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The analysis of ambient (home, of�ce, outdoor) atmosphere in order to check the
presence of dangerous gases is getting more and more important. Therefore, tiny sensors
capable to distinguish the presence of speci�c pollutants is crucial. Herein, a resistive
sensor based on a carbon modi�ed tin oxide nanowires, able toclassify different gases
and estimate their concentration, is presented. The C-SnO2 nanostructures are grown
by chemical vapor deposition and then used as a conductometric sensor under a
temperature gradient. The device works at lower temperatures than pure SnO2, with
a better response. Five outputs are collected and combined to form multidimensional
data that are speci�c of each gas. Machine learning algorithms are applied to these
multidimensional data in order to teach the system how to recognize different gases. The
six tested gases (acetone, ammonia, CO, ethanol, hydrogen,and toluene) are perfectly
classi�ed by three models, demonstrating the goodness of the raw sensor response.
The gas concentration can also be estimated, with an averageerror of 36% on the low
concentration range 1–50 ppm, making the sensor suitable for detecting the exceedance
of the danger thresholds.

Keywords: metal oxide, tin oxide, carbon, hybrid material, ga s sensor, selectivity

INTRODUCTION

Increasing pollution is following the progressive urbanization of green areas. Respiratory diseases
are increasing due to air contamination in urbanized areas (Jiang et al., 2016; Mo et al., 2018).
Consequently, a large number of sensors able to monitor the air quality in workplaces, public
places, and residential buildings is required. Such devices clearly need to be tiny, cheap and easy-
to-use. A good option could be using metal oxide semiconductor gas sensors, due to their strong
corrosion resistance, low cost, simple fabrication, and portability. The huge surface-to-volume ratio
of nanostructures improves the sensing performance of metal oxides very much, consenting to
detect a gas down to concentrations lower one part per million (ppm). Furthermore, metal oxides
(MOs) are sensitive to a wide range of volatile compounds and gases, and this makes them useful
for a variety of applications: medical diagnosis (Saidi et al., 2018), defense against terrorist threats
(Konstantynovski et al., 2018), agriculture (Sabir et al., 2014), and food and beverages quality
(Miller et al., 2014). Finally, adjusting the size and shape of MO nanostructures permits to tune
their sensing parameters, owed to their structure-dependentproperties (Tonezzer and Iannotta,
2014). Unfortunately, these materials show two weak points: high working temperature and poor
selectivity. In order to reduce the MO sensor working temperature, many groups are focusing on
decorating it with catalyst. Typical catalysts for SnO2 gas sensors are noble metals such as Pt, Ag,
Au, and Pd that increase the sensors response at the same temperature (Iftekhar Uddin et al., 2015;
Zhou et al., 2018). This method is e�ective, but its high cost limits its application.
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Selectivity, on the other hand, can be achieved combining a
set of these sensors in an electronic nose (Hines et al., 1999;
Lee et al., 2002; Tai et al., 2004; Gulbag and Temurtas, 2006;
Wolfrum et al., 2006; Cho et al., 2008, 2012; Marco and Gutiérrez-
Galvez, 2012; Zhao et al., 2016; Chen et al., 2017; Jiang et al.,
2017; Moon et al., 2018; Zhang and Gao, 2019), which however is
more cumbersome, complex and expensive. Herein we overcome
these problems using carbon modi�ed tin oxide nanowires (Kim
et al., 2011, Koo et al., 2017, Wang et al., 2019) and operating
them in a temperature gradient. This approach should contain
costs much lower than those of an electronic nose, using several
di�erent materials.

