
2022-AS43-607: 55 - 62
DOI 10.7343/as-2022-607

55

journal homepage: https://www.acquesotterranee.net/

Polluted aquifer inverse problem solution using artificial neural networks
Soluzione del problema inverso in un acquifero inquinato mediante reti neurali artificiali
Maria Laura Foddisa, Gabriele Urasa  , Philippe Ackererb, Augusto Montiscic 
a DICAAR, University of Cagliari, Cagliari, Italy - email: ing.foddis@gmail.com; email  :urasg@unica.it
a University of Strasbourg, Strasbourg, France - email: ackerer@unistra.fr
a DIEE, University of Cagliari, Cagliari, Italy - email: amontisci@diee.unica.it

Ricevuto/Received: 29 November 2012
Accettato/Accepted: 28 May 2013
Pubblicato online/Published online:  
30 August/2013
Ripubblicato online/Republished online: 
15 December 2022

Parole chiave: Inversione di reti 
neurali artificiali, problema inverso; 
modellistica di acque sotterranee, 
identificazione di sorgenti 
contaminanti incognite

Keywords: artificial neural networks 
inversion; inverse problems; groundwater 
modelling; groundwater pollution source 
identification.

Il problema dell’identificazione di una fonte di inquinamento sconosciuta in falde acquifere 
contaminate, sulla base di misure di concentrazioni note di contaminanti nelle aree studiate, 
si inserisce nel più ampio gruppo di problematiche dei problemi inversi. Questo articolo 
esamina la possibilità di utilizzare reti neurali artificiali (RNA) per risolvere il problema inverso 
della individuazione nel tempo e nello spazio di una fonte di contaminazione in un dominio 
bidimensionale omogeneo e isotropo. Le RNA sono state addestrate per implementare relazioni 
input-output che associno posizioni di sorgenti a misure. Noto l’output del sistema l’input viene 
ricostruito invertendo le RNA addestrate.Questo approccio è stato applicato per lo studio di un 
caso di test teorico in cui il problema inverso è stato risolto utilizzando misure di concentrazioni 
di contaminante in pozzi di monitoraggio situati nell’area studiata. Le fonti di inquinamento 
delle acque sotterranee sono caratterizzate da variabilità spaziale delle ubicazioni e della durata 
della contaminazione. Questo processo di identificazione di fonti di inquinamento incognite 
diventa maggiormente complesso quando vengono a mancare osservazioni di concentrazione per 
lunghi periodi di tempo. In questo lavoro è stato pertanto elaborato uno scenario carente di 
dati caratterizzato da una sola misura rilevata successivamente all’interruzione dell’attività della 
sorgente contaminante.

The problem of identifying an unknown pollution source in polluted aquifers, based on known contaminant 
concentrations measurement in the studied areas, is part of the broader group of issues, called inverse 
problems. This paper investigates the feasibility of using Artificial Neural Networks (ANNs) for solving 
the inverse problem of locating in time and space the source of a contamination event in a homogeneous and 
isotropic two dimensional domain. ANNs are trained in order to implement an input-output relationship 
which associates the position. Once the output of the system is known, the input is reconstructed by inverting 
the trained ANNs. The approach is applied for studying a theoretical test case where the inverse problem 
is solved on the basis of measurements of contaminant concentrations in monitoring wells located in the 
studied area. Groundwater pollution sources are characterized by varying spatial location and duration of 
activity. To identify these unknown pollution sources, concentration measurements data of monitoring wells 
are used. If concentration observations are missing over a length of time after an unknown source has become 
active, it is more difficult to correctly identify the unknown pollution source. In this work, a missing data 
scenario has been taken into consideration. In particular, a case where only one measurement has been made 
after the pollutant source interrupted its activity has been considered. 
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Introduction
Groundwater represents an important resource for the 

production of drinking water. However, groundwater is 
exposed to man-made pollution. When groundwater is 
polluted, the restoration of quality and removal of pollutants 
is a very slow, hence, lengthy, and, sometimes, a practically 
impossible task. As a consequence a management aimed at 
protecting the groundwater quality and at safeguarding the 
groundwater resources has a vital importance for life support 
systems.

