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The analysis of ambient (home, office, outdoor) atmosphere in order to check the

presence of dangerous gases is gettingmore andmore important. Therefore, tiny sensors

capable to distinguish the presence of specific pollutants is crucial. Herein, a resistive

sensor based on a carbon modified tin oxide nanowires, able to classify different gases

and estimate their concentration, is presented. The C-SnO2 nanostructures are grown

by chemical vapor deposition and then used as a conductometric sensor under a

temperature gradient. The device works at lower temperatures than pure SnO2, with

a better response. Five outputs are collected and combined to form multidimensional

data that are specific of each gas. Machine learning algorithms are applied to these

multidimensional data in order to teach the system how to recognize different gases. The

six tested gases (acetone, ammonia, CO, ethanol, hydrogen, and toluene) are perfectly

classified by three models, demonstrating the goodness of the raw sensor response.

The gas concentration can also be estimated, with an average error of 36% on the low

concentration range 1–50 ppm, making the sensor suitable for detecting the exceedance

of the danger thresholds.

Keywords: metal oxide, tin oxide, carbon, hybrid material, gas sensor, selectivity

INTRODUCTION

Increasing pollution is following the progressive urbanization of green areas. Respiratory diseases
are increasing due to air contamination in urbanized areas (Jiang et al., 2016; Mo et al., 2018).
Consequently, a large number of sensors able to monitor the air quality in workplaces, public
places, and residential buildings is required. Such devices clearly need to be tiny, cheap and easy-
to-use. A good option could be using metal oxide semiconductor gas sensors, due to their strong
corrosion resistance, low cost, simple fabrication, and portability. The huge surface-to-volume ratio
of nanostructures improves the sensing performance of metal oxides very much, consenting to
detect a gas down to concentrations lower one part per million (ppm). Furthermore, metal oxides
(MOs) are sensitive to a wide range of volatile compounds and gases, and this makes them useful
for a variety of applications: medical diagnosis (Saidi et al., 2018), defense against terrorist threats
(Konstantynovski et al., 2018), agriculture (Sabir et al., 2014), and food and beverages quality
(Miller et al., 2014). Finally, adjusting the size and shape of MO nanostructures permits to tune
their sensing parameters, owed to their structure-dependent properties (Tonezzer and Iannotta,
2014). Unfortunately, these materials show two weak points: high working temperature and poor
selectivity. In order to reduce the MO sensor working temperature, many groups are focusing on
decorating it with catalyst. Typical catalysts for SnO2 gas sensors are noble metals such as Pt, Ag,
Au, and Pd that increase the sensors response at the same temperature (Iftekhar Uddin et al., 2015;
Zhou et al., 2018). This method is effective, but its high cost limits its application.
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Selectivity, on the other hand, can be achieved combining a
set of these sensors in an electronic nose (Hines et al., 1999;
Lee et al., 2002; Tai et al., 2004; Gulbag and Temurtas, 2006;
Wolfrum et al., 2006; Cho et al., 2008, 2012;Marco andGutiérrez-
Galvez, 2012; Zhao et al., 2016; Chen et al., 2017; Jiang et al.,
2017; Moon et al., 2018; Zhang and Gao, 2019), which however is
more cumbersome, complex and expensive. Herein we overcome
these problems using carbon modified tin oxide nanowires (Kim
et al., 2011, Koo et al., 2017, Wang et al., 2019) and operating
them in a temperature gradient. This approach should contain
costs much lower than those of an electronic nose, using several
different materials.

The idea (a virtual sensor array induced by a thermal gradient)
is indeed in between the simple MO resistive sensor and
the electronic nose, summarizing the best properties of both
(Tonezzer et al., 2018, 2019). Good results can be achieved also
with a single nanostructure (Tonezzer, 2019), but that setup is
harder to obtain and difficult to replicate for practical purpose out
of the laboratory. Using carbon modified SnO2 nanowires as an
active material, we could decrease the working temperature range
down to 150–270◦C. Combining five responses, the nanosensor
is able to perfectly classify the six target gases (acetone, ammonia,
CO, ethanol, hydrogen, and toluene). It also estimates the gas
concentration of each gas with a good average error (36%).
This performance is not as good as that of electronic noses
but comes from one tiny single material nanosensor that can
be easily integrated into distributed networks, mobiles, and
wearable electronics.

MATERIALS AND METHODS

Synthesis of Nanowires
The tin oxide-carbon nanostructures were grown by chemical
vapor deposition (CVD) in a horizontal quartz tube positioned
inside a Lindberg Blue M furnace. The tin oxide evaporation
source (an alumina boat filled with SnO powder) was put at the
center of the furnace, where the temperature has its maximum. A
Si/SiO2 substrate, deposited with a very thin film of gold catalyst
(3–5 nm) was placed at 1 cm from the alumina source.