The idea (a virtual sensor array induced by a thermal gradient)
is indeed in between the simple MO resistive sensor and
the electronic nose, summarizing the best properties of both
(Tonezzer et al., 2018, 2019). Good results can be achieved also
with a single nanostructure (Tonezzer, 2019), but that setup is
harder to obtain and di�cult to replicate for practical purpose out
of the laboratory. Using carbon modi�ed SnO2 nanowires as an
active material, we could decrease the working temperature range
down to 150–270� C. Combining �ve responses, the nanosensor
is able to perfectly classify the six target gases (acetone, ammonia,
CO, ethanol, hydrogen, and toluene). It also estimates the gas
concentration of each gas with a good average error (36%).
This performance is not as good as that of electronic noses
but comes from one tiny single material nanosensor that can
be easily integrated into distributed networks, mobiles, and
wearable electronics.

MATERIALS AND METHODS

Synthesis of Nanowires
The tin oxide-carbon nanostructures were grown by chemical
vapor deposition (CVD) in a horizontal quartz tube positioned
inside a Lindberg Blue M furnace. The tin oxide evaporation
source (an alumina boat �lled with SnO powder) was put at the
center of the furnace, where the temperature has its maximum.A
Si/SiO2 substrate, deposited with a very thin �lm of gold catalyst
(3–5 nm) was placed at 1 cm from the alumina source.

The quartz tube was pumped down to 80 Pa, and purged with
high purity (99.999%) argon. The pump-purge step was cycled
three times, and then the tube was pumped down to its limit
pressure. The temperature was raised from 25 to 800� C at a rate
of 25� C per min. After 5 min at 800� C, an oxygen �ow of 0.5
standard cubic centimeters (sccm) was inserted into the tube.
After 20 min, 1 sccm of acetylene was added to the process for
10 min, and then the equipment was switched o� and cooled
down naturally.

Material Characterization
The �lm grown by CVD was investigated by X-ray di�raction
(XRD) using a Philips Xpert Pro working with CuKa radiation
at 40 kV. The morphology of the nanostructures was studied
by secondary electron microscopy (SEM) with a Hitachi S-4800.
Transmission electron microscopy (TEM) was accomplished
with a JEM-100CX operated at 90 kV.

Fabrication of the Sensor
Small drops of silver paste were dropped on the nanostructured
�lm in order to get electrical contacts. The resistive sensor is
then measured with two micromanipulators in order to measure
the resistance of the C-SnO2 nanostructures as the surrounding
atmosphere changes.

Gas Sensors Measurements
The resistive gas sensor was measured in a home-built system.
The apparatus includes measuring chamber, sensor holder with
integrated heater, four micromanipulators, mass �ow controllers
connected to high purity gas bottles, and Keithley 2410
multimeter connected to a data acquisition system (LabView,
National Instruments).

First, the device was kept at 500� C in N2 for 3 h while biased
at 1 V in order to improve its base resistance and the stability of
the nanostructures. This treatment reduces the drift of thesensor
response during the measurements (Tischner et al., 2008). A good
linear relation of the I-V curves was found, proving a good ohmic
contact between the nanostructures and the silver paste. The
device was operated under a continuous voltage of 1 V in the
temperature range of 150–270� C. At di�erent times, six di�erent
gases (acetone, ammonia, CO, ethanol, hydrogen, and toluene)
were inserted into the measuring chamber, adjusting their
concentration through mass �ow controllers. The concentration
values were the same for all the gases: 1, 5, 10, 20, and 50 partsper
million (ppm). The total gas �ow (target gasC dry air) was kept
constant at 400 sccm. Along this paper, the sensor response S is
de�ned as SD Rgas/Rair, where Rgasand Rair are the resistance of
the sensor in presence of the target gas or in dry air, respectively.
This choice was made because all the target gases were reducing.
Selectivity to a target gas A toward any interfering gas B is
traditionally de�ned as the ratio of the sensor response to gasA
to the response to gas B (Kalantar-zadeh, 2013). The selectivity
of the sensor is de�ned as the ratio of its best response to its
second-best response.

