

This is the Author’s accepted manuscript version of the following
contribution:
D. Trizna, L. Demetrio, B. Biggio, and F. Roli. Nebula: Self-attention for
dynamic malware analysis. IEEE Transactions on Information Forensics
and Security, 19:6155–6167, 2024.

The publisher's version is available at:
https://dx.doi.org/10.1109/tifs.2024.3409083

When citing, please refer to the published version.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

This full text was downloaded from UNICA IRIS https://iris.unica.it/

1

Nebula: Self-Attention for Dynamic Malware
Analysis

Dmitrijs Trizna1,2,3, Luca Demetrio Member, IEEE3, Battista Biggio, Senior Member, IEEE4, and Fabio
Roli Fellow, IEEE3,4

1Microsoft Corporation
2Department of Computer, Control and Management Engineering, Sapienza University, Rome, Italy

3Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, Italy
4Department of Electrical and Electronic Engineering, University of Cagliari, Italy

Abstract—Dynamic analysis enables detecting Windows mal-
ware by executing programs in a controlled environment and
logging their actions. Previous work has proposed training
machine learning models, i.e., convolutional and long short-
term memory networks, on homogeneous input features like
runtime APIs to either detect or classify malware, neglecting
other relevant information coming from heterogeneous data
like network and file operations. To overcome these issues, we
introduce Nebula, a versatile, self-attention Transformer-based
neural architecture that generalizes across different behavioral
representations and formats, combining diverse information from
dynamic log reports. Nebula is composed by several components
needed to tokenize, filter, normalize and encode data to feed the
transformer architecture. We firstly perform a comprehensive
ablation study to evaluate their impact on the performance of the
whole system, highlighting which components can be used as-is,
and which must be enriched with specific domain knowledge. We
perform extensive experiments on both malware detection and
classification tasks, using three datasets acquired from different
dynamic analyses platforms, show that, on average, Nebula
outperforms state-of-the-art models at low false positive rates,
with a peak of 12% improvement. Moreover, we showcase how
self-supervised learning pre-training matches the performance
of fully-supervised models with only 20% of training data,
and we inspect the output of Nebula through explainable AI
techniques, pinpointing how attention is focusing on specific
tokens correlated to malicious activities of malware families. To
foster reproducibility, we open-source our findings and models
at https://github.com/dtrizna/nebula.

Index Terms—Malware, Transformers, Dynamic Analysis,
Convolutional Neural Networks

I. INTRODUCTION

DYNAMIC malware analysis is a crucial task not only
for detecting but also for understanding the threats that

are widespread over the entire Internet. Once samples are
collected, analysts execute malware inside isolated environ-
ments (sandboxes or emulators), where they list all the actions
performed by the program like network and filesystem access,
registry modifications, API calls, and kernel syscalls [1]. These
actions are then summarized into textual reports, which are
manually analyzed by experts to distill the rationale behind
the maliciousness of the analyzed sample. This task is tedious
and resource-intensive since it involves domain experts in the
process and manual labeling.

Machine learning (ML) techniques, particularly Convolu-
tional Neural Networks (CNNs) and Long Short-term Memory
(LSTM) models, are now widely utilized to streamline this
process. These models are trained on vast volumes of textual
reports, allowing quicker classification of new inputs and
reducing human intervention [2], [3], [4], [5], [7], [8]. While
CNNs capture local patterns in reports, providing valuable
features for neural architectures, LSTM models learn global
token relationships [9], [10]. However, these proposed schemes
are hindered by three main downsides: (i) convolutions only
capture local information, discarding the global correlations
contained in reports between actions, while LSTM models
struggle in modeling sample behavior based on prolonged
token sequences, like a chain of API calls with arguments; (ii)
most of the proposed techniques solely rely on homogeneous
input data, like API calls [4], [2], [8], rather than leveraging
more complete and heterogeneous information representing
the behavior of malware samples; and (iii) source code, data,
and pre-trained models are typically not available for most of
the proposed techniques, hindering reproducibility.

To overcome these issues, we present Nebula, an ML model
based on the Transformer architecture [11] trained on reports
of different nature and formats. Unlike traditional models,
Nebula leverages the self-attention mechanism inherent in
Transformer neural networks, granting Nebula the capability
to discern both local and global relationships in a report. To
the best of our knowledge, we are the first to propose general
Transformer architecture to tackle both malware detection and
classification from raw dynamic log reports. Instead of solely
focusing on few portions of reports, we design Nebula to
properly work on all the output provided by sandboxes, thus
making Nebula able to correlate tokens from different sources.
To build Nebula, we consider several data cleaning approaches
and and feature extractors, and we deeply study their effect
through an extensive ablation study (Sect. IV-C). Through this
analysis, we highlight that some standard NLP techniques,
like tokenization through Byte Pair Encoding (BPE) can
be applied “as-is”, while it is necessary to preprocess data
through the lenses of domain knowledge, by replacing mostly-
unique tokens like specific IP addresses, hashes, and internet
domains. We then test Nebula against different state-of-the-
art approaches leveraging both CNNs and LSTMs, and we

https://github.com/dtrizna/nebula

2

Fig. 1: A schematic overview of Nebula.

benchmark their performances on both malware detection and
classifications tasks span on three distinct datasets acquired
from different sandbox environments (Sect. IV-D). From our
analyses we can conclude that Nebula is, on average, the best
model to handle both tasks on all the considered dataset with
performances aligned to the state of the art. In particular, we
highlight a peak of improvement of 12% true-positive rate
on a specific dataset with an very low false-positive rate of
10−3 setting. This result is achieved under a strict regime
of very low false positive rate, which is a crucial aspect
for deployed systems [5], [7]. Also, we inspect how self-
supervised learning can reduce the number of training data
needed to fine-tune Nebula on the malware detection task
(Sect. IV-E). Our results exhibit a positive trend, highlighting
that Nebula achieves state-of-the-art performance when firstly
pre-trained on 80% of training dataset, and fine-tuned for
the downstream task of malware detection with only the
remaining 20% of samples. Lastly, we review the output of
Nebula through the lenses of explainable AI techniques [14],
[17] (Sect. IV-F), by confirming that our model focuses on
tokens specific to certain malware behaviors, backed up by
domain knowledge. To foster reproducible results, we do not
only share the code and pre-trained models of Nebula, but
we also re-implement, re-train and release methods that were
previously closed source [8], [3].1

II. DYNAMIC WINDOWS MALWARE ANALYSIS

This section provides the background information necessary
to understand the technical advancements made by Nebula.

A. Malware Behavioral Reports

System compromise can have different manifestations de-
pending on impact, like sensitive data exposure or the misuse
of computational resources. Adversaries employ a diverse
range of methods, from utilizing built-in tools and protocols
aligning with a “living-off-the-land” approach to leveraging
stolen credentials or employing social engineering tactics to
achieve their goals through legitimate user accounts. Threat
actors often deploy their own software agents, referred to
as malware. According to the 2022 Verizon Data Breach
Investigation Report [20], malware was responsible for nearly
40% of breaches. Malware analysis can be segregated into
static and dynamic methodologies. The former entails the
evaluation of software samples without executing them. On
the contrary, dynamic software analysis is a process that

1https://github.com/dtrizna/nebula

commences with the “detonation” of a sample in a controlled
environment. Dynamic analysis is done by isolation of ap-
plication, preventing it from impacting other system parts,
while maintaining the realism of potential target system to
extract malware actions, producing a behavioral report [16].
These are readable text files that summarize all the meaningful
events captured by the sandbox, and they are listed to help the
analysis task conducted by humans.

B. Machine Learning Pipeline for Dynamic Analysis

Machine learning has become a significant element in mal-
ware analysis, with efficient modeling schemes proposed for
both static and dynamic data structures derived from malware.
We now describe how ML can employ textual reports by
introducing three main steps: (i) data cleaning to prepare
raw data; (ii) feature extraction to create a mathematical
representation of reports; and (iii) modeling the problem to
train the final classifier, as depicted in Fig. 1 given modeling
part is performed by Nebula.
Data Cleaning. First, the behavioral report is cleaned and
normalized to make the data manageable for further process-
ing. Filters are used to remove unnecessary data and preserve
only a specific set of fields, while normalization techniques are
applied to systematize values that are stochastic in nature and
do not correlate with application behavior like hash-sums or
IP addresses. This allows us to introduce domain knowledge
[23] and, as shown in Sect. IV-C, improves the model’s gener-
alization abilities by reducing variability in values irrelevant to
the prediction. We denote this step as z′ = ψ(z), where z is
the raw data collected from the dynamic analysis environment,
and z′ is the cleaned and normalized textual data.
Feature Extraction. Then, z′ undergoes feature extraction
denoted x = ϕ(z′). As a final step, producing a numerical
array x, suitable for analysis by ML model. Feature extraction
ϕ involves a dichotomy between (a) feature engineering or (b)
token encoding. Feature engineering involves the manual or
automated selection and transformation of relevant features
from the cleaned data z′, for instance, feature hashing applied
to API call names [8] or regular expression-based feature
extractors [8]. Token encoding involves a tokenization step,
which transforms the textual data z′ into a sequence of tokens
and a vocabulary V of all possible tokens. Tokenization can
be based on regular expressions, be influenced by a domain
knowledge [26], or involve statistical methods like Byte-Pair
Encoding (BPE) [27], [28]. The sequence of tokens is then
encoded into a numerical array x using an encoding function
f , which might be as simple as one-hot encoding, be calculated

https://github.com/dtrizna/nebula

3

TABLE I: Dynamic malware analysis modeling techniques.