Groundwater contamination, in some cases, may result from 
pollutions whose origin is found at times and places different 
than where the contaminations have been actually noticed. 
Such situations require the development of techniques that 
allow the identification of these unknown pollution sources. 
The determination of the initial conditions of pollution is of 
considerable interest in the framework of the implementation 
of the European Union Directive 2004/35/EC: this directive 
concerns environmental liability with regard to the prevention 
and compensation of environmental damages, based on the 
affirmation of the principle of polluter-payer.

The problem of determining the unknown model parameters 
is usually identified as “inverse problem”. Solving the inverse 
problem is the main goal of modelling groundwater flow 
and contaminant transport. With respect to the resolution 
of the inverse problem, in this work we propose the use of 
an innovative ANNs based methodology for solving the 
inverse problem of locating in time and space the source of 
a contamination process in a homogeneous and isotropic two 
dimensional domain. The identification and remediation of 
polluted aquifers represents nowadays an important challenge 
in groundwater resource management. In order to efficiently 
manage the groundwater quality, it is fundamental to know 
pollution source characteristics such as location, magnitude 
and duration of the activity. Inaccuracies/inadequacies in 
determining the pollution sources may lead to inefficient or 
unsuccessful management/remediation efforts. Information 
regarding the pollution sources is also necessary and useful 
for addressing the judicial issues of responsibility and 
compensation for environmental damage.

In the case presented in this paper, the inverse problem 
is solved on the basis of measurements of contaminant 
concentrations in monitoring wells located in the studied 
theoretical area. During the last decade, there has been seen a 
significant activity in ANNs applied to various hydrogeological 
problems such as groundwater modelling, modelling of 
hydrogeological parameters, modelling of various kinds of 
aquifers contamination, water quality modelling. Several 
studies have been dedicated to the development of different 
models for solving the inverse problem, however works using 
the ANNs approach are less popular, Among these latest, 
one can highlight Rizzo and Dougherty (1994), Zio (1997), 
Gümrah et al. (1999), Mahar & Datta (2000), Fanni et al. 
(2002), Rajanayaka et al (2002), Sciuntu (2004), Singh and 
Datta (2006), Zhiqiang et al. (2006), Bashi-Azghadi et al. 
(2010), Foddis et al (2012).

In this work, in order to identify the spatial location (X,Y) 
and the duration of the activity (T) for a theoretical unknown 
pollution source, a new approach is applied. Several ANNs 
are trained to solve the direct problem, presenting as input 
the spatial location (X,Y) and the duration of the activity 
(T) for an unknown pollution source and  as desired output, 
the measures of contaminant concentrations acquired in the 
monitoring wells at the current time t. After the training 
phase, the trained ANN is inverted in order to solve the 
inverse problem. Starting from the contaminant concentration 
in the monitoring wells, the unknown contaminant source 
characteristics are found. Thanks to a drastic reduction of 
the input/output data the computational time is strongly 
decreased. Moreover the implemented method is useful not 
only to identify the location and duration activity of unknown 
pollution sources, but also to bound the study area defining 
the best location of the monitoring wells in the domain and 
to optimize the investigation costs

Materials and Methods
In the first step, several ANNs are trained to solve the 

direct problem. In this part of the procedure, the networks 
are trained, by means of a set of examples, to associate the 
contaminant concentration in monitoring wells to the position 
and duration of pollution sources activity. The input patterns 
are the features describing spatial position and activity duration 
of the pollution sources. The output patterns are contaminant 
concentration observation data at given monitoring wells. 
After the training, the ANN generalization capability can 
be exploited to estimate the contaminant concentration in 
monitoring wells corresponding to a new pollution source.

