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Abstract

AI has provided us with the ability to automate tasks, extract information from
vast amounts of data, and synthesize media that is nearly indistinguishable from
the real thing. However, positive tools can also be used for negative purposes.
In particular, cyber adversaries can use AI to enhance their attacks and expand
their campaigns.

Although offensive AI has been discussed in the past, there is a need to an-
alyze and understand the threat in the context of organizations. For example,
how does an AI-capable adversary impact the cyber kill chain? Does AI benefit
the attacker more than the defender? What are the most significant AI threats
facing organizations today and what will be their impact on the future?

In this study, we explore the threat of offensive AI on organizations. First,
we present the background and discuss how AI changes the adversary’s methods,
strategies, goals, and overall attack model. Then, through a literature review,
we identify 32 offensive AI capabilities which adversaries can use to enhance
their attacks. Finally, through a panel survey spanning industry, government
and academia, we rank the AI threats and provide insights on the adversaries.

Keywords: Offensive AI, APT, cyber security, organization
security, adversarial machine learning, deepfake, AI-capable adversary

1. Introduction

For decades, organizations, including government agencies, hospitals, and fi-
nancial institutions, have been the target of cyber attacks [1, 2, 3]. These cyber
attacks have been carried out by experienced hackers using manual methods.
In recent years there has been a boom in the development of artificial intelli-5

gence (AI), which has enabled the creation of software tools that have helped to
automate tasks such as prediction, information retrieval, and media synthesis.
Throughout this period, members of academia and industry have utilized AI2 in
the context of improving the state of cyber defense [4, 5, 6] and threat analysis
[7, 8, 9]. However, AI is a double edged sword, and attackers can utilize it to10

improve their malicious campaigns.
Therefore, we define Offensive AI as

“The use or abuse of AI to accomplish a malicious task”

Offensive Use of AI. Adversaries can improve their tactics to launch attacks
that were not possible before. For example, with deep learning one can perform15

highly effective spear phishing attacks by impersonating their employer’s face

2In this paper, we consider machine learning to be a subset of AI technologies.
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and voice [10, 11]. It is also possible to improve the stealth capabilities of at-
tacks by enabling them to proceed without human supervision and aid (making
it automatic). For example, if malware could perform a progressive infection of
hosts in a network (a.k.a., lateral movement) on its own, then this would re-20

duce command and control (C&C) communication [12, 13]. Other capabilities
include the use of AI to find zero-day vulnerabilities in software, automate re-
verse engineering, exploit side channels efficiently, build realistic fake personas,
and to perform many more malicious activities with improved efficacy (more
examples are presented later in section 3).25

Offensive Abuse of AI. Adversarial machine learning is the study of secu-
rity vulnerabilities in AI. It has been shown that an adversary can craft training
samples to alter the functionalities of a model e.g., insert a backdoor [14], obtain
a desired classification manipulating the test samples (e.g., evade detection) [15]
and even infer confidential information about a model [16] or the data on which30

it was trained [17]. Since organizations use AI to automate the management,
maintenance, operation and defence of their systems and services, an adversary
can accomplish their malicious goals by using machine learning offensively on
these systems (adversarial machine learning).

We note that some attacks are achievable without using or abusing AI. How-35

ever, attackers can substantially reduce the effort required to perform an attack
if they use AI to make it automatic or semi-automatic. By reducing their effort
in creating effective strategies, attackers can maximize their return by scaling
the attacks in their strength and quantity. Moreover, by acting simultaneously
in several phases of the attack chain, the attacker can achieve synergistic effects40

on the speed and power of the attacks, becoming even more dangerous. On the
other hand, some attacks have been enabled by AI, such as the cloning of an
individual’s voice in a sophisticated social engineering attack [18].

1.1. Study Overview

In this work, we provide a study of knowledge on offensive AI in the context45

of enterprise security. The goal of this paper is to help the community (1) better
understand the current impact of offensive AI on organizations, (2) prioritize
research and development of defensive solutions, and (3) identify trends that
may emerge in the near future. This work isn’t the first to raise awareness of
offensive AI. In [19] the authors warned the community that AI can be used for50

unethical and criminal purposes with examples taken from various domains. In
[20] a workshop was held that attempted to identify the potential top threats of
AI in criminology. However, both these works relate to the threat of AI on soci-
ety overall and are not specific to organizations and their networks. Moreover,
despite their efforts and preliminary results, these previous analyses provide only55

examples of how AI can be used to attack and a possible ranking of their risk,
while our study gives a structured view of offensive AI through the standard
methodologies used to identify potential attack tactics against organizations,
deriving strategic insights relevant to defend from these threats.

To accomplish these goals, we performed a literature review to identify the60

capabilities of an AI-capable adversary. We then performed a panel survey to
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identify which of these capabilities represent the most relevant threats in prac-
tice. There were 35 survey participants: 16 from academia and 19 from industry.
The participants from industry were from a wide profile of organizations such as
MITRE, IBM, Microsoft, Google, Airbus, Bosch, Fujitsu, Hitachi, and Huawei.65

From our literature review, we identified 32 offensive AI capabilities against
organizations. Our panel survey revealed that the most significant threats are
the capabilities that improve social engineering attacks (e.g., the use of deep-
fakes to clone the voice of employees). We also found that industry members are
most concerned about attacks that enable attackers to steal intellectual prop-70

erty and detect vulnerabilities in their software. Finally, we have also found
that modern offensive AI mainly impacts the initial steps of the cyber kill chain
(reconnaissance, resource development, and initial access). This is because AI
technologies are not mature enough to create agents able to carry on attacks
that proceed without human supervision and aid. A complete list of our findings75

can be found in section 5.1.

1.2. Contributions

In this study, we make the following contributions:

• An overview of how AI can be used to attack organizations and its influ-
ence on the cyber kill chain (section 2.3).80

• An enumeration and description of the 32 offensive AI capabilities that
threaten organizations, based on literature review and current events (sec-
tion 3). These capabilities can be categorised as (1) automation, (2) cam-
paign resilience, (3) credential theft, (4) exploit development, (5) infor-
mation gathering, (6) social engineering, and (7) stealth.85

• A threat ranking and insights on how offensive AI impacts organizations,
based on a panel survey with members from academia, industry, and gov-
ernment (section 4).

• A forecast of the AI threat horizon and the resulting shifts in attack strate-
gies (section 5).90

1.3. Article Structure

This article is structured as follows:

• In section 2, we provide the reader with a primer on topics which are im-
portant for understanding the literature review. The section introduces
concepts about AI, offensive AI, and how offensive AI impacts an organi-95

zation’s security.

• In section 3, we offer our literature review of offensive AI in the context
of an organization’s security.

• In section 4, we present the results from a panel survey to help identify
the least and most significant threats of offensive AI to organizations.100
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• In section 5, we summarize our findings and provide our observations on
the matter.

2. Background

In this section, we provide the reader with technical aspects related to offen-
sive AI and introduce offensive AI concepts related to organizations’ security.105

Later in section 3, we review the latest research on the topic.

2.1. AI and Machine Learning

AI is a larger domain that mainly deals with creating algorithms that can
automate complex tasks. Early AI models were rule-based systems designed
using an expert’s knowledge [21], followed by search algorithms for selecting110

optimal decisions (e.g., finding paths or playing games [22]). Today, the most
popular type of AI is machine learning (ML), which is a data-driven approach
to AI where programs automatically improve their performance on a task-given
experience. Deep learning (DL) is a type of ML where an extensive artificial
neural network is used as the predictive model. Breakthroughs in DL have led115

to its ubiquity in applications such as industrial automation, forecasting, and
planning due to its ability to reason upon and generate complex data. Due to
the popularity of ML, our literature review inevitably follows this trend. Despite
considering all methods and techniques related to using AI in general, we found
the vast majority of the offensive AI techniques we found use ML to perform120

AI-based attacks. Therefore, the majority of the works reviewed in this study
involve some form of ML.

In general, a machine learning model can be trained on data with explicit
ground truth (supervised), with no ground truth (unsupervised), or with a mix
of both (semi-supervised). The trade-off between supervised and non-supervised125

approaches is that supervised methods often have much better performance at
a given task but require labeled data which can be expensive or impractical to
collect. Moreover, unsupervised techniques are open-world, meaning that they
can identify novel patterns that may have been overlooked. Another training
paradigm is reinforcement learning, where a model is trained based on reward130

for good performance. Lastly, for generating content, a popular framework is
adversarial learning. This was first popularised in [23] where the generative
adversarial network (GAN) was proposed. A GAN uses a discriminator model
to ‘help’ a generator model produce realistic content by giving feedback on how
the content fits a target distribution.135

In the context of offensive AI, the location in which an attacker performs
training or execution will depend on the attacker’s objective and strategy. For
example, for reconnaissance tasks, training and execution will likely take place
offsite from the organization. However, for attacks, the training and execution
may take place onsite, offsite, or both. Another possibility is where the adver-140

sary uses few-shot learning [24] by training on general data offsite and then fine
tuning on the target data onsite. Additional examples can be found in Table 1.
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Table 1: Examples of where a model can be trained and executed in an attack on an
organization. Onsite refers to being within the premisis or network of the organization.