Data Cleaning ψ(z) Feature Extraction ϕ(z′) Model f(x) Size Code Released Comment

Neurlux [3] ✗ Tokenization CNN, LSTM, Attention 2.8M ✓
Gated CNN [8] API filter Feature Hashing CNN, LSTM 0.4M ∼ Shared privately
Quo.Vadis [2] API filter Tokenization CNN 1.4M ✓

JSONGrinder [18] ✗ HMIL [19] MLP 2.4M ∼ Non-functional
CruParamer [4] API filter API “labeling” CNN, LSTM – ✗

Nebula (ours)
API, network, file,
registry filters and

normalization
Tokenization Transformer (Self-Attention) 5.6M ✓

with term frequency-inverse document frequency (TF-IDF),
or use embedding function f : V → Rd, where d is the
embedding dimension.
Modeling. The final step is to use the numerical array x as an
input to a ML model f(x), which produces a prediction y of
a malware label. The modeling function can be as simple as
linear models like logistic regression. However, for behavioral
reports, the best schemes incorporate representations of se-
quential information. This can be achieved by convolutions,
recurrent neural networks or self-attention with positional
encoding.

C. Review of Dynamic Models

The landscape of behavioral malware analysis showcases
a competitive interplay between commercial solutions and
academic research, with different attitude towards a modeling
an adversary. Commercial anti-virus (AV) and Endpoint Detec-
tion and Response (EDR) products have integrated behavioral
analytics into their detection methodologies, forming part of a
multi-objective heuristic that leverages both static and dynamic
analysis. The behavioral components of their multi-objective
heuristics are closed, which prohibits their disentanglement
on the user side for comparison purposes. This lack of trans-
parency means that we cannot gauge how much of the overall
performance of these commercial solutions is attributed to
their behavioral modeling component specifically. Also, AVs
and EDRs work in real-time settings, implying that decisions
are taken in a matter of milliseconds, opposed to sandbox
analyses that are conducted offline, and later evaluated thoguh
reports. Due to these discrepancies, in this work we will
only focus on academic dynamic malware analysis conducted
offline through sandbox analyses, since its comparison with
AVs and EDRs would be unfair. In academic research, we
encounter several groundbreaking methodologies in dynamic
malware analysis that pose a formidable challenge to the
current state-of-the-art. To offer a consolidated view of these
promising approaches, we have curated a selection of these
solutions in Table I, systematizing their respective pipelines
according to the steps introduced in Sect. II-B. A common
theme among contemporary academic contributions is the
employment of traditional techniques, such as one-dimensional
convolutions, optionally complemented with recurrent layers
through Long Short-Term Memory (LSTM) [9], as part of their
core modeling approach f . However, each of these method-
ologies introduces a unique approach in either data cleaning
(ψ) or feature extraction (ϕ) processes, thereby diversifying
the analytical landscape of dynamic malware analysis.

Neurlux (Jindal et al. [3]). A distinctive feature of this
approach is the absence of operations during the data cleaning
phase (ψ), passing raw behavioral reports directly to the
feature extraction process (ϕ). This phase involves a simple
whitespace tokenization procedure and sequences encoding
with a vocabulary size of V = 10, 000. The resulting se-
quences are then modeled f using a combination of one-
dimensional convolutions, LSTM, and conventional attention
mechanisms [10], which is applied to the output of the LSTM
layer. Their code is publicly accessible; therefore, we are able
to compare our results with this model. However, the data
utilized in their research remains undisclosed.
Gated CNN (Zhang et al. [8]). This model introduced an
analysis where ψ preserves only API call data, each under-
going a custom feature engineering process during ϕ phase.
Then, the sequence of featurized vectors is modeled though a
gated convolution network as f . While the code for their model
is not released publicly, it was provided by the researchers
upon request, enabling us to draw a direct comparison between
our results and their model. However, similar to the case of
Neurlux, the data utilized in their study has not been released.
Quo.Vadis (Trizna [2]). This hybrid model simultaneously
assesses contextual, static, and dynamic features. Their model
code is released publicly, which significantly contributes to the
transparency of their work. For our analysis, we concentrated
on the dynamic component of their pipeline, which data
cleaning ψ preserves only API call names. Feature extraction
ϕ label-encodes each API call name with a vocabulary of V =
600 and subsequently models f with a 1d convolutional neural
network. This work is especially notable for its public release
of a comprehensive dataset consisting of Speakeasy [29] emu-
lation reports. This allows for the pursuance of both malware
detection and type classification objectives.
JSONGrinder (Bosansky et al. [18]). This model provides
a unique method for parsing hierarchical JSON reports, orig-
inally proposed in [19]. This method employs a combination
of Julia libraries, specifically JsonGrinder.jl used for
feature extraction ϕ and Mill.jl for modeling f , data clean-
ing ψ is omitted. The ϕ phase infers a Hierarchical Multiple
Instance Learning (HMIL) schema from the data, constructing
a fixed-size vector, while the modeling is based on a multilayer
perceptron (MLP) for sample classification. However, it is
worth noting that their implementation was not compatible
with the latest version of Julia (v1.8.5) at the time of our
experiments, causing the original model implementation to fail
without modifications. Additionally, Bosansky et al.’s work is
notable for its release of a comprehensive dataset useful for
malware family classification, which adds considerable value

4

to the existing body of resources in this field.
CurParamer (Chen et al. [4]). This method preserves only
API calls from the original report during the data cleaning
phase (ϕ). The feature extraction step (ψ) involves a unique
approach to API labeling and embedding, which includes
parameter-assisted API labeling and sensitivity-inspired API
embedding. These techniques utilize domain knowledge to
generate more efficient numerical representations of API calls.
To model these representations (f), they employ two separate
networks based on 2D convolutions and LSTM. Although their
feature extraction methodology is intriguing, it is presented
with little implementation details, which reduces its replica-
bility. Despite efforts to access the modeling code, the authors
made no public version available, even upon private request.

III. NEBULA: TRANSFORMER ARCHITECTURE FOR
DYNAMIC MALWARE DETECTION

The design of our dynamic malware analysis pipeline
draws from the proven success of the attention mechanism
in Natural Language Understanding (NLU). Particularly, the
self-attention-based Transformer architecture [11] has demon-
strated superior performance over conventional RNN- or CNN-
based modeling methods [12], [13]. These successes guided
the selection of techniques used during our feature extraction
(ϕ) and modeling (f) stages. The most significant deviation
from standard NLU pipelines is evident during the data
cleaning phase (ψ). Here, we employ a domain-specific parser
that (i) retains only those fields from the original structured
report relevant for behavior generalization; and (ii) normalizes
unconstrained and arbitrary values within such selected fields.
In the feature extraction phase (ϕ), we tokenize each report
into a sequence of tokens of length N and encode each token
based on a vocabulary of size V . When modeling this se-
quence, we first embed the input vector to a higher dimension,
apply position encoding, and then process it through a Trans-
former encoder layer to apply the self-attention operation. The
resulting attended tensors are then forwarded to a classifier
that produces the final prediction. A high-level overview of
our Nebula modeling scheme is depicted in Fig. 1.

A. Data Cleaning

We detail the data cleaning z′ = ψ(z) applied by Nebula.
Vocabulary and Field Filters. Machine data is more volu-
metric and heterogeneous than natural languages. Therefore,
it can have a significantly larger vocabulary, as no distinct
lexical boundaries or grammatical rules define the language
being used. In system logs, it is common to see arbitrary
character combinations like /tmp/83afba/setup.bin or
jre1.8.0_311, which explode vocabulary given improper
handling. For instance, even after path normalization, we
observe more than 6000 unique filepaths, where only roughly
400 paths repeat, and the rest appear only once. The Fig. 2
visualizes the frequency distribution of tokens for different
JSON fields in the Speakeasy emulated behavioral report
training set [2]. Every additional field included in the anal-
ysis increases the vocabulary size. For instance, given filter
that uses API calls, file, network, and registry records total

100 101 102 103 104 105 106

Unique Tokens

101

103

105

107

F
re

q
u

en
cy

API call names

File access

Network traffic

Registry access

All fields above

Raw JSON
(no filters)

Fig. 2: Visualization of whitespace token frequency in the
Speakeasy [29] emulated behavioral report training set [2].

vocabulary size is about 2.5M tokens. Given no filters applied,
this number jumps close to 8M tokens, exploding vocabulary
more than three times and significantly reducing the epistemic
density (valuable information per token) of the data.

