIGURE 2 | XRD spectra.Top: spectrum of Sn0,:C nanowires; Bottom (blue online): reference spectrum of tin oxide (JCPDS 14-45).

RESULTS AND DISCUSSION Figure 1a which are similar for the large nanowires (diameters
N . ch terizati around 150-300 nm), but lack completely the smallest worm-
anowires aracterization like nanowires. We hypothesize that the di erent shape of the

The morphology of the C-Snfnanowires has been investigated g nanostructures may derive from the mismatch between
through secondary electron microscopy. A typical SEM imagghe sng crystal lattices due to the presence of carbon.
of the nanostructures is given iRigure 1a As can be seen, The eect of crystalline defects is more intense for thinner
there are worm-like structures with dierent size: nanorodsnanowires, which are therefore more tortuodisgure 1bshows
with diameters around 150-200nm and thinner nanowiresa high-resolution TEM image of two nanowires from the same
with diameters down to 20-40nm. This is dierent from sample. It can be seen that the nanostructures are smooth
the case of pure SnOnanowires, shown in the inset of and monocrystalline. Two interplanar spacings are visible in
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FIGURE 3 | Energy dispersive X-ray spectrometry (EDS) spectrum of theanomaterial, evidencing the presence of only three elemést tin, oxygen, and carbon.

Figure 1b one of 0.24 nm which corresponds to the (020) planes
and one of 0.27, corresponding to the (101) planes of th
tin dioxide.

The structure of the nanostructures was investigated by XR[
and the results are shown Figure 2

All the diraction peaks in Figure2 could be indexed
to the tetragonal phase of tin oxide, with lattice parameters
of aD b D 4742 A and cD 3.186 A, which is well
in agreement with the reference (JCPDS no. 14-1445).

1.4
No other peaks are present, conrming that the carbon
does not crystallize in nanoparticles, nor amasses in ., |
amorphous phase.
Unfortunately, TEM and XRD don't show any trace of l
carbon. Up to now, we can only hypothesize its presenc 05 g g g
150 180 210 240 270

e

due to the morphology of the nanowires. For this reason, we

have performed compositional characterization, and the EDS

spectrum is shown irIFigure 3 FIGURE 4 | Selectivity as a function of the sensor working temperatureAt
As can be seen, the presence of carbon is con rmed by energy50. 180, and 270 C the sensor is selective to acetone, while at 210 and

dispersive X-ray spectrometry. Its percentage is a bit lowant | 240 C itis selective to ethanol.

4%, while the stoichiometry of SpQs a bit low in oxygen,

probably due to the surface defects. the traditional de nition, the present sensor is poorly seleet

. . only for two gases. The selectivity as a function of the wayki
ReSponse and Trad't'onal Sele_Ct_'V'ty temperature is reported iRigure 4 The bar color re ects the gas
Since the basis of our system is a resistive sensor, thetept s 1, ard which the device is selective at that temperatureg(isu

is obviously to collect a dynamic resistance from it. Fromsth ,.atone cyan is ethanol).

output, the sensor response can be calculated, as de ned in gyp6iting di erent working temperatures, we could get a
section Gas Sensors Measurements. This is a one-dimensiogghsor that is selective to two di erent gas@®ifezzer et al.,
signal, and therefore intrinsically non-selective. All tte#get 5019 put here the selectivity is too low and does not provide a
gases (acetone, ammonia, carbon monoxide, ethanol, hgdrog e giscrimination among test gases. Therefore, we useimch
and toluene) were tested at the same concentrations (1, ,5, llgarning techniques in order to give the system a way to
20, and 50 ppm) in order to facilitate the comparison. Thedistinguish the gases by itself.

response to various gases has been calculated and compared,

showing that the nanosensor is not specic for any gas. Th . .
average selectivity of the C-SpGensors (averaged on the(f:rom Dynamic Resistance to Thermal

di erent concentrations) is 1.47, 1.30, 1.44, 1.82, and a8 Response: the Basis for the System

increasing working temperatures. At all the temperatures, thWOI’king

highest responses are found for acetone and ethanol, while tifhe smart sensor working method is summarizedFigure 5
other gases who lower response values. It is obvious thdt, witising acetone as an example. The rst step is the dynamic

20

)