In the second step, the trained ANN is inverted in order 
to solve the inverse problem. On the basis of values of known 
contaminant concentrations in monitoring wells, the pollution 
sources position and the activity duration can be identified.

In the following paragraph the methodology is deeply 
described.

ANN pattern construction: flux and transport model of the 
theoretical aquifer

ANNs are trained by using a set of patterns created by 
means of the flux and transport contaminant modelling 
software TRACES (Transport of Radio ACtive Elements in the 
Subsurface [Hoteit et al. (2004)]). As documented by Hoteit 
et al. (2004), TRACES performs the simulation of flow and 
reactive transport in saturated porous media. It is based on 
mixed and discontinuous finite element methods for solving 
hydrodynamic state and mass transfer problems. The patterns 
describe, for a theoretical hydrogeological basin, both spatial 
location and duration of activity of the contamination source 
and the set of contaminant concentrations measurements in 
the monitoring wells.

The theoretical hydrogeological basin and its principal 
features have been defined as reported in Table 1.

In order to solve the partial differential equations by 
means of the numerical model, a regular quadrangular 
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Fig. 1 - Distribution of the pollutant sources and the monitoring cells in the domain.

Fig. 1 - Distribuzione delle sorgenti contaminanti e dei punti di monitoraggio 
nel dominio.

two-dimensional mesh is superimposed in the whole domain 
for a total of 50 cells in the 2D directions (see Fig. 1). Each 
cell is large 20×20 m2.

ANNs patterns are constructed through a suitable number 
of hydrogeological scenarios that take under consideration 
the restrictive hypothesis of groundwater contaminated by a 
single generic conservative pollutant injected in a single point 
(pollutant source). Overall, 40 constant punctual pollution 
sources with a constant contaminant concentration of  
100 μg/m3 were uniformly distributed in the aquifer domain 
(see Fig. 1). It is also assumed the presence of a pumping well 
with a constant pumping rate (0.0012 m3/s) and the pumping 
start from the beginning of the simulation. No variation of 
the initial parameters of the model during the simulation 
time and no recharge rate are applied to the aquifer. 
The initial contaminant concentration, in the domain, is 
assumed equal to zero. Training patterns are constructed by 
simulating the 40 different pollution sources for 3 timing of 
activity source duration (10, 20 and 30 years), resulting in 
40×3 = 120 samples maps of contaminant distributions. The 
samples obtained from the simulation model are the matrix of 
contaminant concentration for 50 monitoring cells distributed 
in order to cover the entire basin area of the domain (Fig. 1).

Through TRACES, the trend of the piezometric head and 
contaminant concentrations in the domain in stationary state 
is developed (Fig. 2)

The huge amount of data carried out by each time 
step of simulation is not suitable to be inputted in an 
ANN. Therefore, feature extraction techniques have been 
implemented to reduce data dimensionality. Several feature 
extraction procedures have been compared in order to choose 
the best one, in this affecting size and structure of ANNs.

Multi Layer Perceptron (MLP) network model
An ANN consists of a number of interconnected processing 

elements (Perceptrons) called neurons, which are logically 
arranged in two or more layers and interact with each other 
through weighted connections. In particular, the Multi 
Layer Perceptrons (MLPs) fall within the class of methods 
for function approximation by means of combination of 
elementary functions (Taylor, Fourier series, etc.). In general, 

Tab. 1 - Theoretical aquifer features. 

Tab. 1 - Caratteristiche dell’acquifero teorico.

theoretical aquifer type: confined and isotropic aquifer system 
composed by one horizontal layer characterized by only one 
stratigraphic unit whit a constant thickness.
It is delimited by no-flow boundaries on the North and South sides.

Domain dimension 1000*1000m2

Hydraulic head on the west boundary 9 m

Hydraulic head on the east boundary 8 m

Horizontal hydraulic conductivity [ko] 0.0001 m/s

Effective porosity 10%

Fig. 2 - Hydraulic head and contaminant concentration distribution for a generic 
pollutant source after 10 years activity at the top of the aquifer domain.