Concerning field filtering, existing dynamic malware mod-
eling techniques fall into two categories: do not implement
any filters [3], or use only a single type of information,
usually API calls [4], [2]. Focus solely on API calls eliminates
valuable behavior representations necessary for establishing
effective decision boundaries in malware detection. Research
has demonstrated that domain experts rely on a broader range
of information when performing actual malware analysis [23].
Based on ablation studies discussed in Sect. IV-C, we preserve
the following fields from dynamic analysis report: (i) API
call names, arguments, and return codes; (ii) file operation
type and path; (iii) network connection port and server name;
and (iv) registry access type and key value. We found this
combination of fields produces the best generalization and the
least overfitting.
Normalization. Retained fields still have unbounded or un-
predictable values, which may not inherently contribute to the
effectiveness of ML models. For instance, the exact values
of IP addresses are not representative per se and primarily
provide broader context, such as indicating whether the IP
is from a private or public network or what autonomous
system it belongs to. Similarly, file paths may contain elements
like usernames, drive letters, or randomized file and direc-
tory names, which have relative contextual significance for
behavioral analysis. Hence, the raw values of such fields may
not be directly beneficial for modeling, emphasizing the need
for suitable normalization before analysis. We incorporate
domain knowledge via placeholders by normalizing filepaths,
network connection, and registry access information in the
following manner: (i) hash-sums in any field, including SHA1,
SHA256, and MD5, are substituted with placeholders like
<sha1>, <sha256>, <md5> placeholders; (ii) IP addresses
are mapped to placeholders symbolizing loopback, private,
public, or IPv6 addresses; (iii) recognizable domain names
associated with a list of common top-level domains such
as com or net (but not exclusive to these) are assigned
the <domain> placeholder; (iv) Windows path variables, for

5

instance, %windir% or %userprofile%, are expanded to a
full path; and (v) frequent Windows paths patterns are replaced
with specific placeholders such as <drive> or <user>.

B. Feature Extraction

We now detail the feature extraction x = ϕ(z′) applied
after the data cleaning phase ψ by Nebula.
Tokenization. This operation is pivotal for dealing with
textual data, since it divide the input text into several
atoms named tokens, that represent input data in a com-
prhensible way for machine learning models. Two basic
approaches to tokenization, namely Whitespace and Word-
punct, have been traditionally employed, both using regu-
lar expressions to split the text. Former separates words
based on spaces, tabs, and newline characters, while lat-
ter on top of that uses punctuation as separators. A frag-
ment of whitespace tokenized dynamic analysis report:
"0x0", "0x1", "kernel32.getprocaddress",
"0x1000", "0xfa", "kernel32.tlsgetvalue"

In contemporary deep learning solutions, a more
sophisticated approach to tokenization has emerged [12],
predominantly based on Byte Pair Encoding (BPE) [27],
which initially served as a data compression algorithm [15].
The adoption of BPE as a tokenizer is attributed to its
ability to adapt to various languages and tasks seamlessly.
Ideologically, BPE is well suited for machine data such as
malware reports, since its data-driven nature allows to learn
the optimal tokens scheme directly from the data. Notably, to
handle the intricacies of low-level data in dynamic malware
reports, we adjust BPE to incorporate all raw bytes and UTF-8
characters as base tokens. This ensures that event the most
rare and unique elements of malware report will have a token-
level representation. The redacted set of BPE tokens covering
the same dynamic analysis report fragment are as follows:
"0x", "0x1", "ne", "32.", "kernel32.",
"et", "ad", "getproc", "10", "0xf", "tls

Furthermore, for both tokenization schemes, we limit our
vocabulary to V = 50000 most common tokens and introduce
two special tokens to denote all other tokens (<unk>) and
padding of shorter sequences (<pad>).
Sequence Length. In the case of machine data, the tokenized
sequences from system log events are typically lengthy. To
manage this, we confine behavioral reports to the first N
tokens. By keeping the computational budget constant, we
evaluate the performance of models with varying sequence
lengths. The results of these comparative studies, often referred
to as ablation studies, will be detailed in Sect. IV-C, with the
final choice of N = 512.

C. Model Architecture

We now detail the last component of Nebula, which is the
model function f .
Embedding and Positional Encoding. Embedding operation
maps the input sequence of integers to a higher dimensional
space: e = E(x) ·

√
de, where E(x) is the embedding of

the input x and de is the dimension of the embedding,

with square root used for scaling. This results in vector
e = [e1, e2, ..., epos, ..., eN], where epos ∈ Rde .

Since our method relies on the Transformer architecture,
which lacks the inherent sense of order provided by recurrent
models, we need to incorporate positional information in
our sequence. There are multiple alternative ways to encode
position. We replicate the approach introduced by Vaswani et
al. [11], creating a set of sinusoidal functions with different
frequencies for each position in the sequence:

PE(pos, 2i) = sin
(pos

100002i/d

)
, (1)

PE(pos, 2i+1) = cos
(pos

100002i/d

)
, (2)

where PE(pos, i) is the i-th dimension of the positional
encoding of the token at position pos in the sequence, and
d is the dimensionality of the model. The PE(pos, 2i) and
PE(pos, 2i+1) terms are used for even and odd dimension
i respectively. These values are then added to the embed-
ded vectors epos to incorporate the positional information
into the sequence e′pos = epos + PEpos where PEpos =
[PE(pos, 1), PE(pos, 2), ..., PE(pos, d)] is the positional en-
coding vector for position pos. The result is a sequence of
vectors e′ = [e′1, e

′
2, ..., e

′
N], where each vector represents both

the token semantics and its position in the sequence, which can
now be fed into the Transformer network.
Neural Layers. We leverage the Transformer architecture,
which originally employs both encoder and decoder lay-
ers [11]. Our setup utilizes only encoder layers similar to
Devlin et al. [13], a design choice that aligns our model
with inference task rather than generative objectives as in
applications that include decoder [11], [12]. We employ two
Transformer encoder layers that align our model size with
those of comparable models in Table I. This choice is not
restrictive – the model can be scaled up to incorporate more
Transformer layers to improve performance, consistent with
the principle of model scaling laws [30]. After the self-
attention operation, data is forwarded to a classifier for the
final prediction. In our implementation, the classifier consists
of a fully connected neural network with a single hidden layer
composed of 64 neurons and the final layer for binary or multi-
class classification.
Reduced Self-attention Span. Input comprised from struc-
tured machine data like malware behavior reports contain
information in lengthy sequences, which poses a challenge for
self-attention architectures like that used by Transformers [11],
since such models exhibit quadratic complexity with respect
to the sequence length. The self-attention operation can be
represented as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V, (3)

where Q, K, and V as queries, keys, and values, respectively
used as inputs to a self-attention layer, and dk is the dimension
of the keys. The product QKT results in a matrix of size
N × N , where N is the sequence length. Calculating this
product has a complexity of O(N2), leading to the quadratic
computational complexity with respect to the sequence length.

6

TABLE II: Number of samples per malware family in Avast-CTU Dataset[18].

Family Adload Emotet HarHar Lokibot njRAT Qakbot Swisyn Trickbot Ursnif Zeus Total

Samples 704 14429 655 4191 3372 4895 12591 4202 1343 2594 54000

TABLE III: Speakeasy Dataset [2] structure and size.

Training set Test set

Sample label Size (Gb) Count Size (Gb) Count

Benignware 127.0 26061 47.0 10000
Backdoor 30.0 11089 7.4 2500
Coinminer 46.0 10044 11.0 2500
Dropper 36.0 11275 9.0 2500

Keylogger 34.0 7817 9.8 2500
Ransomw. 14.0 10014 4.6 2500

RAT 5.5 9537 2.5 2500
Trojan 40.0 13128 7.1 2500

Total 329 98966 98 27500

We propose an alternative approach to reduce computa-
tional complexity by partitioning the self-attention operation
described in Equation 3 into several independent attention
spans instead of applying it to the entire sequence. Assume
that the original sequence length N is divisible by the span
S, so there are M = N/S spans. Let Qi, Ki, and Vi
denote the queries, keys, and values for the ith span. Then,
Attention(Qi,Ki, Vi), ∀i ∈ {1, 2, ...,M} and independent
attention results are concatenated to vector of size N .

In this way, the complexity is reduced to O(MS2), im-
proving the model’s computational efficiency, especially when
S << N . Our experiments use S = 64 with N = 512,
resulting in M = 8 independent self-attention spans. We
observe that reducing attention spans enhances the model’s
inferential capacity on behavioral reports while adhering to
the same computational constraints.

