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Abstract

Motivated by a recent paper of Pennisi in the relativistic framework [1], we revisit the
previous approach of two hierarchies of moments critically and propose a new natural
physical hierarchy of moments to describe classical rarefied non-polytropic polyatomic
gas in the framework of Molecular Rational Extended Thermodynamics. The differen-
tial system of the previous approach is proved to be a principal subsystem of the present
one. The main idea is that at the molecular level, the total energy is the kinetic energy
plus the energy of internal mode due to the rotation and vibration, and the increasing
moments contain this total energy as power in which the power index increases with
the number of tensorial indexes. In particular, we consider the case of 15 moments, and
we close the system using the variational method of the Maximum Entropy Principle.
We prove the convexity of entropy and the possibility to put the system in symmetric
form. This more rich kinetic framework may be interesting also as possible applica-
tions to biomathematics or other fields in which kinetic models were applied recently
with success.
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1. Introduction

The kinetic theory offers an excellent model for highly rarefied gases. The cel-
ebrated Boltzmann equation is widely used in many applications and is still now a
challenge for its difficult mathematical questions. Cercignani was one of the world
leaders that gave fundamental papers on this subject that are collected in the books
[2, 3]. More recently, the Kinetic theory was used in fields very far from gas dynam-
ics like in biological phenomena, socio-economic systems, models of swarming, and
many other fields (see, for example, [4, 5, 6] and references therein).

Rational Extended Thermodynamics (RET) is a theory that wants to offer a phe-
nomenological model that is a sort of bridge between the Navier-Stokes-Fourier the-
ory and the Boltzmann equation. RET is strictly related to the molecular approach,
so-called molecular ET which adopts the Maximum Entropy Principle (MEP) as the
closure of moments associated with the distribution function. This theory is described
in the two editions of the book of Müller and Ruggeri [7, 8] and is substantially limited
to the monatomic gas as the original Boltzmann equation.

More recently, an extension of RET was given to include polyatomic and dense
gases. This new approach starts with the paper of Arima, Taniguchi, Ruggeri, and
Sugiyama [9] and is strictly related to the extension of the kinetic theory of polyatomic
gas thanks to the refreshed idea given by Borgnakke and Larsen [10] and the mathe-
matical treatment due to the French mathematicians Bourgat, Desvillettes, Le Tallec,
and Perthame [11]. The state of the art on this subject is summarized in the two books
of Ruggeri and Sugiyama [12, 13].

This paper aims to give first a brief historical summary of this new approach for
rarefied gases and to recognize in the case of many moments some critical limitations
on the choice of the moments. Starting from a new idea of Pennisi in the relativistic
framework [1], we will propose a new more physical choice of moments and we discuss
in particular the simplest case of 15 fields as an example of the new approach. Such a
more sophisticated model including also internal mode such as rotation and vibration
of a molecule might be useful to use the gas theory as an analogy for other scientific
branches as mentioned before.

2. A brief survey of moment hierarchies in Rational Extended Thermodynamics

To understand the aim of the present paper, it is necessary to give a brief survey
of the classical and relativistic structure of RET for rarefied gases associated with the
moments of kinetic theory. The interested readers can find more details in the recent
book of Ruggeri and Sugiyama [13].
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2.1. Monatomic Gas
In the phenomenological Rational Extended Thermodynamics (RET) [8] of monatomic

gas, there exists a single hierarchy of field equations:

∂FM
k1k2...kn

∂t
+
∂FM

k1k2...knkn+1

∂xkn+1

= PM
k1k2...kn

, n = 0, 1, . . . , N̄, (1)

that was motivated by the moments structure associated to the Boltzmann equation

∂ f
∂t

+ ξi
∂ f
∂xi

= Q( f ), (2)

in which

FM
k1k2...kn

(x, t) = m
∫
�3

f (x, t, ξ) ξk1ξk2 . . . ξkn dξ, k1, k2, . . . , kn = 1, 2, 3,

and
PM

k1k2...kn
= m

∫
�3

Q( f ) ξk1ξk2 . . . ξkn dξ, PM = PM
k1

= PM
kk = 0,

where the state of the gas can be described by the distribution function f (x, t, ξ), being
respectively x ≡ (xi), ξ ≡ (ξi), t the space coordinates, the microscopic velocity and the
time. Q denotes the collisional term, m is the atomic mass, and the moment with n = 0,
denoted as FM , is the mass density ρ.

To obtain the closed set of field equations for the moment system (1), it is necessary
to find the constitutive theory for the last flux and production terms. For example, the
Euler system, whose fields are the mass density FM(= ρ), momentum density FM

i = ρvi

where vi is the velocity, and energy density FM
ll = ρv2 + 2ρε where ε is the internal

energy and v2 = vivi = v2
1 + v2

2 + v2
3, is the case with N̄ = 2 taking the trace of the

second-order tensor. The case N̄ = 3 taking the trace of the third-order tensor (ET13)
corresponds to the well-known Grad 13-field theory [14] whose fields are the traceless
part of momentum flux1 FM

〈i j〉and energy flux FM
lli in addition to FM , FM

i and FM
ll .

This situation has a relativistic counterpart. The first relativistic version of the mod-
ern RET was given by Liu, Müller and Ruggeri (LMR) [15] considering the Boltzmann-
Chernikov relativistic equation [16, 17, 18]:

pα∂α f = Q, (3)

in which the distribution function f depends on (xα, pβ), where xα are the space-time
coordinates, pα is the four-momentum, ∂α = ∂/∂xα, c denotes the light velocity, m
is the particle mass in the rest frame and α, β = 0, 1, 2, 3. The relativistic moment
equations associated with (3), truncated at tensorial index N + 1, are now2:

∂αAαα1···αn = Iα1···αn with n = 0 , · · · , N (4)

1The angle brackets indicate the traceless part of the tensor Ui j: U〈i j〉 = Ui j −
1
3 Ullδi j.

2When n = 0, the tensor reduces to Aα. Moreover, the production tensor in the right-side of (5) is zero
for n = 0, 1, because the first 5 equations represent the conservation laws of the particle number and the
energy-momentum, respectively.
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with

Aαα1···αn =
c

mn−1

∫
�3

f pαpα1 · · · pαn dP , Iα1···αn =
c

mn−1

∫
�3

Q pα1 · · · pαn dP , (5)

and

dP =
dp1 dp2 dp3

p0 .

When N = 1, we have the relativistic Euler system, and when N = 2, we have the LMR
theory of a relativistic gas with 14 fields:

∂αAα = 0, ∂αAαβ = 0, ∂αAαβγ = Iβγ,
(
β, γ = 0, 1, 2, 3; Iαα = 0

)
. (6)

In the relativistic case, differently from the classic one, we need to take all indexes
in (4) because when we take the trace pair of two or more indexes in the moments
of (5), we obtain a lower order tensor due to the constraint on the four-momentum:
pαpα = m2c2.

In a recent paper, Pennisi and Ruggeri [19] (see also [13]) proved that the classical
limit of (4) gives a precise single hierarchy of the moment equations of classical case
(1). In fact, they proved that, for a given N, there exists an integer s = 0, 1, . . . ,N such
that the moments expression in the classical limit is:

F s|M
i1i2...iN−s

≡ FM
j1 j1... js jsi1i2...iN−s

= m
∫
�3

f (x, t, ξ) ξ2sξi1ξi2 . . . ξN−s dξ, s = 0, 1, . . . ,N,

(7)
where ξ2 = ξ2

1+ξ2
2+ξ2

3 . This means that for s = 0 all the N indexes are different and then
we have contraction of two indexes as s increases until the highest moment is a scalar
because all the indexes are contracted. The importance of this result is that N̄ = 2N and
then N̄ is even and the integrals defining the moments can be integrable. Concerning
the integrability of moments see [20, 21]. According with this general result, the LMR
theory converges, in the classical limit, to Kremer’s monatomic ET14 theory [22], not
Grad’s theory (thus ET13) as was proved also in previous papers [23, 8, 19].

