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Abstract

The future Internet of Things (IoT) will be characterized by an increasing number
of object-to-object interactions for the implementation of distributed applications
running in smart environments. Object cooperation allows us to develop complex
applications in which each node contributes one or more services. The Social IoT
(SIoT) is one of the possible paradigms that is proposed to make the objects’ inter-
actions easier by facilitating the search for services and the management of objects’
trustworthiness. In that scenario, in which the information moves from a provider
to a requester node in a peer-to-peer network, Trust Management Systems (TMSs)
have been developed to prevent the manipulation of data by unauthorized entities
and guarantee the detection of malicious behaviour. The cornerstone of any TMS
is the ability to generate a coherent evaluation of the information received. The
community concentrates effort on designing complex trust techniques to increase
their effectiveness; however, strong assumptions still need to be considered. First,
nodes could provide the wrong services due to malicious behaviours or malfunctions
and insufficient accuracy. Second, the requester nodes usually cannot evaluate the
received service perfectly. In this regard, this thesis proposes an exhaustive analysis
of the trustworthiness management in the IoT and SIoT. To this, in the beginning,
we generate a dataset and propose a query generation model, essential to develop a
first trust management model to overcome all the attacks in the literature. So, we
implement several trust mechanisms and identify the importance of the overlooked
assumptions in different scenarios. Then, to solve the issues, we concentrate on the
generation of feedback and propose different metrics to evaluate it based on the
presence or not of errors. Finally, we focus on modelling the interaction between
the two figures involved in interactions, i.e. the trustor and the trustee, and on
proposing guidelines to efficiently design trust management models.
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Chapter 1

Introduction

The Internet of Things (IoT) has become a reality with billions of devices able to
send key information about the physical world and implementing simple actions,
which leads to the paradigm of the anytime and anyplace connectivity for anything
[1]. The massive amount of data flowing through the IoT has pushed forward the
development of new applications in several domains, such as the management of
industrial production plants, the logistics and transport supply chain, the e-health,
the smart building, just to cite a few.

However, IoT solutions have posed new challenges in the management of the
amount of information produced. Indeed, searching for (reliable) time- and location-
relevant information, services and resources for the deployment of running applica-
tions exploiting the IoT infrastructure is a crucial challenge: in addition to the size
of the searching space, most of the data produced by the sensors produce rapid
changes, making the system highly dynamic, as it happens for instance when track-
ing the position of moving objects. A further complication derives from the shift we
are witnessing in the interaction model. From a paradigm where humans look for in-
formation provided by objects (human-object interaction), the IoT will surely move
towards a model where things look for other things to provide composite services
for the benefit of human beings (object-object interaction). With such an interac-
tion model, it will be essential to understand how the information provided by each
object can be processed automatically by any other peer in the system. This cannot
clearly disregard the level of trustworthiness of the object providing information and
services, which should take into account the profile and history of it. If not, attacks
and malfunctions would outweigh any of the benefits of these technologies [2].

An approach with the potential to properly address the mentioned issues, which
is recently gaining increasing popularity, is based on the exploitation of social net-
working notions into the IoT, as formalized by the Social Internet of Things (SIoT)
concept [3]. It introduces the vision of social relationships among different devices,
independently from the fact that they belong to the same or different platforms
owned and managed by different individuals or organizations. According to this
vision, all the IoT objects are willing to collaborate with others and create rela-
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tionships among them as humans do. This is expected to make the exchange of
information and services among different devices easier and to perform the identifi-
cation of malicious nodes by creating a society-based view about the trust level of
each member of the community. In the resulting social network, each application
running in the devices (or in the cloud) will be looking for information and services
by crawling the social network starting from a requesting node towards the poten-
tial service provider(s). The performance of such a process of service/information
retrieval is clearly dependent on several aspects: i) the structure of the social net-
work; ii) the types of service/information requests that will mostly characterize the
interaction in the IoT/SIoT; iii) the rules that are used to navigate the network.

However, with such an interaction model, it is essential to understand how the
information provided by each object can be processed automatically by any other
peer in the system. This cannot clearly disregard the level of trustworthiness of the
object providing information and services, which should take into account the profile
and history of it. Although we experience and rely on trust during our interactions
in everyday life, trust can have many definitions so that it is challenging to define
it accurately. The literature on trust is also quite confusing, since it manifests itself
in fairly different forms. In this thesis, we adopt the following definition for trust:

Trust is the subjective probability by which an individual, the trustor, expects that
another individual, the trustee, performs a given action on which its welfare depends
[4].

In the SIoT scenario, the requester has the role of the trustor and has to trust that
the provider, which is then the trustee, will provide the required service. However,
misbehaving devices may perform several types of attacks for their own gain towards
other IoT nodes: they can provide false services or false recommendations, they can
act alone or create a group of colluding devices to monopoly a class of services. If not
handled adequately, attacks and malfunctions would outweigh any of the benefits
of the IoT [2] [5]. For example, in February 2020, Simon Weckert transported 99
smartphones in a handcart and was able to generate virtual traffic jam in Google
Maps1. In this scenario, trustworthiness management models have to solve the
important issue to identify and understand which, among the nodes in the network,
are trustworthy and can then lead to successful collaborations.

Literature on Trust Management System (TMS) concentrates on analyzing the
different phases involved in the process of managing the trust, its properties, the
available techniques used to compose trust, the existing computation models and
their effectiveness as defensive mechanisms against malicious attacks. Regardless of
the proposed model, all the analyzed papers are tested under two strong assump-
tions:

• a node provides the wrong service intentionally; however well-behaving devices
can show poor performance, due to errors, scarce accuracy or technical prob-
lems in general. This problem is usually overlooked by trust algorithm models

1http://www.simonweckert.com/googlemapshacks.html
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while it is indeed fundamental for them to be able to discern a malicious node
from a poor behaving one;

• the requesting node is able to accurately estimate the service received; notwith-
standing, requesters do not usually have ground truth information regarding
the service so that its evaluation is hardly accurate and even good services,
and thus benevolent providers, can be poorly evaluated.

This means that even during a benevolent transaction, i.e. in a transaction in-
volving only benevolent nodes, there could be two possible sources of errors, namely
the entity providing the service and the requester evaluating it, without necessarily
any malicious node involved. The presence of these errors can confuse the TMS and
thus making it difficult to isolate only malicious nodes.

In this regard, this thesis proposes an exhaustive analysis of the trustworthiness
management in the IoT and SIoT. To this, in the beginning, we generate a dataset
and propose a query generation model, essential to develop a first trust management
model to overcome all the attacks in the literature. So, we implement several trust
mechanisms and identify the importance of the overlooked assumptions in different
scenarios. Then, to solve the issues, we concentrate on the generation of feedback
and propose different metrics to evaluate it based on the presence or not of errors.
Finally, we focus on modelling the interaction between the two figures involved
in interactions, i.e. the trustor and the trustee, and on proposing guidelines to
efficiently design trust management models. This thesis then works in this direction
and thus provides the following contributions:

• Creation of a synthetic dataset, which includes objects’ information and po-
sitions from a real scenario, and also the services and applications they offer
and use. The collected data derives from the devices installed in the city of
Santander in Spain and on the data about people’s mobility. This is made
available to the research community to test IoT/SIoT management algorithms
(e.g., relationship management, service search, trustworthiness management),
with particular attention to network navigability.

• Definition of a query generation model, which is able to simulate the correlation
between objects and applications and represents a fundamental tool to test the
interaction among peers in the network. The proposed model is then used to
evaluate the benefits of the social approach in terms of global navigability.

• Design of a decentralized trust management model based on a Machine Learn-
ing algorithm, which makes use of novel parameters, namely the goodness,
the usefulness and the perseverance score. Thanks to these scores, the model
trains and adapts itself, and it is able to identify and react to all possible
malicious attacks in the literature.
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• Discussion of the deficiencies of the scenarios used to test TMSs and demon-
stration of how, in such scenarios, advanced techniques are not necessary to
deal with the trust management problem.

• Definition of the problem of feedback evaluation in the IoT. Moreover, the
proposition of different metrics to evaluate a reference value and the demon-
stration of how this value should be used to rate services.

• Definition of guidelines to design a suitable trust management model in two
different scenarios: an errorless scenario, where cooperative nodes are always
able to deliver the requested service, and a realistic environment, where coop-
erative devices can show poor performance because of errors, poor accuracy,
or technical problems in general.

The rest of this thesis is organized as follows: Chapter 2 presents the scenario
of Social IoT, a brief survey on trust management models and the possible types of
attacks. In Chapter 3, we introduce the scenario, present a dataset based on real
objects and design a query generation model. Chapter 4 illustrates the proposed
trust management model, while Chapter 5 discusses the deficiencies of the scenarios
used to test TMSs and illustrates how a basic model can outperform complex ones
with an overly simplified scenario. In Chapter 6, we propose a feedback evalua-
tion model, and in Chapter 7 we propose the guidelines to design a suitable trust
management model. Finally, Chapter 8 draws final remarks.



Chapter 2

State of Art

This section provides a brief overview regarding the paradigm of SIoT, then discusses
the trust management models and, finally, the trustworthiness attacks.

2.1 The Social Internet of Things

The SIoT represents the convergence of the technologies belonging to two domains:
IoT and Social Network (SN). The result is the creation of SNs in which things are
nodes that establish social links as humans do [3]. This concept is fast gaining ground
thanks to the key benefits deriving from the potentials of the SNs within the IoT
domain, such as: simplification in the navigability of a dynamic network of billions
of objects [3]; robustness in the management of the trustworthiness of objects when
providing information and services [6]; efficiency in the dynamic discovery, selection
and composition of services (and of information segments) provided by distributed
objects and networks [7]. According to the SIoT model, every node is an object
that is capable of establishing social relationships with other things autonomously,
according to rules set by the owner.

To this aim, as underlined in [8], there is a strong need to improve the degree of
connectivity between users and things, where things should be socialized to allow
humans to easily establish relationships with them. The resulting paradigm of SIoT
[3] includes these notions, so that people, through their IoT devices, can transpar-
ently (although according to clear policies they have set for inter-device interactions)
improve the experience in the fruition of smart services and applications.

When it comes to the IoT paradigm, the idea is to exploit social awareness as
a means to turn communicating objects into autonomous decision-making entities.
The new social dimension shall, somehow, be able to mimic interactions among users
and to motivate a drift from an egoistic behavior to altruism or reciprocity. The main
principle is to enable objects to autonomously establish social links with each other
(by adhering to rules set by their owners) so that “friend” objects exchange data
in a distributed manner. Every network object will be capable of: (a) establishing
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social relationships with other objects autonomously with respect to the owner, but
according to the preset rules for the owner; (b) interact with its friends when in need
for some assistance, such as the provisioning of a piece of important information or
a key service.

According to this model, a set of forms of socialization among objects is foreseen
[9]. The Parental Object Relationship (POR) is defined among similar objects,
built in the same period by the same manufacturer (the role of the family is played
by the production batch). Moreover, objects can establish Co-Location Object
Relationship (C-LOR) and Co-Work Object Relationship (C-WOR), like humans
do when they share personal (e.g., cohabitation) or public (e.g., work) experiences.
A further type of relationship is defined for objects owned by the same user (mobile
phones, game consoles, etc.) that is named Ownership Object Relationship (OOR).
The last relationship is established when objects come into contact, sporadically
or continuously, for reasons purely related to relations among their owners (e.g.,
devices/sensors belonging to friends); it is named Social Object Relationship (SOR).
These relationships are created and updated on the basis of the objects’ features
(such as type, computational power, mobility capabilities, brand, etc.) and activities
(frequency in meeting the other objects, mainly).

However, to fully exploit the benefits of a SIoT network, a trustworthiness man-
agement model, able to defend against malicious attacks, is needed, which we inves-
tigate in this thesis.

2.2 Trustworthiness Management Models

This section provides a brief overview regarding the background of trustworthiness
management in the IoT and SIoT. In the last years, many researchers have tackled
this problem, so that the literature is now quite rich. In this Section, we want to
show the most appreciated models in the literature and do not intend to cover all
the published papers. We classified them into three categories based on the metric
used to compute the trust value: metrics obtained from social aspects, metrics based
on the Quality of Service (QoS) and mixed approaches, i.e. papers considering both
social and QoS aspects.

Among the works considering social aspects, in [10] the authors propose an adap-
tive decentralized trust mechanism based on social trust. Through a weighted sum,
the authors combine factors that concern the cooperativeness and the social commu-
nities and demonstrate the effectiveness of the model making use of two real-world
social IoT scenarios. Another trust model concerning social trust is presented in [11].
Authors propose a machine learning-based approach to formalize the trust evalua-
tion as a classification problem. The feature vector in a SN is constructed according
to social factors like the reputation and the centrality. Another social approach is
used in [12]. Throughout a few SIoT trust metrics as centrality, community interest
and cooperativeness, the authors illustrate a trust management scheme to facilitate
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an automatic trustworthy decision making based on the behavior of smart objects.
Two social scenarios are described in [13] and [14]. In the first work, the authors
take into account metrics such as social similarity and the importance of the service.
The resulting trust management algorithm is developed using social relationships to
compute the trust level of the nodes in a SIoT network. In the second one, the
authors propose a centralized trust-based protocol for mobile objects. To guarantee
the trust accuracy between the devices the system makes use of friendships and
social contacts.

Concepts of QoS are used for example in [15]: authors present a remote attesta-
tion mechanism for the sensing layer node in the IoT. A real-time trust measurement
is realized through a combination of QoS factors, such as transmission delay, his-
torical data and feedback originated from other objects. Firstly, a node verifies the
identities of the other nodes and only then measures whether the computing envi-
ronment is trustworthy. In [16], the authors compute the trust scores based on the
exchange of feedback, which are provided taking into account QoS factors such as the
monetary cost of the resources, the computation capabilities and the communication
failures. Two other QoS approaches based on centralized architectures are described
in [17] and [18]. In the first work, the authors propose a policy-based secure scheme
for IoT, in which the trustworthiness of data and devices are evaluated according to
the reporting history and the context in which the data are collected. In the second
one, the centralized architecture is used for information sharing among health IoT
devices. The proposed trust protocol considers the loss of probability of health data
and the reliability of the IoT devices. Another approach concerning QoS factors is
presented in [19]. Authors introduce an approach to evaluate the trust of services
combining several QoS attributes (such as availability and response time) and user’s
ratings. The model focuses on satisfying the users’ choices on web services and it is
evaluated considering the influence of malicious rating.

The last group of papers makes use of both QoS and social trust metrics to com-
pose the trust value. Among them, in [6], the authors propose a decentralized trust
mechanism in a social scenario. In that model, each node computes the trustworthi-
ness of the service providers on the basis of its own experience and on the opinion of
its friends. The authors analyze the QoS factors, as computation capabilities, and
social factors, such as centrality and credibility. QoS and social metrics are both
considered also by Chen et al. in [20]. They adopt a distributed scheme where each
node maintains its own trust assessments. The QoS factors (i.e., quality reputation
and energy status) are related to the social relationships and recommendations from
the other nodes. Two other mixed approaches are described in [21] and [22]. In [21],
authors propose a trust evaluation model incorporating heterogeneous information
from direct observation, personal experiences and global reputation. The subjective
algorithm makes use of social factors, e.g. cooperativeness and community-interest,
and of QoS factors, aggregated with a weighted sum mechanism and a machine
learning to change the weights according to the particular context. In [22], the au-
thors illustrate an IoT protocol that uses trust for the evaluation of nodes to make
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optimal routing decisions. It computes the trust of nodes by examining QoS fac-
tors, such as the number of exchanged packets, and the recommendations from the
neighbors. A recent model is described in [23]. Authors propose guidelines for the
design of a decentralized trust management model, which can be used for assisting
humans and devices in the decision making process.

All the analyzed models are designed and tested to isolate nodes that implement
a subset of the possible types of attacks. However, the heterogeneity of IoT scenarios
call for models with no weak points, while existing works show a common limitation:
they are not able to properly identify all the type of malicious attacks. The next
subsection shows all the possible malicious behaviours that can be implemented in
a network.

2.2.1 Trustworthiness Attacks

Two different behaviors can be considered in a network [24]: one is always benevolent
and cooperative, while the other one is a strategic behavior corresponding to an
opportunistic participant who cheats whenever it is advantageous for it to do so.
The goal of a node performing maliciously is usually to provide low quality or false
services in order to save its own resources; at the same time, it aims to maintain
a high value of trust toward the rest of the network so that other nodes will be
agreeable to provide their services when requested. This strategy, even if successful
for a single node at first sight, involves a huge risk for the network because trusting
the information from malicious devices could lead to serious compromises within the
network and this has a direct impact on the applications that can be delivered to
users [25]. A trust model has to identify this behaviour to discourage nodes from
implementing it; however, such malicious nodes can perform several types of trust-
related attacks, which represent the different solutions they adopt to avoid being
detected. We classify trustworthiness attacks based on two dimensions: the first
dimension is related to the target of the attack, i.e. if the malicious node aims to
confuse the network by providing false services, false recommendations or both. The
second dimension is connected to the size of the attack, i.e. if the trustworthiness
attack is carried on by a single node or by a group. In the following, we briefly
describe the different types of attacks known in the literature.

The largest group of attacks is composed of single nodes that indiscriminately
provide both bad services and recommendations. In this group, trustworthiness
attacks differ based on the mechanism they adopt in order not to be recognized:

Malicious with Everyone (ME): a malicious node acts maliciously with
everyone. This is the most basic attack: a node always provides bad services and
recommendations, regardless of the requester [6].

Discrimination Attack (DA): a malicious node modifies its behavior based
on the service requester. This means that a node can discriminate non-friends nodes
or nodes with weak social ties. As a result, some devices can consider the node as
benevolent while others can label it as malevolent [26].
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Size
Single Group

[OSA]
Service

[ME] [DA] [OOA]
[WA] [SPA] [SA] [BSA]
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Recommendation
[BMA]

Table 2.1: Classification of different types of trustworthiness attacks.