e
=
(o3

1

Selectivity

Temperature [°C]
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resistance of the C-SnpOnanowires, measured at the variousmove upwards with increasing gas concentration, but always
temperatures. As can be seen in the upper plots, the devieceaintaining their shape. The ve values forming each segmént
resistance decreases abruptly when acetone is injectedhieto line are then used as a ve-dimensional point, which is used
system and returns to the initial value when the gas is replacduy the classi ers and by support vector regressor in order to
with air. discriminate which gas is present, and its concentration.
This means that the carbon addition does not change the
conduction behavior of Sn@materials, which is an n-type Visual Classi cation With UMAP
semiconductor, very sensitive to its surroundingsi(da et al., A rststep, using the 5D points just obtained, is the classi cati
2000. When the sensor is taken out of the furnace and exposeaf each measurement, in order to understand to which targst g
to air, oxygen is adsorbed on its surface in the form of O it belongs. Machine learning models can be divided into tree
and @ , draining electrons from the nanowires and decreasingased models, linear models, neural networks, non-parametric
the conductivity. This is its basic state. When the molegsulemodels and ensembles. Models in the same category tend to
of a reducing gas like acetone, are owed onto the sensorerform similarly for the same task. The choice of a model still
nanomaterial, they react with the adsorbed oxygen on théase;  is heavily based on trial and error, and, for that reason, eisdf
releasing electrons back to the nanowires. This incredses teach of those classes were chosen. When working in claseincat
electrons density and decreases the sensor resistance. tasks it is important to select a features space that represents
As the acetone example in the top part Bigure 5 shows, the data, which were accomplished by the sensor data, which
both response and recovery arise very sharply and then reduishigh dimensional. To better inspect the algorithm and to use
their slope while the system reaches its saturation. When thenly relevant features itis common to introduce a dimensility
acetone injection ends and is replaced by air again, theta@sis  reduction technique and project the data onto a plane (theestre
recuperates its original value with negligible drift. Thishavior ~ or the paper). In our case, we shrink the 5D space down to
is valid for all tested gases. 2D using Uniform Manifold Approximation and Projection for
The sensor responses calculated from the transient resistandimension reduction (UMAP) [ficinnes et al., 20)8Dimension
at each temperature, are plotted as a function of the workingeduction is indeed important because it allows both visziag
temperature, as show in the bottom-left part Bfgure 5. As and pre-processing data for machine learning. UMAP is a very
can be seen in that plot, the segmented line relative to eaatovel and powerful technique, very quick and strong. It nds
gas is dierent. We should stress that the segmented lines projection that closely approximates the conditions of the

FIGURE 5 | Procedure to obtain the smart sensing: the dynamic responsat the ve temperatures is used to obtain a segmented line (thdlue segmented line in the
bottom-left plot of this example); this segmented line is usd as a 5D point for both visualization (UMAP) and classi cath and regression (SVM).
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FIGURE 6 | Two-dimensional projection obtained with UMAP from the oginal 5D raw data points. Colors represent gases: Acetone (be), Ammonia (green), CO
(red), Ethanol (cyan), Hydrogen (purple), and Toluene (p&!).

original space, trying to preserve the global and local stmest of the data to maximize the separation of classes. Support vector
and to keep interpretability of data. The UMAP projection can bemachines are very popular when dealing with small datasets and
seen inFigure 6. should be one of the rst models to be considered when dealing
Itis clear fromFigure 6that the points belonging to di erent with linearly separable dat&l@ykin, 2009.
gases are well-separated and distinguishable. Unfortynatel Multilayer perceptrons (MLP) are neural networks composed
this is not enough: dimension-reduction techniques onlpwal by an input layer followed by sequential hidden layers befbee t
better visualization, but are not classi cation technigudn  output layer. MLPs are universal function approximators deglin
other words, the eyes and the brain of the reader allow hinvery well with non-linear data and have been very promising in
to classify the dierent gases iRigure 6 but the sensor still the deep learning community-aykin, 2009.
doesn't know anything. For this reason, we have implemented Decision Trees build a binary decision tree where each node
several classi cation methods in order to test the clas#ien  tests a feature splitting the data into two paths. A classiaati

performance of our system. is made by a path from the root node to the leaf node. Tree-
based models had a lot of popularity before the advent of deep
Classi cation With Different Methods learning and still one of the best performant models in maehin

After the UMAP reduction, in order to better evaluate the learning competitions. The models Random Forest, AdaBoost,
performance our system, we have used seven di erent methodsd Extra trees are ensembles derived from the Decision Tiete a
to classify the response data: Random Forest, SVM, Ada Boogfere also tested as those variants are more widely used aitd avo
Bagging (KNN), Extra Trees, Decision Trees, and MLP (seever tting to the data Gheppard, 2037
Supplementary Materia). We must here underline that, in order Random forests work by creating several decision trees each
to avoid over tting (due to the small number of data), the of which are trained with a random subset of the data by the
Strati ed K-fold method was used to validate the data. Thisboosting algorithm. The classi cation is done by taking the
method consists of splitting the data into k random splits whil mode of the classes produced by each tree. The AdaBoost works
keeping each class in the split proportional to its true proportionsimilarly to the random forest but it restricts the decisiorés by
in the whole dataset. The model is trained with k splits and only allowing shallow trees and trains the model by the bawsti
validated on the missing split. The process is repeated k timedgorithm. Extra trees are also similar to the random forast, b
until all data are used for validation. when training a random forest the trees try to nd for each reod
To train an ensemble of classi ers there are two methodshe best possible split for the binary tree. Extra trees pick@eval
that stand out, the process of bagging and boosting. Baggimgndom and use it to build the split, this leads to more diveesi
consists of training each classi er with a random sample frontrees Sheppard, 2037
the data, and train each model independently. Boosting adsisi  The K-nearest neighbors algorithm (KNN) is a type of non-
in training the models sequentially. Each model is trainedry  parametric model which classi es the data by looking at the k
to minimize the errors from the previous models and it does salosest points on the feature space and classifying it acaprdin
by training the following model with a sample of the data thatto the mode of their classes. KNN is a very common algorithm,
has a greater percentage of the class that was misclassith@ by especially when dealing with small datasétsda et al., 2003
previous models. All methods used were set with the default parameters from
Support vector machines (SVM) are supervised learninghe library sklearn Pedregosa et al., 20Q1Table 1 shows the
models that work by drawing a hyperplane in the features spaamain parameters used in each method.
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TABLE 1 | Models used to classify response data, their accuracy, and TABLE 2 | Average percentage error of the nanosensor to different ga&s.
hyperparameters.
Gas Average % error
Model Accuracy [%] Hyperparameters
Acetone 38.7
Random Forest 97 Number of estimators: 10 Ammonia 36.5
Criterion: Gini ind
riterion: Gini index co 243
SVM 98 Penalty: L2 . Ethanol 1.8
Loss: Squared hinge
. Hydrogen 335
Ada Boost 70 Number of estimators: 50
Algorithm: SAMME.R Toluene 409
Bagging (KNN) 100 Number of estimators: 10