Training Execution
Offsite Onsite Offsite Onsite

Example

• • Vulnerability detection
• • Side channel keylogging

• • Channel compression for exfiltration
• • Traffic shaping for evasion

• • • Few-shot learning for record tampering

In all cases, the adversary will first design and evaluate their model offsite prior
to its usage in the organization to ensure its success and avoid detection.

For onsite execution, an attacker runs the risk of detection if the model is145

complex (e.g., a DL model). For example, when the model is transferred over
to the organization’s network or when the attacker’s model begins to utilize
resources, it may trigger the organization’s anomaly detection system. To mit-
igate this issue, the adversary must consider a trade-off between stealth and
effectiveness. For example, the adversary may (1) execute the model during off150

hours or on non-essential devices, (2) leverage an insider to transfer the model,
or (3) transfer the observations off-site for execution.

2.2. Offensive AI

As noted in section 1, there are two forms of offensive AI (OAI): Attacks
using AI and attacks abusing AI. For example, an adversary can (1) use AI155

to improve the efficiency of an attack (e.g., information gathering, attack au-
tomation, and vulnerability discovery) or (2) use knowledge of AI to exploit the
defender’s AI products and solutions (e.g., to evade a defense or to plant a tro-
jan in a product). The latter form of OAI is commonly referred to as adversarial
machine learning.160

We will now elaborate on these two forms of offensive AI.

2.2.1. Attacks Using AI

Although there are a wide variety of AI tasks which can be used in attacks,
we now list the most common ones. Note that these tasks are not mutually
exclusive, in fact some build on each other and produce a synergistic effect on165

their impact on the attack chain.

Analysis This is the task of mining or extracting useful insights from data or
a model. Some examples of analysis for offense are the use of explainable AI
techniques [25] to identify how to better hide artifacts (e.g., in malware) and
the clustering or embedding of information on an organization to identify170

assets or targets for social engineering.

Decision Making The task of producing a strategic plan or coordinating an
operation. Examples of this in offensive AI are the use of swarm intelligence
to operate an autonomous botnet [26] and the use of heuristic attack graphs
to plan optimal attacks on networks [27].175
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Generation This is the task of creating content that fits a target distribution
which, in some cases, requires realism in the eyes of a human. Examples of
generation for offensive uses include the tampering of media evidence [28, 29],
intelligent password guessing [30, 31], and traffic shaping to avoid detection
[32, 33]. Deepfakes are another instance of offensive AI in this category. A180

deepfake is a believable media created by a DL model. The technology can be
used to impersonate a victim by puppeting their voice or face to perpetrate
a phishing attack [10].

Prediction This is the task of making a prediction based on previously ob-
served data. Common examples are classification, anomaly detection, and185

regression. Examples of prediction for an offensive purpose includes the iden-
tification of keystrokes on a smartphone based on motion [34, 35, 36], the
selection of the weakest link in the chain to attack [37], and the localization
of software vulnerabilities for exploitation [38, 39, 40].

Retrieval This is the task of finding content that matches or that is semanti-190

cally similar to a given query. For example, in offense, retrieval algorithms
can be used to track an object or an individual in a compromised surveil-
lance system [41, 42], to find a disgruntled employee (as a potential insider)
using semantic analysis on social media posts, and to summarize lengthy
documents [43] during open source intelligence (OSINT) gathering in the195

reconnaissance phase.

2.2.2. Attacks Abusing AI

An attacker can use its AI knowledge to exploit ML model vulnerabilities
violating its confidentiality, integrity, or availability [15]. The vast majority of
these attacks is studied in Adversarial Machine Learning, a branch of research200

that investigates on how to obtain specific malfunctions on ML models to create
malicious attacks. These attacks can be staged at either training (development)
or test time (deployment) through one of the following attack vectors:

Modify the Training Data. Here the attacker modifies the training data to
harm the integrity or availability of the model. Denial of service (DoS)205

poisoning attacks [44, 45, 46] are when the attacker decreases the model’s
performance until it is unusable. A backdoor poisoning attack [14, 47] or
trojaning attack [48], is where the attacker teaches the model to recognize
an unusual pattern that triggers a behavior (e.g., classify a sample as safe).
A triggerless version of this attack causes the model to misclassify a test210

sample without adding a trigger pattern to the sample itself [49, 50]

Modify the Test Data. In this case, the attacker modifies test samples to
have them misclassified [51, 52, 53]. For example, altering the letters of a
malicious email to have it misclassified as legitimate, or changing a few pixels
in an image to evade facial recognition [54]. Therefore, these types of attacks215

are often referred to as evasion attacks. By modifying test samples ad-hoc to
increase the model’s resource consumption, the attacker can also slow down
the model performances. [55].
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Analyze the Model’s Responses. Here, the attacker sends a number of crafted
queries to the model and observes the responses to infer information about220

the model’s parameters or training data. To learn about the training data,
there are membership inference [56], deanonymization [57], and model in-
version [58] attacks. For learning about the model’s parameters there are
model stealing/extraction [59, 60], and blind-spot detection [61], state pre-
diction [62].225

Modify the Training Code. This is where the attacker performs a supply
chain attack by modifying a library used to train ML models (e.g., via an
open-source project). For example, compromising a loss (training) function
to insert a backdoor [63] or slowing down the created model [64].

Modify the Model’s Parameters. In this attack vector, the attacker ac-230

cesses a trained model (e.g., via a model zoo or security breach) and tampers
its parameters to insert a latent behavior. These attacks can be performed
at the software [65, 66, 66] or hardware [67] levels (a.k.a. fault attacks).

Depending on the scenario, an attacker may not have full knowledge or access
to the target model:235

• White-Box (Perfect-Knowledge) Attacks: The attacker knows ev-
erything about the target system. This is the worst case for the system
defender. Although it is not very likely to happen in practice, this setting
is interesting as it provides an empirical upper bound on the attacker’s
performance.240

• Black-Box (Zero-Knowledge) Attacks: The attacker knows only the
task the model is designed to perform and which kind of features are used
by the system in general (e.g., if a malware detector has been trained to
perform static or dynamic analysis). The attacker may also be able to
analyze the model’s responses in a query-based manner to get feedback on245

certain inputs.

• Gray-Box (Limited-Knowledge) Attacks: The attacker has partial
knowledge of the target system (e.g., the learning algorithm, architecture,
etc., ).

In a black or gray box scenario, the attacker can build a surrogate ML model250

and try to devise the attacks against it as the attacks often transfer between
different models. [51, 68].

An attacker does not need to be an expert at machine learning to im-
plement these attacks. Many can be acquired from open-source libraries on-
line [69, 70, 71, 72].255

2.3. Offensive AI vs Organizations

In this section, we provide an overview of offensive AI in the context of or-
ganizations. First, we review a popular attack model for enterprises. Then we
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will identify how an AI-capable adversary impacts this model by discussing the
adversary’s new motivations, goals, capabilities, and requirements. Later in sec-260

tion 3, we will detail the adversary’s techniques based on our literature review.

2.3.1. Attacker Motivation

Conventional adversaries use manual effort, common tools, and expert knowl-
edge to reach their goals. In contrast, an AI-capable adversary can use AI to
automate its tasks, enhance its tools, and evade detection. These new abilities265

affect the cyber kill chain.
First, let’s discuss why an adversary would consider using AI offensively on

an organization. From our literature review (detailed later in section 3), we
observed three reasons why an adversary may be motivated to use offensive AI
against an organization: coverage, speed, and success.270

Coverage. By using AI, an adversary can scale up its operations by automating
complex tasks to decrease human labor and increase the chances of success.
For example, AI can be used to automatically craft [10, 11] and launch (em-
ploying [73, 74, 75]) spear phishing attacks, distill [43] data collected from
OSINT, and reach more assets within a network [76, 77] to gain a stronger275

foothold. In other words, AI enables adversaries to target more organizations
with higher precision attacks with a smaller workforce.

Speed. With AI, an adversary can reach its goals faster. For example, machine
learning can be used to help extract credentials [78, 79], intelligently select
the next best target during lateral movement [80], spy on users to obtain in-280

formation (e.g., perform speech to text on eavesdropped audio) [81], or find
zero-days in software [38, 39, 40]. By reaching a goal faster, the adversary
not only saves time for other ventures but can also minimize its presence
(duration) within the defender’s network.

Success. By enhancing its operations with AI, an adversary increases its like-285

lihood of success. Namely, ML can be used to (1) make the operation more
covert by minimizing or camouflaging network traffic (such as C2 traffic)
[32, 33] and by exploiting weaknesses in the defender’s AI models such as an
ML-based intrusion detection system (IDS) [82], (2) identify opportunities
such as good targets for social engineering attacks [37] and novel vulnerabil-290

ities [38, 39, 40], (3) enable better attack vectors such as using deepfakes in
spear phishing attacks [11], (4) plan optimal attack strategies [27, 80], and
(5) strengthen persistence in the network through automated bot coordina-
tion [26] and malware obfuscation [83].