Machine Learning Algorithms
Each measurement set (the �ve response values at 150, 180, 210,
240, and 270� C) relative to a gas and its concentration, is used
as a �ve-dimensional point, fed to classi�ers and then to the
support vector regressor that estimates gas concentration. Train
and test datasets were composed by 10 and 5 points for each gas,
respectively. The classi�ers use the label “gas” given together with
the measurements in the train set and return a “gas” label forthe
new measures in the test set, classifying the new points. After the
classi�cation, the dataset was split in sub-datasets, each relative
to a classi�ed gas, and fed to a support vector regressor with
linear kernel using R software. The regressor gave an estimate gas
concentration that was compared with the true value in order to

calculate its RMS relative error as RMSED

r
P N
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�
Ei � Ci

Ci
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N , where
N is the number of data in the sub-dataset andCi andEi are the
gas concentration and gas estimate, respectively.
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FIGURE 1 | (a) SEM image of the sensor: nanorods and nanowires with different diameters. Inset: The SnO2 nanorods grown without carbon modi�cation.
(b) HR-TEM image of two nanowires from the same sample of(a).

FIGURE 2 | XRD spectra.Top: spectrum of SnO2:C nanowires;Bottom (blue online): reference spectrum of tin oxide (JCPDS 14-1445).

RESULTS AND DISCUSSION

Nanowires Characterization
The morphology of the C-SnO2 nanowires has been investigated
through secondary electron microscopy. A typical SEM image
of the nanostructures is given inFigure 1a. As can be seen,
there are worm-like structures with di�erent size: nanorods
with diameters around 150–200 nm and thinner nanowires
with diameters down to 20–40 nm. This is di�erent from
the case of pure SnO2 nanowires, shown in the inset of

Figure 1a, which are similar for the large nanowires (diameters
around 150–300 nm), but lack completely the smallest worm-
like nanowires. We hypothesize that the di�erent shape of the
small nanostructures may derive from the mismatch between
the SnO2 crystal lattices due to the presence of carbon.
The e�ect of crystalline defects is more intense for thinner
nanowires, which are therefore more tortuous.Figure 1bshows
a high-resolution TEM image of two nanowires from the same
sample. It can be seen that the nanostructures are smooth
and monocrystalline. Two interplanar spacings are visible in
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FIGURE 3 | Energy dispersive X-ray spectrometry (EDS) spectrum of thenanomaterial, evidencing the presence of only three elements: tin, oxygen, and carbon.

Figure 1b: one of 0.24 nm which corresponds to the (020) planes,
and one of 0.27, corresponding to the (101) planes of the
tin dioxide.

The structure of the nanostructures was investigated by XRD,
and the results are shown inFigure 2.

All the di�raction peaks in Figure 2 could be indexed
to the tetragonal phase of tin oxide, with lattice parameters
of a D b D 4.742 Å and cD 3.186 Å, which is well
in agreement with the reference (JCPDS no. 14-1445).
No other peaks are present, con�rming that the carbon
does not crystallize in nanoparticles, nor amasses in
amorphous phase.

Unfortunately, TEM and XRD don't show any trace of
carbon. Up to now, we can only hypothesize its presence
due to the morphology of the nanowires. For this reason, we
have performed compositional characterization, and the EDS
spectrum is shown inFigure 3.

As can be seen, the presence of carbon is con�rmed by energy
dispersive X-ray spectrometry. It's percentage is a bit lower than
4%, while the stoichiometry of SnO2 is a bit low in oxygen,
probably due to the surface defects.

Response and Traditional Selectivity
Since the basis of our system is a resistive sensor, the �rst step
is obviously to collect a dynamic resistance from it. From this
output, the sensor response can be calculated, as de�ned in
section Gas Sensors Measurements. This is a one-dimensional
signal, and therefore intrinsically non-selective. All thetarget
gases (acetone, ammonia, carbon monoxide, ethanol, hydrogen,
and toluene) were tested at the same concentrations (1, 5, 10,
20, and 50 ppm) in order to facilitate the comparison. The
response to various gases has been calculated and compared,
showing that the nanosensor is not speci�c for any gas. The
average selectivity of the C-SnO2 sensors (averaged on the
di�erent concentrations) is 1.47, 1.30, 1.44, 1.82, and 1.18at
increasing working temperatures. At all the temperatures, the
highest responses are found for acetone and ethanol, while the
other gases who lower response values. It is obvious that, with