On-Off Attack (OOA): a node periodically changes its behavior, by alterna-
tively being benevolent (ON) and malevolent (OFF). During the ON state, the node
builds up its trust, which is then used to attack the network [27].

Whitewashing Attack (WA): a node with a bad reputation leaves the net-
work and then registers again with a different identity. When the node re-join the
network its reputation is reset to a default value [28].

Self-Promoting Attack (SPA): a malicious node provides good recommen-
dations for itself in order to be selected as a service provider. After it is selected as
a provider, it provides only bad services [29].

The other types of attacks concentrate on a single target, i.e. malicious nodes
only provide bad services or bad recommendations.

Bad Mouthing Attack (BMA): this attack is addressed to ruin the rep-
utation of other nodes; a malicious node only provides false recommendations to
decrease the chance of benevolent nodes being selected as providers. Usually, this
attack is part of a collusive behavior where a group of nodes works together to ruin
the reputation of a good node but it can also be carried on by a single node [30].

Ballot Stuffing Attack (BSA): this is a type of collusive attack, where a
malicious node provides good recommendations toward another malicious node to
boost its reputation and increase its chances to be selected as the provider [31].

Sybil Attack (SA): a malicious node uses multiple identities to provide dif-
ferent types of recommendations on the same service. These multiple identities are
usually fake and they are all responsible for the attack process [32].

Opportunistic Service Attack (OSA): a malicious node provides good ser-
vices only when it senses that its trust reputation is dropping. In this way, the node
tries to maintain an acceptable level of trust in order to still be selected as a service
provider [33].

To sum it up, Table 2.1 shows a classification of trust-related attacks based on
the two dimensions identified, while Table 2.2 compares the analyzed models with
the attacks they are able to identify. To the best of our knowledge, all available
trustworthiness models are able to isolate only a subset of the presented attacks, i.e.
they are designed to recognize and isolate some specific attacks, but none of them
is able to defend efficiently against all the attacks. Table 2.2 does not show the ME
attack, which is used as a reference attack by all the models, and the OSA attack
since a node performing it can not be completely isolated but it is only possible to
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Reference DA OOA BSA WA BMA SA SPA

[10] ✓ - ✓ ✓ ✓ - ✓
[11] - - - - - - -

[12] - ✓ - - - - -

[13] - - ✓ - ✓ - ✓
[14] ✓ - ✓ - ✓ - ✓
[15] - - - ✓ - ✓ ✓
[16] - - - - - -

[17] - ✓ ✓ - ✓ - -

[18] - - ✓ - ✓ - -

[19] - - - - ✓ - -

[6] ✓ ✓ - - - - ✓
[20] ✓ ✓ - - ✓ - ✓
[21] - - ✓ - ✓ - ✓
[22] - - - - - ✓ -

[23] - - ✓ - ✓ - -

Table 2.2: Resiliency of existing models against identified trust related attacks.

reduce the number of times a node acts maliciously due to the reliability needed to
build up the trust.

These attacks span from simple ones, which have a constant behaviour over
time, such as ME, to more complex ones which are able to change their behaviour
over time: among them, for example, there is the On-Off Attack, the Discriminatory
Attack or the Opportunistic Service Attack, which have all been tested in this thesis.
In particular, the OSA is considered the most complex attack in the literature since
it knows exactly how the trust model implemented in a system works, so it is able to
accurately predict how its trust value will change based on its behaviour and then
behaves accordingly.



Chapter 3

SIoT Dataset of and Query
Generation Model

This chapter aims to provide the two essential elements needed to develop and test
management algorithms in an IoT or SIoT ecosystem, namely a query generation
model and a dataset of objects with realistic behavior. As it is depicted in Figure
3.1, even though these two elements can cooperate, i.e. the query generation model
can be tested by using the dataset, they exist and can be used independently. The
details about their functionalities will be better explained in Section 3.1 (for the
query generation model) and Section 3.2 (for the dataset).

The SIoT provides the objects with some capabilities typical of humans’ behavior
when looking for and providing information in their social communities. Accord-
ingly, social relationships are created among objects, which are used when the peers
are looking for help [3]. As in most of the IoT architectures, the owner has the
control on which social interactions the objects are allowed to perform and which
information and services can be shared with other peers.

The applications installed by owners in their cloud space and that rely on their
objects’ capabilities often need to look for services provided by other objects. This
results in queries that are managed by the SIoT by making use of objects’ social
connections through word of mouth.

Dataset

Query 

Generation 

Model

Figure 3.1: Proposed structure to develop and test IoT management algorithms
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Figure 3.2: Reference SIoT architecture and query generation model.

The focus of this chapter is the analysis and modeling of this query generation
process. To this, we consider the reference SIoT architecture shown in Figure 3.2a),
which is based on four levels [34]: Application, Aggregation, Virtualization and
Real World. The lower layer is made up of the “things” of the real world, which
have the role to sense the physical environment and provide data to the higher
layers. The Virtualization layer is made of Social Virtual Object (SVO)s, which
represent the digital counterparts of any entity of the real world enhanced with
social capabilities, fully describing their characteristics and the services they are
able to provide [35]. The Micro Engine Entity (MEE), which is the main entity of
the Aggregation layer (represented as ME in the Figure), is a mash-up of one or more
SVOs and other MEEs, and it is responsible for getting and processing information
from SVOs into high-level services requested by applications at the higher level.
Finally, the Application layer is installed in the Cloud and partially in the devices,
so that applications can be deployed and executed exploiting one or more MEEs.

Figure 3.2b) illustrates a generic service query in the SIoT, which highlights
all the components involved in the process. The whole process starts when the
application layer triggers some processing that requires to look for other services and
then generates a relevant query. The query specifies what services are required and it
is enhanced with context parameters, which represent the application requirements,
such as a specific time (when) or a specific place (where).

The generated query is then handled at the Aggregation Layer, where the needed
MEEs for data elaboration are activated. After this, the query is taken over by the
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SVO of the device that triggered the process, which navigates its social network in
order to search for other SVOs that can offer the data related to the desired services
by the application. Indeed, in the SIoT, each SVO maintains information related to
its friends and to the services that the corresponding physical object can provide.
In this sense, SVOs can be seen as atomic registration/indexing servers. However,
it is not the focus of the thesis to design an indexing mechanism of data.

In order to better explain the query process, an explanatory example is presented
here. Suppose that an object installed the application RealTimeTrafficEvaluation-
App, which evaluates the traffic of a specific street in real-time, i.e. within a limited
time interval with respect to the current time. Accordingly, the object creates a
query with the list of services needed to execute the application and the require-
ments related, in this case, with the reference location and time. The aggregation
layer than activates the MEEs associated with the services and passes the query to
the SVO, which looks for the objects, among its social network, that can execute the
services fulfilling the desired requirements. Once they are found, the aggregation
layer processes the result and provides the requested information, i.e. the real-time
traffic condition in the specified street, to the user.

When all the services are retrieved, they are forwarded again to the Aggregation
Layer which composes them through the activated MEEs and finally provides the
result of the application back to the device that triggered the request.

The depicted scenario where objects collaborate by mashing their services has
great potentials as this allows for the deployment of powerful applications. This is
the case of objects (e.g. cars) that share information to decide on the best route to
get to a destination, objects that perform collaborative spectrum sensing and objects
that need to send alarms to all the people in a given area to reach humans nearby, just
to cite few examples. Reaching the right device(s) with whom interact is a key task in
this context, and the SIoT provides a potentially effective approach to this by relying
on the created social network. However, to evaluate the relevant performance, there
is the need to model the generation of the query characterizing these scenarios,
which should help in conducting a proper system performance evaluation. Such a
model should describe which object (with relevant characteristics) would typically
need to retrieve information from any other objects with other relevant features.
Whereas the query model that is proposed in the following is adopted to evaluate
the performance of the SIoT paradigm, it can be adopted for other IoT architectures
as well. Finally, since our goal is to model the objects’ behavior when requesting
services at the application layer, in this chapter we do not consider how the query
is handled.

In our modeling, the set of nodes in the SIoT, i.e., the set of SVOs, is represented
by N = {n1, ..., ni, ...nI} with cardinality I, where ni represents a generic SVO. Its
physical counterpart can be static or mobile with position Li =

[
lai , l

b
i

]
, which can

then be fixed or varying over time. In our problem setting, SVOs create social
relations so let the resulting SN be described by an undirected graph G = {N , E},
where E ⊆ {N ×N} is the set of edges, each representing a social relation between
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a couple of nodes.
The modeling of our problem can not overlook the different typologies of objects

in a network, since objects with different profiles can provide different services and
are interested in different applications [36]. We then define the following sets: T =
{t1, ..., tx, ...tX} as the set of possible typologies of objects, such as smartphones,
cars, traffic lights, and others. For every typology tx, we define a set Bx = B(tx) =
{bx1, ..., bxy, ...bxY } as the set of possible brands inside the typology tx, while the set
Mxy = M(bxy) = {mxy1, ...,mxyz, ...mxyZ} represents the set of possible models for
typology tx and brand bxy. All the possible models available in the network can then
be described by the set M̄ = {∪∀xyMxy}, which allows us to define the following
2-tuple Γ =

〈
N ,M̄

〉
, which associates to every node ni the corresponding model of

the device and thus enables also to infer the typology and the brand. This tuple
will be useful to enable the creation of the parental relation (i.e. the POR defined
in Section 2.1), which is based on these characteristics.

Then, we need to define the applications in the network, which are those that
are requested during the querying process and the possible services provided by the
nodes and that can satisfy the queries. Let A = {a1, ..., aw, ...aW} be the set of
possible applications that can be installed by the devices in our scenario. However,
applications do not run on all the devices but only on those they are meant to, so
a single device will only have a subset of applications installed on it; we can then
define the matrix O = [oiw] where the generic element oiw is equal to 1 if node ni

can potentially install application aw and 0 otherwise.
Then, we define S = {s1, ..., sj, ...sJ} as the set of services that can be performed

by any node in the network and that can be used to compose the applications in A.
Thus, we can define the matrix D = [dij], where the generic element dij is equal to
1 if node ni can provide service sj and 0 otherwise.

It is true that both the matrices of installed applications and available services,
namely O and D, should be related to the typology of the node, since it is the
typology that determines the possible uses for an object. However, this approach
is too simplistic since different nodes can offer different services and run different
applications based on external characteristics related to their owner, such as privacy
settings. Let us consider two users which own a smartphone each: one of them is
willing to share all the smartphone’s services while the other one only one or two of
them; similarly, even if the set of applications they can install on their smartphone is
the same, they have decided to install different applications based on their interests.

To model how an application generates a query, let’s recall that a query only
specifies the needed services and their requirements, and it is the aggregation layer
that combines them to fulfill the request of the application. To this, we can model the
query as the tuple Ϙ = ⟨Qserv,Qreq⟩, where Qserv = {qserv1 , ..., qservh , ...qservH } is the set
of atomic queries representing the individual services needed to fulfill the application
requests using a node’s social network, while Qreq = {qreq1 , ..., qreqk , ...qreqK } is the set
of requirements. The goal of a query generation model is then to calculate the
probability to generate a specific query Ϙ. In our modeling, we make the assumption
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<n7, m153>

O7w = [1, 0, 0]

D7j=[0,0,1,0,1,1]

<n3, m247>

O3w=[0, 1, 0]

D3j=[0,0,1,1,1,1]

<n1, m726>

O1w=[0, 0, 1]

D1j=[0,0,1,1,0,0]

<n2, m126>

O2w=[1, 1, 0]

D2j=[1,0,0,0,0,0]

<n8, m682>

O8w=[1, 0, 1]

D8j=[1,0,0,1,0,0]

<n9, m155>

O9w=[0, 1, 1]

D9j=[1,0,1,1,0,0]

<n4, m331>

O4w=[1, 1, 1]

D4j=[1,1,1,0,1,1]

<n5, m816>

O5w=[0, 0, 0]

D5j=[0,1,1,0,1,1]

<n6, m331>

O6w=[1, 0, 0]

D6j=[1,0,0,0,1,1]

Figure 3.3: Representation of the network nodes.

that the number of atomic queries matches the number of services to be found;
nonetheless, based on the particular search mechanism implemented in the SIoT,
the number of queries can be lower w.r.t. the number of services, since a query can
be used to find two or more services at the same time. However, the modeling of
the search engine is not considered in this thesis.

Figure 3.3 provides a simple example of a generic SIoT graph G, where I = 9
and each node is characterized by a tuple Γi = ⟨ni,mxyz⟩, which defines for node ni

its model mxyz, from which we can infer the typology tx and the brand bxy. In our
example, we can notice how nodes can share the same typology, as it is the case of
nodes n2, n7, n9, since they have the same first digit of the M̄ set, and even the
same brand, as n7 and n9 are described by m153 and m155 respectively. In particular,
if nodes belong to the same typology, brand and model, such as the case of nodes
n6 and n4, they are then able to create a POR.

In this example, each SVO can have up to 3 applications installed, as indicated
by the number of columns of matrix O, and it is capable of providing up to six
services, as shown by the column dimension of D. Suppose that a user, which
owns node n1, is interested in the DriveMonitoringApp application that monitors
and evaluates his/her driving behavior and the related risks and then installs it
in n1. To provide the requested application, which is indicated in our example
as o13, to the user, the related SVO will have to search for the needed services,
which are shown by the orange balloons in Figure 3.4 and that are indicated as the
services s1, s2, s3, s5 and s6 in our example scenario. Node n1 will then generate
a query Ϙ with Qserv = {qserv1 , qserv2 , qserv3 , qserv4 , qserv5 } and Qreq = ∅ to look for the
five services among its friends. When all the services are retrieved, they are sent
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Figure 3.4: Decomposition of the DriveMonitoringApp application into services.

to the aggregation layer, which provides the necessary processing capabilities (blue
balloons in Figure 3.4). Please note that in some cases the node could be able to
provide some of the services by itself as the case of node n1, which can provide
service s3 (d13 = 1).

As we will see in the next section, the query generation model is more complicated
than this example, since it has to take into account space and time requirements.

3.1 Query Generation Model

In the IoT, the number of possible applications is huge, but not all the types of things
can install the same set of applications and even the same application installed in
the same object can generate queries with different requirements.

When studying the IoT, and in particular the Social IoT, it is difficult to evalu-
ate the performance of service search mechanisms, i.e. how IoT/SIoT systems can
fulfill application requests. This is due to the lack of query generation models, that
are needed to understand which application can generate a query and with which
requirements. As described previously, the goal of a query generation model is to
compute the probability that a query Ϙ will be generated; the composition of the
atomic queries in Qserv represents the set of services needed by the application. The
choice of the application that will generate a query, and that will then determine
the services to search, depends on the particular object in which the application
is installed. Figure 3.5 shows the main functionalities that characterize the query
generation model. According to this picture, based on the chosen application and on
which node it is installed, the model has to generate the set of query requirements
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Query Generation Model

Select a node
Select an 

application
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Figure 3.5: Query generation model functionalities

Qreq, which are applied to the set of atomic queries.

Applications and nodes are highly intertwined: choosing a node determines which
applications can be installed on that node, and selecting an application fixes the
possible nodes in which the application can be installed. In order to obtain the
probability to generate a specific set of atomic queries Qserv, that corresponds to
application A = aw, we have to compute the joint density function of nodes N and
application A as follows:

pA,N (aw, ni) = p(A = aw ∩N = ni) =

{
0 if oiw = 0

pi(Qserv) if oiw = 1
(3.1)

where pi(Qserv) is the probability that node ni, which potentially installed applica-
tion aw, generates the set of atomic queries Qserv. For oiw = 1, it can also be written
in terms of conditional distributions:

pi(Qserv) = p(N = ni|A = aw) ∗ p(A = aw) =

= p(A = aw|N = ni) ∗ p(N = ni)
(3.2)

Eq. 3.2 shows the double nature of the query generation process, which can
begin both by selecting an application or a node.

The probability that the set of atomic queries Qserv is generated by any node in
N is then defined as

P (Qserv) =
∑
i

pi(Qserv) (3.3)

The application’ selection greatly influences the difficulty of the search opera-
tions, since applications can have different levels of intricacy, ranging from simple
ones, which only need one or two services, to complex ones, with nested applications
and multiple services. Moreover, not all applications require information with the
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same frequency. To this, in Section 3.2.3, we will test several different distribu-
tions for the applications’ frequency, namely p(A = aw), to evaluate how the SIoT
network reacts in terms of navigability.

The choice of the node affects both its geographical and social position. The first
one is important since it influences the requirements of the query, while the position
of the node in the social network impacts on the number of friends selectable and
thus on the number of friends a node can rely upon when looking for services. Since
there is no particular constraint in the choice of a node, i.e., every node has the
same probability to trigger an application request, p(N = ni) follows a uniform
distribution.

Once the query for services has been generated, it is important to know which
requirements are needed for the specific application, namely to generate the set of
requirements for the query. Indeed, different nodes requesting the same application
can also specify different attributes or characteristics for it. The set of possible
requirements can be quite large, ranging from the accuracy of the sensed data to their
precision; however, not all the requirements are always needed: the only ones that
need to be declared, either explicitly or implicitly, are space and time. For example,
an application that needs temperature measurements as inputs could be requested in
different areas, such as in a room or a park (space requirement) and for different time
intervals, as it is the case for historical or real-time data (time requirement). The
minimum set of requirements can then be expressed asQreq = {qreqs1 , qreqs2 , qreqt }, where
qreqs1 and qreqs2 indicate the space requirements, namely for the x and y-coordinates,
while qreqt expresses the time requirement.

As suggested in [37], to describe the concept of interest in a specific point in space,
the best distribution should be normal: to this, we describe the space requirements
as a 2-dimensional normal distribution, where the probability density function can
be expressed as follows:

fwi(q
req
s1 , qreqs2 ) =

1

2πσqreqs1
σqreqs2

∗ exp

(
−1

2

[(
qreqs1 − lai − µqreqs1

)2
σ2
qreqs1

+

+

(
qreqs2 − lbi − µqreqs2

)2
σ2
qreqs2

]) (3.4)

where µqreqs1
, σ2

qreqs1
and µqreqs2

, σ2
qreqs2

are the mean and variance values for the x and

y-coordinates respectively.