The quartz tube was pumped down to 80 Pa, and purged with
high purity (99.999%) argon. The pump-purge step was cycled
three times, and then the tube was pumped down to its limit
pressure. The temperature was raised from 25 to 800◦C at a rate
of 25◦C per min. After 5min at 800◦C, an oxygen flow of 0.5
standard cubic centimeters (sccm) was inserted into the tube.
After 20min, 1 sccm of acetylene was added to the process for
10min, and then the equipment was switched off and cooled
down naturally.

Material Characterization
The film grown by CVD was investigated by X-ray diffraction
(XRD) using a Philips Xpert Pro working with CuKα radiation
at 40 kV. The morphology of the nanostructures was studied
by secondary electron microscopy (SEM) with a Hitachi S-4800.
Transmission electron microscopy (TEM) was accomplished
with a JEM-100CX operated at 90 kV.

Fabrication of the Sensor
Small drops of silver paste were dropped on the nanostructured
film in order to get electrical contacts. The resistive sensor is
then measured with two micromanipulators in order to measure
the resistance of the C-SnO2 nanostructures as the surrounding
atmosphere changes.

Gas Sensors Measurements
The resistive gas sensor was measured in a home-built system.
The apparatus includes measuring chamber, sensor holder with
integrated heater, four micromanipulators, mass flow controllers
connected to high purity gas bottles, and Keithley 2410
multimeter connected to a data acquisition system (LabView,
National Instruments).

First, the device was kept at 500◦C in N2 for 3 h while biased
at 1V in order to improve its base resistance and the stability of
the nanostructures. This treatment reduces the drift of the sensor
response during themeasurements (Tischner et al., 2008). A good
linear relation of the I-V curves was found, proving a good ohmic
contact between the nanostructures and the silver paste. The
device was operated under a continuous voltage of 1V in the
temperature range of 150–270◦C. At different times, six different
gases (acetone, ammonia, CO, ethanol, hydrogen, and toluene)
were inserted into the measuring chamber, adjusting their
concentration through mass flow controllers. The concentration
values were the same for all the gases: 1, 5, 10, 20, and 50 parts per
million (ppm). The total gas flow (target gas + dry air) was kept
constant at 400 sccm. Along this paper, the sensor response S is
defined as S = Rgas/Rair, where Rgas and Rair are the resistance of
the sensor in presence of the target gas or in dry air, respectively.
This choice was made because all the target gases were reducing.
Selectivity to a target gas A toward any interfering gas B is
traditionally defined as the ratio of the sensor response to gas A
to the response to gas B (Kalantar-zadeh, 2013). The selectivity
of the sensor is defined as the ratio of its best response to its
second-best response.

Machine Learning Algorithms
Each measurement set (the five response values at 150, 180, 210,
240, and 270◦C) relative to a gas and its concentration, is used
as a five-dimensional point, fed to classifiers and then to the
support vector regressor that estimates gas concentration. Train
and test datasets were composed by 10 and 5 points for each gas,
respectively. The classifiers use the label “gas” given together with
the measurements in the train set and return a “gas” label for the
new measures in the test set, classifying the new points. After the
classification, the dataset was split in sub-datasets, each relative
to a classified gas, and fed to a support vector regressor with
linear kernel using R software. The regressor gave an estimate gas
concentration that was compared with the true value in order to

calculate its RMS relative error as RMSE=

√

∑N
i=1

(

Ei−Ci
Ci

)2

N , where
N is the number of data in the sub-dataset and Ci and Ei are the
gas concentration and gas estimate, respectively.
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FIGURE 1 | (a) SEM image of the sensor: nanorods and nanowires with different diameters. Inset: The SnO2 nanorods grown without carbon modification.

(b) HR-TEM image of two nanowires from the same sample of (a).

FIGURE 2 | XRD spectra. Top: spectrum of SnO2:C nanowires; Bottom (blue online): reference spectrum of tin oxide (JCPDS 14-1445).