2.2. Polyatomic Gas

Although RET was well-established and applied to the study of the linear and non-
linear waves [12], its applicability range was limited to monatomic gases. After some
previous attempts [24, 25], RET for rarefied polyatomic gases was proposed from the
phenomenological viewpoint by Arima, Taniguchi, Ruggeri and Sugiyama [9]. Be-
cause of the dynamic pressure related to the relaxation of the molecular internal modes
which was absent in monatomic gases, the number of fields is now 14 (ET14), which
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dynamics is described by a binary hierarchy of field equations:

∂F
∂t

+
∂Fi

∂xi
= 0,

∂F j

∂t
+
∂Fi j

∂xi
= 0,

∂Fi j

∂t
+
∂Fi jk

∂xk
= Pi j,

∂Gll

∂t
+
∂Gllk

∂xk
= 0, (8)

∂Glli

∂t
+
∂Gllik

∂xk
= Qlli,

where F(= ρ) is the mass density, Fi(= ρvi) is the momentum density, Gll = ρv2 + 2ρε
is two times the energy density, Fi j is the momentum flux, and Gllk is the energy flux.
Differently from the case of monatomic gases, ε includes the energy of the internal
mode. Fi jk and Gllik are the fluxes of Fi j and Glli, respectively, and Pi j (Pll , 0) and
Qlli are the productions with respect to Fi j and Glli, respectively. In the monatomic
singular limit, it converges to the monatomic ET13 theory [26, 12, 13].

The binary hierarchy was justified and also derived from molecular ET [26, 27] by
using a kinetic model where the distribution function f depends on an extra variable I
that takes into account the internal degrees of freedom of a molecule such as rotation
and vibration [10, 11], i.e., f ≡ f (x, t, ξ,I), where f (x, t, ξ,I) dx dξ is the number
density of molecules with the energies I at time t and in the volume element dx dξ
of the phase space (6D position-velocity space) centered at (x, ξ) ∈ �3 × �3. The
Boltzmann equation is formally the same as the one of monatomic gases (2), but, for the
collision term Q( f ), we take into account the influence of internal degrees of freedom
through the collision cross-section. In this case, the macroscopic quantities such as F,
Fi,Fi j, Gll and Glli, are now the moments defined as follows:

Fi1...i j = m
∫
�3

∫ +∞

0
f ξi1 · · · ξi j ϕ(I) dIdξ,

Glli1...ik = 2
∫
�3

∫ +∞

0
f
(

mξ2

2
+ I

)
ξi1 · · · ξik ϕ(I) dIdξ.

(9)

Here ϕ(I) is the state density corresponding to I, i.e., ϕ(I)dI represents the number
of internal state between I and I + dI. As it can be easily seen in (9), the moments
Fi1...i j are free from the microscopic energy I and the Glli1...ik are moments of the sum
of the microscopic kinetic energy mξ2/2 and the microscopic internal energy I. As Gll

is the energy, except for a factor 2, we have that the F′s are the usual momentum-like
moments and the G′s are energy-like moments.

From the Boltzmann equation (2), we obtain a binary hierarchy of balance equa-
tions (8). After the derivation of the 14-field theory [27], the theory with the binary
hierarchy was generalized to the case with any number of moments [28, 29] with the
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so called (F,G)-hierarchies:

∂Fk1k2...kn

∂t
+
∂Fk1k2...knkn+1

∂xkn+1

= Pk1k2...kn , n = 0, 1, . . . , N̄,

∂Gllk1k2...km

∂t
+
∂Gllk1k2...kmkm+1

∂xkm+1

= Qllk1k2...km , m = 0, 1, . . . , M̄.

(10)

From the requirement of the Galilean invariance and the physically reasonable solu-
tions, it is shown that M̄ = N̄ − 1. The case with N̄ = 1 corresponds to the Euler
system, and the one with N̄ = 2 corresponds to ET14.

Recently, Pennisi and Ruggeri first constructed a relativistic version of polyatomic
ET theory with (4) in the case of N = 2 [30] (see also [31, 32]) whose moments are
given by

Aα ≡ Vα = mc
∫
�3

∫ +∞

0
f pαφ(I) dI dP ,

Aαβ ≡ Tαβ =
1

mc

∫
�3

∫ +∞

0
f pαpβ(mc2 + I) φ(I) dI dP ,

Aαβγ =
1

m2c

∫
�3

∫ +∞

0
f pαpβpγ

(
mc2 + 2I

)
φ(I) dI dP ,

(11)

where a distribution function f (xα, pβ,I) depends on the extra energy variable I, sim-
ilar to the classical one. In [30], by taking Aα〈βγ〉 instead of Aαβγ in (11)3 as fields, the
relativistic theory with 14 fields was proposed. It was also shown that its classical limit
coincides with ET14 based on the binary hierarchy (8) [9]. The beauty of the relativistic
counterpart is that there exists a single hierarchy of moments, but, as was noticed by
the authors, to obtain the classical theory of ET14, it was necessary to put the factor 2
in front of I in the last equation of (11)! This was also more evident in the theory with
any number of moments where Pennisi and Ruggeri generalized (11) considering the
following moments [19]:

Aαα1···αn =
1

mnc

∫
�3

∫ +∞

0
f pαpα1 · · · pαn

(
mc2 + nI

)
φ(I) dI dP ,

Iα1···αn =
1

mnc

∫
�3

∫ +∞

0
Q pα1 · · · pαn

(
mc2 + nI

)
φ(I) dI dP .

(12)

In this case, we need a factor nI in (12) to obtain in the classical limit the (F,G)-
hierarchies (10) . We remark that when N = 2, the 15 moments theory with the triple
hierarchy and not the binary one is obtained in the classical limit, because now the
third order tensor is Aαβγ and not its traceless part. Based on (12), the same authors
studied the classical limit in [19] and obtained the following set of classical moments
equations:

∂tH∗ s
i1···ih + ∂iH∗ s

ii1···ih = J∗ s
i1···ih

for s = 0, · · · ,N, and h = 0, · · · ,N − s,
(13)
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where

H∗ s
i1···ih = 2

∫
�3

∫ +∞

0
f ξi1 · · · ξih ξ

2(s−1)
(

mξ2

2
+ sI

)
ϕ(I) dIdξ,

J∗ s
i1···ih = 2

∫
�3

∫ +∞

0
Q ξi1 · · · ξih ξ

2(s−1)
(

mξ2

2
+ sI

)
ϕ(I) dIdξ.

(14)

The H∗’s hierarchy coincides with F’s hierarchy (9) for s = 0 and with G’s hierarchy
for s = 1. For s ≥ 2, there emerge new kind of hierarchies. For example, when N = 2
and s = 2, the number of moments is 15 adopting the following moment in addition to
the 14 moments appearing in (8)

H∗2 = 2
∫
�3

∫ +∞

0
f ξ2

(
mξ2

2
+ 2I

)
ϕ(I) dIdξ. (15)

The theory with 15 moments with the new moment (15) was the subject of the paper
[33].

A claim of (12) ((14) for classical case) is that the integrand of the moments is
the sum of the rest energy mc2 (kinetic energy mξ2/2) and nI (sI) not the internal
energy I. This fact seems unphysical because we expect that we have the full energy
at molecular level, i.e., mc2 + I in relativistic context and mξ2/2 + I in the classical
framework.