All these values are application dependent, i.e. they depend on the particular
application aw at hand, but we have decided not to show such dependence in the
above formula to keep it clean. In particular, when the mean values, µqreqs1

and µqreqs2
,
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are both equal to 0, then the distribution is centered on the current position of the
node ni, namely lai and lbi , i.e a node is looking for information around itself.

Also, the time requirement can be modeled using the time interest of applications,
as suggested in [38], since objects require information mostly in real-time and less
as we move farther in time, i.e. historical data. We modeled such behavior as an
exponential distribution as follows:

f(qreqt ) =

{
0 if qreqt > 0

λa ∗ exp (λaq
req
t ) if qreqt ≤ 0

(3.5)

where λa is a constant, depending on the particular application at hand. The
requirement for qreqt = 0 means that the application is needed in real-time, while
the values of qreqt < 0 indicate that historical data are requested. Whenever a
SVO receives a request with a temporal requirement, it will check if its stored data
can satisfy the requirements, otherwise, it has to contact the physical objects to
retrieve the data; however, in some cases, the SVO would not contact its physical
counterpart, in order to avoid consuming resources.

Once the query has been generated, the goal of the SIoT system will be to find
all the services in Ϙ starting from the SVO of the node with the selected application,
making use of its social relations to crawl the network.

As an example of query generation, let us consider the following flow: the sys-
tem chooses randomly an object among the available ones, e.g. a car. This car
can be interested in several applications, so the model has to pick one of them,
based on how frequently they require information, e.g. the DriveMonitoringApp
showed in Figure 3.4: the resulting set of atomic queries is then Qserv = { Geoloc.,
Speed and Acceleration, Sound, Temperature, Street Lights }. The final step is to
set the requirements for the application, that will be inherited by every service in
Qserv: as spatial requirement, the car chooses an area of [100 m x2 km] around itself
(i.e. in the road ahead), while as time requirement, the car selects qreqt = 0 thus
asking for the information to be obtained continuously in real-time.

The goal of the SIoT system will then be to find all the services in Qserv starting
from the SVO of the selected car, making use of its social relations to crawl the
network.

3.1.1 Query Model Validation

In order to simulate and validate the query generation model proposed, a set of real
IoT queries is required. These data are obtained by the Lysis platform [39]: a col-
lection of more than 11000 queries from 154 devices over a period of 7 months, from
April 2017 to October 2017 (a complete description of the data is available here1).
The network is composed of two types of nodes: smartphones and Raspberry boards;
based on the typology, the devices can require up to five different applications.

1http://www.social-iot.org/index.php?p=downloads
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Figure 3.6: Query probability distribution for the Lysis data and for the Query
Generation Model (QGM).

Figure 3.6 illustrates how the proposed query generation model, displayed by
red dots and labeled Query Generation Model (QGM), matches the probability for
each node to generate a specific set of atomic queries Qserv obtained from the Lysis
dataset, represented with blue lines. Moreover, since not all the devices can install
the same applications, then it will happen that some nodes will never require a
given service and then never generate the corresponding query and thus pi(Qserv) =
0. In our model, the nodes follow a uniform distribution, while the applications’
frequency is proportional to the number of services needed by each application,
i.e. that the first app requires more services than the last app. To evaluate the
performance of our model, we made use of an f-divergence measure, namely the
Hellinger distance [40], to quantify the similarity of the two probability distributions.
Unlike other f-divergence measures, the Hellinger distance is a bounded metric: given
two probability distribution P and Q, the maximum distance 1 is achieved if P and
Q are completely divergent, while a distance H(P,Q) = 0 means that the two
probability functions are completely overlapping and hence identical. In our case,
the value of the Hellinger distance is equal to 0.0047, so we can conclude that our
model is able to generate an almost identical distribution w.r.t. the real data.

Table 3.1 shows the parameters used to describe the space and time requirements
for each of the five applications. The two columns labeled asH1 andH2 indicates the
Hellinger distance between the real data from the Lysis dataset and our requirement
distributions for space and time, respectively. The maximum value of the Hellinger
distance is under 0.16 thus indicating a very good approximation of our model.

The values of the model’s parameters, namely µqreqs1
, µqreqs2

, σqreqs1
, σqreqs2

and λa,
are computed by applying linear regression to a small set of interactions for each
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App µq
req
s1

µq
req
s2

σq
req
s1

σq
req
s2

H1 λa H2

1 0 0 0 0 0 0.50 0.099
2 0 0 0.1 0.1 0.019 2.00 0.116
3 0 0 0.3 0.3 0.013 0.50 0.108
4 0.45 -0.45 0.1 0.1 0.012 10.0 0.118
5 0.70 -0.70 0.1 0.1 0.018 20.0 0.159

Table 3.1: Requirements for the Lysis Applications.

application (around 1% of the total number of requests).

3.2 Dataset and Network Analysis

This Section presents a dataset of profiles for the objects in a Smart City envi-
ronment, based on the FIWARE Data Models [41]. The dataset is then used to
construct a social network of objects, which is analyzed in Subsection 3.2.2. Finally,
the last subsection assesses the performance of the network when tested with the
query generation model in terms of navigability.

3.2.1 Dataset

The main functionalities required to create a dataset are illustrated in Figure 3.7.
As it will be better explained in the rest of the subsection, these functionalities are
in charge of creating: objects’ information (e.g. owner, typology, brand, model),
traces of the positions and timestamps of the devices, the list of all the applications
that can be installed by the objects, objects’ profiles (expressed as the set of the
available services) and an adjacency matrix with the social relationships for each
object.

The first step to construct a dataset is to obtain the profile of the objects. To this,
we extracted objects’ information and positions from the SmartSantander project
[42], which is experimental research in support of typical applications and services
for a smart city. We have classified all the available devices according to the data
models proposed in the FIWARE Data Models. This enables the portability of the
dataset among different platforms. These models consider both static and mobile
objects and are mostly located in the city center of the city.

Each of the three public mobile categories of objects, namely buses, taxis and
garbage trucks, moves in an independent way: buses’ movement is created according
to the list of bus stops, which are available from the Servicio Municipal de Tranportes
Urbanos de Santander (TUS) [43]; taxis can start from 1 out of 3 taxi stations around
the city; garbage trucks start from the landfill and cover all the city.

However, a complete Smart City scenario must also consider devices from private
users. To this, we introduce 4000 users in the city, so that each user owns a certain
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Figure 3.7: Dataset functionalities

Mobile Devices Ownership (%)
Smartphone 91
Car 55
Tablet 40
Smart Fitness 22
Smartwatch 5

Static Devices Ownership (%)
Pc 84
Printer 53
Home sensors 15

Table 3.2: Distribution Ownership Devices over 50.000 Users Aged 16-64.

number of devices. The devices’ distribution is based on the ownership report of the
Global Web Index in 2017 [44] calculated over 50000 users aged among 16 and 64
years old and it is shown in Table 3.2; some of these devices are considered mobile,
i.e. they are carried by the users during their movements, while others are static
and are then left at the user’s home.

To simulate the mobility of these 4000 users, we rely on the well-known mobility
model Small World In Motion (SWIM) [45]. SWIM can generate synthetic data,
which can create mobility traces able to mimic human social behaviors. In fact, it
has been proven that the SWIM mobility model allows obtaining accurate matching
between the output of the model and the most popular mobility traces available in
CRAWDAD [46], generating data with the same statistical properties, such as in
terms of inter-contact time between people. The simulation area needs to match the
city center of Santander, so since SWIM only considers areas of interest of unitary
square, we had to scale down the city center (which roughly has an area of 4 km x 4
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km) and then modify the model to avoid users to move towards uninhabited areas,
such as the sea.

The simulator requires some additional parameters. The user perception radius,
set to 0.015, indicates the distance within which a user, or in our case a device, can
see all other users/devices; this parameter is set according to the communication
range of a Wi-Fi connection [47] specifically scaled considering that the simulation
area of SWIM is a unitary square. The parameter α, which can have values in
the range [0; 1], is used to determine whether the users prefer to visit popular sites
(smaller values) rather than nearby ones (bigger values). Accordingly to the city
scenario, it has been set to 0.9. The entire simulation covers a time-lapse of ten
days.

Following the proposed network modelling, the dataset as a total number of
devices equals I = 16216, 14600 of which are private and 1616 are public. The
resulting network comprehends a total of X = 16 typologies of objects and to each
of the typologies owned by private users, a brand and a model selected randomly
among Y = 12 brands and Z = 24 models have been assigned. We suppose that the
municipality bought all the objects inside an object’s typology with the same brand
and model, so only the category is needed to classify public objects.

The devices of the smart cities, compared to the dataset in [48], are able to pro-
vide J = 18 services, which can be arranged to provideW = 28 different applications
for the users.

A complete description of the data obtained in this thesis is available for tests
here2 and includes objects’ information (such as owner or typology), traces on the
positions and timestamps of the devices, the list of all the applications we envision in
a Smart City scenario, objects’ profiles (expressed as a set of available services and
possible applications requests) and an adjacency matrix with the social relationships
for each object.

3.2.2 Network Analysis

Based on object movements and profiles, each device can create its own set of rela-
tions with other devices. All the relations depend on the rules set in the system: as
explained in [49], these rules have a direct impact on the overall navigability of the
network: for the overall network to be navigable, i.e. to enable a node to easily reach
any other node in the network, all, or the most of, the nodes must be connected, i.e.,
a giant component must exist in the network, and the effective diameter must be
low. Moreover, the distribution of the number of connections each node has with its
peers, namely the degree distribution, should be close to a power-law distribution.
This results in a scale-free network and indicates the presence of hubs, i.e. nodes
with a large number of connections w.r.t. the average, in the network. With this
goal in mind, in the following, we discuss the characteristics of the obtained resulting

2http://www.social-iot.org/index.php?p=downloads
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network. The only relation we did not consider in these experiments is the C-WOR
since it has been demonstrated from [49] that its contribution to the navigability of
the network can be negligible.

All relationships, except for the OOR, are created using as a starting point [48].
An overview of the relations and their differences is illustrated below:

• The Ownership Object Relationship (OOR) is created between devices that
belong to the same owner. To avoid too many relations, objects will create a
relation only if they are in the communication range of each other. We assume
that private devices use one out of three possible technologies: LoRa, Wi-Fi
and Bluetooth.

• The Parental Object Relationship (POR) is created among two objects in the
same category, brand and model. Since the reasoning behind the POR is to
create long-distance links, two devices owned by private users, with the same
typology, brand and model, will establish a relationship only if their distance is
greater than a threshold, which is set to 3.8 km in order to reduce the number
of relationships. For the public devices, a node is elected as a hub and all the
other nodes with the same model will create a POR with the hub.

• Devices located in the same place can create a Co-Location Object Relationship
C-LOR. These relationships are created between a static device and a mobile
one and do not take into account the contact duration but only the number
of meetings between the two objects. A number of meetings equal to 10 has
given an appropriate number of relations.

• The Social Object Relationship SOR is a relation type that can be created
among mobile devices and it is based on three parameters, namely the number
of meetings (N), the meeting duration (TM) and the interval between two
consecutive meetings (TI). These parameters are set to N = 3, TM = 15
minutes and TI = 3 hours, respectively.

• Mobile public object have hardly any chance to create SORs, so in order to
include them in the SIoT network, we introduce another specific type of SOR.
This SOR, which we called SOR2, uses the same parameter of the SOR but
with less stringent constraints; in particular, we set them to N = 2, TM = 2
minutes and TI = 1 hour.

The resulting distribution for the network is shown in Figure 3.8, which considers
the matchup of the versions for the different relations. The graph illustrates how
the network is able to create a giant component with all the nodes since its degree
distribution is close to a power law distribution. While Table 3.3 shows the main
network parameters for each relation and the whole network. We can notice that
the SIoT degree distribution can be approximated to a power-law distribution, thus
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Figure 3.8: SIoT Degree Distribution.

Parameters OOR POR C-LOR SOR SOR2 SIoT
Number of re-
lationships

58173 21245 27440 21245 20910 146117

Giant compo-
nent (%)

8.99 4.17 51.28 24.06 15.23 100

Average de-
gree

50.01 2.00 6.59 10.89 16.93 18.02

Average path
length

2.15 1.99 27.31 4.34 3.01 4.22

Diameter 5 2 69 8 7 8

Table 3.3: Relationships’ parameters.

indicating its navigability. This is due to the presence of C-LOR and SOR, while the
OOR and POR, which originate from other parameters, i.e., nodes characteristics
and number of devices owned by a user, deviate from such a distribution: however,
these relationships are still important since they connect groups of nodes so that
the majority of nodes have more than one connection.

The average degree indicates the average number of edges connected to each
node: OOR is the relation that creates the greatest number of friendships, however,
it only creates small clusters of highly interconnected objects and thus the dimension
of the giant component, the highest percentage of nodes belonging to the largest
finite fraction of the entire graph’s nodes, is low. Similar reasoning also applies to
the POR: since the goal of the POR is to create long-distance links, the relation is
created only if the distance between two devices is greater than a threshold so that
the resulting number of relations is lower w.r.t. OOR. Finally, OOR and POR are
able to create a highly connected cluster has can be inferred by the low values of
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the average path length, which is the average number of steps along the shortest
paths for all possible pairs of network nodes. In order to connect the public mobile
devices (buses, taxies and garbage trucks) we had to add another type of relation,
that we called SOR2: this relation makes use of the same parameter of the SOR
but considering less stringent requirements. The contribution of the SOR2 to the
navigability of the network is the same as C-LOR and SOR: since all these relations
create short distance links among devices regardless of their characteristics, they are
able to connect the cluster of objects created by OORs and PORs. The resulting
SIoT network then comprehends a giant component with all the devices where the
longest shortest path between any two nodes, i.e. the diameter of the network, is
still low.

3.2.3 SIoT network navigability

The navigability in a network indicates how a node can reach any other peer and
thus represents a fundamental parameter both for the generation of a network and to
understand the average distance between cooperating nodes. To test the navigability
of our dataset and query generation model, we have chosen the object typology
with the highest number of requested applications, the smartphones, and analyze
1000 processes of the query generation model. All the results are shown with a
95% confidence interval around the mean value, i.e. that 95% of the values from
the distribution lie within ±1.96 standard deviations. The network’s response is
calculated in terms of average distance, i.e. the average number of hops needed to
find all the required services, computed on the number of services of the application.
This is done to avoid disparity among applications that require a different number
of services: if, for example, the application depicted in Figure 3.4 is satisfied in three
hops, that means that the five services composing it are found by the search engine
in 15 hops, and then with an average of three hops each. This is also justified by
the fact that the services can be found in parallel; however, in this thesis we do not
implement any specific searching mechanism, i.e. we are not using any mechanism
for a node to navigate the network on its own with local information. On the
other hand, we compute the distance among two nodes in terms of global network
navigability, i.e., routing is performed by assuming that each object has a view about
the global social network topology.

In order to compare the performance of the query generation model for the SIoT,
we also created two other networks with similar characteristics: a Random network
and a Barabási-Albert network, which is able to generate scale-free networks based
on preferential attachments [50]. The characteristics of the three networks are shown
in Table 3.4: we can see how, at a global level, the SIoT has a higher average path
length and diameter w.r.t the other two networks.

The first set of simulations focuses on the impact of the applications’ frequency.
Queries are then generated with a frequency related to the number of services needed
by the application and without any kind of requirements, i.e. the network has to
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Parameters Random BA SIoT
Number of relationships 145852 146449 146117
Average degree 17.99 18.06 18.02
Average path length 3.68 3.17 4.22
Diameter 5 5 8

Table 3.4: Characteristics of the Random, Barabási-Albert and SIoT networks.
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Figure 3.9: Average number of hops needed to solve a query. The applications’
frequency changes based on the number of services requested by the application
itself.

find all the nodes that can provide the required service. The results are shown in
Figure 3.9.

We can notice that the SIoT network is able to outperform the other two net-
works, independently of the frequency. This is due to the fact that the SIoT relations
are created to connect nodes with similar interests, so as to facilitate the discovery
of information. Moreover, the impact of the applications’ frequency is negligible.
This result can be explained considering that the final goal of a search engine is
to find the services needed by an application and that the same services can be
arranged in several ways thus providing different applications: this means that even
by changing the frequency, the services that need to be found are mostly the same.
In the following, we will consider that all applications generate queries with the
same frequency.

The second set of experiments consists of the analysis related to the space require-
ment: we first evaluate the impact of the mean values for the x and y-coordinates
and then we investigate the effects of the variance.

Figure 3.10 shows the hop distance when nodes request applications that are
located, on average, 0.5, 1.5 and 2.5 km away from them. This value is calculated
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Figure 3.10: Average distance for different mean values of the space requirement.

as the Euclidean distance between the requester and the possible providers. We can
note that there is a difference of almost half a hop between the two extreme cases,
namely 0.5 and 2.5 km; even if the SIoT envisages the creation of long-distance links,
such as the PORs, the greatest number of relations are created with nearby devices,
so the best results can be obtained when a node looks for services in its vicinity.
This is justified by Figure 3.11, which shows the average number of friends created
within 1, 2 and 3 km from a node. We can note that, w.r.t. the other two networks,
in the SIoT the greatest number of relations are created with nearby devices, so the
best results can be obtained when a node looks for services in its vicinity.

To test the impact of the variance, shown in Figure 3.12, we consider different
values that can cover respectively 50, 100 and 500 meters. As expected, the bigger
the variance, the bigger the number of nodes that can provide the requested services
and thus is simpler for the search engine to quickly find them.