RESULTS AND DISCUSSION

Nanowires Characterization
The morphology of the C-SnO2 nanowires has been investigated
through secondary electron microscopy. A typical SEM image
of the nanostructures is given in Figure 1a. As can be seen,
there are worm-like structures with different size: nanorods
with diameters around 150–200 nm and thinner nanowires
with diameters down to 20–40 nm. This is different from
the case of pure SnO2 nanowires, shown in the inset of

Figure 1a, which are similar for the large nanowires (diameters
around 150–300 nm), but lack completely the smallest worm-
like nanowires. We hypothesize that the different shape of the
small nanostructures may derive from the mismatch between
the SnO2 crystal lattices due to the presence of carbon.
The effect of crystalline defects is more intense for thinner
nanowires, which are therefore more tortuous. Figure 1b shows
a high-resolution TEM image of two nanowires from the same
sample. It can be seen that the nanostructures are smooth
and monocrystalline. Two interplanar spacings are visible in
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FIGURE 3 | Energy dispersive X-ray spectrometry (EDS) spectrum of the nanomaterial, evidencing the presence of only three elements: tin, oxygen, and carbon.

Figure 1b: one of 0.24 nm which corresponds to the (020) planes,
and one of 0.27, corresponding to the (101) planes of the
tin dioxide.

The structure of the nanostructures was investigated by XRD,
and the results are shown in Figure 2.

All the diffraction peaks in Figure 2 could be indexed
to the tetragonal phase of tin oxide, with lattice parameters
of a = b = 4.742 Å and c = 3.186 Å, which is well
in agreement with the reference (JCPDS no. 14-1445).
No other peaks are present, confirming that the carbon
does not crystallize in nanoparticles, nor amasses in
amorphous phase.

Unfortunately, TEM and XRD don’t show any trace of
carbon. Up to now, we can only hypothesize its presence
due to the morphology of the nanowires. For this reason, we
have performed compositional characterization, and the EDS
spectrum is shown in Figure 3.

As can be seen, the presence of carbon is confirmed by energy
dispersive X-ray spectrometry. It’s percentage is a bit lower than
4%, while the stoichiometry of SnO2 is a bit low in oxygen,
probably due to the surface defects.

Response and Traditional Selectivity
Since the basis of our system is a resistive sensor, the first step
is obviously to collect a dynamic resistance from it. From this
output, the sensor response can be calculated, as defined in
section Gas Sensors Measurements. This is a one-dimensional
signal, and therefore intrinsically non-selective. All the target
gases (acetone, ammonia, carbon monoxide, ethanol, hydrogen,
and toluene) were tested at the same concentrations (1, 5, 10,
20, and 50 ppm) in order to facilitate the comparison. The
response to various gases has been calculated and compared,
showing that the nanosensor is not specific for any gas. The
average selectivity of the C-SnO2 sensors (averaged on the
different concentrations) is 1.47, 1.30, 1.44, 1.82, and 1.18 at
increasing working temperatures. At all the temperatures, the
highest responses are found for acetone and ethanol, while the
other gases who lower response values. It is obvious that, with

FIGURE 4 | Selectivity as a function of the sensor working temperature. At

150, 180, and 270◦C the sensor is selective to acetone, while at 210 and

240◦C it is selective to ethanol.

the traditional definition, the present sensor is poorly selective,
only for two gases. The selectivity as a function of the working
temperature is reported in Figure 4. The bar color reflects the gas
toward which the device is selective at that temperature (blue is
acetone, cyan is ethanol).

Exploiting different working temperatures, we could get a
sensor that is selective to two different gases (Tonezzer et al.,
2016), but here the selectivity is too low and does not provide a
real discrimination among test gases. Therefore, we use machine
learning techniques in order to give the system a way to
distinguish the gases by itself.

From Dynamic Resistance to Thermal
Response: the Basis for the System
Working
The smart sensor working method is summarized in Figure 5

using acetone as an example. The first step is the dynamic
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resistance of the C-SnO2 nanowires, measured at the various
temperatures. As can be seen in the upper plots, the device
resistance decreases abruptly when acetone is injected into the
system and returns to the initial value when the gas is replaced
with air.

This means that the carbon addition does not change the
conduction behavior of SnO2 materials, which is an n-type
semiconductor, very sensitive to its surroundings (Tsuda et al.,
2000). When the sensor is taken out of the furnace and exposed
to air, oxygen is adsorbed on its surface in the form of O−

and O2−, draining electrons from the nanowires and decreasing
the conductivity. This is its basic state. When the molecules
of a reducing gas like acetone, are flowed onto the sensor’s
nanomaterial, they react with the adsorbed oxygen on the surface,
releasing electrons back to the nanowires. This increases the
electrons density and decreases the sensor resistance.

As the acetone example in the top part of Figure 5 shows,
both response and recovery arise very sharply and then reduce
their slope while the system reaches its saturation. When the
acetone injection ends and is replaced by air again, the resistance
recuperates its original value with negligible drift. This behavior
is valid for all tested gases.