To avoid this unphysical situation, Pennisi first noticed that mc2(mc2 + 2I) appear-
ing in (11)3 are the first two term of (mc2 + I)2 and the same is for what concerns in
(12) (mc2)n−1(mc2 + nI) that are the first two terms of (mc2 + I)n. Therefore he pro-
posed in [1] to modify, in the relativistic case, the definition of the moments by using
the substitution:

(mc2)n−1
(
mc2 + nI

)
with

(
mc2 + I

)n
, (16)

i.e., instead of (12), the following moments are proposed:

Aαα1···αn =

(
1

mc

)2n−1 ∫
�3

∫ +∞

0
f pαpα1 · · · pαn

(
mc2 + I

)n
φ(I) dI dP ,

Iα1···αn =

(
1

mc

)2n−1 ∫
�3

∫ +∞

0
Q pα1 · · · pαn

(
mc2 + I

)n
φ(I) dI dP .

(17)

This is more physical because now the full energy appears in the moments and
moreover this does not modify the relativistic theory of ET14 studied in [30]. Instead,
if we take the full triple tensor Aαβγ in (6), we have a new theory with 15 fields that is
the subject of a paper in preparation by the present authors.

In the following sections, we construct a classical RET theory where, in analogy
with (16), we modify the classical moments substituting(

mξ2

2

)n−1 (
mξ2

2
+ nI

)
with

(
mξ2

2
+ I

)n

. (18)
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In an incoming paper, we will prove that this modifications coincide with the classical
limit of the new relativistic theory with the moments given in (17).

The plan of the paper is: in Sect. 3, we propose the new hierarchies of moment
equations and in Sect. 5, as a simple case, we study the theory with 15 moments.

3. New moment hierarchy for polyatomic gas

As it has been discussed in the previous section, we may consider the moments
such that the full energy appears at molecular level, i.e., the sum of the microscopic
kinetic energy mξ2/2 and internal energy I. For this reason and according with the
previous classical limit of polyatomic gas (13) with (14) and the new assumption (18),
we assume the following moment equations as more suitable physical moments for
polyatomic gases:

∂tHs
i1···ih + ∂iHs

ii1···ih = J s
i1···ih

with s = 0, · · · ,N, and h = 0, · · · ,N − s,
(19)

where

Hs
i1···ih = m

∫
�3

∫ +∞

0
f ξi1 · · · ξih

(
ξ2 +

2I
m

)s

ϕ(I) dIdξ,

Hs
ii1···ih = m

∫
�3

∫ +∞

0
f ξi ξi1 · · · ξih

(
ξ2 +

2I
m

)s

ϕ(I) dIdξ,

J s
i1···ih = m

∫
�3

∫ +∞

0
Q ξi1 · · · ξih

(
ξ2 +

2I
m

)s

ϕ(I) dIdξ.

(20)

The cases with s = 0 and s = 1, respectively, correspond to the previous F- and G-
hierarchies defined in (9), i.e.,

H0
i1···ih = Fi1···ih , H1

i1···ih = Glli1···ih .

On the other hand, the hierarchies with s ≥ 2 are newly emerged.
We remark that, similarly with the monatomic case (7), the order of the highest

moment is even, i.e., 2N, and the highest moment is scalar. This fact indicates that, in
principle, the moments can be integrable.

The intrinsic (velocity independent) variables are the moments in terms of the pe-
culiar velocity Ci = vi − ξi instead of ξi as follows:

Ĥs
i1···ih = m

∫
�3

∫ +∞

0
f Ci1 · · ·Cih

(
C2 +

2I
m

)s

ϕ(I) dIdC,

Ĥs
ii1···ih m

∫
�3

∫ +∞

0
f Ci Ci1 · · ·Cih

(
C2 +

2I
m

)s

ϕ(I) dIdC,

Ĵ s
i1···ih = m

∫
�3

∫ +∞

0
Q Ci1 · · ·Cih

(
C2 +

2I
m

)s

ϕ(I) dIdC.

8



By inserting ξi = vi + Ci into (20), the velocity dependence of the moments is obtained
as follows:

Hs
i1···ih =

h∑
p=0

s∑
r=0

s+p−r∑
k=p

X(p,r,k), j1··· jk−p jk−p+1··· jk
i1···ipip+1···ih

Ĥr
j1··· jk−p jk−p+1··· jk , (21)

with

X(p,r,k), j1··· jk−p jk−p+1··· jk
i1···ipip+1···ih

=

(
h
p

)
(2)k−p s!

r! (k − p)! (s + p − r − k)!
·

·
(
v2

)s+p−r−k
v j1 · · · v jk−p δ

jk−p+1

(i1
· · · δ

jk
ip

vip+1 · · · vih) ,

(22)

Concerning the derivation of (21), see Appendix A. We remark that, since 0 ≤ r ≤ s
and 0 ≤ k ≤ N − r, Hs

i1···ih
is expressed by the velocity independent moments with the

lower order tensor.
The flux (20)2 is decomposed into the convective and the non-convective part. The

velocity dependence of the non-convective flux is expressed as follows:

Hs
ii1···ih − viHs

i1···ih =

h∑
p=0

s∑
r=0

s+p−r∑
k=p

X(p,r,k), j1··· jk−p jk−p+1··· jk
i1···ipip+1···ih

Ĥr
i j1··· jk−p jk−p+1··· jk . (23)

Similarly, the velocity dependence of the production terms are also expressed as fol-
lows:

J s
i1···ih =

h∑
p=0

s∑
r=0

s+p−r∑
k=p

X(p,r,k), j1··· jk−p jk−p+1··· jk
i1···ipip+1···ih

Ĵr
j1··· jk−p jk−p+1··· jk . (24)

The results (21), (23), (24) with (22) are in perfect agreement with the general theorem
on Galilean invariance given by Ruggeri in [34] for a general balance law system.

4. Equilibrium values of the moments

Let us recall the equations of state of the non-polytropic gases:

p = p(ρ,T ) =
kB

m
ρT, ε ≡ εE(T ), (25)

where p, εE ,T denote as usual the equilibrium pressure, the equilibrium specific in-
ternal energy and the absolute temperature, while kB is the Boltzmann constant. The
equilibrium distribution function of the gases is deduced as follows [35, 36] :

fE = f K
E f I

E , (26)

where f K
E is the Maxwellian distribution function and f I

E is the distribution function of
the internal mode:

f K
E =

ρ

m

(
m

2πkBT

)3/2

exp
(
−

mC2

2kBT

)
, f I

E =
1

A(T )
exp

(
−
I

kBT

)
, (27)

9



with the normalization factor (partition function) A(T ) defined by

A(T ) =

∫ +∞

0
exp

(
−
I

kBT

)
ϕ(I)dI, (28)

where the average of the internal energy parameter I is made with respect to ϕ(I)dI.
From (27)2 and (28), the equilibrium distribution function of internal mode satisfies∫ +∞

0
f I
E ϕ(I) dI = 1. (29)

The specific internal energy is the moment of fE as follows:

ε = εE(T ) = εK
E (T ) + εI

E(T ) =
1
ρ

∫
�3

∫ +∞

0

(
mC2

2
+ I

)
fE ϕ(I) dIdC,

where εK
E and εI

E are the equilibrium kinetic (translational) and internal specific ener-
gies defined by

εK
E (T ) =

1
ρ

∫
�3

∫ +∞

0

mC2

2
fE ϕ(I) dIdC =

1
ρ

∫
�3

mC2

2
f K
E dC =

3
2

kB

m
T,

εI
E(T ) =

1
ρ

∫
�3

∫ +∞

0
I fE ϕ(I) dIdC =

1
m

∫ +∞

0
I f I

E ϕ(I)dI =
kB

m
T 2 d log A(T )

dT
.

(30)

The identities (30) are obtained by taking into account (26), (27), and (28) and by
evaluating the derivative of (28) with respect to T . Therefore, if we know the partition
function A(T ) by a statistical-mechanical analysis, we can evaluate εI

E(T ) from (30)2
(see for more details [36]). Vice versa, if the caloric equation of state is known, from
(30)2, we can evaluate the function A(T ) in integral form with respect to T as follows:

A(T ) = A0 exp
(

m
kB

∫ T

T0

εI
E(T ′)
T ′2

dT ′
)
,

where A0 and T0 are the inessential constants.
By adopting (26) with (27), we can evaluate the equilibrium moments as follows

(see Appendix B):

Ĥs|E
i1···ih

= m
∫
�3

∫ +∞

0
fECi1 · · ·Cih

(
C2 +

2I
m

)s

ϕ(I) dIdC

=

s∑
q=0

(
s
q

)
2qρ

h + 1
(2s − 2q + h + 1)!!