Fig. 2 - Carichi idraulici e distribuzione delle concentrazioni di contaminazione 
per una generica sorgente misurati al tetto dell’acquifero dopo 10 anni di 
attività.

MLPs could have whichever number of layers, but it has been 
demonstrated that an MLP with only one intermediate layer 
(hidden layer) is a universal approximator (Cybenko 1989). 
For this reason throughout the paper, the MLP are considered 
having only one hidden layer without further specification. 
MLPs have the twofold advantage of using transcendent 
functions and determining the parameters by means of 
examples. This second property makes possible to develop a 
model of the system without an analytical formalization but 
simply on the basis of a suitable set of input/output pairs 
of example patterns. The features of the developed ANN 
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Fig. 3 - Sketch of the monitoring wells selection procedure. 

Fig. 4 - Distribution of the 15 monitoring cells selected on the basis of correlation with 
inputs. 

Fig. 3 - Schematizzazione della procedura di selezione dei pozzi di monitoraggio.

Fig. 4 - Distribuzione dei 15 pozzi di monitoraggio selezionati sulla base delle 
correlazioni con gli inputs.

depend on the nature of the problems analysed and there 
are no theoretical guidelines for determining the best way 
out. The model is specific to the system under study and it 
cannot be built a priori. The training of the ANN consists 
in applying a learning rule that modifies the weights of 
the connections on the basis of the difference between the 
calculated and the desired output of the network. The aim 
of the training is to make the ANN able to generalize the 
acquired information, i.e. to give the correct output even 
for examples not included in the training set. This aspect is 
crucial for the application described in this work, because 
the assumption is to reconstruct the input by inverting the 
trained ANN. In practice, the aim of training is abstracting 
the input-output relationship which generated the examples 
of the training set and implementing it into the ANN. After 
that, the ANN is inverted to solve the inverse problem by 
fixing the output and reconstructing the corresponding input 
of the ANN.

Input data reduction
The ANN input data are the positions (X,Y) and the 

activity duration (T) of the pollution sources for the 120 
hydrological scenarios. These correspond to 40 sources for 
3 timing considered. The three input parameter (X,Y,T) are 
pre-processed by normalizing so that they fall in the interval 
[-1,+1]. The algorithm is presented in Equation 1.

where: np  is the normalized input value, p  is the 
input, maxp and minp  are maximum and minimum values 
respectively. The pre-processed input patterns matrix has size 
3×120.

Output data reduction
Thanks to TRACES a total of 120 matrices of 

concentrations at the monitoring cells have been generated, 
corresponding to as many scenarios. Each component ai,j of 
the matrix corresponding to a specific scenario represents 
the concentration value at the well j and the time i. In the 
studied case, the total absence of complete breakthrough 
curves of concentration time series at all the time steps is 
hypothesized. So, for each one of the 50 monitoring cells, 
only one observation is taken into consideration, in particular 
the concentration of the final time t is taken. Therefore, each 
scenario is described by a 50 values vector, corresponding to 
the 50 monitoring cells. These cells correspond to as many 
hypothetical monitoring wells. However, these vectors are 
too large to be subsequently processed through the ANN, 
requiring too many examples and a large network with a lot 
of hidden neurons. In this way, the ANN becomes too big and 
it may lose its specific feature consisting in the calculation 
speed. Moreover, the number of 50 hypothetical wells is too 
large for a small domain such that taken into account. For 

( )
( ) 12

minmax

min −
−
−⋅

=
pp
pppn (1)

these reasons, a procedure has to be adopted to select the most 
suitable monitoring cells, in order to reduce both the size of 
ANN and the cost of measurements in applying the method 
to a real case. Several data pre-processing methods can be 
used to this purpose. The scheme in Figure 3 represents the 
procedure applied in this work.