IV. EXPERIMENTAL EVALUATION

The following section presents an in-depth experimental
evaluation designed to assess the effectiveness and robustness
of Nebula. We discuss the dataset used for our experiments
(Sect. IV-A), and we outline our setup (Sect. IV-B). We
then present our ablation study on the components of Nebula
(Sect. IV-C), followed by its comparison with the state of
the art (Sect. IV-D). Lastly, we analyse the benefits that self-
supervised pre-training has on the required number of data
to fit Nebula (Sect. IV-E), and we conclude by analysing its
output with explainability techniques, confirming our findings
through domain knowledge (Sect. IV-F).

A. Datasets

In our experiments, we evaluate three publicly available
datasets by discussing two different types of analysis.
Malware Detection. This binary classification task discerns
between benign and malicious software. It’s a fundamental
task performed by AV and EDR solutions with the aim of
detecting malevolent logic running on a system. In real-world
applications, it is paramount to maintain severely low false-
positive rates to ensure usability and efficiency.

Malware Classification. This is a multi-label classification
objective, targeting the attribution of malware samples to a
specific type or family. Threat intelligence teams often execute
it to study the evolution of malware strains, uncover shared
characteristics, and identify potential countermeasures. We
now characterize each dataset according to the best practices
established in the malware research [16] by its sample size, the
environment used for data collection, its applicability for either
malware detection and classification tasks, and the availability
of separate training and test sets.
Speakeasy Dataset [2]. This dataset2 was generated using
Speakeasy v1.5.9 [29], a Windows kernel emulator, compris-
ing behavioral reports from in total approximately 93,500
samples, with both legitimate and malicious JSON reports.
The malicious samples belong to seven distinct malware types,
with sample prevalence across labels detailed in Table III.
Therefore, the dataset is suitable for both malware detection
and classification tasks. The dataset provides a test set explic-
itly, collected in a different timeframe (April 2022) from the
training set (January 2022). This temporal separation facilitates
the examination of concept drift in malware behavior.
Avast-CTU Dataset [18]. This dataset3 houses sandbox re-
ports in JSON format derived from CAPEv2 [31] (a Cuckoo
sandbox [32] derivative), with approximately 400,000 samples
collected between January 2017 and January 2020. The reports
represent ten different malware families (Table II). Due to the
absence of legitimate samples, this dataset is solely used for
malware classification tasks. Also, this dataset lacks sequential
information, and it only provides a summary of the events
colelcted by the sandbox. The dataset formation aligns with
the splitting approach recommended by Bosnansky et al. [18],
in which all samples preceding August 2019 are designated as
the training set, while the remainder forms the test set.
Malicious Code Dataset (MCD) [33]. This dataset has
approximately 30,000 labeled samples containing API call
sequences in XML format without any additional behavioral
data (such as filesystem, registry, or network access). The
dataset’s collection methodology and the environment are not
explicitly detailed. The training set contains 10,000 malware
and 20,000 goodware samples. As no malware family or
type labels are available, this dataset is solely applicable for
malware detection task. The test set with 15,000 unlabeled
samples cannot be used for evaluation due to the lack of labels.
Hence we report mean metrics only on validation sets through
cross-validation folds.

B. Experimental Setup
Our experiments were conducted on an NVIDIA Quadro

T2000, a standard consumer GPU. To align with the limita-
tions of the hardware capacity, the batch size was fixed at

2https://www.kaggle.com/ds/3231810
3https://github.com/avast/avast-ctu-cape-dataset

https://www.kaggle.com/ds/3231810
https://github.com/avast/avast-ctu-cape-dataset

7

TABLE IV: Mean validation set metrics with different vocab-
ulary sizes on malware detection task from Speakeasy data.
Reported TPR is at FPR= 10−3.

Metric 5k 10k 30k 50K 70k

TPR 0.8078 0.7834 0.8576 0.8383 0.8407
AUC 0.9965 0.9969 0.9977 0.9976 0.9977

F1 0.9817 0.9839 0.9861 0.9856 0.9862
Acc. 0.9753 0.9782 0.9811 0.9806 0.9814

b = 96 for all experiments. For optimization, we employed
the AdamW optimizer [34] with a static learning rate of
α = 2.5−4. The hyperparameters were set as β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. An L2 regularization with a weight
decay of λ = 1e−2 was also implemented. The evaluation
metrics were derived from three cross-validation (CV) folds
on the training set. The reported metrics are the mean values
of the three models evaluated on the validation subsets and a
single test set. To ensure fair evaluation given the variations in
model size as indicated in Table I, we maintained a constant
time budget for training instead of a fixed number of epochs.
Each fold was allocated a training duration of five minutes,
resulting in a total training budget of 15 minutes per cross-
validation run for three folds, excluding pre-processing time.
Initial experiments with longer training runs, such as an hour
per cross-validation, yielded similar relative outcomes with
tolerable deviations.As such, the 15-minute training budget
was deemed optimal for subsequent experiments.

C. Ablation Studies

We explore here the impact of variations in model com-
ponents and their configurations on the final performance of
the Transformer model. This helps highlight the effective-
ness of individual components in the context of the model’s
overall performance. For our ablation experiments, we use
the Speakeasy Dataset as it offers a comprehensive range
of behavioral representations. Furthermore, this data enables
us to evaluate malware detection performance using a binary
classification objective, yielding more interpretable results.
Vocabulary Size. The impact of varying vocabulary size on
the performance of the model using the Speakeasy emulation
data is presented in Table IV. The results demonstrate marginal
differences in performance within the range of vocabulary size
V ∈ {30 000, ..., 70 000}, suggesting that performance in
this interval is largely subject to the randomness introduced
during model initialization and training. This trend suggests
that the model’s performance is relatively stable with respect
to variations in vocabulary size within this range, indicating
a degree of robustness to this parameter. Considering these
observations, we chose V = 50 000 as a good compromise
that balances performance and complexity.
Field Filters. Initially, we examine the utility of individual
fields for malware detection. Fig. 3a presents the outcomes
of experiments in which only a specific single field from
the behavioral report is retained. Notably, the most influential
component of behavioral representation is the sequence of API
calls, especially when arguments are provided alongside the
API names. All other fields exhibit inferior performance when

TABLE V: Mean F1 values of field filter ablation studies on
malware detection task from Speakeasy dataset.

Fields Val. set F1 Test set F1 ∆

Raw JSON (BPE) 0.9884 0.7495 0.2389
Raw JSON (whtsp.) 0.9899 0.7275 0.2624
Filtered JSON (BPE) 0.9847 0.9136 0.0711
Filt. JSON (whtsp.) 0.9870 0.9068 0.0802

TABLE VI: Mean test set metrics of tokenizer ablation studies
on malware detection task from Speakeasy data. Reported TPR
is at FPR= 10−3.

Tokenizer TPR AUC F1 Acc.

Wordpunct 0.5540 0.9630 0.9049 0.9041
Whitespace 0.5703 0.9664 0.9068 0.9053

BPE 0.5213 0.9657 0.9136 0.9104

considered in isolation. This observation can be rationalized
by recognizing that not every type of malware or emulation
generates traces in the filesystem, registry, or network – only
a limited subset of emulation reports contain this data. How-
ever, all samples invariably exhibit a sequence of API calls,
which underscores the critical role of API call information
in malware detection. However, the inclusion of filesystem,
registry, or network information in conjunction with API
calls enhances detection capabilities. This synergy enables the
model to capture a more comprehensive representation of the
software’s behavior, improving the accuracy and reliability of
its predictions.

Additionally, we investigated two preprocessing modalities:
(i) a version that abstains from the application of filters, and
(ii) one that incorporates optimal field filters during prepro-
cessing. Table V presents the F1 scores on the validation and
test sets of the Speakeasy emulation reports for both the BPE
and whitespace tokenization schemes. Remarkably, a signifi-
cant overfitting issue is present when filters are not employed,
evidenced by a difference (∆) in performance between the
validation and test sets. While modeling that employs filters
lose about 7% − 8% of F1 on the test set, the performance
of modeling without filters degrades down by 23%− 25%. A
visual examination of this trend is depicted in Fig. 3b, where
the Receiver Operating Characteristic (ROC) curve for the test
set demonstrates significant degradation when filters are not
employed. Additionally, the high standard deviation between
cross-validation runs suggests a level of model instability or
variance in prediction.The observed outcome can be attributed
to the presence of unconstrained variables representative of
one specific execution, like hash sum or start address memory
segment. These fields cause the model to overfit the training
data, hindering its generalization and predictive capabilities
to unseen data in the test set. Hence, the application of field
filters appears instrumental in enhancing model stability and
performance, contributing to more reliable and generalizable
predictions.
Tokenization. We conducted ablation studies on tokenization
to investigate the impact of different tokenization strategies on
model performance. Three different tokenizers were tested:
BPE [28], Whitespace, and Wordpunct [24]. The test set

8

(a) Test set ROC of variable filter fields.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Raw JSON
(no filters)

Filters applied

Random guess

(b) Test set ROC with and without filter setup.