(
kBT
m

)s+ h
2

Āqδ(i1i2 · · · δih−1ih),

(31)

where Ār is the equilibrium distribution of the internal mode with respect to I and is
expressed as follows:

Ār =

∫ +∞

0
f I
E

(
I

kBT

)r

ϕ(I)dI. (32)
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By taking the derivative of Ār with respect to T , we obtain the following recurrence
formula:

Ār+1 = T
dĀr

dT
+ (r + ε̄I)Ār, Ā0 = 1,

where

ε̄I =
εI

kB
m T

. (33)

Examples of the equilibrium moments are given in the following:

Ĥ2|E =
p
ρ2

(
15 + 12ε̄I + 4ĉI

v + 4ε̄I2
)
,

Ĥ2|E
i j =

p3

ρ2 δi j

(
35 + 20ε̄I + 4ĉI

v + 4ε̄I2
)
,

Ĥ3|E =
p3

ρ2

(
105 + 90ε̄I + 52ĉI

v + 24ε̄I ĉI
v + 8T ĉI

v
′ + 36ε̄I2 + 8ε̄I3

)
,

Ĥ3|E
i j =

p4

ρ3 δi j

(
315 + 210ε̄I + 60ε̄I2 + 76ĉI

v + 24ε̄I ĉI
v + 8T ĉI

v
′ + 8ε̄I3

)
,

Ĥ4|E =
p4

ρ3

(
945 + 840ε̄I + 648ĉI

v + 48ĉI
v

2 + 416ε̄I ĉI
v + 96ĉI

vε̄
I2 + 192T ĉI

v
′

+ 64T ĉI
v
′ε̄I + 16T 2ĉI

v
′′ + 360ε̄I2 + 96ε̄I3 + 16ε̄I4

)
.

(34)

where

ĉI
v =

mcI
v

kB
, with cI

v =
dεI

E(T )
dT

(35)

being the specific heat of the internal mode, and ĉI
v
′ = dĉI

v/dT and ĉI
v
′′ = d2ĉI

v/dT 2.
We emphasize that ĉI

v > 0.

5. New ET15 for polyatomic gases

Let us study the system (19) for a given N. When N = 1, the system is the Euler
system. When N = 2, (19) reduces to the 15 moments as follows:

∂F
∂t

+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Fi j

∂t
+
∂Fi jk

∂xk
= Pi j,

∂Gll

∂t
+
∂Gllk

∂xk
= 0,

∂Glli

∂t
+
∂Gllik

∂xk
= Qlli,

∂H2

∂t
+
∂H2

k

∂xk
= J2.

(36)

11



For later convenience, we summarize the macroscopic quantities in (36) defined as the
moments of f as follows (see (19), (20)):

F
Fi

Fi j

Fi jk

 = m
∫
�3

∫ +∞

0
f


1
ξi

ξiξ j

ξiξ jξk

 ϕ(I) dIdξ,

 Gll

Glli

Gllik

 = m
∫
�3

∫ +∞

0
f
(
ξ2 + 2

I

m

)  1
ξi

ξiξk

 ϕ(I) dIdξ, (37)

(
H2

H2
i

)
= m

∫
�3

∫ +∞

0
f
(
ξ2 + 2

I

m

)2 (
1
ξi

)
ϕ(I) dIdξ,

and the production terms

f ≡

 Pi j

Qlli

J2

 = m
∫
�3

∫ +∞

0
Q( f )


mξiξ j

m
(
ξ2 + 2 Im

)
ξi

m
(
ξ2 + 2 Im

)2

 ϕ(I) dIdξ. (38)

The velocity dependence of the moments can be deduced from (21) in the present
case N = 2, and it is obtained as follows:

F = ρ,

Fi = ρvi,

Fi j = F̂i j + ρviv j,

Gll = Ĝll + ρv2,

Glli = Ĝlli + Ĝllvi + 2F̂livl + ρv2vi,

H2 = Ĥ2 + 4Ĝllivi + 2Ĝllv2 + 4F̂i jviv j + ρv4.

Similarly, the velocity dependences of the fluxes (23) and productions (24) are obtained
as follows:

Fi jk = F̂i jk + F̂i jvk + F̂ jkvi + F̂kiv j + ρviv jvk,

Gllik = Ĝllik + Ĝllivk + Ĝllkvi + 2F̂likvl + 2F̂klvlvi + 2F̂ilvlvk + F̂ikv2 + Ĝllvivk + ρv2vivk,

H2
k = Ĥ2

k + Ĥ2vk + 4Ĝllikvi + 2Ĝllkv2 + 4Ĝllivivk + 4F̂i jkviv j + 2Ĝllv2vk + 4F̂ikv2vi + 4F̂i jviv jvk + ρv4vk,

Pi j = P̂i j,

Qlli = 2vlP̂il + Q̂lli,

J2 = 4viv jP̂i j + 4viQ̂lli + Ĵ2.

Besides Ĥ2, the velocity independent part of the moments are related to the follow-
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ing conventional fields:

mass density : ρ =

∫
�3

∫ +∞

0
m f ϕ(I) dIdC =

∫
�3

∫ +∞

0
m fE ϕ(I) dIdC,

velocity : vi =
1
ρ

∫
�3

∫ +∞

0
m f ξi ϕ(I) dIdξ =

1
ρ

∫
�3

∫ +∞

0
m fE ξi ϕ(I) dIdξ,

specific internal energy density : ε = εK + εI =
1
ρ

∫
�3

∫ +∞

0
f
(

mC2

2
+ I

)
ϕ(I) dIdC,

specific translational energy density : εK =
1
ρ

∫
�3

∫ +∞

0
f

mC2

2
ϕ(I) dIdC,

specific internal energy density : εI =
1
ρ

∫
�3

∫ +∞

0
f I ϕ(I) dIdC, (39)

total nonequilibrium pressure : P =
2
3
ρεK =

1
3

∫
�3

∫ +∞

0
m f C2 ϕ(I) dIdC,

dynamic pressure : Π = P − p =
1
3

∫
�3

∫ +∞

0
m ( f − fE) C2 ϕ(I) dIdC,

shear stress : σ〈i j〉 = −

∫
�3

∫ +∞

0
m f C〈iC j〉 ϕ(I) dIdC,

heat flux : qi =
1
2

∫
�3

∫ +∞

0
m f

(
C2 + 2

I

m

)
Ci ϕ(I) dIdC,

and these are related to the intrinsic moments as follows:

Ĝll = 2ρε = 2ρ(εK + εI), F̂ll = 3P = 3(p + Π), F̂〈i j〉 = −σ〈i j〉, Ĝlli = 2qi,

where the temperature of the system T is introduced through the caloric equation of
state

ε = εE(T ).

Remark: As the mass density, momentum and energy density are equilibrium vari-
ables, we have in (39)1,2,3 that in the moments we can put f or fE indifferently and
therefore concerning energy we have:

ε = εK + εI = εK
E + εI

E ,

where εK and εI are defined in (39)4,5 and therefore are nonequilibrium variables that
are not equal to εK

E (T ) and εI
E(T ), respectively. The same concerns the nonequilibrium

pressure P that is not equal to the equilibrium pressure p at temperature T due to the
non-zero dynamic pressure Π (see (39)6,7).