Max samples: 1.0
Max features: 1.0
Bootstrap: False

Extra trees 100 Number of estimators: 10
Criterion: Gini index
Bootstrap: False

Decision trees 97 Criterion: Gini index
MLP 100 Hidden layers sizes: 100
Activation: relu
Solver: adam

The performance of the seven methods is evaluated through
their accuracy, reported ifable 1

As can be seen fromable 1, all the methods (but Ada Boost)
behave well on the response data, giving an accuracy from 97|to
100%. This means that the sensor based on,8d@anomaterial FIGURE 7 | Percentage_ error as a fUﬂctiop of the gas concentrat.ign. It islear

. . . . . that all gases follow a similar trend, with higher error at thextremities of the

gives very good raw output, suitable to distinguish di ereasgs. | ;ncentration range.
A wise choice of the classi cation method allows us to relyaon
perfect classi cation.

Quantitative Prediction more than adequate to warn users of a possible danger due to
ghe presence of gas. In order to better understand the source o

As canFigure 5 shows, the points related to the various gase .
the error, we analyzed the error as a function of the actual gas

are in well-separated and distinct clouds. This is just a st&p

because a gas sensor is expected to evaluate also the caticantr conSc_entrstlon, ";S shhown IRigure 7.t Id ‘
of that gas, even at low concentrations like in our case (few INCErigure 7. Shows a percentage error, one could expect a

parts per million). For this reason, we used a least squarégore or less co_nstapt_value,_ b.Ut this is not the case. As can be

support vector machineShao et al., 20)8n order to estimate seen, thg error is minimal within the range, and greater & th

each gas concentration. To do this, we have split the data squdS' This e ect is probably because the system has beendraine

into smaller sets, one for each gas (we can do this because the 1_5_0 ppm range, and therefore loses accuracy toward the

classi cation was perfect). Each train sub-dataset was tsed ends of thls.range. Fur;hermore, we can see tr_'at the error is

train the regressor, while the test sub-dataset was useldeckc not symmetrlcal, but IS higher at lower concentrgtlons. West

the performance of our sensor toward that specic gas. Thfor_]Slder that_l ppM IS & rathe_r low conce_ntratlon, clos_e o the

sensor estimates are then compared to the real concentrati it of detgctlon ofthe sensor itself, and this certainlgagively

for that measurement. The average percentage error is escll In uences its error. .

on each sub-dataset in order to evaluate the performanceeof th We want to point out that this is a transversal method that

system for that target gas. These values are giv@alite 2 work_s r(_egardless_ of the measured gases, and therefore can be
The average percentage errors shown Table 2 are applied in many di erent contexts.

quite homogeneous, with CO having the lowest value. Even

if these values look high, we must underline that beingCONCLUSIONS

percentage errors, they estimate the order of magnitude of

the concentration very well. We must also highlight that theCarbon modi ed SnQ nanowires were used as active material

measured concentrations are quite low (1 ppm at minimum)for a resistive gas sensor. Measuring the response at 5 di erent

well-below the exposure limits. Therefore, this error condal  working temperatures (150-270) and using machine learning

with the perfect classi cation obtained in the previous step i techniques, the system was able to distinguish all the tegstees
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(acetone, ammonia, carbon monoxide, ethanol, hydroged, anAUTHOR CONTRIBUTIONS

toluene) with a perfect classi cation (100%). The nanosemnsor

also able to estimate the gas concentration with a good geeraAll authors listed have made a substantial, direct and
error (24—41%, depending on the gas) at low concentrations (1i0tellectual contribution to the work, and approved it

50 ppm), proving to be useful to detect dangerous concentratiorfor publication.

of di erent gases.
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