We note that these motivations are not mutually exclusive. For example,295

the use of AI to automate a phishing campaign increases coverage, speed, and
success.
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2.3.2. The Attack Model

There are a variety of threat agents which target organizations. These agents
are cyber terrorists, cyber criminals, employees, hacktivists, nation states, online300

social hackers, script kiddies, and other organizations like competitors. There
are also some non-target specific agents, such as certain botnets and worms,
which threaten the security of an organization. A threat agent may be motivated
for various reasons. For example, to (1) make money through theft or ransom,
(2) gain information through espionage, (3) cause physical or psychological dam-305

age for sabotage, terrorism, fame, or revenge, (4) reach another organization,
and (5) obtain foothold on the organization as an asset for later use [84]. These
agents not only pose a threat to the organization, but also to its employees, cus-
tomers, and the general public as well (e.g., attacks on critical infrastructure).

In an attack, there may be a number of attack steps that the threat agent310

must accomplish. These steps depend on the adversary’s goal and strategy. For
example, in an advanced persistent threat (APT) [85, 86, 87], the adversary may
need to reach an asset deep within the defender’s network. This would require
multiple steps involving reconnaissance, intrusion, lateral movement through a
network, and so on. However, some attacks can involve just a single step. For315

example, a spear phishing attack in which the victim unwittingly provides con-
fidential information or even transfers money. In this paper, we describe the
adversary’s attack steps using the MITRE ATT&CK Matrix for Enterprise3

which captures common adversarial tactics based on real-world observations.
Attacks that involve multiple steps can be thwarted if the defender identifies320

or blocks the attack early on. The more progress that an adversary makes, the
harder it is for the defender to mitigate it. For example, it is better to stop a
campaign during the initial intrusion phase than during the lateral movement
phase where an unknown number of devices in the network have been compro-
mised. This concept is referred to as the cyber kill chain. From an offensive325

perspective, the adversary will want to shorten and obscure the kill chain to be
as efficient and covert as possible. In particular, operation within a defender’s
network usually requires the attacker to operate through a remote connection
or send commands to compromised devices (bots) from a command and control
server (C2). This generates presence in the defenders network which can be330

detected over time.
It is clear that some AI-capable threat agents will be able to perform more

sophisticated AI attacks than others. For example, state actors can potentially
launch intelligent automated botnets where hacktivists will likely struggle in
accomplishing the same. However, we have observed over the years that AI335

has become increasingly accessible, even to novice users. For example, there
are a wide variety of open source deepfakes technologies online which are plug
and play4. Therefore, the sophistication gap between certain threat agents may
close over time as the availability of AI technology increases.

3https://attack.mitre.org/matrices/enterprise/
4https://github.com/datamllab/awesome-deepfakes-materials
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2.3.3. New Threats340

AI-capable adversaries have new abilites over conventional cyber adversaries.
These abilities give attackers the means to novel acts of sabotage, espionage and
theft of intellectual property (IP):

Sabotage. An adversary can use its knowledge to cause damage to an orga-
nization in ways that weren’t possible before. This is because AI-based345

adversaries can use (1) adversarial machine learning, (2) generative AI, and
(3) deep learning for software analysis.

With adversarial machine learning, an attacker can target the organization’s
ML products and solutions. For example, they can poison datasets to harm
an ML model’s performance or plant a backdoor in a model for later exploita-350

tion. More examples include, the ability to evade detection in surveillance
[54] and affect forecasts models (e.g., finance [88], energy [89], etc.) With
generative AI, an attacker can add or modify evidence in a realistic manner.
Examples include the modification of surveillance footage to include or omit
evidence [90], the tampering of medical scans to harm patients [28], and the355

manipulation of financial records to perform fraud [29]. Finally, with recent
advances in deep learning, attackers can efficiently and effectively locate vul-
nerabilities in both source code [91, 92] and compiled code [93, 39, 94]. This
enables attackers to locate new vulnerabilities for exploitation with minimal
effort.360

Espionage. With AI, adversaries can spy on organizations in new ways using
side-channel analysis and swarm intelligence. Side channels are signals emit-
ted from a device that can be used to infer confidential information [95] In
the past, side-channel attacks were mainly performed in labs using expensive
electronics and analytical processes. With AI, adversaries can now perform365

side-channel attacks on-site and extract information from channels that are
temporal, complex, and multi-modal. For example, a compromised smart-
phone can be used to automatically collect and organize conversations as
text using speech-to-text (STT) algorithms, and sentiment analysis [96]. At-
tackers can also steal credentials through acoustic and motion side channels370

[97, 98]. AI can also be used to extract latent information from encrypted
web traffic [99], and track users through the organization’s social media [100].
Finally, by using swarm intelligence-based malware [12], attackers can mini-
mize the number of communications that they have to make to maintain and
control and progress the attack. Doing so makes it harder for the organiza-375

tion to detect the attacker’s presence (i.e., less anomalous outbound traffic)
and to remove the malware after blocking the attacker’s communication lines.

IP Theft. An AI-capable adversary can extract IP from organizations in new
ways. For example, ML models can be stolen from purchased software
products, or from cloud services querying the models with crafted inputs380

[59, 60]. Similar attacks can be performed to steal the model’s training data
[58, 101]. Obtaining this IP can help an adversary evade or control these
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models whether they’re deployed in the organization or another provider.
Another example is AI-based reverse engineering, where compiled software
is lifted into higher levels of code so that the algorithms and logic can be385

understood and stolen [102].

2.3.4. OAI Attack Capabilities

Using the literature review (details later in section 3), we grouped the pa-
pers according to the offensive capability they provide. Doing so revealed 32
offensive AI capabilities (OAC) which directly improve the adversary’s ability to390

achieve attack steps (e.g., impersonation, user tracking, etc). We then grouped
the OACs into categories according to their offensive activity (e.g., social engi-
neering). Finally, we used real use cases reported in the news and by MITRE
to validate the OACs and verify that none were missed.

The seven OAC categories were: (1) automation, (2) campaign resilience, (3)395

credential theft, (4) exploit development, (5) information gathering, (6) social
engineering, and (7) stealth. These categories capture the main intent of the
adversary reflecting the motivators introduced in section 2.3.1. Therefore, these
categories are non-exclusive (e.g., automating intelligence gathering involves ca-
pabilities from both ‘automation’ and ’information gathering’).400

In Fig. 1, we present the OACs and map their influence on the cyber kill
chain (the MITRE enterprise ATT&CK model). An edge in the figure means
that the indicated OAC improves the attacker’s ability to achieve the given at-
tack step. These edges were obtained by (1) observing real cases reported by
MITRE and academic articles and (2) mapping the cases and articles to their405

respective OACs and their impact on the cyber kill chain. From the figure, we
can see that offensive AI impacts every aspect of the attack model. Later in
section 3 we will discuss each of these 32 OACs in greater detail.

These capabilities are materialized in one of two ways:

AI-based tools are programs that perform a specific task in the adversary’s410

arsenal. For example, a tool for intelligently predicting passwords [30, 31],
obfuscating malware code [83], traffic shaping for evasion [103, 32, 33], pup-
peting a persona [10], and so on. These tools are typically in the form of a
machine learning model.

AI-driven bots are autonomous bots that can perform one or more attack415

steps without human intervention, or coordinate with other bots to efficiently
reach their goal. These bots may use a combination of swarm intelligence
[26] and machine learning to operate.

3. Literature Review

In section 2.3.4 we presented the 32 offensive AI capabilities. We will now420

present our literature review of the OACs in order of their 7 categories: au-
tomation, campaign resilience, credential theft, exploit development, informa-
tion gathering, social engineering, and stealth.
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There are seven offensive AI capabilities (OAC) which are made up of 31 offensive AI techniques (OAT).
An edge means that the OAT helps the attacker achieve the indicated attack step. Figure 1: The 32 offensive AI capabilities (OAC) identified in our literature review, mapped

to the MITRE enterprise ATT&CK model. An edge indicates that the OAC directly helps
the attacker achieve the indicated attack step.

Methodology. To perform our literature review, we used the MITRE ATT&CK5

matrix as a guide. This matrix lists the common tactics (or attack steps) that425

an adversary performs when attacking an organization, from planning and re-
connaissance leading to the final goal of exploitation. We divided up the work
among five different academic workgroups from different international institu-
tions. Each workgroup was assigned a set of tactics from the MITRE ATT&CK
matrix, based on their expertise. During the survey, the workgroups were asked430

to evaluate how AI has been and can be used by an attacker to improve an
attacker’s tactics and techniques. Finally, the workgroups cross inspected each
other’s content to ensure correctness and completeness.

To identify potential articles and sources to include in our literature re-
view, we selected articles written in the English language and published in435

peer-reviewed international conference proceedings and journals on the topics
of cybersecurity and AI from 1999. As for AI topics, we also included publicly-
accessible preprint publications as well since they are well known to be the
source of the latest advances from key researchers. When searching for attacks
which involve AI, we used variations of both ‘AI’ and ‘machine learning’ as key-440

words. The selection process resulted in 225 scientific papers, from which we

5https://attack.mitre.org/matrices/enterprise/
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performed our literature review.