Let us decompose the intrinsic part of H2 into the equilibrium part shown in (34)
and the nonequilibrium part ∆ as follows:

Ĥ2 =

∫
�3

∫ +∞

0
m

(
C2 + 2

I

m

)2

f ϕ(I) dIdC =
p2

ρ
(15 + 12ε̄I + 4ε̄I2 + 4ĉI

v) + ∆,

13



where ∆ is defined by

∆ =

∫
�3

∫ +∞

0
m

(
C2 + 2

I

m

)2

( f − fE) ϕ(I) dIdC. (40)

The constitutive quantities are now the following moments:

F̂i jk =

∫
�3

∫ +∞

0
mCiC jCk f ϕ(I) dIdC,

Ĝllik =

∫
�3

∫ +∞

0
m

(
C2 + 2

I

m

)
CiCk f ϕ(I) dIdC,

Ĥ2
k =

∫
�3

∫ +∞

0
m

(
C2 + 2

I

m

)2

Ck f ϕ(I) dIdC,

that are needed to be determined for the closure of the differential system together with
the production terms Pi j,Qlli and J2.

5.1. Nonequilibrium distribution function derived from MEP
To close the system (36), we need the nonequilibrium distribution function f , which

is derived from the MEP. According to the principle, the most suitable distribution
function f of the truncated system (36) is the one that maximizes the entropy density

h = − kB

∫
�3

∫ +∞

0
f log f ϕ(I) dIdξ,

under the constraints that the density moments F, Fi, Fi j,Gll,Glli,H2 are prescribed as
in (37) [37, 7, 8]. Therefore, the best-approximated distribution function f15 is obtained
as the solution of an unconstrained maximum of

L ( f ) = − kB

∫
�3

∫ +∞

0
f log f ϕ(I) dIdξ

+ λ

(
F −

∫
�3

∫ +∞

0
m f ϕ(I) dIdξ

)
+ λi

(
Fi −

∫
�3

∫ +∞

0
m f ξi ϕ(I) dIdξ

)
+ λi j

(
Fi j −

∫
�3

∫ +∞

0
m f ξiξ j ϕ(I) dIdξ

)
+ µ

(
Gll −

∫
�3

∫ +∞

0
m f

(
ξ2 + 2

I

m

)
ϕ(I) dIdξ

)
+ µi

(
Glli −

∫
�3

∫ +∞

0
m f

(
ξ2 + 2

I

m

)
ξi ϕ(I) dIdξ

)
+ ζ

H2 −

∫
�3

∫ +∞

0
m f

(
ξ2 + 2

I

m

)2

ϕ(I) dIdξ

 ,
where λ, λi, λi j, µ, µi, and ζ are the corresponding Lagrange multipliers of the con-
straints. We obtain that the approximated distribution function f15, which satisfies
δL/δ f = 0, is

f15 = exp
(
−1 −

m
kB
χ

)
, with

χ = λ + ξiλi + ξiξ jλi j +

(
ξ2 +

2I
m

)
µ +

(
ξ2 +

2I
m

)
ξiµi +

(
ξ2 +

2I
m

)2

ζ.

(41)

14



As f is a scalar independent of frame, we have χ = χ̂ where the hat indicate the
same quantity evaluated in the rest frame vi = 0. In this way, we have the velocity
dependence of the Lagrange multipliers (according with the general theorem given in
[34]). We remark that the Lagrange multipliers as fields symmetrize the system (36),
and are called as main field [21, 38, 13]. For later convenience, we denote the main field
as u′ = {λ, λi, λi j, µ, µi, ζ} and its velocity independent part as û′ = {λ̂, λ̂i, λ̂i j, µ̂, µ̂i, ζ̂}.

Recalling the usual thermodynamical definition of the equilibrium as the state in
which the entropy production vanishes and hence attains its minimum value, it is pos-
sible to prove the theorem [39, 40] that the components of the Lagrange multipliers of
the balance laws of nonequilibrium variables vanish, and only the five Lagrange mul-
tipliers corresponding to the conservation laws (Euler System) remain. On the other
hand, in [27], it was proved that the distribution function maximizes the entropy den-
sity with the constraints of 5 moments F, Fi and Gll of the equilibrium subsystem is
given by (26). Therefore, in equilibrium, f15 coincides with the equilibrium distribu-
tion function (26) with Lagrange multipliers given by

λE =
1
T

(
−g +

v2

2

)
, λiE = −

vi

T
, µE =

1
2T

,

λ〈i j〉E = 0, λllE = 0, µiE = 0, ζE = 0,
(42)

where g = εE(T ) + p/ρ − T s is the equilibrium chemical potential. We remark that
λE , λiE , µE in (42) are the main field that symmetrize the Euler system as was proved
first by Godunov (see [41, 12]).

When we adopt (41) to derive the closed constitutive equations, we need to take
care of the Junk’s problem [42] that the domain of definition of the flux in the last
moment equation is not convex, the flux has a singularity, and the equilibrium state lies
on the border of the domain of definition of the flux. To avoid these difficulties in the
molecular ET approach, we consider, as usual, the processes near equilibrium. For this
reason, we expand (41) around an equilibrium state as follows:

f15 ' fE

(
1 −

m
kB
χ̃

)
,

χ̃ = λ̃ + Ciλ̃i + CiC jλ̃i j +

(
C2 +

2I
m

)
µ̃ +

(
C2 +

2I
m

)
Ciµ̃i +

(
C2 +

2I
m

)2

ζ̃,

(43)

where a tilde on a quantity indicates its velocity independent nonequilibrium part. In
the following, for simplicity, we use the notation f instead of f15.

Inserting (43) into (39) and (40), we obtain the following algebraic relation for
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Lagrange multipliers:
0

−3 kB
m Π

0
−

kB
m ∆

 =


Ĥ0|E Ĥ0|E

ll Ĥ1|E Ĥ2|E

Ĥ0|E
ll Ĥ0|E

llmm Ĥ1|E
ll Ĥ2|E

ll
Ĥ1|E Ĥ1|E

ll Ĥ2|E Ĥ3|E

Ĥ2|E Ĥ2|E
ll Ĥ3|E Ĥ4|E




λ̃
1
3 λ̃ll

µ̃
ζ̃

 ,(
0

−6 kB
m qi

)
=

(
Ĥ0|E Ĥ0|E

ll
Ĥ0|E

ll Ĥ0|E
llmm

) (
λ̃i

µ̃i

)
,

and
kB

m
σ〈i j〉 = Ĥ0|E

〈i j〉〈rs〉λ̃〈rs〉.

(44)

Taking into account (34), as the solutions of (44), the nonequilibrium parts of the La-
grange multipliers are obtained as follows:

λ̃ =
1

8ĉI
vρT

{
Π̃

(
4ĉI

v
2 − 4T ĉI

v
′ε̄I − ĉI

v(15 + 20ε̄I + 4ε̄I2)
)

+ 12Π
(
ĉI

v − ε̄
I
)}
,

λ̃ll = −
3

4ĉI
v pT

{
T ĉI

v
′Π̃ + (3 + 2ĉI

v)Π
}
,

µ̃ =
1

4ĉI
v pT

{(
ĉI

v(2ε̄I + 5) + T ĉI
v
′
)
Π̃ + 3Π

}
,

ζ̃ = −
ρ

8p2T
Π̃,

λ̃i =
2ε̄I + 5

(2ĉI
v + 5)pT

qi,

µ̃i = −
ρ

(2ĉI
v + 5)p2T

qi,

λ̃〈i j〉 =
1

2pT
σ〈i j〉,

(45)

where Π̃ is the nonequilibrium variable introduced instead of ∆ defined by

Π̃ =
1
R

(
ρ

p
∆ + 6

T ĉI
v
′

ĉI
v

Π

)
, (46)

with

R = (2ĉI
v + 3)(2ĉI

v + 5) + 4T ĉI
v
′ − 2T 2 ĉI

v
′2

ĉI
v

+ 2T 2ĉI
v
′′. (47)

5.2. Constitutive equations

By using the distribution function (43) with (45), we obtain the constitutive equa-
tions for the fluxes up to the first order with respect to the nonequilibrium variables as
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follows:

F̂i jk =
2

2ĉI
v + 5

(qkδi j + q jδik + qiδ jk),

Ĝlli j = (2ε̄I + 5)
p2

ρ
δi j + (2ε̄I + 7)

p
ρ

Πδi j + (2ĉI
v + 5)

p
ρ

Π̃δi j − (2ε̄I + 7)
p
ρ
σ〈i j〉,

Ĥ2
i =

4
2ĉI

v + 5
p
ρ

(
35 + 2T ĉI

v
′ + 10ε̄I + 2ĉI

v(2ε̄I + 7)
)

qi.