The third set of simulations focuses on the time requirements, i.e. how fresh the
information a node is requesting must be. As explained before, the search mech-
anism is performed at the virtual level, where the virtual counterparts store the
information provided by the physical objects: however, this information can not be
always synchronized with the ones sensed by the objects due to energy and band-
width constraints. Based on the characteristics of the objects, every typology has a
different synchronization time (see Table 3.5), so it may happen that the information
found by the search engine is not fresh enough. In this case, the SVO interacts with
the physical object, and then consumes its resources, to ask for additional reading
in order to satisfy the query. Synchronization times are chosen as prime numbers
to avoid that a large number of objects upload information to their corresponding
SVOs at the same time. At the start of our simulation (time 0), all the devices
synchronize their data with the corresponding SVO, and then they follow the syn-
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Figure 3.11: Average number of friends for objects within an area of 1, 2 and 3 km
radius.
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Figure 3.12: Average distance for different variance values of the space requirement.
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Typologies Sync. Time
Car, Indicator, Smart Fit-
ness, Street lighting and Waste
Management

7 minutes

Alarms, Home sensors, Park-
ing, Smartphone, Smartwatch,
Tablet and Transportation

17 minutes

Environment, Pc and Weather 23 minutes

Point of Interest and Printer 29 minutes

Table 3.5: Synchronization time for all types of objects

chronizations depicted in Table 3.5. So at any point in time, when a request with a
temporal constraint arrives, we are able to compute if the SVO can satisfy it with
its information or it has to contact the physical device.

The following results are shown only for the SIoT network; indeed, the network is
created considering only space parameters, so there are no further differences among
the networks.

Figure 3.13 shows the average distance to satisfy a query looking for information
generated within 1, 5 or 10 minutes. We run 100 query processes and each process
is repeated 10 times. Relaxing the time constraint, as it happens with a 10 minutes
requirement, leads to results similar to those obtained without any requirement for
the query; on the other hand, the number of hops increases when the application is
requested within a short time. As we approach the real-time requirement, qreqt = 0,
we can note that some points start to be missing from the curves: in particular,
when requesting applications with a 1-minute requirement, the corresponding curve
has no data for processes 12, 74 and 77. This means that the search engine has not
been able to find any SVO satisfying the query in any of the 10 runs.

We then decided to analyze the number of times an SVO has to contact its
physical counterpart during the 10 runs to satisfy the query. Figure 3.14 shows the
corresponding results: as expected, with 1-minute requirement and during processes
12, 74 and 77, the SVO had to contact the physical object for all 10 runs and 6.43
times on average over the 100 processes, while with the 10-minutes requirement it
is always possible to find an SVO with the required service. Finally, with the 5-
minutes requirement, the physical objects are contacted on average less than once
for each process (0.77 times).

The last set of simulations concerns the performance of the network to satisfy a
complete query with both space and time requirements. To this, we decide to create
a generic query requesting an application 1.5 kilometer away from the requester
(mean value) with a range of 200 meters (variance value) and with information
related to the last 5 minutes (time value). Figure 3.15 on the left axis shows the
distance to solve the query, which is 3.16 hops over the 100 processes.

Finally, on the right axis of Figure 3.15, we try to analyze if hubs are involved in
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Figure 3.13: Average distance for different values of the time requirement.

the search process by plotting the average degree of the intermediate nodes between
requester and provider, i.e. the degree of the nodes forwarding the query. Given that
the global network navigability returns the best possible path, it is also able to find
the best intermediate nodes, i.e. the hubs in the network. By analyzing the degree
of such nodes, we provide hints to the development of local routing algorithms, that
should make use of these nodes. The average degree for the requesters is 17.43
friends, which is in line with the average degree of the network, while the average
degree for the providers is 50.25 friends. However, when studying the degree of the
intermediate nodes we find that its value is 149.08 connections thus confirming that
the hubs are a crucial part of the search mechanisms in the SIoT.



44 CHAPTER 3. SIOT DATASET OF AND QUERY GENERATION MODEL

10 20 30 40 50 60 70 80 90 100

Query Processes

0

1

2

3

4

5

6

7

8

9

10

R
e

a
l 

O
b

je
c

t 
R

e
q

u
e

s
ts

1 minute

5 minutes

10 minutes

Figure 3.14: Number of request to real world objects due to the time requirement.
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Chapter 4

Trust Management Model

The focus of this chapter is to propose a first trust management model able to
identify all the trust attacks analyzed in Section 2.2.1 and isolate the nodes per-
forming them. According to the scenario presented in Chapter 3, in our model-
ing, the set of nodes in the SIoT is represented by N = {n1, ..., ni, ...nI} with
cardinality I, where ni is the generic node. The resulting SN, created by the de-
vices’ relationships, can be described by an undirected graph G = {N , E}, where
E ⊆ {N ×N} is the set of edges, each representing a social relation between a
couple of nodes. The friends of the generic node ni are represented in our model by
Ni = {nj ∈ N : ni, nj ∈ E}, that is the set of nodes that share a relation with it;
moreover, we define Hij = {nh ∈ N : nh ∈ Ni ∩Nj} as the set of common friends
between ni and nj.

Every node in our network can provide one or more services, so that Sj is the set
of service that can be provided by nj. The reference scenario is then represented by
a node ni requesting a particular service Sh: a Service Discovery component in the
network is able to return to ni a list of potential providers Ph = {nj ∈ N : Sh ∈ Sj}.
At this point, the requester has to select one of the providers in Ph based on their
level of trust. The trust level is usually computed based on the previous interactions
among the nodes. Indeed, after every transaction l, the requester ni assigns feedback
to the selected provider nj to evaluate the service: we can then define the set of

feedback Fij =
{
f 1
ij, ..., f

l
ij, ...f

Lij

ij

}
, where l indexes from the latest transactions

(l = 1) to the oldest one (l = Lij), so that Lij represents the total number of
transactions between the two nodes. Each feedback can be expressed using values
in the continuous range [0, 1], where 1 is used when the requester is fully satisfied
by the service and 0 otherwise.

Figure 4.1 provides a simple example of a generic graph N = {n1, ..., n9}, with
each node capable of providing one or more services, as highlighted in the grey
clouds; n1 is the node that is requesting the service S7, as highlighted in the white
cloud; Ph = {n5, n6} is the set of nodes that can provide the requested service. In
this figure, we also highlight the set N1 = {n2, n3, n4} of nodes that are friends



46 CHAPTER 4. TRUST MANAGEMENT MODEL

S2, S5

S1

S7?

S5

S3, S4

S1, S2

S1, S7, S8

S2

S6, S7

Trust levels:

1. T15

2. T16

Figure 4.1: Trust Management Model.

of n1 (in light blue color). Within note that the set H15 = {n2, n4} and the set
H16 = {n4} of nodes represent the common friends between n1 and n5 and between
n1 and n6, respectively. For each of the provider in Ph, the requester n1 computes the
trustworthiness levels, T15 and T16, and then chooses the provider with the highest
value, which is n5 in our example.

The goal of any trustworthiness management model is to compute and list the
trust level of all the providers. This step is fundamental to help the requester to iden-
tify the most reliable node to whom require the service and to avoid any malicious
node. In our model, we envision that each node ni computes the trustworthiness
level Tij of all the possible providers nj on its own, so that different nodes can make
different choices when selecting a provider based on their past experiences.

4.1 Trust Model Design

According to the presented scenario, we propose a decentralized scenario, where
each node calculates and stores information about the other nodes, so to have its
own opinion about the network: in this way, malicious attacks that change their
behaviour based on the requester, such as DA, are easily identified. Whenever a
node ni has to evaluate the trustworthiness of another node nj, it computes the
trust value as follows:

Tij = αLijCj + βLijRij + γLijOij + δLijSij (4.1)

All these addends are in the range [0, 1] and the weights are selected based on
the total number of transactions Lij between node ni and nj. Moreover, the weights’
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sum, namely αLij + βLij + γLij + δLij , is always equal to 1, in order to normalize
the trust value in the interval [0, 1], and their relative value can be changed to give
more impact to a particular parameter.

A generic node ni evaluates the trustworthiness Tij based on four parameters:
the Computation Capabilities Cj of the service provider, the Relationship Factor
Rij between the two nodes, the External Opinions Oij provided by ni’s friends and
the Dynamic Knowledge Sij acquired by the requester. The Dynamic Knowledge
represents the core of our system, which has to learn how to identify malicious
nodes. This ability is tied to its experience, i.e. to the past transactions of the
node. Accordingly, the proposed trustworthiness model is divided into two phases:
a training phase and a steady-state phase. In the training phase, the contribution
of the Dynamic Knowledge is limited, because the requester is trying to learn the
behavior of the provider: since the requester has to understand the behavior of
each node it interacts with, the four weights are dependent by both the requester
and the provider; we omit this dependency to avoid too much confusion in the
presented equations. In particular, the value of δLij grows with the total number of
transactions Lij between the requester ni and the provider nj, as follows:

δLij =

{
(Lij − 1)/Ltr for Lij ≤ Ltr

1 for Lij > Ltr
(4.2)

where Ltr represents the number of transactions needed to train the Dynamic
Knowledge. The residual weight, i.e. 1 − δLij , is then shared among the other
weights.

4.1.1 Training Phase

The goal of this phase is to let the Dynamic Knowledge factor collects enough
experience. Until this happens, the trust value of the potential providers is calculated
based on the elements described below.

The Computation Capabilities Cj is a static characteristic of an object which
does not vary over time. This factor accounts for the heterogeneity of the IoT where
some devices are more powerful than others so their ability to act maliciously is
higher and they can lead to more uncertain transactions. To take into account
this possibility, the model assigns lower values to objects with great computational
capabilities w.r.t. devices with only sensing and actuation capabilities.

The Relationship Factor Rij is a unique characteristic of the SIoT and it is
related to the relationships that ties node ni and nj. Using [6] as a starting point,
we set the greatest value for the OOR relationship and decreasing values for the
other relations. If two nodes are tied by two or more relationships, e.g. they have
created both an OOR and a SOR, we consider the strongest relation which then
they have with the highest value. If two nodes have no direct relation, the model
computes the sequence of social links between them and consider the weakest link
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in the path, i.e. the minimum value of all the relationship factor. To account for the
uncertainty of the intermediates nodes, this value is further divided for the number
of hops that separate node ni and node nj.

The External Opinion Oij evaluates the recommendations provided to ni by
the friends in common with nj, namely the nodes in Hij and is expressed as:

Oij =

|Hij |∑
h=1

Tih · Thj

/|Hij |∑
h=1

Tih (4.3)

where Thj represents the opinion, i.e. the trust value, that each of the com-
mon friends nh has for node nj. These values are weighted with the trust values
that node ni has already computed towards its friends, so that the opinion of trust-
worthy nodes is considered more than the one from low trustworthy nodes. Indeed,
recommendations represent an effective strategy, adopted by many trust algorithms,
to easily obtain information regarding other nodes. This is especially true when a
node’s direct experience is still scarce. However, they are also exploited by many
trustworthiness attacks, such as BMA and BSA, to confuse the network: using the
external opinion only in the training phase, our model is resilient to all these types
of attacks.

Moreover, at the end of each transaction, ni assigns a feedback not only to the
provider but also to the friends in Hij, which have contributed to the computation of
the external opinion. According to Eq. 4.4, if a node provided a positive opinion, it
receives the same feedback as the provider, i.e. a positive feedback if the transaction
was satisfactory, f l

ij ≥ 0.5, and a negative one otherwise, f l
ij < 0.5. Instead, if nh

gave a negative opinion, then it receives a negative feedback if the transaction was
satisfactory and a positive one otherwise.

f l
ih =

{
f l
ij if Thj ≥ 0.5

1− f l
ij if Thj < 0.5

(4.4)

Moreover, to further reduce the possibility of attacks on the recommendations, in
our algorithm, a node uses them only in the training phase to accumulate experience
and then it only relies on its Dynamic Knowledge.

4.1.2 Steady-State phase

After the training phase, only the Dynamic Knowledge is used to evaluate the possi-
ble providers. According to the presented scenario, certain types of malicious nodes,
e.g. OOA and OSA, continuously change their behaviour. In order to address this
issue, the Dynamic Knowledge must be able to continuously learn and adapt to the
myriad of possible malicious behaviours. To compute its value, we make use of an
incremental Support Vector Machine (SVM), so that a node can constantly extends
its knowledge after a new transaction: in particular, a SVM is a supervised learning
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model that analyzes a set of data, in our case the first Ltr transactions, to provide
some sort of classification. SVM algorithms have been applied to solve a variety
of applications [51]. With respect to other machine learning algorithms, the risk of
over-fitting is less, it is relatively memory efficient and is effective when there is a
margin of separation between classes. The accuracy of this classification is tied to
the number of historical data obtained [52]: in our case, the output of the SVM
represents the probability that a service provider is benevolent or not, i.e. its trust
value. More details regarding the validation process of the iSVM and a comparison
with other incremental machine learning algorithms will be presented in Section
4.2.2.

After every transaction, the Dynamic Knowledge is updated, so that it is able to
learn from its past experience and can provide a more accurate evaluation. Since we
make use of an incremental SVM, with each new transaction the model’s knowledge
is extended and updated, without the need to train the SVM from scratch. This way,
each node can implement a dynamic Machine Learning algorithm even with limited
resources and active learning is much faster w.r.t. a traditional approach. In order
to train the SVM, past transactions are expressed in terms of scores, which have the
goal to highlight different aspects of the interaction among nodes. Three scores are
used as inputs for the Dynamic Knowledge, which are able to evaluate the entire
history of the nodes as well as their recent behavior. In this way, the attacks with a
dynamic behaviour over time, such as OOA and OSA, can be recognized. The first
score is the Goodness Score: this score enables the SVM to evaluate nodes on
a long-term period and measures how benevolent the node has been during all its
transactions. The score is evaluated as the fraction of all the “good” transactions,
i.e. all the transactions evaluated in a positive way by the requester:

Gij =
|
{
f l
ij ∈ F : f l

ij > TH
}
|

Lij

(4.5)

where TH is the threshold a requester set to consider services as “good”. High
values of this score mean that the service requester is overall satisfied by the services
obtained from the provider. This factor is also useful to identify benevolent nodes
which provide services with low accuracy that a requester would like to avoid and
that are then labeled with a low value of the Goodness Score.

However, the Goodness Score is not able to react to sudden changes in the
behavior of a node, as it happens for dynamic attacks such as OOA and OSA. To
overcome these attacks, we make use of two other scores, which evaluate the behavior
of the service provider considering a small temporal window, which makes use of the
last Ls transactions.

The Usefulness Score is used to evaluate only the recent behavior of a node,
as follows:
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Uij =
Ls∑
l=1

wl · f l
ij (4.6)

where, in order to give more relevance to the latest transaction w.r.t. the oldest
one, the weights wl of each feedback follows a geometric distribution with parameter
ρ

wl = ρ(1− ρ)l−1 + (ξres/Ls) (4.7)

to maintain the score in the range [0, 1], we introduce the term ξres which account
for all the residual weight of the distribution due to the transactions older than Ls.
ξres is then computed as:

ξres =

Lij∑
r=Ls+1

ρ(1− ρ)r−1 (4.8)

The Perseverance Score evaluates the constancy of a node in providing good
services and it is computed as:{

P
Lij

ij = 0.5 if Lij = 1

P
Lij

ij = P
Lij−1
ij + Vij if Lij > 1

(4.9)

where Vij is a parameter that reward/punish a node based on its constancy in
providing good/bad services, as described by:

Vij =

{
viju for f

Lij

ij ≥ TH

−vijd for f
Lij

ij < TH
(4.10)

u and d represent the basic increase/decrease of the score; however, consecutive
good or bad transactions can further reward/penalize a node, which is then encour-
aged to stay benevolent, according to the value of vij: this value is calculated as the
number of consecutive transactions evaluated positively/negatively by the requester.
As the other scores, also the Perseverance Score is limited in the interval [0; 1]; in
the event the score obtained from Eq. 4.9 is out of these bounds, its value is set to
the nearest bound.

4.2 Model Evaluation

4.2.1 Simulation Setup

In order to test our trustworthiness model, we need a large dataset of a SIoT scenario.
To this, we make use of the dataset and the QGM illustrated in Chapter 3. We
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decide to consider only a connected sub-network of around 800 nodes to increase
the probability of two nodes interacting with each other.

Two main behaviors are implemented in the network: one is cooperative and
benevolent, so that a node always provides good services and recommendations.
The other one is a malevolent behavior, where a node tries to disrupt the network
by implementing one of the trust attacks presented in Section 2.2.1. Table 4.1 shows
the optimal configuration of the simulation parameters for the proposed system, and
the different weights used for the model. For simplicity, we suppose that the service
requester is able to perfectly rate the received service providing binary feedback: 1
for satisfactory services and 0 otherwise. Finally, Table 4.2 presents the values for
the relations created by the objects and for their computation capabilities. Between
two objects that belong to the same owner and then are linked by an OOR, the
relationship factor has been assigned with the highest value. C-LORs have been set
with only a slightly lower value since they are established between domestic objects
and objects of the same workplace. SORs are relationships established between
objects that are encountered occasionally (then owned by acquaintances) and for
this reason a smaller value is given. Finally, the PORs are the riskiest, since they
are created between objects of the same brand but that never met and depend only
on the model object. If two nodes are tied by two or more relationships, the strongest
relation with the highest factor is considered. Computation capabilities are divided
into two classes: Class1 is assigned to objects with only sensing capabilities, that
is, an object just capable of providing a measure of the environment status and to
the RFID-tagged objects. Class2 is assigned to objects with great computational
and communication capabilities; to this class belong objects such as smartphones,
tablets, vehicle control units, displays, set top boxes, smart video cameras.

To find the optimal setting for the residual weight, i.e. 1− δLij , we analyze the
model’s response at varying the other weights, namely α, β and γ. Table 4.3 displays
the transaction success rate when the system has reached the steady-state phase.
As expected, the external opinion has more impact than the static characteristics,
since it can help to identify malicious behaviors, however, since we are considering
the startup phase, they are still useful when there is no information available.