First the 120 vectors are joined to make a unique matrix 
of output patterns. The dimension of this matrix is 50×120. 

Then the correlation of each one of the 50 monitoring 
cells with each input is evaluated, obtaining three distinct 
classifications of the 50 monitoring cells. Only the five cells 
more correlated with each input are kept into consideration. 
Based on this initial reduction, at most 15 monitoring cells 
are kept (Fig. 4), the number being lower when the same 
monitoring cells is within the first five in more than one 
classification. So the output patterns matrix size becomes 
15×120.
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Fig. 5 - Distribution of the 8 monitoring cells selected on the basis of thje ANNs 
trainings.

Fig. 5 - Distribuzione degli 8 pozzi di monitoraggio selezionati in base 
all’addestramento delle RNA.

The number of hypothetical monitoring wells is still too 
large. In order to further reduce this number, an iterative 
procedure based on the application of an ANN was developed. 
ANNs are over-trained with the training set made up of all 
the patterns, and then the correlation between the inputs and 
the calculated outputs are evaluated. The monitoring cell 
corresponding to the lowest correlation is removed together 
with the associated output neuron. After this, the reduced 
ANN is trained. The iterative procedure ends when the 
minimum value of correlation is below a prefixed threshold.

For each training, the number of the hidden neurons 
is determined by means of a trial and error procedure by 
performing several trainings and assuming a growing number 
of hidden neurons. For each training phase, the output layer 
becomes smaller, and consequently the hidden layer decreases 
too. For a reason which will be clarified below, the number of 
hidden neurons must be less or equal to the number of output 
neurons. At the end of the iterative procedure, the number of 
monitoring wells has been reduced to 8 (Fig. 5). 

As a consequence, the dimensions of the output pattern 
matrix are 8x120, the rows corresponding to the monitoring 
wells and the columns to the scenarios. As for the input 
matrix, the output matrix has been normalized in the interval 
[-1,+1]

ANN Training
The 3 inputs-8 hidden-8 outputs structured MLP is 

initially trained by means of the Levenberg-Marquardt (LM) 
algorithm to solve the direct problem, namely associating the 
contaminants concentration in monitoring wells to the time-
space coordinates of the pollutant source. The trained MLP is 

subsequently inverted to solve the inverse problem, namely 
deriving the time-space coordinates of the unknown pollutant 
source starting from the measurement of contaminants 
concentration in monitoring wells.

The training procedure consists in modifying iteratively 
the connection weights of the ANN, in order to minimize 
the mean squared error (error function) of the output with 
respect to the desired one. In particular, LM algorithm 
performs an approximated second-order minimization of the 
error function. In an iteration the error function with respect 
to the whole training set is calculated and a consequent small 
modification of connections weights is applied. The operations 
performed during a single iteration is called epoch.

The training of the ANN is a critical part of the proposed 
process. A special attention has to be paid to guarantee the 
generalization capability of the trained MLP, namely the 
capability to solve, with the desired rate of approximation, 
the direct problem for cases out of the training set. To this 
end it is important both to have a meaningful training set 
and to avoid overfitting. The first requirement can represent a 
difficulty when the available examples are limited or, as in this 
case, generating a consistent number of patterns is too costly. 
In such cases, a solution can be represented by the Leave one 
Out Cross Validation (LOO) technique, which offers a way 
to mitigate also the overfitting, which in general is avoided 
by adopting the cross-validation method. This consists in 
calculating, during the training phase, the error made by the 
MLP on a validation set, which is distinct from the training 
set. When such error gets to rise the training is stopped.

In the LOO, the examples patterns are divided in p sets, 
where p is the number of examples. Each set is divided in two 
subsets: one composed by p-1 examples is used as training set 
and the remaining example is used as validation set. Therefore 
in this work, the training set is made of 119 examples. One 
by one, each example is used as validation set, so that an 
overall number of 120 trainings have been performed. This 
preliminary study is performed to establish an optimal 
number of training epochs. In this work, a number of 100 
epochs has been deduced by this analysis. This number of 
epochs has been then used as a standard for all trainings in 
this work.