FIGURE 4 | Selectivity as a function of the sensor working temperature. At
150, 180, and 270� C the sensor is selective to acetone, while at 210 and
240� C it is selective to ethanol.

the traditional de�nition, the present sensor is poorly selective,
only for two gases. The selectivity as a function of the working
temperature is reported inFigure 4. The bar color re�ects the gas
toward which the device is selective at that temperature (blue is
acetone, cyan is ethanol).

Exploiting di�erent working temperatures, we could get a
sensor that is selective to two di�erent gases (Tonezzer et al.,
2016), but here the selectivity is too low and does not provide a
real discrimination among test gases. Therefore, we use machine
learning techniques in order to give the system a way to
distinguish the gases by itself.

From Dynamic Resistance to Thermal
Response: the Basis for the System
Working
The smart sensor working method is summarized inFigure 5
using acetone as an example. The �rst step is the dynamic
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resistance of the C-SnO2 nanowires, measured at the various
temperatures. As can be seen in the upper plots, the device
resistance decreases abruptly when acetone is injected intothe
system and returns to the initial value when the gas is replaced
with air.

This means that the carbon addition does not change the
conduction behavior of SnO2 materials, which is an n-type
semiconductor, very sensitive to its surroundings (Tsuda et al.,
2000). When the sensor is taken out of the furnace and exposed
to air, oxygen is adsorbed on its surface in the form of O�

and O2� , draining electrons from the nanowires and decreasing
the conductivity. This is its basic state. When the molecules
of a reducing gas like acetone, are �owed onto the sensor's
nanomaterial, they react with the adsorbed oxygen on the surface,
releasing electrons back to the nanowires. This increases the
electrons density and decreases the sensor resistance.

As the acetone example in the top part ofFigure 5 shows,
both response and recovery arise very sharply and then reduce
their slope while the system reaches its saturation. When the
acetone injection ends and is replaced by air again, the resistance
recuperates its original value with negligible drift. This behavior
is valid for all tested gases.

The sensor responses calculated from the transient resistance
at each temperature, are plotted as a function of the working
temperature, as show in the bottom-left part ofFigure 5. As
can be seen in that plot, the segmented line relative to each
gas is di�erent. We should stress that the segmented lines

move upwards with increasing gas concentration, but always
maintaining their shape. The �ve values forming each segmented
line are then used as a �ve-dimensional point, which is used
by the classi�ers and by support vector regressor in order to
discriminate which gas is present, and its concentration.

Visual Classi�cation With UMAP
A �rst step, using the 5D points just obtained, is the classi�cation
of each measurement, in order to understand to which target gas
it belongs. Machine learning models can be divided into tree-
based models, linear models, neural networks, non-parametric
models and ensembles. Models in the same category tend to
perform similarly for the same task. The choice of a model still
is heavily based on trial and error, and, for that reason, models of
each of those classes were chosen. When working in classi�cation
tasks it is important to select a features space that represents
the data, which were accomplished by the sensor data, which
is high dimensional. To better inspect the algorithm and to use
only relevant features it is common to introduce a dimensionality
reduction technique and project the data onto a plane (the screen
or the paper). In our case, we shrink the 5D space down to
2D using Uniform Manifold Approximation and Projection for
dimension reduction (UMAP) (McInnes et al., 2018). Dimension
reduction is indeed important because it allows both visualizing
and pre-processing data for machine learning. UMAP is a very
novel and powerful technique, very quick and strong. It �nds
a projection that closely approximates the conditions of the

FIGURE 5 | Procedure to obtain the smart sensing: the dynamic responseat the �ve temperatures is used to obtain a segmented line (theblue segmented line in the
bottom-left plot of this example); this segmented line is used as a 5D point for both visualization (UMAP) and classi�cation and regression (SVM).
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FIGURE 6 | Two-dimensional projection obtained with UMAP from the original 5D raw data points. Colors represent gases: Acetone (blue), Ammonia (green), CO
(red), Ethanol (cyan), Hydrogen (purple), and Toluene (yellow).

original space, trying to preserve the global and local structures
and to keep interpretability of data. The UMAP projection can be
seen inFigure 6.