Ltr is selected based on the machine learning algorithm validation. As shown in
the next section, the selected value ensures a sufficient initialisation for the iSVM
algorithm and an efficient prediction in the classifications. The ρ parameters guaran-
tees a compromise in the evaluation of the feedback: a value close to 1 only considers
the newest feedback, while a value close to 0 considers all the feedback as equally
important. Finally, u and d are picked asymmetric in order to encourage benevolent
behaviours and punish malicious nodes.

4.2.2 Simulation Results for Machine Learning algorithms

This Section aims to validate the performance of the incremental SVM (iSVM)
algorithm and to compare it with other incremental machine learning algorithms.



52 CHAPTER 4. TRUST MANAGEMENT MODEL

Parameter Description Value

α
Residual weight of the

Computation Capabilities
0.3

β
Residual weight of the
Relationship Factor

0.3

γ
Residual weight of the

External Opinion
0.4

Ltr Number of transactions to
train the Dynamic Knowledge

5

TH
Threshold to consider
a service as ”good”

0.5

Ls Temporal window to compute
Usefulness and Perseverance Score

10

ρ
Parameter of the

geometric distribution
0.4

u
Basic increase of the
Perseverance Score

0.1

d
Basic decrease of the
Perseverance Score

0.2

I Number of nodes in the network 791
Percentage of malicious nodes 25%

Table 4.1: Simulation Parameters

Relationship Factor

Relationship OOR C-LOR SOR POR

Rij 1 0.9 0.6 0.5

Computation Capabilities

Capabilities Class 1 Class 2

Cj 1 0.4

Table 4.2: Parameters for Relationship Factor and Computation Capabilities

α = 0.1 β = 0.1 γ = 0.8 SR = 0.83

α = 0.1 β = 0.8 γ = 0.1 SR = 0.82

α = 0.8 β = 0.1 γ = 0.1 SR = 0.81

α = 0.3 β = 0.3 γ = 0.4 SR = 0.85

Table 4.3: Parameters Settings



4.2. MODEL EVALUATION 53

In order to validate the performance of the algorithms we have used the Receiver
Operating Characteristic (ROC) curve and the Area Under the ROC (AUC) curve
as performance metrics. The ROC represents the diagnostic ability of a binary
classifier system, i.e. the true positive rate versus the false positive rate at different
classification thresholds. Lowering the classification threshold classifies more items
as positive, thus increasing both False Positives and True Positives. The measure
of performance between the algorithms is provided by the AUC, which indicates
how much a model is capable of distinguishing between classes: a model whose
predictions are 100% wrong has an AUC of 0.0; one whose predictions are 100%
correct has an AUC of 1.0. We compare the performance of the iSVM with two well-
known incremental algorithms, the incremental Logistic Regression (iLR) [53] and an
incremental artificial neural network, the incremental Radial Basis Function network
(iRBF) [54]. The testing network used for the validation is composed by a requester
interacting with nodes, as providers, that implement each a different behaviour,
from benevolent to all of the seven possible attacks. We vary the number of total
transactions among the requester and all the providers to study the ability to learn
of the algorithms; we consider that out of all the transactions, 70% of them are used
to train the incremental models while the remaining 30% are used for the validation.
Figure 4.2 shows the trend of the ROC curve for 4 experiments based on 160, 650,
1600 and 3200 transactions of the requester. Considering all the possible providers,
this means that the number of transactions used for validation with each node is 6,
25, 60 and 120 transactions. The Figure shows how the incremental Support Vector
Machine (iSVM) is able to outperform the other two algorithms: except for the first
set of simulations, with only 6 transactions per node used for validation, the iSVM
has the best values of AUC: the system continuously learns from the processed data
so that the iSVM increases its percentage of correct predictions with the growth of
the dataset of transactions. Moreover, even if the accuracy of the iSVM is low when
considering few transactions per node, the proposed model is able to mediate it
thanks to the training phase, which makes use of other parameters to obtain higher
accuracy in selecting trustworthy nodes.

4.2.3 Simulation Results for Trust Management Model

We evaluate the performance of the proposed system by analyzing the success rate,
i.e. the ratio between the number of successful transactions and the total number
of transactions, or by directly calculating the level of trust computed by a node.

We compare the performance of the proposed model with two well known models
by the research community that, similar to our model, are designed for the same
scenario, i.e. Social IoT scenario, namely the model proposed by Nitti et al. [6] and
the one presented in [20] by Chen et al. Both these models make use of a subjective
approach where every node has its own vision of the network and relies on the
recommendations from its friends to speed up the evaluation of trust. Differences
in the performance of the models can depend on the structure of the SN considered
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Figure 4.2: ROC curves for the machine learning algorithms for 4 experiments based
on 6, 25, 60 and 120 transactions per node.

and on the types of service/information requested. To this, we did not consider our
ad-hoc SN but we have adopted the Social IoT dataset described in the previous
subsection, opportunistically re-scaled to a size comparable to their experiments.
Moreover, we have considered the same requests for all the three models, so we
are confident that the obtained results are consistent with those obtained by the
authors.

These comparisons are aimed at analyzing the improvements we obtain with
respect to the state of the art in the specific reference SIoT scenario. We tested all
the different types of attacks, except for the SA and the SPA, which are avoided by
default in our system: even if a node creates multiple identities or provides good
recommendations for itself, the computed trust can not be influenced.

Figure 4.3 shows the transaction success rate when malicious nodes implement
two trust-related attacks, ME and DA. We consider that 25% of the nodes are
malicious and in the case of the DA, they only act maliciously with nodes that they
meet occasionally or they have never met, i.e. with nodes they have a weak relation
with, such as POR and SOR. All the models have a good reaction to these two
attacks and are able to achieve a high success rate, ranging from 88% to 94%. This
is not a surprising result, since both these attacks are usually the ones used to test
trustworthiness models. All the implemented algorithms have a better performance
to the Discriminatory Attack w.r.t. to the ME, even if devices implementing ME are
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Figure 4.3: Transaction success rate for two classes of trust attacks.

Proposed Chen et al. Nitti et al.
n1 T14 = 0.97 T14 = 0.81 T14 = 0.83

Requester n2 T24 = 0.97 T24 = 0.8 T24 = 0.8
n3 T34 = 0.02 T34 = 0.31 T34 = 0.42

Table 4.4: Performance Comparison of the Three Models against the Discriminatory
Attack.

easier to be identified since they do not behave differently according to the requester:
this can be explained considering that due to the changing behavior of the DA, the
total number of transactions in which a node acts as malicious are only a subset of
all its transaction.

To better understand how the three models react to the DA, we set up a small
network of 4 nodes fully connected, where 3 benevolent nodes, n1, n2 and n3, have
15 interactions each with one malevolent DA node n4. Only the relation {n3, n4} is
weak, so n4 only behaves maliciously with n3 and benevolent with n1 and n2. The
results are shown in Table 4.4: as expected, in all the models, both n1 and n2 have a
high trust value for n4 while, despite n3 is able to identify n4 as a malevolent node in
all the models, the trust value obtained is highly variable. Only our proposed model
assigns a really low trust value to n4, while the other two models compute higher
values due to the strong influence of the common friends within their algorithms.

We now want to analyze the results at varying percentage of the malicious nodes.
Figure 4.4 refers to a scenario where all the malicious nodes implement ME: it
shows that even with 70% of malicious nodes the success rate is over 50% and the
algorithm is still able to converge. This happens since every node has its own vision
of the network based on the acquired Dynamic Knowledge, however, the accuracy
decreases, since it increases the possibility that all the available service providers
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Figure 4.4: Transaction success rate at increasing values of % of malicious nodes.

are malicious. We need more than 75% of malicious nodes for the success rate to
drop below 0.5: we have run a similar test also for the other two algorithms: Chen’s
algorithm is able to resist over 80% of malicious nodes while Nitti’s performance is
similar to our with 75% of malicious nodes. This result is related to the subjective
approach of these two models, where each node takes its own decisions.

The focus of the next set of simulations is to test how the proposed model works
with the dynamic behavior of the nodes, i.e. against the OOA. We suppose that
after 40 transactions, a malicious node starts to change its behavior from benevolent
to malicious and vice versa every 20 transactions. Figure 4.5 illustrates the trust
value of a node performing such attack and shows how the algorithm is able to
quickly adapt to the changes in the node behavior: only 3 transactions are needed
to modify the trust value of the malicious node, both when the node is exploiting
its good reputation and when it is trying to build up its trust. Table 4.5 presents a
comparison with the other two models in terms of the number of transactions needed
to change the trust value past 0.5 and highlighting the initial and final trust, Ti and
Tf respectively, computed before and after the changing behavior. We note how
our model is the fastest one to recognize the dynamic behavior so that only a node
changing its behavior every 2 transactions is able to successfully being undetected.
Moreover, we also observe that the final trust values Tf assigned by our model are
rather confident, since they are closer to the trust limits, i.e. 0 for malicious nodes
and 1 for benevolent nodes, while the other two models compute a trust value of
around 0.5, thus indicating uncertainty in the evaluation of the node.

The next set of simulations focus on the reaction of the models against BSA (solid
lines) and WA (dotted lines), as shown in Figure 4.6. In the BSA case, the requester
node receives high recommendation values concerning a malicious provider from two
common malicious friends. To tackle this attack is important to understand how
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Figure 4.5: Trust value of a malicious node that performs an On-Off Attack.
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Figure 4.6: Trust value of a malicious node that performs a Ballot Stuffing Attack
and a Whitewashing Attack.



58 CHAPTER 4. TRUST MANAGEMENT MODEL

Proposed Chen et al. Nitti et al.
# tr. Ti Tf # tr. Ti Tf # tr. Ti Tf

ON → OFF 3 0.99 0.09 4 0.81 0.49 5 0.82 0.45
OFF → ON 3 0.05 0.77 5 0.41 0.5 5 0.17 0.5

Table 4.5: Performance Comparison of the Three Models against the On-Off Attack.
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Figure 4.7: Trust value of benevolent node with or without BMA.

each model manages the recommendations received by the common friends: in our
model, such recommendations are used only in the startup phase and their weight
decreases with the number of transactions as the Dynamic Knowledge acquires more
experience (see Eq. 4.2). Chen’s and Nitti’s algorithms share a similar approach:
the indirect opinion has always a certain relevance in the trust score computation,
however, its weight is different in the two models (0.15 in Chen’s algorithm and 0.3
in Nitti’s). From the Figure, we can see the trust value of the nodes implementing
BSA and we can notice how our proposed model is almost non affected by the BSA
(low trust values after only a few transactions), while the trust value computed
by the other two models is definitely higher but still under the 0.5 threshold, thus
marking the BSA nodes as malicious. In the case of WA, a malicious node with a bad
reputation after 10 transaction leaves and re-joins the network to reset its trust to
the default value. All the models are able to identify the node with few transactions
and to label it again as malicious. However, Nitti’s and Chen’s algorithms are more
robust to this attack, since the gain in the trust value of the WA node is lower w.r.t.
our model.

The next set of experiments tests the BMA, where a malicious node provides
false recommendations to decrease the trust of benevolent nodes. We first test if
this attack could lead a requester to choose a malevolent node over a benevolent one:
all the models select the malevolent node only once and are then able to select the
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% of Positive Transactions
Trust Percentile Proposed Nitti Chen

10% 100 86 82
20% 93 68 67
30% 86 61 57

Table 4.6: Percentage of positive transactions for an Opportunistic Service Attack
over 100 transactions

benevolent node. This is due to the higher importance given by the models to the
direct experiences w.r.t. indirect recommendations. Moreover, the number of nodes
implementing BMA does not affect this result. Then we investigate how the trust
value changes in a scenario where a benevolent node is attacked by bad-mouthing
nodes w.r.t. a benevolent node with no attackers. Figure 4.7 shows how our model
is only affected by the BMA in the startup phase and it is then able to achieve
the same trust values for the two benevolent nodes; the other two models present
a lower trust value, which does not increase with the number of transactions, due
to fixed parameters external to the requester experience, such as the centrality or
the computation capabilities. Moreover, it clearly appears how BMA nodes can
confuse the network, especially in Nitti’s algorithm which gives a higher weight to
the indirect opinion than Chen’s.

The next set of simulations examines the OSA, where a node changes its behavior
so that its trust value computed by the requester maintains an acceptable level.
However, a node’s goal is not to have a high trust value but rather to have a value
higher than the other providers in order to be chosen (and then have a chance to
behave maliciously). To test this attack, we consider only a service requester and a
malicious service provider performing the attack. We suppose that the provider is
perfectly aware of its trust reputation and act maliciously only when its trust value is
among the 10%, 20% and 30% percentile of the most trustworthy nodes. Considering
100 transactions between the two nodes, Table 4.6 shows the percentage of positive
transactions for the three models. As expected, a larger percentile enables the
malicious node to perform more attacks, however the node could not be selected as
a provider if there are other possible providers for the same service. If the malicious
node wants to be sure to be selected and set a stringent percentile, the number
of opportunities to behave maliciously reduces. However, our approach is able to
compel the malicious node to perform the highest number of positive transactions
w.r.t. to the other two models, thus indicating the ability of the model to cope with
this attack. In particular, if a malicious node wants to stay in the 10% percentile,
it has to always perform benevolent.

We want now to show how the three models respond to a network with a mix of
all the attacks analyzed. The result, in terms of transaction success rate, is shown
in Figure 4.8, considering 5% of malicious nodes for each type of attack, for a total
of 30% malicious nodes. Our model is able to converge faster and to outperform
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Figure 4.8: Transaction success rate with all types of malicious attacks.

Benevolent Node -
Error percentage

Malicious Node

0% 10% 20% 30% 40% 50%
ME/
DA

WA OOA OSA

Trust 0.99 0.86 0.79 0.72 0.57 0.28 0.02 0.05 0.12 0.88

Table 4.7: Average of Trust for the benevolent nodes with error percentage and the
malicious nodes.

the other two with a success rate of over 95%. By analyzing which attacks had a
higher impact, we see how simple attacks are better managed by Chen and Nitti’s
algorithms, however, as expected, they highly suffer smart attacks, such as OSA and
OOA, which are not sufficiently tackled by them.

Finally, the last set of simulations is aimed to understand how our system reacts
when benevolent nodes offer poor services due to errors related to several reasons.
We then consider a requester which interacts with benevolent nodes which have
a different probability to respond with an incorrect service due to some kind of
error. For each value of the error percentage, we simulate 100 transactions between
the nodes and mediate the results over 100 runs. Table 4.7 shows the resulting
trust values for different error rates of the benevolent nodes and compare them
with the trust values of malicious nodes, without considering the attacks on the
recommendation, i.e. BSA and BMA. Due to the subjective approach of our model,
DA performs similar to ME, since, if it is connected to the requester by a weak link,
it will always provide false services; nodes implementing WA have a slightly higher
trust value, since they can reset their trust to the default value. As expected, the
results show how increasing the error rate, the average trust of benevolent nodes
decreases. However, even for nodes with a 50% error rate, their trust is still higher
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than nodes implementing OOA, which has a similar behaviour, i.e. 50% benevolent
transactions and 50% malicious transactions: this is due to the Perseverance Score,
which evaluates negatively the consecutive bad services of the OOA. Only a node
implementing OSA is able to maintain a high level of trust. In this set of simulations,
we consider that an OSA node acts maliciously only when its trust value is among
the 20% percentile of the most trustworthy nodes. As seen in Table 4.6, this means
that the node will have more than 90% of trustworthy transactions, and thus can
be considered as a node that offers bad services 10% of the time.
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Chapter 5

Trust Management Models
Deficiencies

According to previous chapters, the goal of any TMS is to identify malicious be-
haviours as soon as possible in order to isolate the nodes implementing such be-
haviours and discourage them from acting maliciously. However, the papers in the
literature overlook essential deficiencies of the scenarios used to test TMSs. In the
following chapter, we present a research study evaluation and an important valua-
tion for classifying the most appreciated approaches in the state of the art. Figure
5.1 illustrates the distribution of the 43 analysed research papers over time accord-
ing to their publishers (IEEE, Springer, Elsevier, MDPI, ACM, Hindawi, Intelligent
Networks and Systems Society, The Institution of Engineering and Technology, and
Bentham Science Publishers). We considered studies published online in recent
years, from 2017 to 2021, which were published to provide a management method
to guarantee trust in the IoT. The following string was defined to process the
investigation:

• (“Trustworthiness” OR “Trust model” OR “Trust management” OR “Trust
Technique”) AND (“IoT” OR “Internet of Things”).

The systematic review analyses all the resulting papers from our investigation in
order to provide a response to the following analytical questions (AQ) in agreement
with our thesis’s goals:

– AQ1: Can providers make errors when providing a service?

All the analysed trust management models rarely dealt with errors in service
providing; among all the analysed papers, only [55–57] take into account this
problem. Some errors involve benevolent nodes in a transaction: well-behaving
devices could provide the wrong services due to errors, poor performance, poor
accuracy or technical problems in general. The majority of the state-of-the-art
models do not consider any type of error in the trust composition; even so,
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Figure 5.1: Distribution of research papers.

a few evaluate the simulations in a scenario with errors, not distinguishing
provider errors from malicious behaviours. However, considering the prob-
ability of error in the trust composition could improve the performance of
algorithms against errors.

– AQ2: How are the services evaluated? Is there any evaluation system?

When a node receives the requested service, it needs to check if it is consistent
and then rate it. Therefore, the feedback has the role of being the source of
a trust model, which takes care of the services and their processes. Unfor-
tunately, the community barely examines the mechanism of evaluation, and
usually, in their algorithms, the nodes provide perfect feedback in a discrete
dimension, where 0 represents a poor service and 1 a good one. Among the
analysed works, [58–60] propose an evaluation system for receiving services,
which is used to rate the interactions with the other nodes in the network.
On the other side, most proposed models focus only on trust computation
techniques and superficially treat feedback generation.