3.1. Automation

The ability to automate complex tasks gives adversaries a hands-off approach
to accomplishing attack steps. This not only reduces effort but also increases445

the adversary’s flexibility and enables larger campaigns that are less dependent
on C2 signals. Attack automation takes form of either (1) tools which can per-
form complex tasks using AI (e.g., clone voices, suggest a target) or (2) software
(bots) which can operate autonomously to complete an entire attack step with
our human intervention (e.g., a bot/malware which propagates on its own by450

making decisions based on the environment or cooperatively in communication
with other bots).

3.1.1. Attack Adaptation

Adversaries can use AI to help adapt their malware and attack efforts to un-
known environments and find their intended targets. For example, identifying455

a system [104] before attempting an exploit to increase the chances of success
and avoid detection. In Black Hat’18, IBM researchers showed how malware
can trigger itself using DL by identifying a target’s machine by analyzing the
victim’s face, voice, and other attributes. With models such as decision trees,
malware can locate and identify assets via complex rules like [105, 106]. Instead460

of transferring screenshots [107, 108, 109, 110] DL can be used onsite to extract
critical information.

3.1.2. Attack Coordination

Cooperative bots can use AI to find the best times and targets to attack.
For example, swarm intelligence [111] is the study of autonomous coordination465

among bots in a decentralized manner. Researchers have proposed that botnets
can use swarm intelligence as well. In [12] the authors discuss a hypothetical
swarm malware and in [13] the authors propose another which uses DL to trig-
ger attacks. AI bots can also communicate information on asset locations to
fulfill attacks (e.g., send a stolen credential or relevant exploit to a compromised470

machine).

3.1.3. Next hop targeting

During lateral movement, the adversary must select the next asset to scan
or attack. Choosing poorly may prolong the attack and risk detection by the
defenders. For example, consider a browser like Firefox which has 4325 key-475

value pairs denoting the individual configurations. Only some inter-plays of
these configurations are vulnerable [112, 113]. Reinforcement learning can be
used to train a detection model which can identify the best browser to target.
As for planning multiple steps, a strategy can be formed by using reinforcement
learning on Petri nets [27] where attackers and defenders are modeled as com-480

peting players. Another approach is to use DL [114, 115] to explore “attack
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graphs” [76] that contain the target’s network structure and the vulnerabili-
ties. Notably, the Q-learning algorithms have enabled the approach to work on
large-scale enterprise networks [77].

3.1.4. Phishing Campaigns485

Phishing campaigns involve sending the same emails or robo-phone calls in
mass. When someone falls prey and responds, the adversary takes over the con-
versation. These campaigns can be fully automated through AI like Google’s
assistant which can make phone calls on your behalf [73, 74, 75]. Furthermore,
adversaries can increase their success through mass spear phishing campaigns490

powered with deepfakes, where (1) a bot calls a colleague of the victim (found
via social media), (2) clones his/her voice with 5 seconds of audio [116], and
then (3) calls the victim in the colleague’s voice to exploit their trust.

3.1.5. Point of Entry Detection

The adversary can use AI to identify and select the best attack vector for an495

initial infection. For example, in [117] statistical models on an organization’s
attributes were used to predict the number of intrusions it receives. The adver-
sary can train a model on similar information to select the weakest organizations
(low-hanging fruits) and the strongest attack vectors.

3.1.6. Record Tampering500

An adversary may use AI to tamper with records as part of their end goal.
For example, ML can be used to impact business decisions with synthetic data
[118], to obstruct justice by tampering evidence [90], to perform fraud [29] or to
modify medical or satellite imagery [28]. As shown in [28], DL-tampered records
can fool human observers and can be accomplished autonomously onsite.505

3.2. Campaign Resilience

In a campaign, adversaries try to ensure that their infrastructure and tools
have a long life. Doing so helps maintain a foothold in the organization and en-
ables the reuse of tools and exploits for future and parallel campaigns. AI can be
used to improve campaign resilience through planning, persistence, obfuscation,510

and detection of virtualization to avoid dynamic analysis.

3.2.1. Campaign Planning

Some attacks require careful planning long before the attack campaign to
ensure that all of the attacker’s tools and resources are obtainable. ML-based
cost-benefit analysis tools, such as in [119], may be used to identify which tools515

should be developed and how the attack infrastructure should be laid out (e.g.,
C2 servers, staging areas, etc). It could also be used to help identify other organi-
zations that can be used as beach heads [84]. Moreover, ML can be used to plan
a digital twin [120, 121] of the victim’s network (based on information from re-
connaissance) to be created offsite for tuning AI models and developing malware.520
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3.2.2. Persistent Access

An adversary can have bots establish multiple back doors per host and co-
ordinate reinfection efforts among a swarm [12]. Doing so achieves a foothold
in an organization by slowing down the effort to purge the campaign. To avoid
detection in payloads deployed during boot, the adversary can use a two-step525

payload that uses ML to identify when to deploy the malware and avoid detec-
tion [122, 123]. Moreover, a USB-sized neural compute stick6 can be planted by
an insider to enable covert and autonomous onsite DL operations.

3.2.3. Malware Obfuscation

ML models such as GANs can be used to obscure a malware’s intent from an530

analyst. Doing so can enable the reuse of the malware, hide the attacker’s intents
and infrastructure, and prolong an attack campaign. The concept is to take an
existing piece of software and emit another piece that is functionally equivalent
(similar to translation in NLP). For example, DeepObfusCode [83] uses recurrent
neural networks (RNN) to generate ciphered code. Alternatively, backdoors can535

be planted in open source projects and hidden using similar manners [124].

3.2.4. Virtualization Detection

To avoid dynamic analysis and detection in sandboxes, an adversary may try
to have the malware detect the sandbox before triggering. The malware could
use ML to detect a virtual environment by measuring system timing (e.g., like540

in [125]) and other system properties.

3.3. Credential Theft

Although a system may be secure in terms of access control, side channels
can be exploited with ML to obtain a user’s credentials and vulnerabilities in
AI systems can be used to avoid biometric security.545

3.3.1. Biometric spoofing

Biometric security is used for access to terminals (such as smartphones) and
for performing automated surveillance [126, 127, 128]. Recent works have shown
how AI can generate “Master Prints” which are deepfakes of fingerprints that
can open nearly any partial print scanner (such as on a smartphone) [129]. Face550

recognition systems can be fooled or evaded with the use of adversarial samples.
For example, in [54] where the authors generated colorful glasses that alter the
perceived identity. Moreover, ‘sponge’ samples [55] can be used to slow down a
surveillance camera until it is unresponsive or out of batteries (when remote).
Voice authentication can also be evaded through adversarial samples, spoofed555

voice [130], and by cloning the target’s voice with deep learning [130].

6https://software.intel.com/content/www/us/en/develop/articles/intel-movidius-neural-
compute-stick.html

16



3.3.2. Cache mining

Information on credentials can be found in a system’s cache and log dumps,
but a large amount of data makes finding it a difficult task. However, the
authors of [78] showed how ML could be used to identify credentials in cache560

dumps from graphic libraries. Another example is the work of [79] where an
ML system was used to identify cookies containing session information.

3.3.3. Implicit key logging

Over the last few years, researchers have shown how AI can be used as an
implicit key-logger by sensing side-channel information from a physical environ-565

ment. The side channels come in one or a combination of the following aspects:

Motion. When tapping on a phone screen or typing on a keyboard, the de-
vice and nearby surfaces move and vibrate. Malware can use the smart-
phone’s motion sensors to decipher the touch strokes on the phone [34, 35]
and keystrokes on nearby keyboards [36]. Wearable devices can be exploited570

in a similar way as well [131, 132].

Audio. Researchers have shown that, when pressed, each key gives its own
unique sound which can be used to infer what is being typed [97, 133]. The
timing between keystrokes is also a revealing factor due to the structure of
the language and keyboard layout. Similar approaches have also been shown575

for inferring touches on smartphones [98, 134, 135].

Video. In some cases, a nearby smartphone or compromised surveillance cam-
era can be used to observe keystrokes, even when the surface is obscured.
For example, via eye movements [136, 137, 138], device motion [139], and
hand motion [140, 141].580

3.3.4. Password Guessing

Humans tend to select passwords with low entropy or with personal infor-
mation such as dates. GANs can be used to intelligently brute-force passwords
by learning from leaked password databases [30]. Researchers have improved
on this approach by using RNNs in the generation process [142]. However, the585

authors of [31] found that models like [30] do not work well on Russian pass-
words. Instead, adversaries may pass the GAN personal information on the user
to improve the performance [143].

3.3.5. Side Channel Mining

ML algorithms are adept at extracting latent patterns in noisy data. Ad-590

versaries can leverage ML to extract secrets from side channels emitted from
cryptographic algorithms. This has been accomplished on a variety of side chan-
nels including power consumption [144, 145], electromagnetic emanations [146],
processing time [147], cache hits/misses[125]. In general, ML can be used to
mine nearly any kind of side channel [148, 149, 150, 151, 152, 153, 154, 155]. For595

example, credentials can be extracted from the timing of network traffic [156].
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3.4. Exploit Development

Adversaries work hard to understand the content and inner workings of com-
piled software to (1) steal intellectual property, (2) share trade secrets, (3) and
identify vulnerabilities that they can exploit.600

3.4.1. Reverse Engineering

While interpreting compiled code, an adversary can use ML to help iden-
tify functions and behaviors and guide the reversal process. For example, bi-
nary code similarity can be used to identify well-known or reused behaviors
[157, 158, 159, 160, 161, 162, 163] and autoencoder networks can be used to605

segment and identify behaviors in code, similar to the work of [7]. Furthermore,
DL can potentially be used to lift compiled code up to a higher-level represen-
tation using graph transformation networks [164], similar to semantic analysis
in language processing. Protocols and state machines can also be reversed using
ML, for example, CAN bus data in vehicles [165], network protocols [166], and610

commands [167, 168].