It is clear fromFigure 6that the points belonging to di�erent
gases are well-separated and distinguishable. Unfortunately,
this is not enough: dimension-reduction techniques only allow
better visualization, but are not classi�cation techniques. In
other words, the eyes and the brain of the reader allow him
to classify the di�erent gases inFigure 6, but the sensor still
doesn't know anything. For this reason, we have implemented
several classi�cation methods in order to test the classi�cation
performance of our system.

Classi�cation With Different Methods
After the UMAP reduction, in order to better evaluate the
performance our system, we have used seven di�erent methods
to classify the response data: Random Forest, SVM, Ada Boost,
Bagging (KNN), Extra Trees, Decision Trees, and MLP (see
Supplementary Material). We must here underline that, in order
to avoid over�tting (due to the small number of data), the
Strati�ed K-fold method was used to validate the data. This
method consists of splitting the data into k random splits while
keeping each class in the split proportional to its true proportion
in the whole dataset. The model is trained with k� 1 splits and
validated on the missing split. The process is repeated k times
until all data are used for validation.

To train an ensemble of classi�ers there are two methods
that stand out, the process of bagging and boosting. Bagging
consists of training each classi�er with a random sample from
the data, and train each model independently. Boosting consists
in training the models sequentially. Each model is trained to try
to minimize the errors from the previous models and it does so
by training the following model with a sample of the data that
has a greater percentage of the class that was misclassi�ed bythe
previous models.

Support vector machines (SVM) are supervised learning
models that work by drawing a hyperplane in the features space

of the data to maximize the separation of classes. Support vector
machines are very popular when dealing with small datasets and
should be one of the �rst models to be considered when dealing
with linearly separable data (Haykin, 2009).

Multilayer perceptrons (MLP) are neural networks composed
by an input layer followed by sequential hidden layers before the
output layer. MLPs are universal function approximators dealing
very well with non-linear data and have been very promising in
the deep learning community (Haykin, 2009).

Decision Trees build a binary decision tree where each node
tests a feature splitting the data into two paths. A classi�cation
is made by a path from the root node to the leaf node. Tree-
based models had a lot of popularity before the advent of deep
learning and still one of the best performant models in machine
learning competitions. The models Random Forest, AdaBoost,
and Extra trees are ensembles derived from the Decision Tree and
were also tested as those variants are more widely used and avoid
over�tting to the data (Sheppard, 2017).

Random forests work by creating several decision trees each
of which are trained with a random subset of the data by the
boosting algorithm. The classi�cation is done by taking the
mode of the classes produced by each tree. The AdaBoost works
similarly to the random forest but it restricts the decision trees by
only allowing shallow trees and trains the model by the boosting
algorithm. Extra trees are also similar to the random forest but,
when training a random forest the trees try to �nd for each node
the best possible split for the binary tree. Extra trees pick a value a
random and use it to build the split, this leads to more diversi�ed
trees (Sheppard, 2017).

The K-nearest neighbors algorithm (KNN) is a type of non-
parametric model which classi�es the data by looking at the k
closest points on the feature space and classifying it according
to the mode of their classes. KNN is a very common algorithm,
especially when dealing with small datasets (Duda et al., 2003).

All methods used were set with the default parameters from
the library sklearn (Pedregosa et al., 2011). Table 1 shows the
main parameters used in each method.
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TABLE 1 | Models used to classify response data, their accuracy, and
hyperparameters.