In the studied case, the LOO procedure is not used to train 
the network that will be used in a particular case, but only 
to estimate the generalization capability of the 120 trained 
networks. If one wish to consider a new source not included in 
the 120 patterns, all the patterns will be used for the training 
set and the new case will be used for the test set. The developed 
methodology allows us to reach the reasonable presumption 
that the error for the new case will not be greater than the 
errors experienced in the 120 networks already trained.

Inverse problem solution
Given an MLP trained as described above, the inversion 

procedure has to be applied to characterize the unknown 
pollution source.

The MLP (Fig. 6) realizes a relationship between input 
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Fig. 6 - Structure of the MLP.

Fig. 6 - Struttura di una RNA multi layer perceptrons (MLP).

and output patterns described by the following algebraic 
equations system:
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Where: x  is the input of the network, 1
W  is the weights 

matrix of the input layer, 1b  is the bias vector of the input 
layer, y  is the input of the hidden layer, h  is the output 
of the hidden layer, )(⋅σ  is the hidden neurons logistic 
activation function, u  is the output of the network, 

2
W  is 

the weights matrix of the output layer, 2b  is the bias vector 
of the output layer.

On the basis of the known output of the system, which 
derives from a set of measurements in the monitoring wells 
at a certain time , the corresponding input can be calculated 
exploiting the method described in (Carcangiu et al 2007; 
Fanni et al 2003).

During the inversion process, as explained below, the 
difference between the calculated input and the desired input 
is considered. On the basis of the third equation described in 
the equation system, starting from the output u, the vector h 
can be determined. Provided that the matrix 

2
W  is full rank, 

and taking into account that in the present case such matrix 
is squared, the solution corresponding to the minimum sum 
squared error is equal to: 

  
( )2

1

2
buWh −⋅= −

  (3)

More in general, the matrix 2
W  is rectangular, so it cannot 

be directly inverted. In order to guarantee the uniqueness 
of the solution, the rows (number of output neurons) must 
be more than the columns (number of hidden neurons). In 
this case, the equations system results overdetermined and 
the uniqueness is ensured by assuming the solution which 
corresponds to the minimum mean squared error. Such 
solution can be found by solving the following modified 
equations system, whose coefficients matrix is squared. 

 
 

( )2222
buWhWW TT −=

  (4)

Even in this case, the uniqueness is conditional on the fact 
that the matrix 2

W  is full rank.
The second equation in (2) states a biunivocal relation 

between y and h, therefore the vector y is:

 
( )hy 1−= σ

    (5)
Finally, provided that the matrix 1

W  is full rank, the 
input pattern x can be calculated as: 

 
 

( ) )( 11

1

11
byWWWx TT −⋅⋅=

−

  (6)

where the mark T represents the transposition operator. 
The desired source position and duration of activity have 
been obtained by backward applying the pre-processing of 
the vector x  obtained by inverting the ANN.
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Tab. 2 - Performance of the inversion of the MLP.

Tab. 2 - Performance ottenute nell’inversione della RNA multi layer 
perceptrons.

Results and discussion
The described procedure has been applied to the problem 

described in section 1.1. The results show very good 
performances in locating the pollutant source, obtaining 
correct results in the 67% of the cases for the X coordinate 
and in the 59% of the cases for the Y coordinate. In the most 
of the cases the identification error is less than one cell size 
(20×20 m2). On the other hand, the maximum error is less 
than the size of two cells. Figure 7 shows the hydrogeological 
domain with spatial coordinates X and Y corresponding to the 
40 pollution sources positions. The black circles represent the 
correct source positions while the blue, red and green circles 
are the positions calculated by means of the MLP inversion. 
The Figure 7 corresponds to the 40 pollution sources, with 
10, 20 and 30 years activity time respectively.