64 128 256 512 1024 2048
Sequence length

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
1

sc
or

e

Validation set Test set

(c) F1 scores with different sequence lengths.

Fig. 3: Results of ablation studies under different configurations on Speakeasy dataset.

TABLE VII: Malware detection metrics on Speakeasy test
dataset. Reported TPR is at FPR= 10−3.

Test set
Model Training batches TPR AUC F1 Acc.

Gated CNN [8] 1058 0.2152 0.8879 0.6465 0.7014
Neurlux [3] 7406 0.4250 0.9528 0.8792 0.8786
Quo.Vadis [2] 4761 0.3081 0.9224 0.8065 0.8173

Nebula (BPE) 2116 0.5213 0.9657 0.9136 0.9104
Nebula (whitesp.) 2159 0.5703 0.9664 0.9058 09053

TABLE VIII: Malware detection metrics on MCD test dataset.
Reported TPR is at FPR= 10−3.

Model TPR AUC F1 Acc.

Neurlux [3] 0.8508 0.9942 0.9687 0.9794
Quo.Vadis [2] 0.9035 0.9950 0.9613 0.9736

Nebula (BPE) 0.8332 0.9937 0.9653 0.9770
Nebula (whitesp.) 0.8243 0.9932 0.9590 0.9731

F1 scores for different tokenization methods are reported
in Table VI. The results reveal that all three tokenization
methods deliver comparable mean F1 scores. The BPE tok-
enizer demonstrates slightly better generalization capabilities,
achieving an F1 score on the test set that is almot 1% higher
than the others. This observation is further supported by the
field filter experiments discussed in the previous paragraph,
with results in Table V, where BPE exhibited the smallest
performance decrease (∆) between the validation and test sets.
Furthermore, it is noteworthy that the Whitespace tokenizer
achieves impressive results on the test set, surpassing the other
tokenization methods if evaluated by area under the curve
(AUC) or true positive rate (TPR) at false positive rate (FPR)
of 10−3, as shown in Table VI. Given competitive performance
of BPE and Whitespace, we report metrics of both tokenizers
for subsequent malware detection and classification, as well
as explainability experiments.
Sequence Length. Fig. 3c depicts the F1 scores on the
validation and test sets with varying sequence lengths. The
performance on both validation and test sets peaks at a
sequence length of N = 512. This suggests that sequences
of length N ∈ {64, ..., 256} may not encapsulate all the
necessary information for effective model inference, leading to
a significant drop in test set performance. On the other hand,
longer sequences are more computationally demanding, es-

10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Neurlux
Gated CNN
Quo.Vadis
Nebula

Fig. 4: Mean ROC curves over three cross-validations for mal-
ware detection of Neurlux [3], Gated CNN [8], Quo.Vadis [2]
and Nebula (with BPE tokenizer) on Speakeasy data test set.

pecially when utilizing self-attention-based modeling. Hence,
under the same computational time constraints, sequences with
length N ∈ [1024, 2048] yield less robust results.

D. Comparison with State of the Art

Malware Detection. In this section, we evaluate the per-
formance of Nebula, with alternative models in the domain
of malware detection. Metrics on the Speakeasy dataset [2]
reported in Table VII. ROC curve on the test set exemplified in
Fig. 4. Four modeling techniques were able to model this data,
namely Neurlux presented by Jindal et al. [3], Gated CNN
model by Zhang et al. [8], Quo.Vadis released by Trizna [2],
and Nebula. Our model surpasses all competitive architectures
on Speakeasy emulation data, outperforming all metrics on
the test sets in either the whitespace and BPE tokenization
modes. This is particularly evident under low false-positive
conditions. For instance, with 10−3 FPR, Nebula with whites-
pace tokenization demonstrates 0.570 TPR on the test set.In
comparison, the next best performing model, Neurlux, scores
0.42 TPR on the test set.This observation becomes critically
significant considering that strict low false positive rates are
enforced on production-grade malware detectors [5].

The efficiency of Nebula is also reflected in the number
of training batches required. As seen in Table VII, Nebula
achieves these results with less than a third of the training

9

TABLE IX: Mean F1 scores for malware classification objective on Spekeasy dataset.

Clean Backdoor Coinminer Dropper Keylogger Ransomware RAT Trojan

Neurlux 0.8453 0.8329 0.6910 0.4488 0.2032 0.5527 0.6625 0.6153
Gated CNN 0.7588 0.6870 0.5586 0.2015 0.0794 0.3584 0.0000 0.5282
Quo.Vadis 0.8338 0.8520 0.4884 0.3580 0.2119 0.6861 0.1195 0.5359

Nebula (BPE) 0.8526 0.8548 0.6303 0.2850 0.1295 0.7421 0.3683 0.6827
Nebula (whitsp.) 0.8240 0.8324 0.6214 0.4615 0.1179 0.6523 0.1854 0.6486

TABLE X: Mean F1 scores for malware classification objective on Avast-CTU dataset.

Adload Emotet HarHar Lokibot Qakbot Swisyn Trickbot Ursnif Zeus njRAT

Neurlux 0.7150 0.9294 0.9031 0.8320 0.9320 0.9991 0.9536 0.8910 0.6503 0.8479

Nebula (BPE) 0.4390 0.9392 0.7763 0.8957 0.9876 0.9973 0.9227 0.9362 0.6419 0.8656
Nebula (whitsp.) 0.6975 0.9319 0.8363 0.9048 0.9768 0.9984 0.9056 0.9585 0.6690 0.8896

batches required by the second-best model, Neurlux. Turning
awareness to the Malware Code Dataset (MCD) [33], the
mean validation set metrics are presented in Table VIII. MCD
preprocessing is computationally demanding due to the high
information density per sample because of lengthy API call
traces. This has a detrimental effect on models that employ
custom feature engineering schemes, such as Zhang et al. [8],
which take several seconds of feature engineering per MCD
sample. Processing a training set of 30,000 samples in this
manner would take approximately 100 hours—impractical in
both experimental and real-world scenarios. Consequently, we
excluded this model from our experiments on MCD.

Our observations reveal that Quo.Vadis, a simplistic mod-
eling scheme focused solely on API call names, outperforms
both Neurlux and Nebula based on AUC and detection rate
under low false-positive conditions. Given the lengthier API
call sequences in the MCD data, narrowly focused models like
Quo.Vadis might capture more behavior relevant to the data.
This outlines the evidence that narrow modeling schemes are
still more tuned to this specific data type for specific data
sources and can outcompete more general mechanisms.
Malware Classification. Predicting malware family is a multi-
label objective, and we report the results of the performances
of the considered models in Table IX and Table X the F1
scores on the Speakeasy and Avast-CTU datasets. Due to the
lacking of sequential information of the Avast-CTU dataset,
we omit Quo.Vadis and Gated CNN from the comparison, as
they require temporal information. Thus, we only evaluate this
dataset with Neurlux and Nebula. Thus Avast-CTU analysis
includes these models only.

Nebula exhibits superior test set F1 scores for 4 out of 7
malware types on Speakeasy (Table IX) data and in 6 out
of 10 malware families on Avast-CTU data (Table X). This
is particularly noticeable in malware families experiencing
significant concept drift, such as polymorphic Emotet [35],
in families with many sub-variants, like Zeus [36], or on
malware types that exhibit rich and diverse behaviors, such
as benignware, backdoors, ransomware, or trojans. Modus
operandi of such agents require frequent manipulation with
network, filesystem, and registry. An examination of metrics
on Speakeasy Dataset test set shows that Neurlux still sur-
passes Nebula in detecting Droppers and RATs, achieving

3 4 5 6 7 8 9 10
Number of Malware Families

0.6

0.8

1.0

T
es

t
S
et

 A
cc

u
ra

cy

Nebula (Whitespace) Nebula (BPE) Neurlux
Speakeasy Data Avast-CTU Data

Fig. 5: Test set accuracies with variable number of families
used for malware classification task.

18% and 30% higher F1 scores, respectively. This might
suggest a weakness in Nebula’s data-cleaning approach for
these particular malware families, indicating a potential avenue
for future improvements. Simultaneously, models focusing
solely on API calls, for example, Quo.Vadis, exhibit slightly
superior performance over the general models for malware
families with less diverse behavior, such as in detection of
Keyloggers, a malware type that only occasionally interacts
with the network or filesystem to store logged keys. Also,
we analyze the performances under varying number of target
families in malware classification task, depicting the test set
accuracies in Fig. 5. Performance of malware classification ca-
pabilities drops as number of families grow, suggesting that in
practical threat intelligence (TI) applications, it is supposedly
better to employ numerous models, each tailored to identify
specific key malware families and classes, instead of relying
on general classifiers. While the variability of performance
for the Avast-CTU dataset remains relatively minor, with only
few percentage points of difference, the performance variance
on Speakeasy reports notably diverges. Nebula demonstrates
notably superior performance to Neurlux, particularly in sce-
narios involving a smaller number of families, exhibiting at
least a 20% accuracy advantage in Nebula’s BPE model over
Neurlux in tasks encompassing 3-5 target families. This may
prove to be particularly valuable in practice, reinforcing the
observation for tailored models targeting a lower number of
families for optimal performance in TI tasks.