3.4.2. Vulnerability Detection

There are a wide variety of software vulnerability detection techniques which
can be broken down into static and dynamic approaches:

Static. For open source applications and libraries, the attacker can use ML615

tools for detecting known types of vulnerabilities in source code [40, 169, 91,
170, 171]. If its a commercial product (compiled as a binary), then methods
such as [7] can be used to identify vulnerabilities by comparing parts of the
program’s control flow graph to known vulnerabilities.

Dynamic. ML can also be used to perform guided input ‘fuzzing’ which can620

reach buggy code faster [172, 173, 94, 174, 38, 175, 176]. Many works have
also shown how AI can mitigate the issue of symbolic execution’s massive
state space [177, 178, 179, 180, 39].

3.5. Information Gathering

AI scales well and is very good at data mining and language processing.625

These capabilities can be used by an adversary to collect and distill actionable
intel for a campaign.

3.5.1. Mining OSINT

In general, there are three ways in which AI can improve an adversary’s
OSINT.630

Stealth. The adversary can use AI to camouflage its probe traffic to resemble
benign services like Google’s web crawler [9]. Unlike heavy tools like Meta-
goofil [181], ML can be used to minimize interactions by prioritizing sites
and data elements [182, 183].
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Gathering. Network structure and elements can be identified using cluster635

analysis or graph-based anomaly detection [184]. Credentials and asset in-
formation can be found using methods like reinforcement learning on other
organizations [185]. Finally, personnel structure can be extracted from social
media using NLP-based web scrappers like Oxylabs[186].

Extraction. Techniques like NLP can be used to translate foreign documents640

[187], identify relevant documents [188, 189], extract relevant information
from online sources [190, 191], and locate valid identifiers[100].

3.5.2. Model Theft

An adversary may want to steal an AI model to (1) obtain it as intellectual
property, (2) extract information about members of its training set [56, 57, 58],645

or (3) use it to perform a white-box attack against an organization. As described
in section 2.2.2, if the model can be queried (e.g., model as a service -MAAS),
then its parameters [59, 60] and hyperparameters [192] can be copied by ob-
serving the model’s responses. This can also be done through side-channel [193]
or hardware-level analysis [194].650

3.5.3. Spying

DL is extremely good at processing audio and video and, therefore, can be
used in spyware. For example, a compromised smartphone can map an office by
(1) modeling each room with ultrasonic echo responses [195], (2) using object
recognition [196] to obtain physical penetration info (control terminals, locks,655

guards, etc.), and (3) automatically mine relevant information from overheard
conversations [197, 188]. ML can also be used to analyze encrypted traffic.
For example it can extract transcripts from encrypted voice calls [81], identify
applications [198], and reveal internet searches [99].

3.6. Social Engineering660

The weakest links in an organization’s security are often its humans. Ad-
versaries have long targeted humans by exploiting their emotions and trust. AI
provides adversaries with enhanced capabilities to exploit humans further.

3.6.1. Impersonation (Identity Theft)

An adversary may want to impersonate someone for a scam, blackmail at-665

tempt, defamation attack, or to perform a spear phishing attack with their
identity. This can be accomplished using deepfake technologies, which enable
the adversary to reenact (puppet) the voice and face of a victim, or alter the
existing media content of a victim [10]. Recently, the technology has advanced
to the state where reenactment can be performed in real-time [199], and train-670

ing only requires a few images [200] or seconds of audio [116] from the victim.
For high-quality deepfakes, large amounts of audio/video data are still needed.
However, when put under pressure, a victim may trust a deepfake even if it has
a few abnormalities (e.g., in a phone call) [201]. Moreover, the audio/video data
may be an end goal inside the organization (e.g., customer data).675
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3.6.2. Persona Building

Adversaries build fake personas on online social networks (OSN) to connect
with their targets [202]. To evade fake profile detectors, a profile can be cloned
and slightly altered using AI [203, 204, 205] so that they will appear different yet
reflect the same personality. The adversary can then use a number of AI tech-680

niques to alter or mask the photos from detection [206, 207, 208, 209]. To build
connections, a link prediction model can be used to maximize the acceptance
rate [210, 211] and a DL chatbot can be used to maintain the conversations [212].

3.6.3. Spear Phishing

Call-based spear phishing attacks can be enhanced using real-time deepfakes685

of someone the victim trusts. For example, this occurred in 2019 when a CEO
was scammed out of $240k [11]. For text-based phishing, tweets [213] and emails
[214, 143, 215] can be generated to attract a specific victim, or style transfer
techniques can be used to mimic a colleague [216, 217].

3.6.4. Target Selection690

An adversary can use AI to identify victims in the organization who are the
most susceptible to social engineering attacks [37]. It is also possible to build
a model based on the target’s social attributes (conversations, attended events,
etc.) [218, 219]. Moreover, sentiment analysis can be used to find disgruntled
employees to be recruited as insiders [220, 96, 221, 222, 223].695

3.6.5. Tracking

To study members of an organization, adversaries may track the member’s
activities. With ML, an adversary can trace personnel across different social
media sites by content [100] and through facial recognition [224]. ML models
can also be used on OSN content to track a member’s location [225]. Finally,700

ML can also be used to discover hidden business relationships [226, 227] from
the news and OSNs as well [228, 229].

3.7. Stealth

In multi-step attacks, covert operations are necessary to ensure success. An
adversary can either use or abuse AI to evade detection.705

3.7.1. Covering tracks

To hide traces of the adversary’s presence, anomaly detection can be per-
formed on the logs to remove abnormal entries [230, 231]. CryptoNets [232]
can also be used to hide malware logs and onsite training data for later use.
To avoid detection onsite, trojans can be planted in DL intrusion detection sys-710

tems (IDS) in a supply chain attack at both the hardware [67, 233] and software
[48, 234] levels. DL hardware trojans can use adversarial machine learning to
avoid being detected [235].
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3.7.2. Evading HIDS (Malware Detectors)

The struggle between security analysts and malware developers is a never-715

ending battle, with the malware quickly evolving and defeating detectors. In
general, state-of-the-art detectors are vulnerable to evasion [236, 237, 238]. For
example, adversaries can evade an ML-based HIDS that performs dynamic anal-
ysis by splitting the malware’s code into small components executed by different
processes [239]. They can also evade ML-based detectors that perform static720

analysis by adding bytes to the executable [240] or code that does not affect
the malware behavior [241, 242, 243, 244, 123]. Modifying the malware without
breaking its malicious functionality is not easy. Attackers may use AI expla-
nation tools like LIME [25] to understand which parts of malware are being
recognized by the detector and change them manually. Tools for evading ML-725

based detection can be found freely online 7.

3.7.3. Evading NIDS (Network Intrusion Detection Systems)

There are several ways an adversary can use AI to avoid detection while
entering, traversing, and communicating over an organization’s network. Re-
garding URL-based NIDSs, attackers can avoid phishing detectors by generating730

URLs that do not match known examples [245]. Bots trying to contact their C2
server can generate URLs that appear legitimate to humans [246], or that can
evade malicious-URL detectors[82]. To evade traffic-based NIDSs, adversaries
can shape their traffic [32, 33] or change their timing to hide it[247].

3.7.4. Evading Insider Detectors735

To avoid insider detection mechanisms, adversaries can mask their opera-
tions using ML. For example, given one user’s credentials, they can use the
information on the user’s role and the organization’s structure to ensure that
the operation performed looks legitimate [248].

3.7.5. Evading Email Filter740

Many email services use machine learning to detect malicious emails. How-
ever, adversaries can use adversarial machine learning to evade detection [249,
250, 251, 252]. Similarly, malicious documents attached to emails, containing
malware, can evade detection as well (e.g., [253]). Finally, an adversary may
send emails to be intentionally detected so that they will be added to the de-745

fender’s training set, as part of a poisoning attack [254].

3.7.6. Exfiltration

Similar to evading NIDSs, adversaries must evade detection when trying to
exfiltrate data outside of the network. This can be accomplished by shaping
traffic to match the outbound traffic [103] or by encoding the traffic within a750

permissible channel like Facebook chat [255]. To hide the transfer better, an
adversary could use DL to compress [256] and even encrypt [257] the data being

7https://github.com/zangobot/secml_malware
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exfiltrated. To minimize throughput, audio and video media can be summa-
rized to textual descriptions onsite with ML before exfiltration. Finally, if the
network is air-gapped (isolated from the Internet) [258] then DL techniques can755

be used to hide data within side channels such as noise in audio [259].