Fig. 7 - Real and calculated position of the 10, 20 and 30 years activity pollutant 
sources.

Fig. 7 - Posizione reale e posizione calcolata dopo 10, 20 e 30 anni di 
contaminazione.

Table 2 illustrates the percentages of success in identifying 
the unknown pollution sources. The localization of the source 
is considered 100% correct if the error is less than the side 
of the cell (20 m). The prediction of the activity duration is 
considered 100% if the error is less than one year.

Patterns results examples %

X,Y,T 100% correct 14

T 100% correct / X,Y error < 20m 40

T 100% correct / X,Y error > 20m 17

T error < 6 years / X,Y error < 20m 23

T error < 6 years / X,Y error > 20m 6

The method proves to be suitable in predicting the position 
of the source, whereas less satisfying results have been obtained 
concerning activity duration prediction, with 76% of correct 
answers. Concerning 10 and 30 years as the duration of the 
sources activity of, the activity duration resulted to be wrong 
in only one case. Conversely, for the 20 years sources duration 
activity, the resulting wrong cases are 26 out of a total of 40. 
Anyway, the maximum error committed in time estimation 
is 5,26 years. In Table 3 the average and maximum errors for 
the three source parameters are reported. 

Tab. 3 - Results related to the identification of the pollution sources features.

Tab. 3 - Risultati relativi all’individuazione delle caratteristiche delle sorgenti 
contaminanti.

In most cases the MLP is able to correctly detect the 
duration of the pollution activity. This is probably due to the 
different dynamics of the pollutant processes depending on 
the distance of the source from the boundaries and from the 
pumping well.

Figure 8 shows the performance concerning duration 
activity prediction. As one can see, for the sources duration 
activity of 10 and 30 years, only one case is wrong. For the 
20 years sources duration activity, the wrong cases have been 
higher than the correct cases with 26 wrong cases out of a 
total of 40 cases. Nevertheless the resulting mean error is 
equal to 2.66 years. The minimum and maximum errors 
were respectively of 6 months and 5 years and 3 months. 
Various trials performed to improve these results have shown 
that these results are strongly influenced by the instability of 
the MLP training

X  [m] Y  [m] time  [years]

Em – mean error 14.19 14.33 0.70

EM – maximum error 39.17 39.82 5.26

Fig. 8 - Duration activity approximation of the ANNS.

Fig. 8 - Performance della RNA nell’individuazione della durata della 
contaminazione.

Figure 9 shows the position of the sources where the 
prediction of duration activity is wrong. The positions are 
uniformly distributed throughout the domain and in general 
the position of the source is precise. Such result could suggest 
an interpretation of the anomalous performance in the case 
of 20 years activity duration. It seems that the procedure is 
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able to locate the source, but probably the plume exhibits an 
irregular behaviour in the intermediate time, which is not 
the case in both the beginning, when the pollutant is strongly 
concentrated, and in the long time, when the plume reached 
a regime distribution. In order to improve the performance of 
the system a greater number of examples should be generated 
of the midterm cases, but this is not the aim of the present 
work, which instead was to put in evidence the characteristics 
of the system which can affect the performance.

Fig. 9 - Position of pollutant sources with ANN activity wrong.

Fig. 9 - Posizione delle sorgenti con stima della durata errata.

Conclusion
The presented inverse problem solution method allows 

estimating time-space coordinates of unknown contaminant 
sources. Various source scenarios have been constructed in 
order to generate the examples used for training MLPs. These 
scenarios have been performed by varying the pollutant source 
position and the duration of the source activity in the domain. 
The inverse problem has been solved using measurements of 
contaminant concentration acquired in the monitoring wells 
at a certain time t. In the presented case the method may 
be useful not only to identify the location and activity of 
unknown pollution sources, but also to delimitate the study 
area and optimize the investigation costs by determining the 
best monitoring wells location. The proposed methodology 
has been developed for a simple theoretical case, however 
the method may be applied to real cases characterized by 
a high uncertainty in the aquifer formation because of its 
heterogeneity, single plume or multiple plumes, plumes 
overlapping, continuous or instantaneous sources and lack 
of information on the pollutant source behaviour. Therefore, 
further research to improve the method and extend its 
application is still needed.