10

E. Self-Supervised Learning Benefits

Since Nebula leverages transformers, we now exploreits
capacity for self-supervised learning (SSL), by leveragin un-
labeled data to pre-train models. This is achieved through
language modeling (LM), with two prominent strategies pre-
vailing in textual data processing: masked language model-
ing, as exemplified on BERT and related transformer-encoder
architectures [13], and autoregressive next-token prediction,
characteristic of generative tasks like GPT models [12]. For
our study in malware detection, we conduct experiments on
both techniques, and we evaluate the performance compared
to the fully-supervised settings. Since LM tasks produce logits
in size of vocabulary for these experiments we decreased
vocabulary size to 8192 for computational reasons. As au-
toregressive LM requires global attention, we employed a
Transformer architecture tailored for these experiments, which
discards attention chunking as discussed in Sect. III-C. As for
masked LM, we employed the same pre-training parameters as
in BERT [13] setup. We designated 80% of the training data
as an unlabeled corpus for self-supervised pre-training, while
the remaining 20% was allocated for supervised fine-tuning.
To provide context, we included two benchmarks as proposed
by Apruzzese et al. [6]: (i) an upper bound, representing a
supervised model trained on the full dataset with access to all
label information, and (ii) a lower bound supervised model
that undergoes no pre-training and utilizes only 20% of the
training set, akin to the fraction used for LM fine-tuning.

We report ROC curves on test set for all runs in Fig. 6, and
we observe a consistent performance pattern across models.
As anticipated, the upper bound model exhibits the highest
detection rates, while the lower bound model performs the
least effectively, with 15% gap between both model detection
rates, indicative of the significance of the additional 80% of
training data available to the upper bound model. The masked
LM model demonstrates the second-worst performance, partic-
ularly under the strictest conditions of FPR= 10−3, reporting
detection rates even inferior to those of the lower bound model.
This discrepancy suggests that masked LM pre-training may
learn detrimental representations that remain insufficiently
adjusted during fine-tuning. In contrast, the autoregressive
LM model yields remarkable results, nearly matching the
performance of the upper bound supervised model across all
FPR ranges and particularly closely aligning with it under the
lowest FPR, with only a minimal 3% drop in detection rate.
This finding suggests that Nebula can effectively leverage sub-
stantially less labeled data by consuming unlabeled samples,
thereby reducing human resource requirements and enabling
the utilization of vast amounts of PE and DLL files available
to community and private businesses in the process.

F. Explaining the Behavior of Nebula

We now explain the behavior of Nebula leveraging two
explainable AI (XAI) techniques. The first one is Integrated
Gradients [14], that computes the importance of input features
by integrating gradients along a path from a baseline to
the input. In our case, we use an empty JSON file as the
baseline, which stands for the absence of any behavior. We

10 3 10 2

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves on Test Set with 20% of Training Set
Used for Supervised Finetuning

Benchmark (100% supervised)
Autoregressive LM
Masked LM
Benchmark
(no pretraining)

Fig. 6: Self-supervised language modeling (LM) efficiency
with 80% of training set used for pre-training and 20%
for supervised fine-tuning, compared with two benchmarks
without self-supervised LM, representing upper bound with
access to all the labels (100% supervised) and lower bound
using only fine-tuning data (20% supervised).

leverage the GradientSHAP implementation from the SHapley
Additive exPlanations (SHAP) framework [37]. Since this
technique requires an end-to-end differentiable model, it is
not directly applicable in our case due to the presence of the
initial embedding layer. To overcome this issue, we extract
sample embeddings and obtain explanations from this point
onwards, recovering importance values by taking the mean
over the embedding dimension. As the second method, we
leverage attention activations from the transformer encoder
layer to indicate the learned importance of relative token
weights within the model. Transformer self-attention layers
are multi-headed; in our case, each layer has eight independent
heads. We examine all the layers and heads, focusing on the
strongest attention weight deviations and investigating their
implications. We perform a large-scale analysis, randomly
subsampling 1000 samples for each malware type from the
Speakeasy dataset. The results are shown in Table XI, from
which we can derive the following key aspects:

• Functions from the advapi32 DLL exhibit a pronounced
significance in malware detection. This library provides
functionalities that allow programs to interact with the
OS, for instance, seeking elevated privileges or manipu-
lating service controls. The prominence of these functions
in our findings underscores their recurrent misuse in
malware.

• The token 0xcf0000 is used solely with
CreateWindowEx API call, referencing the style
of spawned window: WS_OVERLAPPEDWINDOW. We
see that the general trend for malware samples in the
test set involves the initiation of user interaction with
this specific parameter of UI behavior.

• API calls like setenvnvar (alias for SetEnvironment-
Var) and getsockobj (alias of GetSocketObject) are
frequently among the top tokens for malware classifica-

11

TABLE XI: Top 10 individual tokens impacting the decision of Nebula towards the target class according to integrated
gradients [14] XAI methodology based on 1000 samples per class from Speakeasy dataset. Normalized importance scores for
each token are reported in parentheses.

Malware Detection Malware Classification

Benignware Malware Backdoor Coinminer Dropper Keylogger Ransomware RAT Trojan

0x406018 (1.00) advapi32 (1.00) 0x1610e (1.00) 0xcf0000 (1.00) 0xcf0000 (1.00) 0x48e000 (1.00) 0x4013a0 (1.00) 0xcf0000 (1.00) 0x41b000 (1.00)
0xffe2 (0.90) readfile (0.65) 0x43204c (0.61) 0x413f64 (0.79) 0x59f934 (0.81) 0x599c24 (0.90) 0x42cb3a (0.71) 0x406018 (0.78) 0xc2b0e (0.92)

0x1211f9c (0.87) 0x1211fd8 (0.07) 0x41c024 (0.60) 0x428084 (0.75) 0x64 (0.81) 0xcf0000 (0.89) 0x4585c8 (0.71) 0x53b9f8 (0.59) 0xcf0000 (0.87)
0x481488 (0.85) 0x1211f20 (0.06) 0xffe2 (0.54) advapi32 (0.63) 0x4635cc (0.75) 0x5f3c24 (0.80) 0xffe2 (0.54) 0x42a4f1 (0.55) getsockobj (0.78)
0x415000 (0.81) 0x78 (0.05) 0x53b9f8 (0.50) 0x4130d4 (0.57) 0x404008 (0.70) getsockobj (0.67) 0x402378 (0.51) 0x42a730 (0.54) 0xa6ee60 (0.77)
findatoma (0.76) 0x1211f7c (0.02) 0x414004 (0.45) 0x42a730 (0.57) 0x405004 (0.62) 0x1211efc (0.62) 0x40a175 (0.48) 0xffe2 (0.52) 0x404008 (0.61)

getcurthread (0.76) heapalloc (0.01) 0x425363 (0.30) 0x402378 (0.44) getsockobj (0.55) 0x12f000 (0.57) 0x7340 (0.47) 0x402378 (0.46) 123 (0.51)
0x40b010 (0.75) 0x1db10106 (0.01) 0x101c (0.28) 0x6400000 (0.42) 0x402566 (0.53) 0xde10e (0.55) setenvnvar (0.43) setenvnvar (0.44) 0xffe2 (0.45)
0x414000 (0.75) kernel32 (0.01) cb (0.28) setenvnvar (0.42) 0x503008 (0.45) 0xffe2 (0.52) 0xbbc (0.41) 0x7090 (0.39) 0x113000 (0.43)
0x7090 (0.75) getprocheap (0.005) 0xf0c (0.25) 0x414c34 (0.39) 0x408838 (0.41) 0xfeedf030 (0.52) 0x40c7d1 (0.41) 0x49e5cc (0.33) 0x80000 (0.41)

tion. This indicates the necessity of malware for frequent
manipulation with environment variables, and the need
to make network connections, as well as an indication of
these manipulations as valuable components for the final
heuristic by Nebula.

Notably, while Table XI reports the token importance in
isolation, these are used by Nebula’s self-attention mechanism
in relation to all other tokens in sequence. We manually
ensure that the importance assigned by the integrated gradients
method from SHAP library [14] is directly correlated with
attention weights from within Transformer encoder heads. For
instance, we showcase the results of both XAI techniques on
a specific sample infected with the “Urelas” trojan (SHA1:
c7ee95f0ea78400d5e4938e06fea1bb0c388b565) in Fig. 7. We
find that both integrated gradients and attention activations
identify the highest maliciousness indicators within a particu-
lar dynamic analysis segment shown in Fig. 7, pinpointing the
same tokens representing filesystem manipulations as highly
associated with maliciousness.