3.7.7. Propagation & Scanning

For stealthy lateral movement, an adversary can configure their Petri nets or
attack graphs (see section 3.1.3) to avoid assets and subnets with certain IDSs
and favor networks with more noise to hide in. Moreover, AI can be used to760

scan hosts and networks covertly by modeling its search patterns and network
traffic according to locally observed patterns [103].

4. Panel Survey & Threat Ranking

In our literature review (section 3), we identified the potential offensive AI
capabilities (OAC) that an adversary could use to attack an organization. How-765

ever, some OACs may be impractical, whereas others may pose much larger
threats. Therefore, we performed a panel survey to rank these threats and
understand their impact on the cyber kill chain.

4.1. Survey Setup

We surveyed 35 experts in both subjects of AI and cybersecurity. To be770

included in the panel survey, a participant must (1) be actively working in
academia, industry or government and (1) have at least 2 years experience in
both cybersecurity and AI.

From the industry and government sectors, we had 19 participants. Amoun
then were a CISO of a large institution, a CTO and founder of AI-based security775

companies, an AI ethics researcher from a cybersecurity company, two research
managers involved in cyber security AI projects, and seven researchers working
in cybersecurity or AI-based cybersecurity. From academia, we had 16 partici-
pants: 8 professors and 8 research scientists (Ph.D. and above) with experience
in both AI and cyber security. Some of our participants were from MITRE, IBM780

Research, Microsoft, Airbus, Bosch (RBEI), Fujitsu Ltd., Hitachi Ltd., Huawei
Technologies, Nord Security, Institute for Infocomm Research (I2R), Google,
Robust Intelligence, Pluribus One, Ermes Cyber Security, Mandiant, WiData,
Purdue University, Georgia Institute of Technology, Munich Research Center,
University of Cagliari, University of Venice, King’s College London, Technische785

Universität Braunschweig, and the Nanyang Technological University (NTU).
The responses of the participants have been anonymized and reflect their own
personal views and not the views of their employers.

The survey consisted of 204 questions that asked the participants to (1) rate
different aspects of each OAC, (2) give their opinion on the utility of AI to the ad-790

versary in the cyber kill chain, and (3) give their opinion on the balance between
the attacker and defender when both have AI. Prior to filling out the question-
naire, all participants were given context of how offensive AI threatens organi-
sations. Prior to rating the aspects of an OAC, participants were given one or
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more example instances of the OAC for clarification. The questions and the ex-795

ample instances can be found in the appendix. The survey was facilitated using
a Google form and it took the participants approximately 30-60 minutes each to
complete the form. The responses from the survey were used to produce threat
rankings and to gain insights into the threat of offensive AI to organizations.

Only 35 individuals participated in the survey because AI-cybersecurity ex-800

perts are very busy and hard to reach. However, given the diversity of the
participants, we believe that these results still provide meaningful insights into
the opinions and concerns that members of academia and industry have on
offensive AI.

4.2. Threat Ranking805

In this section, we measure and rank the various threats of an adversary
which can utilize or exploit AI technologies to enhance their attacks. For each
OAC the participants were asked to rate four aspects8 in the range of 1-7 (low
to high):

Profit (P ): The amount of benefit that a threat agent gains by using AI com-810

pared to using non-AI methods. For example, attack success, flexibility,
coverage, attack automation, and persistence. Here profit assumes that the
AI tool has already been implemented.

Achievability (A): How easy is it for the attacker to use AI for this task con-
sidering that the adversary must implement, train, test, and deploy the AI.815

This measure also includes the monetary cost to the attacker.

Defeatability (D): How easy is it for the defender to detect or prevent the
AI-based attack. Here, a higher score is bad for the adversary (1=hard to
defeat, 7=easy to defeat).

Harm (H): The amount of harm that an AI-capable adversary can inflict in820

terms of physical, physiological, or monetary damage (including effort put
into mitigating the attack).

We say that an adversary is motivated to perform an attack if there is high
profit P and high achievability A. Moreover, if there is high P but low A or
vice versa, some actors may be tempted to try anyways. Therefore, we model825

the motivation of using an OAC as M = 1
2 (P +A). However, just because there

is motivation, it does not mean that there is a risk. If the AI attack can be
easily detected or prevented, then no amount of motivation will make the OAC
a risk. Therefore, we model risk as R = M

D where a low defeatability (hard to
prevent) increases R and a high defeatability (easy to prevent) lowers R. Risk830

can also be viewed as the likelihood of the attack occurring, or the likelihood of
attack success. Finally, to model threat, we must consider the amount of harm

8The aspects are based on those proposed by [20].
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Figure 2: Survey results: the averaged and normalized opinion scores for each offensive AI
capability (OAC) when used against an organization. The OACs are ordered according to
their threat score, left to right, starting from the first row.
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done to the organization. An OAC with high R but no consequences is less of
a threat. Therefore, we model our threat score as

T = H
1
2 (P + A)

D
= H

M

D
= HR (1)

Before computing T , we normalize P , A, D, and H from the range 1-7 to 0-1.835

This way, a threat score greater than 1 indicates a significant threat because for
these scores (1) the adversary will attempt the attack (M > D), and (2) the level
of harm will be greater than the ability to prevent the attack ( D

M < H ≤ 1).
We can also see from our model that as an adversary’s motivation increases
over defeatability, the amount of harm deemed threatening decreases. This is840

intuitive because if an attack is easy to achieve and highly profitable, then it
will be performed more often. Therefore, even if it is less harmful, attacks will
frequently occur so that the damage will be higher in the long run.

4.2.1. OAC Threat Ranking

In Fig. 2 we present the average P , A, D, and H scores for each OAC.845

In Fig. 3 we present the OACs ranked according to their threat score T , and
contrast their risk scores R to their harm scores H.

The results show that 19 of the OACs (60%) are considered to be significant
threats (have a T > 1). In general, we observe that the top threats mostly relate
to social engineering and malware development. The top three OACs are imper-850

sonation, spear phishing, and model theft. These OACs have significantly larger
threat scores than the others because they are (1) easy to achieve, (2) have high
payoffs, (3) are hard to prevent, and (4) cause the most harm (top left of Fig. 2).
Interestingly, the use of AI to run phishing campaigns is considered a large threat
even though it has a relatively high D score. We believe this is because, with855

AI, an adversary can both increase the number and quality of phishing attacks.
Therefore, even if 99% of the attempts fail, some will get through and cause the
organization damage. The least significant threats were scanning and cache min-
ing which is perceived to have little benefit for the adversary because they pose
a high risk of detection. Other low-ranked threats include some on-site automa-860

tion for propagation, target selection, lateral movement, and covering tracks.

4.2.2. Industry vs Academia

In Fig. 4 we look at the average threat scores for each OAC category, and
contrast the opinions of members from academia to those from industry.

In general, it seems that academia views AI as a more significant threat to865

organizations than industry. One can argue that the discrepancy is because in-
dustry tends to be more practical and grounded in the present, where academia
considers potential threats thus considering the future. For example, when
looking at the threat scores from academia, all of the categories are considered
significant threats (T > 1). However, when looking at the industry’s responses,870

the categories of stealth, credential theft, and campaign resilience are not. This
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capabilities ranked according to their threat
scores.
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may be because these concepts have presented (proven) themselves less in the
wild than the others.

Regardless, both industry and academia seem to agree on the top three most
threatening OAC categories: (1) social engineering, (2) information gathering875

and (3) exploit development. This is because, for these categories, the attacker
benefits greatly from using AI (P ), can easy implement the relevant AI tools
(A), the attack causes considerable damage (H), and there is little the defender
can do to prevent them (D) (indicated in Fig. 2). For example, deepfakes are
easy to implement yet hard to detect in practice (e.g., in a phone call), and880

extracting private information from side channels and online resources can be
accomplished with little intervention.

Surprisingly, it would appear that both academia and industry consider the
use of AI for stealth as the least threatening OAC category in general. Even
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though there has been a great deal of work showing how IDS models are vul-885

nerable [240, 32], IDS evasion approaches were considered the second most de-
featable OAC after intelligent scanning. This may have to do with the fact that
the adversary cannot evaluate its AI-based evasion techniques inside the actual
network and thus risks detection.