REFERENCES 
Bashi-Azghadi SN, Kerachian R, Bazargan-Lari MR, Solouki K (2010) 

Characterizing an unknown pollution source in groundwater 
resources systems using PSVM and PNN. Expert Systems with 
Applications.

Carcangiu S, Di Barba P, Fanni A, Mognaschi ME, Montisci A (2007)
Comparison of multi objective optimisation approaches for inverse 
magnetostatic problems.  COMPEL: Int. J. for Computation and 
Maths in Electrical and Electronic Eng., Vol. 26, N. 2, pp. 293-305.

Cybenko G (1980) Approximation by Superposition of a Sigmoid 
Function. Mathematics for Control, Signals and Systems. Vol.2, pp. 
303-314.

Fanni A, Uras G, Usai M, Zedda MK (2002) Neural Network for 
monitoring groundwater. Fifth International Conference on 
Hidroinformatics, Cardiff, UK, pp. 687-692.

Fanni A, Montisci A (2003) A Neural Inverse Problem Approach for 
Optimal Design. IEEE Transaction on Magnetics, Vol. 39, N. 3, 
pp. 1305 1308.

Foddis ML, Montisci A, Uras G, Ackerer P (2012) Ann based approach 
to solve groundwater pollution inverse problem. 9th International 
Conference of Modeling, Optimization and Simulation - 
MOSIM’12, Bordeaux, France. 06-08 June 2012.

Gümrah F, Öz B, Güler B And Evin S (1990) The application of artificial 
neural networks for the prediction of water quality of polluted 
aquifer. Water, Air, and Soil Pollution, Vol. 119,  pp. 275–294.

Mahar P. S. and Datta B., 2000. Identification of Pollution Sources 
in Transient Groundwater Systems. Water Resources Management, 
Vol. 14, Issue 3, pp 209-227.

Rajanayaka C, Samarasinghe S, Kulasiri D (2002) Solving the Inverse 
Problem in Stochastic Groundwater Modelling with Artificial 
Neural Networks. Available on line at http://www.iemss.org/
iemss2002/proceedings/vol2.html.

Rizzo DM, Dougherty DE (1994) Characterization of aquifer properties 
using artificial neural networks: Neural Kriging. Water Resources 
Research. Vol. 30, N.2, pp. 483-497.

Scintu C, PhD thesis (2004) Reti neurali artificiali: una applicazione 
nello studio di acquiferi contaminati “Artificial neural networks: an 
application to study polluted acquifers”. University of Cagliari.

Singh R M, Datta B (2006) Artificial neural network modeling for 
identification of unknown pollution sources in groundwater with 
partially missing concentration observation data. Water Resources 
Management. Vol. 21, pp. 557-572. 

Zhiqiang L, Rizzo D, Hayden N (2006) Utilizing Artificial Neural 
Networks to Backtrack Source Location. Available on line at http://
www.iemss.org/iemss2006/papers/s2/175_Li_2.pdf.

Zio E (1997) Approaching the inverse problem of parameter estimation 
in groundwater models by means of artificial neural networks. 
Progress in Nuclear Energy, Elsevier Science. Vol 31, N.3, pp. 303-
315.

Additional information
Supplementary information is available for this paper at 
https://doi.org/10.7343/as-2022-607
Reprint and permission information are available writing to 
acquesotterranee@anipapozzi.it 
Publisher’s note Associazione Acque  Sotterranee remains neutral with regard 
to jurisdictional claims in published maps and institutional affiliations.