The sensor responses calculated from the transient resistance
at each temperature, are plotted as a function of the working
temperature, as show in the bottom-left part of Figure 5. As
can be seen in that plot, the segmented line relative to each
gas is different. We should stress that the segmented lines

move upwards with increasing gas concentration, but always
maintaining their shape. The five values forming each segmented
line are then used as a five-dimensional point, which is used
by the classifiers and by support vector regressor in order to
discriminate which gas is present, and its concentration.

Visual Classification With UMAP
A first step, using the 5D points just obtained, is the classification
of each measurement, in order to understand to which target gas
it belongs. Machine learning models can be divided into tree-
based models, linear models, neural networks, non-parametric
models and ensembles. Models in the same category tend to
perform similarly for the same task. The choice of a model still
is heavily based on trial and error, and, for that reason, models of
each of those classes were chosen. When working in classification
tasks it is important to select a features space that represents
the data, which were accomplished by the sensor data, which
is high dimensional. To better inspect the algorithm and to use
only relevant features it is common to introduce a dimensionality
reduction technique and project the data onto a plane (the screen
or the paper). In our case, we shrink the 5D space down to
2D using Uniform Manifold Approximation and Projection for
dimension reduction (UMAP) (McInnes et al., 2018). Dimension
reduction is indeed important because it allows both visualizing
and pre-processing data for machine learning. UMAP is a very
novel and powerful technique, very quick and strong. It finds
a projection that closely approximates the conditions of the

FIGURE 5 | Procedure to obtain the smart sensing: the dynamic response at the five temperatures is used to obtain a segmented line (the blue segmented line in the

bottom-left plot of this example); this segmented line is used as a 5D point for both visualization (UMAP) and classification and regression (SVM).
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FIGURE 6 | Two-dimensional projection obtained with UMAP from the original 5D raw data points. Colors represent gases: Acetone (blue), Ammonia (green), CO

(red), Ethanol (cyan), Hydrogen (purple), and Toluene (yellow).

original space, trying to preserve the global and local structures
and to keep interpretability of data. The UMAP projection can be
seen in Figure 6.

It is clear from Figure 6 that the points belonging to different
gases are well-separated and distinguishable. Unfortunately,
this is not enough: dimension-reduction techniques only allow
better visualization, but are not classification techniques. In
other words, the eyes and the brain of the reader allow him
to classify the different gases in Figure 6, but the sensor still
doesn’t know anything. For this reason, we have implemented
several classification methods in order to test the classification
performance of our system.

Classification With Different Methods
After the UMAP reduction, in order to better evaluate the
performance our system, we have used seven different methods
to classify the response data: Random Forest, SVM, Ada Boost,
Bagging (KNN), Extra Trees, Decision Trees, and MLP (see
Supplementary Material).Wemust here underline that, in order
to avoid overfitting (due to the small number of data), the
Stratified K-fold method was used to validate the data. This
method consists of splitting the data into k random splits while
keeping each class in the split proportional to its true proportion
in the whole dataset. The model is trained with k−1 splits and
validated on the missing split. The process is repeated k times
until all data are used for validation.

To train an ensemble of classifiers there are two methods
that stand out, the process of bagging and boosting. Bagging
consists of training each classifier with a random sample from
the data, and train each model independently. Boosting consists
in training the models sequentially. Each model is trained to try
to minimize the errors from the previous models and it does so
by training the following model with a sample of the data that
has a greater percentage of the class that was misclassified by the
previous models.

Support vector machines (SVM) are supervised learning
models that work by drawing a hyperplane in the features space

of the data to maximize the separation of classes. Support vector
machines are very popular when dealing with small datasets and
should be one of the first models to be considered when dealing
with linearly separable data (Haykin, 2009).

Multilayer perceptrons (MLP) are neural networks composed
by an input layer followed by sequential hidden layers before the
output layer. MLPs are universal function approximators dealing
very well with non-linear data and have been very promising in
the deep learning community (Haykin, 2009).

Decision Trees build a binary decision tree where each node
tests a feature splitting the data into two paths. A classification
is made by a path from the root node to the leaf node. Tree-
based models had a lot of popularity before the advent of deep
learning and still one of the best performant models in machine
learning competitions. The models Random Forest, AdaBoost,
and Extra trees are ensembles derived from the Decision Tree and
were also tested as those variants are more widely used and avoid
overfitting to the data (Sheppard, 2017).