Overall, there were some disagreements between our participants from in-890

dustry and academia regarding the most threatening OACs. The top 10 most
threatening OACs for organizations (out of 32) were ranked as follows:

Industry’s Perspective

1. Impersonation

2. Spear Phishing

3. Phishing Campaigns

4. Persona Building

5. Vulnerability Detection

6. Reverse Engineering

7. H/NIDS Evasion

8. Mining OSINT

9. Password Guessing

10. Attack Customization

Academia’s Perspective

1. Impersonation

2. Biometric Spoofing

3. Target Selection

4. Spear Phishing

5. Mining OSINT

6. Vulnerability Detection

7. Spying

8. Persona Building

9. Phishing Campaigns

10. AI Model Theft

Both industry and academia view impersonation as the greatest threat to
organizations. This is understandable given recent events where deepfakes were895

successfully used for impersonation and fraud [260, 261, 262, 263]. We note that
our participants from academia view biometric spoofing as the second largest
threat, where our participants from industry don’t even consider it in their top
10. We think this is because the latest research on this topic involves ML which
can be evaded (e.g., [54, 129]). In contrast to the academics, our industry par-900

ticipants view this OAC as less harmful to the organization and less profitable
to the adversary, perhaps because biometric security is not a common defense
used in organization. Regardless, biometric spoofing is still considered the 4-
th highest threat overall (Fig. 3). Another insight is that academia is more
concerned about the use of ML for spyware, target selection, and the theft of905

AI models than industry. This may be because these are topics which have
long been discussed in academia, but have yet to cause major disruptions in the
real-world. For industry, they are more concerned with the use of AI for exploit
development, defence evasion and social engineering, likely because these are
threats which are out of their control.910
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4.3. Impact on the Cyber Kill Chain

For each of the 14 MITRE ATT&CK steps, we asked the participants whether
they agree or disagree9 to the following statements: (1) It more beneficial for
the attacker to use AI than conventional methods in this attack step, and (2)
AI benefits the attacker more than AI benefits the defender. The objective of915

these questions were to identify how AI impacts the kill chain and whether AI
forms any asymmetry between the attacker and defender.

In Fig. 5 we present the mean opinion scores along with their standard de-
viations. Overall, our participants felt that AI enhances the adversary’s ability
to traverse the kill chain. In particular, we observe that adversary benefits con-920

siderably from AI during the first three steps. One explanation is that these
attacks are maintained offsite and thus are easier to develop and have less risk.
Moreover, we understand from the results that there is a general feeling that de-
fenders do not have a good way to prevent adversarial machine learning attacks.
Therefore, AI not only improves defense evasion but also gives the attacker a925

considerable advantage over the defender in this regard.
Our participants also felt that an adversary with AI has a somewhat greater

advantage over a defender with AI for most attack steps. In particular, the
defender cannot effectively utilize AI to prevent reconnaissance except for mit-
igating a few kinds of social engineering attacks. Moreover, the adversary has930

many new uses for AI during the impact step, such as the tampering of records,
which the defender does not. However, the participants felt that the defender
has an advantage when using AI to detect execution, persistence, and privilege
escalation. This is understandable since the defender can train and evaluate
models onsite whereas the attacker cannot.935

5. Findings & Discussion

In this section, we (1) present our main findings from the literature review
and panel survey and (2) share our insights on our findings and discuss the road
ahead.

5.1. Main Findings940

From the Literature Review.

• We first observed that there are three primary motivations for an adver-
sary to use AI: coverage, speed, and success (See Section 2.3.1).

• Offensive AI introduces new threats to organizations. A few examples
include the poisoning of machine learning models [44, 14], theft of creden-945

tials through side-channel analysis [156], and the targeting of proprietary
training datasets [58, 59].

9Measured using a 7-step likert scale ranging from strongly disagree (-3) to neutral (0) to
strongly agree (+3).
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• Adversaries can employ 32 offensive AI capabilities against organizations.
These are categorized into seven groups: (1) attack automation, (2) cam-
paign resilience, (3) credential theft, (4) exploit development, (5) infor-950

mation gathering, (6) social engineering, and (7) stealth.

• Defense solutions, such as AI methods for vulnerability detection [38],
pen-testing [213], and credential leakage detection [79] can be weaponized
by adversaries for malicious purposes.

From the Panel Survey.955

• The top three most threatening categories of offensive AI capabilities
against organizations are (1) social engineering, (2) information gather-
ing and (3) exploit development.

• 19 of the 32 offensive AI capabilities pose significant threats to organiza-
tions.960

• Both industry and academia ranked the threat of using AI for imperson-
ation (e.g., real-time deepfakes to perpetrate phishing and other social
engineering attacks) as the highest threat.

• Aside from social engineering aspects, industry and academia are not
aligned on the top threats of offensive AI against organizations. Industry965

members are most concerned with AI being used for reverse engineering,
with a focus on the loss of intellectual property and vulnerability detec-
tion. Academics, on the other hand, are most concerned about AI being
used to perform biometric spoofing (e.g., evading fingerprint and facial
recognition) and attack automation.970

• Although the evasion of intrusion detection systems (e.g., with adversar-
ial machine learning) is classified as a significant threat, its only ranks
number 12 on the list. This may be due to the challenge of the adversary
creating effective black box attacks in an unknown IT environment.

• AI impacts the start of the cyber kill chain the most (i.e., reconnaissance,975

resource development, and initial access). This is because the adversary
has more information available and can use this information to refine and
evaluate the attacks offsite before proceeding.

• Because AI can be used to automate processes, adversaries may shift from
having a few slow covert campaigns to having numerous fast-paced cam-980

paigns to overwhelm defenders and increase their chances of success.

5.2. Insights, Observations, & Limitations

Top Threats. It is understandable why the highest-ranked threats to organi-
zations relate to social engineering attacks and software analysis (vulnerability
detection and reverse engineering). It is because these attacks are out of the985

defender’s control. Humans have highly evolved and efficient perception and
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decision-making abilities. These rely on mental models formed throughout our
lives. These mental models (like AI models) can be exploited by presenting infor-
mation in ways that deceive them [264, 265]. With deepfakes, social engineering
attacks have become even more frequent [10]. The same holds for software anal-990

ysis where ML has been shown to be effective at analyzing software (complex
structural data) whether it is source code or a compiled binary [163, 102, 92]. As
mentioned earlier, we believe the reason academia is the most concerned with
biometrics is that it almost exclusively uses ML, and academia is well aware
of ML’s flaws. Industry members may view these attacks as less threatening995

because physical infiltration is not a top security threat to organizations [266].
This might explain why they perceive AI attacks on their software and personnel
as the greatest threats.
The Near Future. Over the next few years, we believe that there will be
an increase in offensive AI incidents, but only at the front and back of the1000

attack model (recon., resource development, and impact – such as record tam-
pering). This is because currently, AI cannot effectively learn new tasks on its
own. Therefore, we aren’t likely to see botnets that can autonomously and dy-
namically interact with a diverse set of complex systems (like an organization’s
network) in the near future. Therefore, since modern adversaries have limited1005

information on the organizations’ networks, they are restricted to attacks where
the data collection, model development, training, and evaluation occur offsite.
In particular, we note that DL models are large and require a considerable
amount of resources to run. This makes them easy to detect when transferred
into the network or executed onsite. However, the model’s footprint might be-1010

come less anomalous over time as DL proliferates. In the near future, we also
expect that phishing campaigns will become more rampant and dangerous as hu-
mans and bots are given the ability to make convincing deepfake phishing calls.
AI is a Double-Edged Sword. We observed that AI technologies for secu-
rity could also be used in an offensive manner. Some technologies have a dual1015

purpose. For example, ML research into disassembly, vulnerability detection,
and penetration testing can be used for both malicious and defensive activities.
Some technologies can be repurposed. For example, instead of using explainable
AI to validate malware detection, it can be used to hide artifacts [267]. And
some technologies can be inverted. For example, an insider detection model [248]1020

can be used to help cover tracks and avoid detection. To help raise awareness,
we recommend that researchers note the implications of their work, even for
defensive technologies. One caveat is that the usefulness of the ‘sword’ is not
symmetric depending on the wielder. For example, generative AI (deepfakes)
might be more useful for the attacker because it allows them to generate fake1025

samples (e.g. video) that imitate the benign ones allowing the attacker to accom-
plish its goal while remaining undetected. Whereas anomaly detection might
be more beneficial for the defender.
Limitations of this study. Our study analyzes AI techniques that can be
used by attackers against organizations through the MITRE ATT&CK Enter-1030

prise matrix. It is also important, however, to note that MITRE also offers

30



other matrices that can be used for different use cases, namely one for Mobile10

and one for Industrial Control Systems (ICS).11 Although the Enterprise and
Mobile tactics are almost the same, there are a few unique tactics for ICS that
are not contemplated in our study, and that can be extended with the additional1035

non-overlapping threats identified by this scenario.

5.3. The Industry’s Perspective

Using logic to automate attacks is not new to industry – for instance, in
2015, security researchers from FireEye [268] found that advanced Russian cy-
ber threat groups built a malware called HAMMERTOSS that used rules based1040

automation to blend its traffic into normal traffic by checking for regular office
hours in the time zone and then operating only in that time range. However,
the scale and speed that offensive AI capabilities can endow attackers can be
damaging.

According to 2019 Verizon Data Breach report analysis of 140 security1045

breaches [269], the mean time to compromise an organization and exfiltrating
the data ranges is already in the order of minutes. Organizations are already
finding automated offensive tactics difficult to combat and anticipate attacks
to get stealthier in the future. For instance, according to the final report re-
leased by the US National Security Commission on AI in 2021 [270], the warning1050

is clear “The U.S. government is not prepared to defend the United States in
the coming artificial intelligence (AI) era.” The final report reasons that this
is “Because of AI, adversaries will be able to act with micro-precision, but at
macro-scale and with greater speed. They will use AI to enhance cyber attacks
and digital disinformation campaigns and to target individuals in new ways.”1055

Most organizations see offensive AI as an imminent threat – 49% of 102 cy-
bersecurity organizations surveyed by Forrester market research in 2020 [271],
anticipate offensive AI techniques to manifest in the next 12 months. As a re-
sult, more organizations are turning to ways to defend against these attacks.
In a 2021 survey [272] of 309 organizations’ business leaders, C-Suite executives1060

found that 96% of the organizations surveyed are already making investments
to guard against AI-powered attacks as they anticipate more automation than
what their defenses can handle.