– AQ3: Do trust algorithms contemplate the possibility of the requester making
errors in the evaluation?

As we previously remarked, the state-of-the-art works rarely evaluate errors:
the models do not tackle any discrimination between service evaluation errors
(requester side) and service providing errors (provider side). However, few
authors contemplate a feedback algorithm in their algorithms, even though
they presuppose perfect evaluation competence in the requesters. Examining
the probability of errors in the evaluation service phase could improve the
scenario, which would be more comparable to reality. Therefore, evaluating
the feedback could increase the number of applications making use of a trust
algorithm. In all the analysed papers, only [61–63] consider errors in the
feedback evaluation process.

The majority of the state-of-the-art models exhibit the same assumptions: each
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requester can evaluate perfectly the received service, and any probability of error
is contemplated in the algorithm creation. However, a trust model should consider
a probability of error, whether from the requester side (service evaluation) or the
provider side (sending a service).

In the following, we show how these assumptions are essential for a trust model.
In addition, we illustrate how a simple trust algorithm could replace a complex one
if it does not consider errors, with the best results in terms of malicious behaviour
detection.

5.1 Testing Different Trust Models

In this section, we test and compare different models in order to show the impor-
tance of accurately describing the scenario used to test the models. Our tests show
that advanced techniques are not necessary in the scenarios commonly used in the
literature. On the other hand, complex solutions become essential when models do
not overlook error probability in service providing or evaluation.

We used as a baseline to compare other models the simplest approach possible
(labelled as Basic Approach in the figures): this approach makes use only of the
requester experience, i.e., the requester does not make use of recommendations from
its neighbours, and only the last interaction with the provider is considered in order
to evaluate its trust. This means that, since the general scenario used to test TMSs
only considers the ability for the requester to perfectly evaluate the service received,
the trust can only assume two values: 1 if the service was good and 0 otherwise.
Moreover, if the trust of a provider reaches 0, i.e., the last service was not evaluated
positively by the requester, the provider will no longer selected.

We first evaluated the performance of the basic approach by analysing the success
rate, i.e., the ratio between the number of successful transactions and the total
number of transactions, or by directly calculating the level of trust computed by
a node. We compared its performance with well-known models in the research
community. In the first work [6], Nitti et al. proposed a trust model designed for
the Social IoT (SIoT) scenario. The authors propose a decentralized architecture
in which each node computes the trust values of providers on the basis of its own
experience and on the opinion of the neighbours. The trust is evaluated considering
QoS parameters, such as transaction service quality and computation capability,
and social metrics, such as centrality, relationship factors and credibility. Each node
computes the trust value of providers applying a static weighted sum, considering all
the mentioned parameters and feedback of past interactions. Another work designed
for the social scenario is presented in [20]. Chen et al. illustrate a scheme for
service access based on recommendations. The authors considered both QoS metrics,
such as energy status, quality reputation and social relationships. In the scheme,
each node has its own vision of the network and relies on the recommendations
from its friends to speed up the evaluation of trust. The final trust values are
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computed based on the parameters and past performances toward a weighted sum.
The other two models, i.e., those from Adewuyi et al. [64] and Mendoza et al. [65],
are designed for a generic IoT scenario. In the first work, the authors propose a
subjective approach to evaluate and manage trust between nodes in collaborative
applications. A trust aggregation function based on a weighted sum is used to
calculate trust values. A concept based on trust decay is introduced to address
the issue of trust update, and many resources, such as recommendations and past
experience, are used for the computation. In addition, in the second study, the
authors present a distributed trust management based on only direct information
acquired by communication between nodes. The model considers only service quality
attributes; it assigns positive trust value to the node that collaborates in service
providing and a negative trust value to the node that refuses to cooperate. No
social attributes are considered, and the model proposes mitigating attacks towards
a reward and punishment mechanism and analysing QoS attributes.

Figure 5.2 shows the transaction success rate when malicious nodes implement
the ME attack, i.e., nodes that act maliciously with everyone providing inadequate
services, under the scenario conditions at varying percentages of the malicious nodes.
We considered that 10%, 20% and 30% of the nodes are malicious and that every
time a requester is looking for a service there is an average of 60 possible providers.
All the models had a good reaction to this attack and were able to achieve a high
success rate, always higher than 95%, 93% and 80%. However, it is clear that the
basic approach is able to outperform the other approaches: this happens since as
soon as a requester detects a provider implementing the ME attack, that requester is
labelled as malicious, its trust reaches 0 and it is never selected again. Moreover, we
can see how models have different behaviours for various percentages of errors, and
each algorithm performs differently with respect to others for several percentages of
errors.

As the first result, the simplest algorithm would seem to overcome the complex
ones; this is possible because most trust models overlook the important issue of errors
in the scenario used to test them. Benevolent providers could supply inadequate
services due to malfunctions or scarce accuracy; in the same way, requesters are not
able to accurately evaluate received services, and they could consider a good service
as a bad one. To test this critical condition, we inserted an error percentage in which
a node could make an error in service providing or service evaluation. Moreover,
an important parameter that has to be considered is represented by the providers’
availability. Figure 5.3 shows the performance of the trust models based on the error
percentage, with different averages of available providers. Each graph exhibits the
success rate after 12,000 transactions for all the evaluated models at the variation
of error percentage. The results illustrate how the basic approach performs well for
a high number of providers, even with the increasing percentage of error. However,
the lower the average of the providers, the higher the probability of the blocking of
the basic approach. The blocking problem is represented by the number of malicious
nodes discarded by the simplest algorithm, which does not allow for the selection of



5.1. TESTING DIFFERENT TRUST MODELS 67

Figure 5.2: Transaction success rate for different trust management models for the
ME attack at varying percentages of the malicious nodes.

malicious providers, i.e., the requesters do not select any provider. The probability
of block increases with reductions in the number of providers, regardless of the error
percentage. With the minimum number of available providers, that is, only one
provider, the smallest error level provokes the interruption of the algorithm and its
uselessness.

In order to overcome the blocking problem, we integrated the simplest algorithm
with a tolerance mechanism: each requester considers a window of past interactions,
which can be used to evaluate the trust of the providers. Then the trust is calculated
as the average of the past feedback, i.e., evaluations of the historical interactions.
Therefore, to improve the functioning of the basic approach, we needed to increase
the simple algorithm complexity. The larger the window, the higher the probability
of attack by malicious nodes; otherwise, the narrower the window, the higher the
probability of errors. We next wanted to show the behaviour of the new basic
approach with different dimensions of transaction windows considering an average
of 20 providers. Figure 5.4 illustrates how the models respond to a network with
a mix of all the attacks analysed. The results are shown in terms of transaction
success rate considering 10% of malicious nodes for each type of attack, for a total
of 40% malicious nodes. The graph depicts how the complex approaches are able to
converge well and better than the basic approach with different dimensions of the
window. Until 15% of error percentage, the narrowest window operates well in terms
of success rate, whereas by increasing the error the best results were revealed with
the larger window. In any case, the basic approach suffers from complex attacks
which only the well-designed trust models can overcome. By analysing which attacks
had a higher impact, we can see how the basic approach better manages simple
attacks; however, it suffers from smart attacks, such as OSA and OOA, which are
not sufficiently detected.
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Figure 5.3: Transaction success rate for different averages of providers and error
percentages.

 0.00  2.50  5.00  7.50 10.00 15.00 20.00

Error Percentage [%]

0.55

0.60

0.65

0.70

S
u

c
c
e
s
s
 R

a
te

Basic Approach - W = 2

Basic Approach - W = 10

Nitti et al.

Chen et al.

Adewuyi et al.

Mendoza et al.

Figure 5.4: Transaction success rate with all types of malicious attacks.



Chapter 6

Feedback evaluation

In order to overcome the deficiencies of the trust models proposed in the literature,
this chapter proposes a feedback evaluation mechanism able to rate the service
received by the requester.

In literature, a generic Trust and Reputation Model (TRM) usually assume the
requester is able to perfectly evaluate the service and then it has to select only
one of the providers in Ph based on their level of trust. However, the requester
does not know the ground-truth value vh of the service and has then no means to
evaluate if the received service is good or not and its level of accuracy. In order
to assess a value for the service to be used by the application, the requester has
to contact more than one provider in Ph: from every provider nj, the requester
will receive a value vhj for the service Sh and then has to aggregate all the received
values into a reference value vh∗. Moreover, to compute the trust level of every
provider, a TRM has to rely on the previous interactions among the nodes in the
form of feedback, which represents how a requester is satisfied with the received
service. After every transaction, the requester ni has to assign a feedback to all
the providers to evaluate the service, based on the provided values vhj and on their
“distance” from the computed reference value vh∗. Each feedback can be expressed
using values in the continuous range [0, 1], where 1 is used when the requester is
fully satisfied by the service and 0 otherwise.

According to the scenario presented in Chapter 3, Figure 6.1 provides a simple
example of a generic graph N = {n1, ..., n11}, with each node capable of providing
one or more services, as highlighted in the grey clouds; n1 is the node that is re-
questing the service S7, as highlighted in the white cloud; Ph = {n5, n6, n9} is the
set of nodes that can provide the requested service. For each of the provider in Ph,
the requester n1 receives a value for the service S7 (red lines in the Figure) then
aggregate them to compute the reference value v7∗. Based on this value, n1 can rate
the providers individually and assign to each of them feedback (dotted green lines
in the Figure) that can be used to update their trustworthiness levels.

The goal of the feedback evaluation algorithm is twofold: compute the reference
value vh∗ that will be used by the application and estimate the reliability of the
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Figure 6.1: Reference Scenario.

providers. This step is fundamental to help the requester to assess a solid value
for the requested service and to reward/penalize the providers so as to avoid any
malicious node in future transactions.

6.1 Feedback Evaluation Model

We propose a service and feedback evaluation model, where each node, during a
transaction, calculates the reference value vh∗ to be passed to the application. This
value is then used as a reference to compute the feedback that will be assigned to
the different providers. In this way, every TRM can have information regarding the
past interactions available to be used for the trust computation value.

Whenever a node ni has the need to retrieve a service, it has to select a subset of
providers from the list of potential providers Ph. To this, the requester immediately
discards any provider with a trust value lower than a given threshold TH, so that
the reliable providers are included in the set Th = {nj ∈ Ph : Tij ≥ TH}, where Tij

is the trust of node ni towards node nj. The value of the threshold has to be decided
based on the TRM implemented in the system since different models have different
dynamics to label a node as malicious. From this set, the requester contacts the M
most trustworthy providers in order to actually require a service’s value

When the requester receives all the service’s values from the providers, it has to
implement some mechanism in order to infer the reference value vh∗ to be passed to
the application. Several strategies can be used:

• mean of all the values obtained by the M providers;
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• sum of all the values obtained by the M providers weighted by their trustwor-
thiness;

• median of all the values obtained by the M providers.

Since every application requires a certain accuracy, it is possible to assign feed-
back to the different providers. For simplicity, we consider the ground-truth value
to be 0 and we always normalize the application accuracy so that values in the
interval [−1, 1] are acceptable by the application (blue area in Figure 6.2). The
reference value vh∗, calculated with one of the metrics proposed above, can devi-
ate from the ground-truth value; in this case, if vh∗ is still within the application
accuracy, i.e. −1 ≤ vh∗ ≤ 1, the transaction is labelled as successful, otherwise it
means the malicious attack was able to confuse the network and the transaction was
unsuccessful.

The requester is unable to assess the outcome of the transaction, so despite its
result, it has to assign feedback to each of the providers. The maximum feedback is
assigned to those providers that sent exactly the reference value vh∗, while the other
providers receive lower feedback based on how much the provided value is distant
from vh∗, as shown by the orange areas in Figure 6.2. Nodes that have provided
values with a distance equal to the accuracy of the application, i.e. vh∗ − 1 and
vh∗ + 1, which represent the points of greatest uncertainty, are assigned feedback
equal to 0.5. For intermediate values, feedback follows a linear behaviour, but other
approaches are feasible and could also depend on the application at hand.

Due to the difference between the pseudo and the ground-truth value, feedback
assignment leads to error in the evaluation of the providers: benevolent nodes that
provided values in the light green area are given feedback lower than 0.5 and in
some cases even 0, while malicious nodes, which provided values unacceptable by
the application, i.e. outside of the blue area of application accuracy, are given
positive feedback as it is the case of the dark green area in Figure 6.2.
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The introduction of a feedback evaluation system leads to a new malicious be-
haviour that would not be possible if the requester is able to perfectly rate the re-
ceived service. Generally, malicious behaviour is a strategic behaviour corresponding
to an opportunistic participant who cheats whenever it is advantageous for it to do
so. The goal of a node performing maliciously is usually to provide low quality or
false services in order to save its own resources; at the same time, it aims to main-
tain a high value of trust toward the rest of the network so that other nodes will
be agreeable to provide their services when requested. A group of nodes (collusive
attack) can work together to provide the same malicious value, so to influence the
reference value vh∗ and let the requester believes that it is the correct value to be
passed to the application and assign to them a positive feedback. To the best of our
knowledge, this is the first time this attack is presented, so TRMs were never tested
against it and we do not know their ability to detect and react to such an attack.

6.2 Feedback Model Testing

This Section aims to evaluate the performance of the service and feedback evaluation.
The first set of simulations aims to analyze the transaction success rate, i.e. the ratio
between the number of successful transactions and the total number of transactions:
a transaction is considered successful if the reference value is within the application
accuracy. Figure 6.3 shows the performance of the Marche et al. trust algorithm,
proposed in this thesis, when the requester can perfectly evaluate the service received
and when it implements one of the three possible strategies to infer the reference
value and for different values of the numbers of providers M . The mentioned model
is designed for a Social IoT scenario and makes use of a subjective approach where
every node has its own vision of the network and relies on the recommendations
from its friends to speed up the evaluation of trust. In these simulations, malicious
nodes implement a strategic behaviour corresponding to an opportunistic participant
who acts maliciously with everyone. This is the most basic attack: a node always
provides bad services and recommendations, regardless of the requester.

Surprisingly, the trust model making use of a perfect feedback evaluation has the
lowest success rate out of all the versions: this is related to the number of providers
M contacted by the requester. Requester with perfect feedback evaluation only
interact with one provider and thus they will need a lot of transactions to accumulate
enough experience to accurately evaluate the providers. In the approach proposed
in this thesis, multiple providers are required to infer the reference value and, even if
each of them receives not perfect feedback, the overall learning process of the trust
algorithm speeds up. Moreover, the presence of a higher number of providers enables
to increase the success rate, since it is difficult for few malicious nodes to change the
reference value enough for the transaction to be considered malicious. The approach
based on the median, dark lines in Figure, is the most reliable since there must be
M/2+ 1 malicious nodes in order for the transaction to be labelled as unsuccessful;
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Figure 6.3: Transaction Success Rate for all strategies

using the mean is not ideal since a single malicious node providing a value very
distant from the ground-truth value could significantly change the reference value.
Finally, the weighted sum is able to obtain good results, since it smoothes out this
effect by weighting every received value for the trustworthiness of the node that
provided it.

We evaluated the system performance by analysing the mean of malicious nodes
per transaction, the mean and standard deviation of the reference value, the ref-
erence value errors, and the number of errors in feedback assignment. This last
parameter considers both when a malicious node gains a good score, i.e. feedback
higher than 0.5, and when a benevolent node receives feedback lower than 0.5. Ta-
ble 6.1 shows these results when considering 25% of malicious nodes but with two
different types of attacks: the first six simulations implement the basic attack with
malicious nodes always providing bad services, while the last six simulations show
what happens with the collusive attack described in Section 6.1. Coherently with
Figure 6.3, when implementing only the basic attack, the median is the approach
with the lowest percentage of the malicious transactions, which means it is able
to efficiently isolate malicious nodes. This can also be inferred by the accuracy
of the reference value and by the number of times it is outside of the bounds ac-
cepted by the application. Moreover, it confirms how selecting a higher number of
providers leads to better results. Differently, if malicious nodes implement the col-
lusive behaviour, all the strategies show worse performance: if we consider the error
percentage in calculating the reference value, i.e. the number of times the reference
value is outside of the application accuracy, we can notice how this percentage is
an order of magnitude higher w.r.t. the basic attack and in particular the median
approach with M = 5 goes from 3.33% errors to 16.48%, thus showing the threat of
the collusive behaviour. Overall, the median approach involves a higher number of
malicious nodes per transaction and it has more difficulties in correctly evaluating
malicious nodes, as can be inferred by the error percentage in providing feedback
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Malicious nodes
per

transaction [%]
mean vh∗ SD(vh∗)

Reference
value errors [%]

Feedback Errors
Malicious vs

Benevolent [%]

Median, M=10 9.9 0.0025 0.27 0.16 1.57 - 13.97

Mean, M=10 10.1 0.0041 0.44 0.81 2.11 - 15.05

Weighted sum,
M=10

10.1 0.0028 0.43 0.76 2.02 - 14.85

Median, M=5 12.4 0.0346 0.79 3.33 3.44 - 18.81

Mean, M=5 12.2 0.0305 0.81 5.52 3.08 - 18.36

Weighted sum,
M=5

12.4 0.0161 0.81 5.15 3.44 - 20.07

Median, M=10,
Collusive

11.3 0.0050 0.98 5.15 4.60 - 16.60

Mean, M=10,
Collusive

10.9 0.0035 0.83 7.73 3.31 - 19.74

Weighted sum,
M=10, Collusive

11.0 0.0228 0.84 8.01 3.49 - 19.85

Median, M=5,
Collusive

15.4 0.0060 1.41 14.68 9.26 - 26.66

Mean, M=5,
Collusive

14.6 0.0284 1.36 15.87 7.21 - 26.86

Weighted sum,
M=5, Collusive

14.6 0.0226 1.38 16.43 7.56 - 26.69

Table 6.1: Comparison between simple and collusive attacks.

which is higher w.r.t. to the other two approaches. However, the median approach
still shows the lowest percentage of errors when computing the reference value.