Random forests work by creating several decision trees each
of which are trained with a random subset of the data by the
boosting algorithm. The classification is done by taking the
mode of the classes produced by each tree. The AdaBoost works
similarly to the random forest but it restricts the decision trees by
only allowing shallow trees and trains the model by the boosting
algorithm. Extra trees are also similar to the random forest but,
when training a random forest the trees try to find for each node
the best possible split for the binary tree. Extra trees pick a value a
random and use it to build the split, this leads to more diversified
trees (Sheppard, 2017).

The K-nearest neighbors algorithm (KNN) is a type of non-
parametric model which classifies the data by looking at the k
closest points on the feature space and classifying it according
to the mode of their classes. KNN is a very common algorithm,
especially when dealing with small datasets (Duda et al., 2003).

All methods used were set with the default parameters from
the library sklearn (Pedregosa et al., 2011). Table 1 shows the
main parameters used in each method.
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TABLE 1 | Models used to classify response data, their accuracy, and

hyperparameters.

Model Accuracy [%] Hyperparameters

Random Forest 97 Number of estimators: 10

Criterion: Gini index

SVM 98 Penalty: L2

Loss: Squared hinge

Ada Boost 70 Number of estimators: 50

Algorithm: SAMME.R

Bagging (KNN) 100 Number of estimators: 10

Max samples: 1.0

Max features: 1.0

Bootstrap: False

Extra trees 100 Number of estimators: 10

Criterion: Gini index

Bootstrap: False

Decision trees 97 Criterion: Gini index

MLP 100 Hidden layers sizes: 100

Activation: relu

Solver: adam

The performance of the seven methods is evaluated through
their accuracy, reported in Table 1.

As can be seen from Table 1, all the methods (but Ada Boost)
behave well on the response data, giving an accuracy from 97 to
100%. This means that the sensor based on SnO2:C nanomaterial
gives very good raw output, suitable to distinguish different gases.
A wise choice of the classification method allows us to rely on a
perfect classification.

Quantitative Prediction
As can Figure 5 shows, the points related to the various gases
are in well-separated and distinct clouds. This is just a first step
because a gas sensor is expected to evaluate also the concentration
of that gas, even at low concentrations like in our case (few
parts per million). For this reason, we used a least squares
support vector machine (Shao et al., 2018) in order to estimate
each gas concentration. To do this, we have split the data sets
into smaller sets, one for each gas (we can do this because the
classification was perfect). Each train sub-dataset was used to
train the regressor, while the test sub-dataset was used to check
the performance of our sensor toward that specific gas. The
sensor estimates are then compared to the real concentration
for that measurement. The average percentage error is calculated
on each sub-dataset in order to evaluate the performance of the
system for that target gas. These values are given in Table 2.

The average percentage errors shown in Table 2 are
quite homogeneous, with CO having the lowest value. Even
if these values look high, we must underline that being
percentage errors, they estimate the order of magnitude of
the concentration very well. We must also highlight that the
measured concentrations are quite low (1 ppm at minimum),
well-below the exposure limits. Therefore, this error combined
with the perfect classification obtained in the previous step is

TABLE 2 | Average percentage error of the nanosensor to different gases.

Gas Average % error

Acetone 38.7

Ammonia 36.5

CO 24.3

Ethanol 41.8

Hydrogen 33.5

Toluene 40.9

FIGURE 7 | Percentage error as a function of the gas concentration. It is clear

that all gases follow a similar trend, with higher error at the extremities of the

concentration range.

more than adequate to warn users of a possible danger due to
the presence of gas. In order to better understand the source of
the error, we analyzed the error as a function of the actual gas
concentration, as shown in Figure 7.

Since Figure 7 shows a percentage error, one could expect a
more or less constant value, but this is not the case. As can be
seen, the error is minimal within the range, and greater at the
ends. This effect is probably because the system has been trained
on the 1–50 ppm range, and therefore loses accuracy toward the
ends of this range. Furthermore, we can see that the error is
not symmetrical, but is higher at lower concentrations. We must
consider that 1 ppm is a rather low concentration, close to the
limit of detection of the sensor itself, and this certainly negatively
influences its error.

We want to point out that this is a transversal method that
works regardless of the measured gases, and therefore can be
applied in many different contexts.

CONCLUSIONS

Carbon modified SnO2 nanowires were used as active material
for a resistive gas sensor. Measuring the response at 5 different
working temperatures (150–270◦C) and using machine learning
techniques, the system was able to distinguish all the tested gases
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(acetone, ammonia, carbon monoxide, ethanol, hydrogen, and
toluene) with a perfect classification (100%). The nanosensor is
also able to estimate the gas concentration with a good average
error (24–41%, depending on the gas) at low concentrations (1–
50 ppm), proving to be useful to detect dangerous concentrations
of different gases.
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