5.3. Entropy density and flux

The entropy density h satisfies the entropy balance equation:

∂h
∂t

+
∂

∂xi
(hvi + ϕi) = Σ, (48)

where ϕi and Σ are, respectively, the non-convective entropy flux defined below and the
entropy production studied in (52).

By adopting (43) with (45), we obtain the entropy density within the second order
with respect to the nonequilibrium variables as follows:

h =ρs −
3(2ĉI

v + 3)
8ĉI

v pT
Π2 −

R
16pT

Π̃2 −
1

4pT
σ〈i j〉σ〈i j〉 −

ρ

(2ĉI
v + 5)p2T

qiqi. (49)

This means that the entropy density is convex and reaches the maximum at equilibrium.
When R > 0, the entropy density is convex and then the system (53) provides the
symmetric form in the main field components. Concerning the condition R > 0, we
will discuss in Sect. 5.5.

Similarly, the entropy flux is obtained as follows:

ϕi = − k
∫
�3

∫ +∞

0
Ci f log f ϕ(I) dIdC

=
1
T

qi +
2

pT (2ĉI
v + 5)

q jσ〈i j〉 −
2

pT (2ĉI
v + 5)

qiΠ −
1

pT
qiΠ̃,

5.4. Production terms with BGK collisional model

In the present paper, we evaluate the production terms, for simplicity, with the usual
BGK model:

Q( f ) = −
1
τ

( f − fE). (50)

Taking into account (38) and (50) we have:

P̂ll = −
3
τ

Π, P̂〈i j〉 =
1
τ
σ〈i j〉, Q̂lli = −

2
τ

qi, Ĵ2 = −
1
τ

∆. (51)

According to the symmetrization theorem [38, 12, 13], the entropy production Σ

defined in (48) is obtained as the scalar product between the main field u′ and the
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production vector f given by (38). Moreover, from the consideration on the velocity
dependence of the fields studied in [34], the production is same with the scalar product
between the velocity independent part of the main field û′ and the velocity independent
part of the production vector f̂. In conclusion, by taking into account (45) and (51), we
have

Σ =u′ · f = Σ̂ = û′ · f̂ =
λ̂ll

3
Π

τ
− λ̂〈i j〉

σ〈i j〉

τ
+ 2µ̂i

qi

τ
+ ζ̂

∆

τ

=
3(2ĉI

v + 3)
4ĉI

v pT
1
τ

Π2 +
R

8pTτ
Π̃2 +

1
2pT

1
τ
σ〈i j〉σ〈i j〉 +

2ρ
p2T (2ĉI

v + 5)
1
τ

qiqi.

(52)

Under the condition that R > 0, we notice that Σ ≥ 0.
In order to evaluate more precisely the production terms, a generalized BGK with

two relaxation times is used in the literature [43, 44] (see also [36, 45, 46]).

5.5. Estimation of R: convexity of entropy density and positivity of entropy production

As we have seen in (49) and (52), if R defined in (47) is positive, the entropy
density is convex and the entropy production is positive. To estimate R, we need the
dependence of the specific heat on the temperature. As an example, let us consider the
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Figure 1: Dependence of the dimensionless specific heat of internal mode ĉI
v (left) and R (right) for normal-

Hydrogen (solid line) and para-Hydrogen (dashed line) on the temperature T in the temperature range from
30K to 500K.

case of normal hydrogen and para hydrogen gases in a low temperature range where we
can safely neglect the contribution of the vibrational mode. The reason of the choice of
the gases are the following. First, since the value of the specific heat of the hydrogen
gases is small, the value of R is small. Second, the temperature dependence of ĉI

v is
important in the estimation of R. As we will see in Fig. 1, the temperature dependence
of normal hydrogen is monotonic as usual gases and the one of para hydrogen has a
peak at a temperature.
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The specific heat of the internal mode is estimated on the basis of statistical me-
chanics [47, 48] as follows:

ĉI
v = β2 ∂

2 log Zrot

∂β2 ,

(
β ≡

1
kBT

)
where Zrot is the partition function due to the rotational modes. The partition function
is given by

Zrot = Zgg
g Zgu

u ,

Zg =
∑

l=even

(2l + 1) exp
[
−βBl(l + 1)

]
,

Zu =
∑

l=odd

(2l + 1) exp
[
−βBl(l + 1)

]
,

where l is the quantum number of the orbital angular momentum and B = ~2/2I =

12.09 × 10−22 [J][49] with I and ~ being the moment of inertia of a molecule and the
Planck constant divided by 2π, respectively, and gg and gu are defined by

normal − hydrogen : gu = 3/4, gg = 1/4
para − hydrogen : gu = 0, gg = 1 .

The temperature dependence of ĉI
v and R is shown in Fig. 1. From the figure, R is

positive. The situation is similar for other gases.
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6. Closed field equations

Using the constitutive equations above, we obtain the closed system of field equa-
tions for the 15 independent fields (ρ, vi,T,Π, σ〈i j〉, qi,∆) :

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0,

∂ρv j

∂t
+

∂

∂xi

{
[p + Π]δi j − σ〈i j〉 + ρviv j

}
= 0,

∂

∂t

{
p(2ε̄I + 3) + ρv2

}
+

∂

∂xi

{
2qi +

[
p(2ε̄I + 5) + 2Π

]
vi − 2σ〈li〉vl + ρv2vi

}
= 0,

∂

∂t

{
3 (p + Π) + ρv2

}
+

∂

∂xk

{
10

2ĉI
v + 5

qk + 5(p + Π)vk − 2σ〈lk〉vl + ρv2vk

}
= −

3Π

τ
,

∂

∂t

(
−σ〈i j〉 + ρv〈iv j〉

)
+

∂

∂xk

{
2

1 + ĉv
q〈iδ j〉k + 2[p + Π]v〈iδ j〉k − σ〈i j〉vk − 2σ〈k〈i〉v j〉 + ρv〈iv j〉vk

}
=

1
τ
σ〈i j〉,

∂

∂t

{
2qi +

[
p(2ε̄I + 5) + 2Π

]
vi − 2σ〈li〉vl + ρv2vi

}
+

+
∂

∂xk

{
p
ρ
δik

[
(2ε̄I + 5)p + (2ε̄I + 7)Π + (2ĉI

v + 5)
1
R

(
ρ

p
∆ + 6

T ĉI
v
′

ĉI
v

Π

)]
− (2ε̄I + 7)

p
ρ
σ〈ik〉 (53)

+
4

2ĉI
v + 5

qlvlδik + 2
2ĉI

v + 7
2ĉI

v + 5
(qivk + qkvi) + (p + Π)v2δik +

[
(2ε̄I + 7)p + 4Π

]
vivk

− σ〈ik〉v2 − 2σ〈lk〉vlvi − 2vlvkσ〈il〉 + ρv2vivk

}
= −

2
τ

(
Πvi − σ〈il〉vl + qi

)
,

∂

∂t

{
p2

ρ

(
15 + 12ε̄I + 4ĉI

v + 4ε̄I 2
)