V. RELATED WORK

We are not the first to explore Transformer applicability
for malware detection, by also discussing the applicability of
self-attention only for static malware analysis, contrary to our
contribution on dynamic malware analysis. Li et al. [39] were
the first to propose a Transformer-based architecture for static
malware analysis applied on assembly instructions. They used
a custom architecture called “Galaxy Transformer” to avoid
length limitations and construct hierarchical representations.
Rudd et al. [40] explored Transformer applicability on static
malware detection applied on raw malware bytes. Influenced
by the success of the GPT modeling scheme [12], the authors
analyzed Transformer decoder with an autoregressive pre-
training objective. Pei et al. [41] apply a hierarchical Trans-
former for code similarity analysis and vulnerability detection.
They generate a dataset from benign Linux ELF binaries,
obtaining behavioral micro-traces with QEMU based Unicorn
emulator. Similarly to our work, existing approaches [21], [22]
explored the usage of transformers applied on sequence of
API calls, and comparing them with alternative architectures.
However, the application of Transformers customized to a dy-
namic malware context and applicable to variety of telemetries,
distinguishes our approach. Moreover, the comparison with
other SotA dynamic malware detectors and our exploration

0.002 0.001 0.000 0.001 0.002 0.003 0.004

 create
 sha256

 system32
 windows

 drive
 read

 sha256
 system32
 windows

 drive
 open

 ini
info

olf
 g

 temp

(a) Explainability analysis based on integrated gradients [14] method.

(b) Attention activations [17] at the second self-attention layer.

Fig. 7: Depiction of fragment from “Urelas” trojan dynamic
analysis report exhibiting filesystem interactions. Both ex-
plainability technique agree on the importance (red) of tokens
like windows, temp, read, all linked to filesystem ac-
tivities likely exploited by the analysed malware.

of the model’s explainability represent additional, distinct
contributions with respect to previous work.

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we present Nebula, a novel self-supervised
learning transformer model for dynamic malware detection
and classification, and we select its components through an
extensive ablation study. We show how much the inclusion of
different behavioral aspects manifested by malware improves
the performance, by also quantifying how much data cleaning
procedure boosts the accuracy at test time. We compare
our approach against previously-proposed machine-learning
methods for dynamic malware analysis, in a pure supervised

12

learning setting, and we show that Nebula often achieves better
results than CNNs and LSTMs. In particular, Nebula surpasses,
on average, its competitors on both malware detection and
classification on three different datasets. We study how self-
supervised pre-training can reduce the need for training data,
highlighting that the usage of only 20% of the training dataset
is enough to reach state-of-the-art performance on malware
detection. Lastly, we inspect the output of Nebula through two
explainability methods, and we reveal that Nebula is giving
attention to relevant tokens associated with malicious activity,
by also exhibiting long spans of attention.
Limitations. We have not considered robustness of our model
against adversarial malware [25]. We acknowledge that such
analysis would be of high interest, however, adversarial attack
on dynamic classifier in input space would require algorithmic
modification of malware sample without corrupting the mali-
cious logic. To date, only initial methods of such perturbations
have been explored [42], with no released implementation
to replicate these attacks. Studying and implementing attacks
against behavioral classifiers would stand as a contribution
on its own, and for this reason we only discuss them as a
constraint of our study. Another limitation of Nebula is re-
liance on quality of dynamic analysis. Some malicious samples
will refrain expressing malicious logic given the execution
in virtualized or emulated environments. Techniques focused
on sandbox evasion techniques [38] will reduce quality of
Nebula even more, emphasizing the need of hybrid heuristic
that incorporates signature, static, and dynamic methods given
deployment in production setting [2]. Lastly, we caution that
pre-trained Nebula models we release were trained on just
70k samples and not a general pre-trained malware detectors
with real-world predictive power, instead, valuable for further
research and experiments on that same dataset only.
Future work. We plan to further investigate the effect of
self-supervised learning on Nebula, pre-training it on a much
larger data collection with unlabeled samples, and by varying
the size of labelled data. We hence envision models trained
with a scarcely populated dataset of novel malware, speeding
up computations and keeping state-of-the-art performance that
permit the deployment of these novel technologies. Finally, we
emphasize importance of assessing the adversarial robustness
properties of Nebula, seeing high potential in future work on
developing novel attack algorithms tailored to bypass dynamic
malware detectors and classifiers.

ACKNOWLEDGEMENTS

This work has been carried out while Dmitrijs Trizna was
enrolled in the Italian National Doctorate on Artificial Intel-
ligence run by Sapienza University of Rome in collaboration
with the University of Genova. It has been partly supported
by the European Union’s Horizon Europe research and in-
novation program under the project ELSA, grant agreement
No 101070617; by project SERICS (PE00000014) under the
MUR National Recovery and Resilience Plan funded by the
European Union – NextGenerationEU; and by Fondazione
di Sardegna under the project “TrustML: Towards Machine
Learning that Humans Can Trust”, CUP: F73C22001320007.

REFERENCES

[1] Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia. Challenges
and directions in security information and event management (SIEM).
In 2018 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), pages 95–99, 2018.

[2] Dmitrijs Trizna. Quo vadis: Hybrid machine learning meta-model based
on contextual and behavioral malware representations. In Proceedings
of the 15th ACM Workshop on Artificial Intelligence and Security,
AISec’22, page 127–136, New York, NY, USA, 2022. Association for
Computing Machinery.

[3] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christo-
pher Kruegel, and Giovanni Vigna. Neurlux: Dynamic malware analysis
without feature engineering. In Proceedings of the 35th Annual Com-
puter Security Applications Conference, ACSAC ’19, page 444–455,
New York, NY, USA, 2019. Association for Computing Machinery.

[4] Xiaohui Chen, Zhiyu Hao, Lun Li, Lei Cui, Yiran Zhu, Zhenquan Ding,
and Yongji Liu. Cruparamer: Learning on parameter-augmented api
sequences for malware detection. IEEE Transactions on Information
Forensics and Security, 17:788–803, 2022.

[5] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical provenance
analysis for endpoint detection and response systems. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1172–1189, May 2020.

[6] G. Apruzzese, P. Laskov, and A. Tastemirova, ”SoK: The Impact of
Unlabelled Data in Cyberthreat Detection,” in 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), Los Alamitos, CA,
USA: IEEE Computer Society, Jun. 2022, pp. 20-42.

[7] George Karantzas and Constantinos Patsakis. An empirical assessment
of endpoint detection and response systems against advanced persistent
threats attack vectors. Journal of Cybersecurity and Privacy, 1(3):387–
421, 2021.

[8] Zhaoqi Zhang, Panpan Qi, and Wei Wang. Dynamic malware analysis
with feature engineering and feature learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 34:1210–1217, 04 2020.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, nov 1997.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. In
International Conference on Learning Representations (ICLR), San
Diego, US, 2015.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukas Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30, USA, 2017. Curran
Associates, Inc.

[12] Alec Radford and Karthik Narasimhan. Improving language understand-
ing by generative pre-training. OpenAI, San Francisco, CA, June 2018.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1, pages 4171–4186. Association for
Computational Linguistics, Minneapolis, Minnesota, USA. Report No.
N19-1423, June 2019.

[14] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In International conference on machine learning,
pages 3319–3328. PMLR, 2017.

[15] Philip Gage. A New Algorithm for Data Compression. The C Users
Journal, 1994.

[16] Christian Rossow, Christian J. Dietrich, Chris Grier, Christian Kreibich,
Vern Paxson, Norbert Pohlmann, Herbert Bos, and Maarten van Steen,
”Prudent Practices for Designing Malware Experiments: Status Quo and
Outlook,” in 2012 IEEE Symposium on Security and Privacy, pp. 65-79,
2012. DOI: 10.1109/SP.2012.14.

[17] Jesse Vig. A multiscale visualization of attention in the transformer
model. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, pages 37–42,
Florence, Italy, July 2019. Association for Computational Linguistics.

[18] Branislav Bosansky, Dominik Kouba, Ondrej Manhal, Thorsten Sick,
Viliam Lisy, Jakub Kroustek, and Petr Somol. Avast-CTU Public CAPE
Dataset. Avast Software, AI Center, Dept. of Computer Science, Czech
Technical University, Prague, 2022.

[19] Simon Mandlik, Matej Racinsky, Viliam Lisy, and Tomas Pevny. Mill.jl
and jsongrinder.jl: automated differentiable feature extraction for learn-
ing from raw json data. Avast Software, AI Center, Dept. of Computer
Science, Czech Technical University, Prague, 2021.