Presently, there are at least three nations which are actively thinking about
securing ML systems: The USA through the NSCAI and NIST AI Risk Manage-1065

ment, Frameworks12 the UK via their recent release of Principles of securing ML
systems,13 and the EU via the EU AI act coupled with the recently proposed
Cyber Resilience Act.14 For the most part, these countries emphasise similar
aspects: securing the ML pipeline and drawing attention to various attacks on
AI systems. It is to be noted that all these frameworks are nascent and are1070

10https://attack.mitre.org/techniques/mobile/
11https://attack.mitre.org/techniques/ics/
12https://www.nist.gov/itl/ai-risk-management-framework
13https://www.ncsc.gov.uk/collection/machine-learning
14https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
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still under discussion. Moreover, their approach is different too. For instance,
the NIST framework is voluntary but the proposed EU framework would be
mandated for critical ML systems. It is a long road for these standards to come
to fruition. Based on followups with our industry members, we believe that
organisations may be curious at best about these frameworks but not actively1075

adopting any at this time.

5.4. What’s on the Horizon

With AI’s rapid pace of development and open accessibility, we expect to see
a noticeable shift in attack strategies on organizations. First, we foresee that
the number of deepfake phishing incidents will increase. In our opinion, this1080

is because the technology (1) is mature, (2) is harder to mitigate than regular
phishing, (3) is more effective at exploiting trust, (4) can expedite attacks, and
(5) is new as a phishing tactic so cyber defenders are not expecting it. Second,
we expect that AI will enable adversaries to target more organizations in par-
allel and more frequently. As a result, instead of being covert, adversaries may1085

choose to overwhelm the defender’s response teams with thousands of attempts
for the chance of one success. Finally, as adversaries begin to use AI-enabled
bots, defenders will be forced to automate their defenses with bots as well.
Keeping humans in the loop to control and determine high-level strategies is a
practical and ethical requirement. However, further discussion and research are1090

necessary to form safe and agreeable policies.

5.5. What can be done?

Attacks Using AI. Industry and academia should focus on developing solu-
tions for mitigating the top threats. Personnel can be shown what to expect
from AI-powered social engineering and further research can be done on de-1095

tecting deepfakes, but in a manner that is robust to a dynamic adversary [10].
Moreover, we recommend research into post-processing tools that can protect
software from analysis after development (i.e., anti-vulnerability detection).
Attacks Against AI. The advantages and vulnerabilities of AI have pro-
foundly questioned their widespread adoption, especially in mission-critical and1100

cybersecurity-related tasks. In the meantime, organizations are working on
automating the development and operations of ML models (MLOps), without
focusing too much on ML security-related issues. To bridge this gap, we argue
that extending the current MLOps paradigm to also encompass ML security
(MLSecOps) may be a relevant way toward improving the security posture of1105

such organizations. To this end, we envision the incorporation of security test-
ing, protection and monitoring of AI/ML models into MLOps. Doing so will
enable organizations to seamlessly deploy and maintain more secure and reliable
AI/ML models.

6. Conclusion1110

In this study we first explored, categorized, and identified the threats of
offensive AI against organizations (sections 2 and 2.3). We then detailed the
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threats and ranked them through a panel survey with experts from the domain
(sections 3 and 4). Finally, we provided insights into our results and gave di-
rections for future work (section 5). We hope this study will be meaningful and1115

helpful to the community in addressing the imminent threat of offensive AI.
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Appendix A. The Complete Questionnaire

Appendix A.1. Rating the Threat

In an attack on an organization, there are 7 malicious activities that can
be enhanced using AI: automation, information gathering, campaign resilience,
credential theft, social engineering, stealth, and exploit development.2225

Please rate accordingly:

Harm. How harmful is an attacker with AI in this task?
(damage, attack persistence, evasion, defense effort)

Profit. How beneficial is AI to the attacker in this task? (compared to using
non-AI methods)2230

(attack success, flexibility, coverage, automation, and persistence). As-
sume that the AI tool has already been implemented.

Achievability How easy is it for the attacker to use AI for this task?
(implement, train, and deploy the AI)

Defeatability How easy is it for the defender to detect or prevent it?2235

(1=hard to defeat, 7=easy to defeat)
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Activity: Automation.
Attack Customization (e.g., adjusting an exploit) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:
Coordinated Attacks: (1 = low, 7 = high)2240

Harm: , Profit: , Achievability: , Defeatability:

Information Sharing (among bots or threat agents) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Next-hop Targeting (e.g., lateral movement) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:2245

Phishing Campaigns (e.g., automated into collection crafting of spear phishing
emails, calls, ...)
Harm: , Profit: , Achievability: , Defeatability:

Point of Entry Detection (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:2250

Activity: Information Gathering (IG).
Mining OSINT (e.g., parsing websites, retrieving relevant info, ...) (1 = low, 7
= high)
Harm: , Profit: , Achievability: , Defeatability:

AI Model Theft (1 = low, 7 = high)2255

Harm: , Profit: , Achievability: , Defeatability:

Spying (e.g., collecting and mining conversations from the microphone, loca-
tions from the camera,...)
Harm: , Profit: , Achievability: , Defeatability:

Activity: Campaign Resilience (CR).2260

Malware Obfuscation (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Persistent Backdoors (e.g., automated reinfection, backdoor info shared among
bots, ...)
Harm: , Profit: , Achievability: , Defeatability:2265

Virtualization Detection (anti-forensics for malware) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Activity: Credential Theft (CT).
Biometric Spoofing (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:2270

Device Cache Mining (1 = low, 7 = high)
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Harm: , Profit: , Achievability: , Defeatability:

Implicit Key Logging (e.g., using smartphone acceleration, keystroke sounds, ...)
Harm: , Profit: , Achievability: , Defeatability:

Intelligent Password Guessing (1 = low, 7 = high)2275

Harm: , Profit: , Achievability: , Defeatability:

Side Channel Mining (e.g., memory or timing patterns) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Activity: Social Engineering (SE).
Impersonation (e.g., voice, text, video deepfakes and online social profiles) (1 =2280

low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Persona Building (e.g., a targeted trustworthy/attractive online profile) (1 =
low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:2285

Spear Phishing (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Target Selection (e.g., weakest link with asset) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Activity Tracking (1 = low, 7 = high)2290

Harm: , Profit: , Achievability: , Defeatability:

Activity: Stealth.
Covering Tracks (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Web Domain Name Generation (e.g., DGAs to avoid detection and blacklisting)2295

Harm: , Profit: , Achievability: , Defeatability:

Evading Network or Host-based Intrusion Detection Systems (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Evading Insider Detection Systems (e.g., replicate access pattern of other user)
Harm: , Profit: , Achievability: , Defeatability:2300

Evading Email Filter (i.e., for SPAM and phishing) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Data Exfiltration (e.g., evading firewall or over an air-gap for an isolated net-
work)
Harm: , Profit: , Achievability: , Defeatability:2305
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Propagation (lateral movement over a network) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Scanning (e.g., local host, network assets, ports, vulnerabilities, ...) (1 = low, 7
= high)
Harm: , Profit: , Achievability: , Defeatability:2310

Activity: Exploit Development (ED).
Reverse Engineering (i.e., to assist in manually finding a vulnerability or steal
IP) (1 = low, 7 = high)
Harm: , Profit: , Achievability: , Defeatability:

Vulnerability Detection (e.g., intelligent fuzzing, static analysis, ...) (1 = low, 72315

= high)
Harm: , Profit: , Achievability: , Defeatability:

Appendix A.2. The Impact on the Cyber Kill Chain

In an advanced persistent threat (APT) an adversary follows 14 tactics to
attack an organization according to the MITRE A&TTACK matrix. However,2320

at each step the defender can stop the attack and effectively kill the chain of
events, preventing the attacker from reaching its goal.

Compared to using conventional methods, AI helps the attacker in...
(strongly disagree, disagree somewhat disagree, neutral, somewhat agree, agree,
strongly agree)2325

(1) Reconnaissance: , (2) Resource Development: , (3) Initial Access: ,
(4) Execution: , (5)Persistence: , (6) Privilege Escalation: , (7) Defense
Evasion: , (8) Credential Access: , (9) Discovery: , (10) Lateral Movement:

, (11) Collection: , (12) Command & Control: , (13) Exfiltration: , (14)
Impact:2330

For each tactic, would AI help the attacker more than the defender?
(strongly disagree, disagree somewhat disagree, neutral, somewhat agree, agree,
strongly agree)
(1) Reconnaissance: , (2) Resource Development: , (3) Initial Access: ,
(4) Execution: , (5)Persistence: , (6) Privilege Escalation: , (7) Defense2335

Evasion: , (8) Credential Access: , (9) Discovery: , (10) Lateral Movement:
, (11) Collection: , (12) Command & Control: , (13) Exfiltration: , (14)

Impact:
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