In order to better understand this behaviour, we tested the performance of the
trust algorithm at varying the percentage of the malicious nodes. Figure 6.4 refers
to a scenario where all malicious nodes implement the collusive behaviour: on the
left (Figure 6.4a), there is the case with M = 5 providers, while on the right (Figure
6.4b) we consider M = 10 providers. Two approaches are evaluated: the median
(solid lines) and the weighted sum (dotted lines). The Figure confirms the Table
above: with more providers, the trust algorithm performs slightly better but at the
expense of more traffic exchanged among requester and providers. However, when
comparing these results with the original trust algorithm, which implemented a
perfect evaluation of the service received, we can notice how the success rate greatly
decreases: for 50% of malicious nodes, the algorithm proposed by Marche et al.
shows a success rate higher than 80% while, with the collusive attack, it is not able
to even reach 60% of successful transactions with a decrease of over 20%.

Finally, the last set of simulations aims to understand how different trust algo-
rithms react with 20% of nodes implementing the collusive attack and considering
the median as the strategy to infer the reference value. Other than Marche et al.
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Figure 6.4: Transaction success rate at increasing values of % of malicious nodes,
with M = 5 (a) and M = 10 (b) providers.

algorithm, we have also implemented three other algorithms, namely Chen et al.
[20], Adewuyi et al. [64] and Mendoza et al. [65].

The model proposed by Chen et al. is similar to the one described by Marche et
al.: they are both designed for a Social IoT environment where each node computes
the trust value of the rest of the network by itself, so that each device has a subjective
values of trust towards the rest of the network. Adewuyi et al. and Mendoza
et al. are non-social algorithms, based on a distributed approach, which rely on
recommendations from neighbour nodes and QoS parameters: trust is computed
making use of a weighted sum among these parameters, but while Adewuyi et al.
focuses on historical interactions, making use of a time window of past interactions,
Mendoza et al. concentrates only on the last transaction and the type of service.
Differences in the performance of the models can depend on the structure of the
network considered and on the types of service/information requested. To this,
we did not consider our ad-hoc network, but we have adopted the IoT dataset
opportunistically re-scaled to a size comparable to their experiments, as described
in the previous subsection. Moreover, we have considered the same requests for all
the four models, so we are confident that the obtained results are consistent with
those obtained by the authors.

Figure 6.5 shows the comparison of the four trust models considering a number
of providers M = 10. We can notice that all the algorithms have a high success
rate of over 90%, but Chen et al. and Mendoza et al. show a SR decreasing over
time. This is due to the collusive attack that is able to confuse the network. The two
mentioned algorithms have a short dynamic, i.e. that trust values of both benevolent
and malicious nodes, are concentrated around 0.5, so they are more prone to errors.
Whenever there is a transaction where the collusive malicious attack is successful, the
malicious nodes are able to obtain the highest value of feedback, since the reference
value would correspond with the malicious value provided by all the nodes. So, even
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Figure 6.5: Transaction success rate for different trust management models.

if really slowly, these nodes would impact more and more transactions, thus making
the success rate decreasing over time.



Chapter 7

Modelling Nodes’ Interactions

In the previous Chapter, we have illustrated the importance of a feedback model in
the trust processes. However, we overlook an important question: “Why do nodes
have to collaborate with each other?”. In this regard, in this Chapter, we model the
trust game between the generic Requester and the generic Provider, which will be
used to provide the guidelines to build a trust management algorithm able to detect
malicious behaviours.

According to the previou chapters, in the IoT scenario, the requester has the
role of the trustor and has to trust that the provider, which is then the trustee, will
provide the required service. For every service request, both requester and provider
have costs and benefits associated with it, so each node needs to find a tradeoff
between the cost and the benefit related to a request. From the point of view of
the requester, it has a cost cr associated with its request, which can be related
for example to the delay in providing the service back to the user, but it has an
obvious benefit br related to obtaining the desired service. The provider, instead,
has to consider the cost cp to solve the request, which can be tied for example to
the energy consumption to make a sensing measurement, and a benefit bp for its
reputation, which can be increased or decreased according to its behavior.

In our scenario, the requester has to select one of the providers based on their
level of trust: the higher the level of trust, the higher the probability to receive
the desired service, and thus to maximize the payoff. The trust level is computed
according to the trustworthiness management model implemented, which has the
fundamental role to identify malicious nodes. The goal of this chapter is to study
the trust game between the requester and the provider as a framework and propose
guidelines to design suitable trust models.

7.1 Game and Payoffs Definitions

The proposed trust game consists of a finite set of devices acting as players, where a
link between two devices denotes the possibility of interactions or transactions be-
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Figure 7.1: Decision tree for the trust game.

tween them. The game is based on pairwise interactions, i.e., every device interacts
or transacts with other directly connected devices in pairs. Pairwise interactions
proceed in two phases. A requester needs a service and can choose whether to select
a provider, the trustee, to retrieve it (i.e. being trustful) or to do nothing (i.e. being
not trustful). In the latter case, the game ends and both the player gets a zero
payoff: the trustor has not received the service, and the trustee did not have any
chance to take part in the game. In the former case, the trustor needs to consume
some of its resources in order to send the request to the provider, which in return
has to decide to defect or collaborate. If it collaborates, both players receive a re-
ward, respectively Rr for the requester and Rp for the provider. But if the provider
defects, i.e. it behaves maliciously, it receives a greater reward, equals to T (temp-
tation), while the requester receives a negative payoff S. The negative payoff is
due to the false service received by the requester that must be discarded, while the
malicious provider safeguards its resources and obtains a greater reward. During a
single interaction, for the provider, defection always results in a better payoff than
cooperation, since the requester can not punish it, and so it represents a dominant
strategy. The best strategy for the requester is then to be not cooperative and not
to ask for services. Mutual defection is the only strong Nash equilibrium in the
game, so this results in a network where nodes do not interact with each other.

Figure 7.1 illustrates the decision tree for the evaluated trust game.

However, two IoT nodes can interact more than once in succession and they
can remember the previous actions of their opponents and change their strategy
accordingly. Under these conditions, the game becomes iterated: nevertheless, if the
game is played exactly N times and both players know the number of transactions,
then it is still optimal to defect in all rounds and the Nash equilibrium is to always
defect. The proof is inductive: the provider could defect on the last transaction
since the requester will not have a chance to change later its strategy. Therefore,
both will defect on the last transaction. Thus, the provider might as well defect on
the second-to-last interaction, since the requester will defect on the last no matter
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the provider’s behavior, and so on.

For these reasons, we consider an iterated trust game with an unknown number
of transactions, where the complete payoff is determined according to the strategy
adopted in each game. The incentive to behave maliciously in the short-term is
compensated by the possibility for the requester to punish the provider after abuse of
trust. For cooperation to emerge between game rational players, the total number of
rounds must be unknown to the players. In this case “always defect” may no longer
be a strictly dominant strategy, but it remains a suboptimal Nash equilibrium.
Based on the previous considerations on cost and benefit for the two players, payoffs
are determined as follows: 

S = −br − cr

T = bp

Rr = br − cr

Rp = bp − cp

(7.1)

The punishment S reflects the request’s cost cr and the false benefit received,
specified by −br. Moreover the temptation T is related to the benefit for the ma-
licious behavior bp, without any cost. In addition, the payoffs Rr and Rp are the
results of the collaboration between the players: the first depends on the request’s
cost cr and on the benefit of the received service br, whereas the second payoff con-
cerns the provider with the cost to provide the service cp and the benefit in terms
of its reputation bp. From this, we model the payoffs’ constraints as follows:

Requester : Rr > 0 > S

Provider : T > Rp > 0
(7.2)

The punishment S is the worst payoff for a requester: this is due to the resources
used for the request and to the false service received. Regarding the provider, the
temptation T is greater than the payoff resulting from collaboration and the related
reward. Moreover, the requester and provider payoffs are related by the following:

Rr > T (7.3)

This relation shows how the requester obtains a greater payoff than the provider
since the requester receives the desired service, while the requester increases its
reputation.

The relations in terms of benefit and cost is shown below:

br − cr > bp (7.4)

where it is remarked how the requester has a different benefit/cost greater than
the provider; this is due to the requester that is more interested in the communication
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to receive the needed service.

7.2 Strategies and Attacks

In order to provide general guidelines for the development of trust algorithms, we
consider a generic trust model. Due to the iterated nature of the considered trust
game, the nodes’ strategies must reflect their past interactions. For each interaction
k, the generic trust value assigned to the provider can be expressed as:

T (k) = T (k − 1) + ∆ (7.5)

where T (k− 1) represents the trust value during the previous transaction, while
∆ indicates the trust variation based on the provider’s behavior in the last round:

∆ =

{
−∆−, malicious behavior

∆+, benevolent behavior
(7.6)

When there is no previous information, i.e. during the first interaction, an initial
trust value is assigned to each provider, so that T (0) = Tinit.

The requester changes its behavior based on the computed trust value and
chooses a strategy in the iterated games in order to increase its total payoff. To
simplify the analysis, all the parameters are in the range [0, 1], so that, e.g., a trust
value of 0 indicates untrustworthy nodes, while a trust value of 1 is used for com-
pletely trustworthy nodes. Moreover, whenever the trust value of a device is lower
than a given threshold Tth, the node is immediately labeled as malicious.

The evolution of trust depends on the strategy adopted by the provider in the
previous interaction, which has a direct impact on the trust variation ∆. Two
different behaviors can be considered in a network: one is always benevolent (or
cooperative) and provides only good services; therefore its trust is always increased
after a transaction and ∆ = ∆+. The other behavior is a strategic one corresponding
to an opportunistic participant who cheats whenever it is advantageous for it to do
so. A node that performs maliciously, usually provides false or scarce services in
order to save its resources. Below we model the most studied attacks to the trust in
the literature and study the strategies that can be used to develop a suitable trust
model.

A node performing Malicious with Everyone (ME) acts maliciously with
everyone. Regardless of the interaction, the node sends only false services and
its trust value is then always reduced (∆ = −∆−). We can then model its trust
evolution as follows:

T (k) = T (k − 1)−∆− (7.7)

Another malicious attack is the Whitewashing Attack (WA), which shows a
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very simple dynamic behavior. This behavior is similar to the ME, which provides
only bad services, with the difference that a node performing this attack can re-join
the network and then re-initialize its trust value. Similarly to the previous case,
∆ = −∆− and the trust evolution is the same as Equation 7.7.

A more complex dynamic attack is the On-Off attack (OOA), where the ma-
licious node changes its behavior from benevolent to malicious and vice versa every
M interactions. In this case, we can model the trust variation ∆ based on the first
behavior adopted by the provider. If the node starts with malicious behavior, ∆ can
be expressed as:

∆ =

{
−∆−, if 2nM < k ≤ (2n+ 1)M

∆+, if (2n+ 1)M < k ≤ (2n+ 2)M
(7.8)

Otherwise, if the node initially acts as a benevolent node, ∆ can be computed
as:

∆ =

{
∆+, if 2nM < k ≤ (2n+ 1)M

−∆−, if (2n+ 1)M < k ≤ (2n+ 2)M
(7.9)

with n ∈ N . The two Equations 7.8 and 7.9 illustrate the oscillatory behavior
of this attack.

The last strategy is represented by theOpportunistic Service Attack (OSA).
A node performing this attack provides bad service only when its trust is at an
acceptable level. It represents a rational player that performs attacks with the aim
to maximize its own payoff. The node adapts its strategy in order to not be detected:
to do this it defines its own trust limit TOSA and behaves so that its trust value is
always higher than this limit. Indeed, this limit must be greater than the threshold
Tth in order for the node to be considered as benevolent (TOSA ≥ Tth). The trust
variation can then be described as:

∆ =

{
∆+, if T (k − 1)−∆− < TOSA

−∆−, if T (k − 1)−∆− ≥ TOSA

(7.10)

When the node senses that its trust is dropping below the trust limit, it sends
good services and then ∆ = ∆+. Otherwise, the node continues to provide bad
services (∆ = −∆−).

Table 7.1 shows all the parameters used in the proposed investigation.

7.3 Trust management model guidelines

The goal of a trust model is to detect malicious nodes without discarding the coop-
erative nodes. With ideal conditions, a cooperative node will always provide good
services and thus it will receive a positive trust variation (i.e. ∆ = ∆+, which as
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Parameter Description
k Generic interaction between a requester and a provider
K Total number of interactions between the two players

Tinit Initial trust value for a provider node
Tth Threshold to consider a node as “benevolent”

∆ =

{
∆−

∆+

Decrement/increment of the trust value
based on the provider’s behavior

k′ Re-join interaction for a WA node in
which the trust is re-initialized

M Number of interactions after an OOA node change its behavior
TOSA The lowest trust value accepted for a OSA node for itself

Table 7.1: Trust Model Parameters

described before can have a value in the range [0, 1]). For this reason, the only
condition to not discard any cooperative node is trivial:

Tinit ≥ Tth (7.11)

The initial trust represents a crucial parameter for a trust model, it establishes
the number of interactions that a malicious node can take advantage of in order to
act maliciously. A high value confers the best trust to the nodes, while a low value
makes the model suspicious. In the community, many works take on the choice of the
initial value using static characteristics of the nodes, e.g. computation capabilities
of the nodes [66] or social relationships between the objects’ owners [67].

However, due to the presence of malicious behaviors, stricter conditions are nec-
essary. Indeed, the goal of any trustworthiness management model consists of max-
imizing the payoff for the cooperative nodes and thus isolating malicious objects as
quickly as possible, i.e. with the lowest number of transactions, so that they are
not selected as providers. Since a requester will discard a provider if its trust value
drops below a certain threshold Tth, we can express the goal of a trust algorithm as:

max{payoff}req → min(k) : T prov(k) < Tth (7.12)

Ideally, the highest payoff for the requester is achieved if the model is able to
detect a malicious node at the first malicious transaction. Starting from Equation
7.12, we derive the most suitable configurations for the trust model parameters: the
initial value of trust Tinit, the trust variation ∆+ and ∆− and the threshold Tth.

In order to detect a ME attack after the first malicious transaction, the following
relation must be true:

T (1) = Tinit −∆− < Tth (7.13)

where the reader should remember that T (0) = Tinit. From Equation 7.13 we
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have three parameters, so we need to set two of them and calculate the last. Three
conditions can then be set as follows:

Tth > Tinit −∆−

Tinit < Tth +∆−

∆− > Tinit − Tth

(7.14)

Similar considerations can be derived for a node implementing a WA attack.
However, a node performing this attack re-initializes its trust value every k′ transac-
tions, so the conditions to maximize the payoff of the requester has to be generalized
as follows:

min{k} → k = k′ + 1 (7.15)

∀(entry) : (Tinit −∆−) < Tth (7.16)

where T (k′) = Tinit and for each re-initialization the malicious node performing
WA is identified at transaction k′ + 1. The conditions found in Equations 7.14,
calculated for a ME attack, are still valid also for WA attack.

Other conditions can be obtained considering other attacks. As described before,
a node performing an OOA attack has two distinct behaviors: the node starts with
M malicious interactions or with M cooperative interactions. The first behavior is
similar to the ME attack: a trust algorithm can maximize the payoff of the requester
by detecting the malicious node during the first (malicious) transaction and thus
we obtain again the same conditions as Equation 7.14. However, if the malicious
node starts with M cooperative transactions, the first malicious interaction is the
k = (M+1)-th. In order to identify malicious behavior, the trust model’s parameters
should be set in order to satisfy the following:

T (M + 1) = Tinit +M∆+ −∆− < Tth (7.17)

which takes into account that the first M positive interactions have increased
the trust of the node. However, M is a typical parameter of the OOA attack, so in
order to avoid leaving any degree of freedom to the malicious node, it is important
to set a condition that is independent of M and that can be obtained with:

∆+ = 0 (7.18)

With this condition, both malicious and cooperative nodes are never rewarded
when providing good services, but they are still punished when delivering bad ones.
Applying this condition to 7.17, it is possible to obtain the same relation as in 7.13,
that can be solve applying the conditions in 7.14.

Another condition can be obtained by analyzing nodes performing the OSA
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Parameter Value
Tth 1
Tinit 1
∆+ 0
∆− x ∈ (0, 1]

Table 7.2: Adequate value for the trust model to detect the malicious behaviors

attack. As mentioned earlier, in the OSA attack, the malicious nodes set a trust
limit TOSA higher than the threshold Tth and uses this limit to decide its behavior.
From this, we can set an ideal value for Tth: a value lower than 1 allows the node
to act maliciously, while with a value equals to 1, regardless of the trust limit TOSA

set by the malicious node, the node performing OSA is forced to provide only good
services and it is unable to assume malicious behavior.

Table 7.2 summarizes the evaluated parameters. In order to prevent OSA attacks
we must have the threshold Tth to 1. As a consequence of Equation 7.11, the initial
value of trust must be set to Tinit = 1. Moreover, from the considerations on the
OOA attack, ∆+ is set to 0 while, from the third condition in 7.14, ∆− has to assume
any value greater than 0 in order to detect immediately any malicious behaviors.

7.4 Probability of error

The conditions obtained in the previous Section represent an ideal scenario where the
benevolent node will always cooperate. However, in a real IoT system, a cooperative
device can be discarded from a network due to errors related to several reasons:
well-behaving devices can show poor performance, due to errors, scarce accuracy, or
technical problems in general. This problem is usually overlooked by trust algorithm
models while it should be fundamental for them to be able to discern a malicious
node from a poor behaving one. A trust model should be designed to take into
account the errors of cooperative nodes, according to some admissible error rate for
the model. If we consider that a benevolent node has a probability p to provide
an unintentional bad service, then we can express the trust value calculated by the
generic trust model as:

T (k) = T (k − 1) + (1− p)∆+ − p∆− (7.19)

In order to not isolate any benevolent node, a trust model should always be sure
that T (k) ≥ Tth. To this the following conditions must be met:

(1− p)∆+ − p∆− ≥ 0

∆+ ≥ p

(1− p)
∆− (7.20)
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and, since ∆− ∈ (0, 1], it is possible to observe a first difference w.r.t. the
errorless scenario: ∆+ can not be equal to 0, in order for a trust model to balance
any error from cooperative nodes.