Model Accuracy [%] Hyperparameters

Random Forest 97 Number of estimators: 10
Criterion: Gini index

SVM 98 Penalty: L2

Loss: Squared hinge

Ada Boost 70 Number of estimators: 50
Algorithm: SAMME.R

Bagging (KNN) 100 Number of estimators: 10
Max samples: 1.0
Max features: 1.0
Bootstrap: False

Extra trees 100 Number of estimators: 10
Criterion: Gini index
Bootstrap: False

Decision trees 97 Criterion: Gini index

MLP 100 Hidden layers sizes: 100
Activation: relu
Solver: adam

The performance of the seven methods is evaluated through
their accuracy, reported inTable 1.

As can be seen fromTable 1, all the methods (but Ada Boost)
behave well on the response data, giving an accuracy from 97 to
100%. This means that the sensor based on SnO2:C nanomaterial
gives very good raw output, suitable to distinguish di�erent gases.
A wise choice of the classi�cation method allows us to rely ona
perfect classi�cation.

Quantitative Prediction
As canFigure 5 shows, the points related to the various gases
are in well-separated and distinct clouds. This is just a �rststep
because a gas sensor is expected to evaluate also the concentration
of that gas, even at low concentrations like in our case (few
parts per million). For this reason, we used a least squares
support vector machine (Shao et al., 2018) in order to estimate
each gas concentration. To do this, we have split the data sets
into smaller sets, one for each gas (we can do this because the
classi�cation was perfect). Each train sub-dataset was usedto
train the regressor, while the test sub-dataset was used to check
the performance of our sensor toward that speci�c gas. The
sensor estimates are then compared to the real concentration
for that measurement. The average percentage error is calculated
on each sub-dataset in order to evaluate the performance of the
system for that target gas. These values are given inTable 2.

The average percentage errors shown inTable 2 are
quite homogeneous, with CO having the lowest value. Even
if these values look high, we must underline that being
percentage errors, they estimate the order of magnitude of
the concentration very well. We must also highlight that the
measured concentrations are quite low (1 ppm at minimum),
well-below the exposure limits. Therefore, this error combined
with the perfect classi�cation obtained in the previous step is

TABLE 2 | Average percentage error of the nanosensor to different gases.

Gas Average % error

Acetone 38.7

Ammonia 36.5

CO 24.3

Ethanol 41.8

Hydrogen 33.5

Toluene 40.9

FIGURE 7 | Percentage error as a function of the gas concentration. It isclear
that all gases follow a similar trend, with higher error at the extremities of the
concentration range.

more than adequate to warn users of a possible danger due to
the presence of gas. In order to better understand the source of
the error, we analyzed the error as a function of the actual gas
concentration, as shown inFigure 7.

SinceFigure 7 shows a percentage error, one could expect a
more or less constant value, but this is not the case. As can be
seen, the error is minimal within the range, and greater at the
ends. This e�ect is probably because the system has been trained
on the 1–50 ppm range, and therefore loses accuracy toward the
ends of this range. Furthermore, we can see that the error is
not symmetrical, but is higher at lower concentrations. We must
consider that 1 ppm is a rather low concentration, close to the
limit of detection of the sensor itself, and this certainly negatively
in�uences its error.

We want to point out that this is a transversal method that
works regardless of the measured gases, and therefore can be
applied in many di�erent contexts.

CONCLUSIONS

Carbon modi�ed SnO2 nanowires were used as active material
for a resistive gas sensor. Measuring the response at 5 di�erent
working temperatures (150–270� C) and using machine learning
techniques, the system was able to distinguish all the testedgases
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(acetone, ammonia, carbon monoxide, ethanol, hydrogen, and
toluene) with a perfect classi�cation (100%). The nanosensoris
also able to estimate the gas concentration with a good average
error (24–41%, depending on the gas) at low concentrations (1–
50 ppm), proving to be useful to detect dangerous concentrations
of di�erent gases.
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