+ ∆ + 8viqi + 2v2[p(2ε̄I + 5) + 2Π] − 4viv jσ〈i j〉 + ρv4
}

+

+
∂

∂xk

{
4

2ĉI
v + 5

p
ρ

[
35 + 2T ĉI

v
′ + 10ε̄I + 2ĉI

v(2ε̄
I + 7)

]
qk +

p2

ρ

(
35 + 20ε̄I + 4ĉI

v + 4ε̄I 2
)

vk

+
p
ρ

[
4
R

(2ĉI
v + 5) + 1

]
vk

(
ρ

p
∆ + 6

T ĉI
v
′

ĉI
v

Π

)
+

p
ρ

[
4(2ε̄I + 7) − 6

ĉI
v
′

ĉI
v

]
vkΠ − 4(2ε̄I + 7)

p
ρ

vlσ〈lk〉

+ 4
2ĉI

v + 7
2ĉI

v + 5
v2qk + 8

2ĉI
v + 7

2ĉI
v + 5

vkvlql + 2
(
2ĉI

v + 7p + 4Π
)

v2vk − 4σ〈lk〉v2vl − 4vkviv jσ〈i j〉 + ρv4vk

}
= −

1
τ

(
4Πv2 − 4v〈iv j〉σ〈i j〉 − 8viqi + ∆

)
.

The system (53) is formed by 15 equations in the 15 unknown and is closed provided
we assign the equilibrium equations of state (25) and the relaxation time. We may
notice that the closed field equations of ρ, vi,Π and σ〈i j〉 are same with ET14, and the
effort of the new moment appears only in the equation of qi.

The closed set of the field equations are also expressed with the material derivative
denoted by a dot on a quantity such as

ḟ =
∂ f
∂t

+ vi
∂ f
∂xi

.
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Then we rewrite the closed field equations in the following form:

ρ̇ + ρ
∂vl

∂xl
= 0,

ρv̇i +
∂p
∂xi

+
∂Π

∂xi
−
∂σ〈ik〉

∂xk
= 0,

Ṫ +
2

2ĉI
v + 3

T
p

{
(p + Π)

∂vl

∂xl
− σ〈ik〉

∂vk

∂xi
+
∂ql

∂xl

}
= 0,

Π̇ +
4ĉI

v

6ĉI
v + 9

p
∂vl

∂xl
+

10ĉI
v + 9

6ĉI
v + 9

Π
∂vl

∂xl
−

4ĉI
v

6ĉI
v + 9

σ〈lk〉
∂vl

∂xk
+

10
3

ql
∂

∂xl

(
1

2ĉI
v + 5

)
+

8ĉI
v

3(2ĉI
v + 3)(2ĉI

v + 5)
∂ql

∂xl
= −

Π

τ
,

σ̇〈i j〉 + σ〈i j〉
∂vl

∂xl
+ 2σ〈l〈i〉

∂v j〉

∂xl
− 2(p + Π)

∂v〈 j
∂xi〉
− 4q〈i

∂

∂x j〉

(
1

2ĉI
v + 5

)
−

4
2ĉI

v + 5
∂q〈i
∂x j〉

= −
1
τ
σ〈i j〉,

q̇i +

(
1 +

2
2ĉI

v + 5

)
qi
∂vl

∂xl
+

(
1 +

2
2ĉI

v + 5

)
ql
∂vi

∂xl
+

2
2ĉI

v + 5
ql
∂vl

∂xi

+
2ĉI

v + 5
2

p
ρT

{
(p + Π)δil − σ〈il〉

} ∂T
∂xl
−

p
ρ2

(
Πδil − σ〈il〉

) ∂ρ
∂xl

(54)

+
1
ρ

{
(p − Π)δil + σ〈il〉

} (∂Π

∂xl
−
∂σ〈rl〉

∂xr

)
+

1
R

(
ρ

p
∆ + 6

T ĉI
v
′

ĉI
v

Π

)
∂

∂xi

{
p
ρ

(
2ĉI

v + 5
)}

= −
1
τ

qi,

∆̇ +

{
∆ −

8T ĉI
v
′

2ĉI
v + 3

p2

ρ
+

4
R

(
2ĉI

v + 5
) (

∆ + 6
T ĉI

v
′

ĉI
v

p
ρ

Π

)
+

8p
ρ(2ĉI

v + 3)

(
3 + 2ĉI

v − T ĉI
v
′
)
Π

}
∂vl

∂xl

−
8p

ρ(2ĉI
v + 3)

(
3 + 2ĉI

v − T ĉI
v
′
)
σ〈ik〉

∂vi

∂xk
−

8
ρ

qi
∂p
∂xi

+ 4
p
ρT

{
(2ĉI

v + 7) +
2

2ĉI
v + 5

(2T ĉI
v
′ + T 2ĉI

v
′′) −

4T 2ĉI
v
′2

(2ĉI
v + 5)2

}
∂T
∂xl

ql

+
8p
ρ

{
1 −

2T ĉI
v
′

(2ĉI
v + 3)(2ĉI

v + 5)

}
∂ql

∂xl
−

8
ρ

qi
∂Π

∂xi
+

8
ρ

qi
∂σ〈il〉

∂xl
= −

1
τ

∆.

6.1. Maxwellian iteration and phenomenological coefficients
The Navier-Stokes-Fourier theory is obtained by carrying out the Maxwellian iter-

ation [50] on (54) in which only the first order terms with respect to the relaxation time
are retained. The method is based on putting to zero the nonequlibrium variables on
the left side of equations (54)4,5,6,7:

Π = −pτ
4ĉI

v

6ĉI
v + 9

∂vk

∂xk
, σ〈i j〉 = 2pτ

∂v〈i
∂x j〉

, qi = −pτ
2ĉI

v + 5
2

kB

m
∂T
∂xi

, (55)

and

∆ = τ
8p2

ρ

T ĉI
v
′

2ĉI
v + 3

∂vk

∂xk
. (56)

Recalling the definitions of the bulk viscosity ν, shear viscosity µ, and heat conductivity
κ in the Navier-Stokes-Fourier theory:

Π = −ν
∂vi

∂xi
, σ〈i j〉 = 2µ

∂v〈i
∂x j〉

, qi = −κ
∂T
∂xi

, (57)
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we have from (55) and (57):

ν =
4ĉI

v

6ĉI
v + 9

p τ, µ = p τ, κ =
2ĉI

v + 5
2

p
kB

m
τ, (58)

that are the same of 14 moments [13]. Therefore the Maxwellian Iteration of ET15 and
ET14 give both the same parabolic Navier-Stokes-Fourier system.

7. ET14 as Principal subsystem

Since ET15 includes a larger set of the equations compared to the ET14, it is natural
to expect that the ET14 is a special case of ET15, although the theories are based on
different entropy densities which maximize the corresponding system. In fact, ET15
includes ET14 as special case because it is a principal subsystem according with the
definition given in [40].

In fact, in the present case, the ET14 is obtained as a principal subsystem of ET15
under the condition ζ = 0, i.e., from (45)7,

Π̃ = 0,

or, in other words putting in the first 14 equations of (54),

∆ = −6
p
ρ

T ĉI
v
′

ĉI
v

Π,

and the last equation of (54) is deleted.

8. Polytropic Gases

As a special case, let us consider a polytropic gas in which ε linearly depends on
T , that is, the specific heat is a constant, and the caloric equation of state is given by

ε =
D
2

kB

m
T,

where the constant D denotes the internal degrees of freedom and in the monatomic
gas D = 3. In this case we have from (33) and (35)

ε̄I = ĉI
v =

D − 3
2

.

Moreover, as was obtained in [11, 27], the measure ϕ(I) is explicitly expressed
with respect to the internal degrees of freedom D as follows:

ϕ(I) = Iα where α =
D − 5

2
.