However, condition 7.19 can still be violated and some cooperative nodes can
be discarded: in the worst-case scenario, the first k interactions are all affected
by errors. Considering consecutive transactions among nodes as independent, we
can compute the probability of such a scenario as pk. It is then possible to set a
maximum admissible error Amax for the trust model as:

Amax = pk+1 (7.21)

so that, by knowing the admissible model error Amax and the probability of error
on the single transaction p, we can compute how many consecutive transactions k
can be tolerated by the trust model as:

k = logp Amax − 1 (7.22)

This value determines that any node should not be discarded before k transac-
tions, even if they are all malicious/with errors. This condition can be expressed
as:

T (k) = Tinit − k∆− ≥ Tth (7.23)

The goal of the trust model is still to isolate the malicious nodes; similarly to
what we have done in the previous section, we aim to find the conditions that
allow the trust model to isolate the malicious nodes as soon as possible. For nodes
performing ME and WA attacks, the first useful transaction to detect the malicious
nodes is the (k + 1)-th transaction, and then the following condition must be true:

T (k + 1) = Tinit − (k + 1)∆− < Tth (7.24)

so that the first k transactions allow errors to occur, while the system recognizes
a malicious behavior afterwards. Similarly to 7.14, three conditions can be set as
follows:

Tth > Tinit − (k + 1)∆−

Tinit < Tth + (k + 1)∆−

∆− >
Tinit − Tth

k + 1

(7.25)

where each parameter is described based on the other two and ∆− ∈ (0, 1
k+1

).
Another condition can be obtained by analyzing the OOA attack. If the node

implementing OOA starts with a malicious behavior performing M malicious trans-
actions, it is possible to devise the same condition as Equation 7.25. However, if the
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Parameter Value

Tth Tth > Tinit − (k + 1)∆−

Tinit 1
∆+ p

(1−p)
∆−

∆− x ∈ (0, 1
k+1

)

Table 7.3: Final parameters’ value for the trust model to detect the malicious be-
haviors in the scenario with errors.

Parameter Description
p Probability of error in a generic interaction

Ath
Maximum tolerable error for the

trustworthiness management model
Amax Maximum error for a trust model

k
Number of consecutive malicious behaviors

permitted by the trust model

Table 7.4: Trust Model Parameters considering an error probability

malicious node starts with M benevolent transactions, the trust model can identify
the malicious node at the k = (M + k+1)-th transaction, if the following condition
is satisfied:

(Tinit +M∆+ − (k + 1)∆−)− Tth < 0 (7.26)

In order to minimize the impact of M and the number of transactions needed to
detect the OOA attack, ∆+ should be set at the minimum admissible value, which
can be derived from Equation 7.20 as:

∆+ =
p

(1− p)
∆− (7.27)

which allows cooperative nodes to avoid being discarded due to errors but, at
the same time, enables the trust model to identify quickly the OOA attack.

Finally, it is not possible to devise any further conditions by analyzing the OSA
attack. In order to satisfy Equation 7.25, it is not possible to set Tth equal to 1, as in
the errorless scenario. This allows a node implementing OSA to perform malicious
transactions with a rate equal to the error probability p, since performing a higher
number of malicious transactions would cause the node to be detected. In this way,
the value for Tth must follow Equation 7.25 correlated to the probability of error
p, while Tinit is set equal to 1 in order to overcome the scenario without error as
well. Table 7.3 shows the adequate parameters’ values in order to design a suitable
trust management model, both without or with an error probability for cooperative
nodes.

Table 7.4 shows all the parameters used to study the trust management models
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with an error probability on cooperative nodes.

7.5 Game Evaluation

This section presents the setup of the game’s parameters and illustrates the perfor-
mance of the proposed guidelines.

7.5.1 Game Setup

In order to test the effectiveness of the guidelines for a trustworthiness model ex-
amined in the previous section, we need to simulate the binary game and all the
possible behaviors. To this, we make use of a full-mesh network of N = 100 devices,
where each device interacts K times, not known beforehand by the devices, with
each other device, alternating the roles of provider and requester. This way, all
nodes can play all the possible strategies in the game. For each pairwise interaction,
two players, one acting as a requester and the other as a provider, play the game
and change their strategies according to their behavior in the previous rounds and
according to the adopted trust model.

According to Equation 7.4, we can set the values of all the payoffs. Different
values might be assigned to the parameters, however, if they respect the exposed
relations the final game would be the same. In this case, the greatest value is
assigned to the requester’s benefit since it receives the required service, while the
provider has a minor benefit related to its reputation. Taking into account the cost,
the provider needs to use its own resources in order to solve the request, and then
the cost is higher w.r.t. the requester, where the cost is associated with the time
spent to obtain the service and to the resources needed to send the request. For each
game, the payoff for the two nodes, requester and provider, is computed according
to the payoffs’ values and the total payoff for a node is the sum of all the games.

The interactions follow the trust model based on the guidelines exposed in Section
7.3 in order to detect the malicious behaviors and guarantee a high payoff for the
benevolent. To do this, we set ∆− equal to 0.1 in order to satisfy the condition ∆− >
0 and Tinit = 1 to grant the highest possible initial trustworthiness to all the nodes,
while ∆+ and Tth are consequently evaluated for the specific set of simulations. The
maximum admissible error for the algorithm is set to Amax = 10−3 in order to reach
a compromise between the errors due to the cooperative nodes and the bad services
provided by malicious nodes: considering an error probability equal to p = 0.2,
k = 3.29 that allows a number of consecutive errors starting from Tinit equal to 3.

Moreover, malicious nodes are designed according to the description supplied in
Section 7.2. All the behaviors, both benevolent and malicious, are used to measure
the effectiveness of the guidelines for the trust management model. ME behavior
always provides bad services and defects in all transactions. Similarly, a node im-
plementing the WA attack acts maliciously with everyone, but after a fixed number
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Parameter Description Value
N Number of nodes 100
K Number of interactions between two players 100
br Benefit value for the requester 0.5
bp Benefit value for the provider 0.3
cr Cost value for the requester 0.1
cp Cost value for the provider 0.2
∆− Decrement of the trust value 0.1
Tinit Initial trust value 1
Amax Maximum tolerable error for the model 0.001
p Probability of error 0.2

k Consecutive malicious behaviors permitted 3
∆+ Increment of the trust value 0.025
Tth Decision threshold 0.625

Table 7.5: Simulation Parameters

of transactions, 25 for our simulations, it resets its trust value by leaving and re-
entering the network. Nodes performing the OOA attack change their state from
ON to OFF and vice versa every M = 5 interactions, starting from the cooperative
behavior which is harder to detect. Finally, the OSA node represents a smart at-
tacker that modifies its TOSA threshold, which is used in order to choose a behavior.
In the first set of simulations, the OOA node sets TOSA = Tth so as to have more
possibilities to act malicious and to increase its payoff.

Table 7.5 shows all the configuration parameters for the proposed simulations,
the different payoffs used for the game, and the trust model details.

7.5.2 Experimental Game Results

We evaluate the performance of the proposed guidelines by analyzing the binary
trust game in the simulated IoT network. Each device is alternately a requester or
a provider and has interactions with all the other nodes.

We first examine a scenario with a population composed of only cooperative
nodes and no trust management model: the goal is to understand which is the payoff
that can be achieved in an ideal network. Each requester trusts all the providers,
while providers have benevolent behavior and collaborate in all interactions. The
payoff average value for a single node is 24.75. This value consists of the maximum
payoff achievable in a game of 100 interactions by a cooperative node. The node is
not interested to preserve its own resources and then collaborates in each game.

Starting from the case with only cooperative nodes, we add malicious nodes to
the network to illustrate how the attackers can obtain a greater payoff. Out of the
total number of nodes in the network, we replace 5% of the nodes for each type of
attack’s behavior, so that the final network is composed of 80 cooperative nodes and
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Benevolent ME WA OOA OSA
Average Payoff 16.00 26.40 26.40 21.20 26.40

Table 7.6: Average payoffs of nodes without any trust model.

Benevolent ME WA OOA OSA
Average Payoff 21.73 17.28 17.57 17.76 21.73

Table 7.7: Average payoffs of nodes in a no error scenario with a trust model.

20 malicious nodes, evenly distributed among the four types of attacks. No trust
algorithm is implemented, so the requesters will always choose to play the game,
while malicious providers will behave according to the implemented attack. Table
7.6 illustrates the resulting average payoffs for all the behaviors: the results show
how cooperative nodes achieve the minimum payoff, which is lower than the previous
scenario due to the negative payoff S. Indeed, a requester interacting with a mali-
cious provider will not receive any service, so its average payoff decreases from 24.75
to 16.00. On the other hand, malicious nodes receive the best payoff by acting ma-
liciously: this payoff is higher w.r.t. the case with only cooperative nodes, because
malicious nodes do not have to use their resource to produce the service (sense the
environment or act on something). ME, WA, and OSA can always defect without
being detected due to the absence of the trustworthiness management model. The
OOA behavior presents a slightly lower payoff due to a certain number of trans-
actions during the ON state, where the node performs benevolently; anyway, the
malicious interactions allow them to receive a greater payoff w.r.t. the cooperative
nodes.

The employment of a suitable trust model is essential in order to detect the
malicious nodes and increase the payoff of the cooperative nodes. To this, the
next set of experiments examines the same network used in the previous scenario,
i.e. with both cooperative and malicious nodes, but adopting a trust management
model. Starting with the scenario where cooperative nodes always deliver the right
service, i.e. they are not subject to errors, we design the trust model according to
Section 7.5.1: Tinit = 1 and ∆− = 0.1 in order to trust all nodes at start and to detect
as fast as possible the malicious behaviors. Moreover, Tth and ∆+ are set based on
Table 7.2: for the case without errors for cooperative nodes, Tth = Tinit = 1 to detect
the attackers at their first malicious transactions and ∆+ = 0 to never increase the
trust for intelligent malicious nodes, such as the OSA. Table 7.7 illustrates the
average payoffs of the nodes using the trust model previously described. The trust
model is able to detect ME, WA and OOA behaviors thus reducing their average
payoff with an advantage for the cooperative nodes. Even with a very low value of
∆−, the model discards these malicious nodes after the first malicious transaction.
The result is that when a malicious node acts as a provider, it will not be trusted
and then it will not receive a payoff from any of the benevolent requesters: it will
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Figure 7.2: Average payoffs for different probability of error for the cooperative
nodes.

only be able to accumulate payoff when it acts as a requester and trusts other
nodes. The WA behavior resets its trust reputation after 25 interactions and then
it has a slightly higher payoff than the ME attack but, nevertheless, it is detected
immediately after the first malicious interaction. The OOA behavior can achieve an
even higher payoff compared to the other two behaviors by acting as a benevolent
node and providing good services in its ON state (the firstM transactions); however,
when the node switches to the OFF state, it is immediately detected at the first
malicious interaction. Finally, the OSA behavior exhibits the highest payoff equal
to the cooperative nodes. The node performing the OSA attack changes its behavior
in order to be chosen as the provider and to not be discarded. However, since the
model can detect a malicious node at its first interaction, the malicious node must
always perform benevolently and thus achieve the same payoff as the cooperative
nodes. Finally, we can observe how the average payoff of a cooperative node in this
scenario is equal to 21.73, which is lower when compared to the payoff of 24.75 of the
benevolent node in a completely cooperative network. This is tied to the presence of
malicious nodes that decreases the average payoff for cooperative nodes even though
the trust model detects them at the first interaction.

We now want to analyze the results when cooperative nodes can send bad services
to the requester due to unintentional errors. The focus of the next test of simulations
is to test how the trust model can be designed in order to take into account an error
probability. Figure 7.2 shows the average payoffs for different values of the error
probability p. For each value, and considering Tinit = 1, the model can set Tth

according to Equation 7.24. The Figure shows how the average payoff for all the
possible behaviors. ME and WA behaviors show a lower payoff w.r.t. cooperative
nodes, thus indicating how they are always detected: while the cooperative nodes
make errors with a certain probability, ME and WA send always scarce services and
the model can easily detect them. Similarly, the OOA attack is discarded until an



7.5. GAME EVALUATION 91

0 1 2 3 4 5
10

-6

10
-4

10
-2

10
0

T
ru

s
t 

M
o

d
e
l 
E

rr
o

r

Trust Model Error

A
max

Figure 7.3: Trust model error for different values of k.

error probability of 0.5, because this behavior is similar to a condition of a percentage
of error equal to 50%. This results in a greater payoff of the OOA nodes with an
error probability greater than 0.5. Furthermore, the OSA is able to reach the best
payoff in all the simulations sending scarce services in a percentage equal to the
probability of error (e.g. for a probability of error equal to 0.2, the OSA is able to
act maliciously for the 20% of its interactions). Moreover, OSA takes advantage of
the admissible error set by the model sending for each requester a number of k bad
services in the first interactions.

Figure 7.3 shows the trust model error in discarding cooperative nodes, consid-
ering a scenario with N = 105 cooperative nodes and a probability of error equal to
0.2. The orange line shows the computed value for the maximum admissible error
Amax as referenced. The Figure shows how the value of k is essential to overcome the
probability of error of the cooperative nodes and obtain an acceptable error of the
trust algorithms. By increasing the value of k, the model can decrease the number
of discarded cooperative nodes, i.e. the trust model error, at the cost of increasing
the vulnerability to attacks.

Furthermore, the importance of the parameter ∆+ is illustrated in Figure 7.4.
At the end of the simulation, i.e. after 100 transactions, the Figure shows how the
worst error is when ∆+ = 0 since the cooperative nodes are all discarded and no
errors are allowed. The minimum value that allows a maximum admissible error
Amax equals to 0.001 is ∆+ = p

1−p
∆−: this value allows cooperative nodes to avoid

being discarded due to errors and, at the same time, enable the trust model to
identify quickly the attacks.

Finally, the last two sets of simulations are aimed to understand how malicious
nodes can change their parameters in order to overcome the trust model. According
to the previous simulations, the probability of error p is set equal to 0.2 and the sim-
ulations focus on an individual malicious node. Each malicious node tries to bypass
the trust model in order to increase its own payoff at the expense of the cooperative
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Figure 7.6: Average payoffs and percentage of scarce services for the OSA node at
the OSA threshold variation.

nodes. ME attack has no way to modify its behavior and with a probability of error
p < 1 it is always detected during the first transaction by the trust model. Concern-
ing the WA attack, a node can change how often it re-enters the network, but since
its behavior is similar to the ME, the node is always detected at the first malicious
transaction. The worst-case scenario is when a node implementing the WA attack
re-enters the network after each malicious interaction, and the WA attack can be
never detected. However, the high cost of leaving and re-entering the network with
a different identity limits this behavior.

Analyzing the OOA behavior, a node has two choices available: which state it is
used for the first transactions and the duration of each state, i.e. the value of M . As
stated in the previous section, the best choice for a node is to start with a benevolent
behavior in order to increase its trust value. Figure 7.5 illustrates then the average
payoff of a node implementing the OOA attack with different values of M . With an
error probability equal to 0.2 and Amax sets to 0.001, the model can allow a number
of k = 3 consecutive error starting from the first interaction. This means that a
node performing OOA will be detected as malicious after 4 malicious interactions.
The average payoff is then tied by the number of benevolent interactions the node
performs when it is in the ON state, so that the average payoff increases for M > k.
Before this condition, the average payoff shows an oscillatory behavior due to the
variation in the number of cooperative transactions.

At last, the behavior of the OSA node is described in Figure 7.6. The model
threshold Tth is set according to Equation 7.24 with a value near 0.7, because of
∆− = 0.1. The Figure shows how the best value for TOSA is equal to Tth, where the
node can perform the highest number of bad services, and thus its average payoff is
maximum. We can also note how the percentage of bad services the OSA behavior
is able to deliver is higher than the error probability of a node (p = 0.2): this is
due to the ability of OSA to exploit the tolerance margin due to the maximum
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admissible error by the algorithm, Amax. With TOSA < Tth the node is immediately
detected and its payoff is lower, while with TOSA > Tth, the node does not fully
exploit malicious opportunities and then it can not achieve the maximum payoff.



Chapter 8

Conclusions

In this thesis, we have proposed an exhaustive analysis of the trustworthiness man-
agement in the IoT and SIoT. At first, we have illustrated a query generation model
that can be used to analyze the performance of search and discovery mechanisms
in the SIoT. To define the model, we have generated a dataset, which is based on
real IoT objects available in the city of Santander and makes use of people mobility
models. The dataset and the resulting social network are made available to the re-
search community in order to test several SIoT management algorithms. Moreover,
we have analyzed the possible types of attacks that nodes can implement to disrupt
an IoT system and then proposed a trust management model based on a Machine
Learning algorithm for a SIoT scenario. However, through an analysis of the lit-
erature, we have identified two important deficiencies of the scenarios used to test
TMSs. The first concerns errors in providing services: a node provides the wrong
service due to malicious behaviours or malfunctions and poor accuracy (errors in
service providing). Moreover, the requester node usually is not able to perfectly
evaluate the received service; thus, benevolent providers could be poorly evaluated
(errors in service requesting). We have shown how these essential assumptions must
be considered in the scenario used to test a trust model and how any complex algo-
rithm is necessary otherwise. Therefore, to solve these deficiencies, we have defined
the problem of feedback evaluation in the IoT and proposed different metrics to
evaluate a reference value that should be used to rate the service received by the
providers, with or without the presence of errors. Finally, we have modelled the in-
teractions among nodes in the IoT following a binary trust game to study how trust
can arise between them. In particular, we have analyzed the interactions between
a service requester, which acts as the trustor, and a service provider, the trustee.
Based on this model, we have proposed guidelines that can be used to design trust
management algorithms.
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