10.1109/SP.2012.14

13

[20] Verizon Communications. Verizon Data Breach Investigation Report
(DBIR). https://www.verizon.com/business/resources/reports/dbir/2022/
results-and-analysis-intro/, 2022. Online; accessed May 31, 2023.

[21] Ferhat Demirkıran, Aykut Çayır, Uğur Ünal, and Hasan Dağ, ”An
ensemble of pre-trained transformer models for imbalanced multiclass
malware classification,” Computers & Security, vol. 121, p. 102846,
2022.

[22] Rajchada Chanajitt, Bernhard Pfahringer, Heitor Murilo Gomes, and
Vithya Yogarajan, ”Multiclass Malware Classification Using Either
Static Opcodes or Dynamic API Calls,” in Home AI 2022: Advances in
Artificial Intelligence Conference, December 3, 2022. Pages 427–441.

[23] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide
Balzarotti. RE-Mind: a first look inside the mind of a reverse engineer. In
31st USENIX Security Symposium (USENIX Security 22), pages 2727–
2745, Boston, MA, August 2022. USENIX Association.

[24] Steven Bird, Ewan Klein, and Edward Loper. Natural language
processing with Python: analyzing text with the natural language toolkit.
” O’Reilly Media, Inc.”, 2009.

[25] Luca Demetrio, Scott E. Coull, Battista Biggio, Giovanni Lagorio,
Alessandro Armando, and Fabio Roli. Adversarial EXEmples: A Survey
and Experimental Evaluation of Practical Attacks on Machine Learning
for Windows Malware Detection. ACM Trans. Priv. Secur. 24(4), Article
27, September 2021. Association for Computing Machinery, New York,
NY, USA. ISSN: 2471-2566. DOI: https://doi.org/10.1145/3473039.

[26] Dmitrijs Trizna. Shell Language Processing: Unix command parsing
for machine learning. Proceedings of Conference on Applied Machine
Learning for Information Security (CAMLIS), 2021, 2021.

[27] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine
translation of rare words with subword units. In Proc. 54th Annual
Meeting of the ACL (Vol. 1: Long Papers), pp. 1715–1725, Berlin,
Germany, 2016. ACL.

[28] Taku Kudo and John Richardson. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text process-
ing. In EMNLP: System Demonstrations, pp. 66–71, 2018. ACL.

[29] Mandiant. Speakeasy: portable, modular, binary emulator designed to
emulate Windows kernel and user mode malware., 11 2021. https://
github.com/mandiant/speakeasy.

[30] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. OpenAI, San
Francisco, CA, 2020.

[31] A. Brukhovetskyy and K. O’Reilly. Cape sandbox v2.1 book, 2022.
[32] Cuckoo Foundation. Cuckoo sandbox. https://github.com/

cuckoosandbox/cuckoo. Online; accessed May 30, 2023.
[33] Malicious Code DataSet, Jul 2019. https://github.com/kericwy1337/

Datacon2019-Malicious-Code-DataSet-Stage1.
[34] Ilya Loshchilov and Frank Hutter. AdamW: Decoupled weight decay

regularization. International Conference on Learning Representations
(ICLR), New Orleans, US, May 2019.

[35] Cybersecurity and Infrastructure Security Agency. Emotet Malware.
https://www.cisa.gov/news-events/alerts/2018/07/20/emotet-malware,
Online, Accessed: January 2024.

[36] Brian Krebs. ’Operation Tovar’ Targets ’Gameover’ ZeuS Botnet,
CryptoLocker Scourge. KrebsOnSecurity, Online, June 2014.

[37] Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, NeurIPS 30, pages
4765–4774. Curran Associates, Inc., 2017.

[38] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti,
”Detecting environment-sensitive malware,” in Recent Advances in
Intrusion Detection: 14th International Symposium, RAID 2011, Menlo
Park, CA, USA, September 20-21, 2011. Proceedings 14, pp. 338–357,
2011. Publisher: Springer.

[39] Miles Q. Li, Benjamin C.M. Fung, Philippe Charland, and Steven H.H.
Ding. I-MAD: Interpretable malware detector using galaxy transformer.
Computers and Security, 108:102371, 2021.

[40] Ethan M. Rudd, Mohammad Saidur Rahman, and Philip Tully. Trans-
formers for end-to-end infosec tasks: A feasibility study. In Proceedings
of the 1st Workshop on Robust Malware Analysis, WoRMA ’22, page
21–31, New York, NY, USA, 2022. ACM.

[41] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray.
Learning approximate execution semantics from traces for binary func-
tion similarity. IEEE Transactions on Software Engineering, 49(4):2776–
2790, 2023.

[42] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic
black-box end-to-end attack against state of the art api call based
malware classifiers. In Research in Attacks, Intrusions, and Defenses:

21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings 21, pages 490–510. Springer, 2018.

Dmitrijs Trizna is a Senior Security Researcher at
Microsoft Corporation, and a Doctoral Researcher at
SmartLab, University of Genova. He has ten years of
experience in commercial cyber-security (both blue
and red teaming), published research at industrial
security conferences like BlackHat US and DefCon
(AI Village), and scientific venues like CAMLIS,
ACM CCS AISec. Dmitrijs received security certifi-
cations like OSCP, SANS (GREM, GDAT), CCNA
Security, Standford Online, etc., and participated in
cybersecurity trainings organized by NATO.

Luca Demetrio (MSc 2017, PhD 2021) is an As-
sistant Professor at the University of Genoa. He is
currently studying the security of Windows malware
detectors implemented with Machine Learning tech-
niques, and he is first author of papers published
in top-tier journals (ACM TOPS, IEEE TIFS). He
is part of the development team of SecML, and the
maintainer of SecML Malware, a Python library for
creating adversarial Windows malware.

Battista Biggio (MSc 2006, PhD 2010) is Full
Professor at the University of Cagliari, Italy. He
has provided pioneering contributions in machine
learning security, playing a leading role in this field.
His seminal paper on “Poisoning Attacks against
Support Vector Machines” won the prestigious 2022
ICML Test of Time Award. His work on “Wild
Patterns” won the 2021 Best Paper Award and
Pattern Recognition Medal from Elsevier Pattern
Recognition. He has managed more than 10 research
projects, and serves as a PC member of ICML and

USENIX Security, and as Area Chair of NeurIPS. He chaired IAPR TC1
(2016-2020), and served as Associate Editor for IEEE TNNLS, IEEE CIM,
and Elsevier PRJ. He is now Associate Editor-in-Chief for PRJ. He is also a
senior member of IEEE and ACM, and a member of IAPR and ELLIS.

Fabio Roli received his Ph.D. in Electronic En-
gineering from the University of Genoa, Italy. He
was a research group member of the University
of Genoa (’88-’94), and adjunct professor at the
University of Trento (’93-’94). In 1995, he joined the
Department of Electrical and Electronic Engineering
of the University of Cagliari, where he is now Full
Professor of Computer Engineering and Director of
the Pattern Recognition and Applications laboratory
(https://pralab.diee.unica.it/). He is partner and R&D
manager of the company Pluribus One that he co-

founded (https://www.pluribus-one.it). He has been doing research on the
design of pattern recognition and machine learning systems for thirty years.
He was a very active organizer of international conferences and workshops,
and established the popular workshop series on multiple classifier systems.
Dr. Roli is Fellow of the IEEE and of the IAPR.

https://www.verizon.com/business/resources/reports/dbir/2022/results-and-analysis-intro/
https://www.verizon.com/business/resources/reports/dbir/2022/results-and-analysis-intro/
https://doi.org/10.1145/3473039
https://github.com/mandiant/speakeasy
https://github.com/mandiant/speakeasy
https://github.com/cuckoosandbox/cuckoo
https://github.com/cuckoosandbox/cuckoo
https://github.com/kericwy1337/Datacon2019-Malicious-Code-DataSet-Stage1
https://github.com/kericwy1337/Datacon2019-Malicious-Code-DataSet-Stage1
https://www.cisa.gov/news-events/alerts/2018/07/20/emotet-malware
https://pralab.diee.unica.it/
https://www.pluribus-one.it

	Introduction
	Dynamic Windows Malware Analysis
	Malware Behavioral Reports
	Machine Learning Pipeline for Dynamic Analysis
	Review of Dynamic Models

	Nebula: Transformer Architecture for Dynamic Malware Detection
	Data Cleaning
	Feature Extraction
	Model Architecture

	Experimental Evaluation
	Datasets
	Experimental Setup
	Ablation Studies
	Comparison with State of the Art
	Self-Supervised Learning Benefits
	Explaining the Behavior of Nebula

	Related Work
	Conclusions, Limitations, and Future Work
	References
	Biographies
	Dmitrijs Trizna
	Luca Demetrio
	Battista Biggio
	Fabio Roli