Then, the moments of the internal mode (32) is expressed simply as follows:

Ār =
Γ(r + α + 1)

Γ(α + 1)
,
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where Γ(z) is the gamma function.
In the present case, R given in (47) becomes:

R = D(D + 2),

and is positive. Then, from (46), the relation between ∆ and Π̃ is the following:

Π̃ =
ρ

D(D + 2)p
∆. (59)

The field equations using the material derivative (54) are expressed as follows (with
Π̃ and ∆ related by (59)) :

ρ̇ + ρ
∂vl

∂xl
= 0,

ρv̇i +
∂p
∂xi

+
∂Π

∂xi
−
∂σ〈ik〉

∂xk
= 0,

Ṫ +
2T
Dp

{
(p + Π)

∂vl

∂xl
− σ〈ik〉

∂vk

∂xi
+
∂ql

∂xl

}
= 0,

Π̇ +
2
3

D − 3
D

p
∂vl

∂xl
+

5D − 6
3D

Π
∂vl

∂xl
−

2
3

D − 3
D

σ〈lk〉
∂vl

∂xk
+

4(D − 3)
3D(D + 2)

∂ql

∂xl
= −

1
τ

Π,

σ̇〈i j〉 + σ〈i j〉
∂vl

∂xl
+ 2σ〈l〈i〉

∂v j〉

∂xl
− 2(p + Π)

∂v〈 j
∂xi〉
−

4
D + 2

∂q〈i
∂x j〉

= −
1
τ
σ〈i j〉,

q̇i +
D + 4
D + 2

qi
∂vl

∂xl
+

D + 4
D + 2

ql
∂vi

∂xl
+

2
D + 2

ql
∂vl

∂xi

+
D + 2

2
p
ρT

{(
p + Π +

ρ

D(D + 2)p
∆

)
δil − σ〈il〉

}
∂T
∂xl
−

p
ρ2

(
Πδil − σ〈il〉

) ∂ρ
∂xl

+
1
ρ

{
(p − Π)δil + σ〈il〉

} (∂Π

∂xl
−
∂σ〈rl〉

∂xr

)
= −

1
τ

qi,

∆̇ +

(
D + 4

D
∆ + 8

p
ρ

Π

)
∂vl

∂xl
− 8

p
ρ
σ〈ik〉

∂vi

∂xk
−

8
ρ

qi
∂p
∂xi

+ 4(D + 4)
p
ρT

ql
∂T
∂xl

+
8p
ρ

∂ql

∂xl
−

8
ρ

qi
∂Π

∂xi
+

8
ρ

qi
∂σ〈il〉

∂xl
= −

1
τ

∆.

(60)

By carrying out the Maxwellian iteration, from (58), the relation between the vis-
cosities and heat conductivity and the relaxation time is the following:

ν =
2
3

D − 3
D

pτ, µ = pτ, κ =
D + 2

2
p

kB

m
τ,

and, from (56), ∆ is expressed as follows:

∆ = 0.

9. Monatomic gas limit

The monatomic gases are described in the limit D→ 3 then (60)4 becomes:

∂Π

∂t
+ vk

∂Π

∂xk
= −

(
1
τ

+
∂vk

∂xk

)
Π. (61)
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This is a first-order quasi-linear partial differential equation with respect to Π. As it
has been studied in [26], the initial condition for (61) must be compatible with the case
of monatomic gas, i.e., Π(0,x) = 0, and, assuming the uniqueness of the solution, the
possible solution of Eq. (61) is given by

Π(t,x) = 0 (for any t). (62)

If we insert the solution (62) and D = 3 into (60), the solutions of the present ET15
converge to those of the monatomic 14 theory given by Kremer [22].

Appendix A. Galilean invariance of moments

Since the velocity independent variables are the moments in terms of the peculiar
velocity Ci = vi − ξi instead of ξi, by inserting ξi = vi + Ci into (20), the velocity
dependence of the moments is obtained. By defining the set

S = {(k1, k2, k3) | k1 ≥ 0, k2 ≥ 0, k3 ≥ 0, k1 + k2 + k3 = s} ,

the moments are expressed with the use of the Leibniz polynomial as follows:

H s
i1 ···ih = m

∫
�3

∫ +∞

0
f
(
vi1 + Ci1

)
· · ·

(
vih + Cih

) (
C2 + 2Civi + v2 +

2I
m

)s

ϕ(I) dIdC

=

h∑
p=0

(
h
p

) ∑
(k1 ,k2 ,k3) ∈S

s!
k1! k2! k3!

m
∫
�3

∫ +∞

0
f C(i1 · · ·Cip vip+1 · · · vih)

(
C2 +

2I
m

)k1

(2Civi)k2
(
v2

)k3
ϕ(I) dIdC

=

h∑
p=0

(
h
p

) ∑
(k1 ,k2 ,k3) ∈S

s!
k1! k2! k3!

2k2
(
v2

)k3 Ĥk1
j1 ··· jk2 (i1 ···ip

vip+1 · · · vih)v j1 · · · v jk2

=

h∑
p=0

(
h
p

) ∑
(k1 ,k2 ,k3) ∈S

s!
k1! k2! k3!

2k2
(
v2

)k3 Ĥk1
j1 ··· jk2+p

δ
jk2+1

(i1
· · · δ

jk2+p

ip
vip+1 · · · vih)v j1 · · · v jk2

.

We remark 0 ≤ k1 ≤ s, p ≤ h ≤ N − s, k1 + k2 + p ≤ s− k3 + p ≤ s + p ≤ s + N − s = N
and 0 ≤ k2 + p ≤ s − k1.

By putting k1 = r, k2 = k − p and k3 = s + p − r − k and expressing the summation∑
(k1,k2,k3)∈S as

∑s
r=0

∑s+p−r
k=p , we obtain (21). In fact, 0 ≤ k1 ≤ s becomes 0 ≤ r ≤ s; after

that, 0 ≤ k2 ≤ s − k1 becomes p ≤ k ≤ s + p − r. The condition 0 ≤ k3 is automatically
satisfied.

Appendix B. Equilibrium moments

The equilibrium moments are

Ĥs|E
i1···ih

= m
∫
�3

∫ +∞

0
fECi1 · · ·Cih

(
C2 +

2I
m

)s

ϕ(I) dIdC

= m
s∑

q=0

(
s
q

) ∫
�3

∫ +∞

0
f K
E f I

ECi1 · · ·Cih (C2)s−q
(

2I
m

)q

ϕ(I) dIdC

=

s∑
q=0

(
s
q

) {
m

∫
�3

f K
E Ci1 · · ·Cih (C2)s−qdC

}{
2q

(
kBT
m

)q ∫ +∞

0
f I
E

(
I

kBT

)q

ϕ(I)dI
}
.

(B.1)
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In the first parenthesis we can recognize moments with respect only to the peculiar ve-
locity that coincide with ones with the Maxwellian distribution function F̂r|ME

i1i2···ih
defined

below. In fact, recalling (29), we have

F̂r|E
i1i2···ih

=

∫
m fECi1Ci2 · · ·Cih (C2)r ϕ(I) dIdC

=

∫
m f K

E Ci1Ci2 · · ·Cih (C2)rdC = F̂r|ME
i1i2···ih

.

From the Maxwellian distribution function (27)1, we obtain the explicit expression in
terms of ρ and T as follows:

Fr|E
i1i2···ih

=
ρ

h + 1
(2r + h + 1)!!

(
kBT
m

)r+ h
2

δ(i1i2 · · · δih−1ih).

For example, we have

F̂0|E = ρ, F̂0|E
i j = pδi j, F̂0|E

i jrs =
p2

ρ

(
δi jδrs + δirδ js + δisδ jr

)
,

F̂1|E
i jrs = 7

p3

ρ2

(
δi jδrs + δirδ js + δisδ jr

)
,

F̂4|E = 945
p4

ρ3 .

The integral in the second parenthesis in (B.1) is a moment of the equilibrium
distribution of the internal mode with respect to I that is (32). Then, (31) is obtained.
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