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Abstract - Photoelectrochemical (PEC) processes represent an effective way to exploit renewable 

energy in response to the sustainable development objectives. The synergy between photo and 

electrochemical processes inspired several papers and stimulated research toward new systems 

that could be increasingly adapted to work under visible or solar radiation, and with minimum bias 

potential. Since the first appearance of articles on PEC processes in the literature, titanium dioxide 

has been one of the most studied semiconductor materials: nanostructured electrodes have been 

especially considered such as nanotubes (NT), which are the main subject of the present article. 

The software VOSviewer is used to a preliminary analysis of metadata, related to the trend of the 

research on PEC processes; attention is then paid on the trend of NT-TiO2 electrodes for 

application in wastewater treatment in the past year. 

Introduction 

With the advent of green electricity production, electrochemical technologies gained in 

importance. Hybrid processes are now very commonly considered, in which an electrochemical 

stage is combined with chemical, physical or biological stages. A typical example is represented by 

photoelectrocatalytic (PEC) processes in which electrochemical (EC) and photochemical (PC) 

processes are combined: the synergy of the two processes can be seen both from the point of 

view of the PC process, which increases its efficiency as the bias potential lowers recombination of 

the photogenerated charges, but also from the EC point, as the photo-potential generated on the 

semiconductor, allows depolarizing the cell, thus lowering the costs of the whole process [1]. 
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Above all, PEC processes have become an attractive strategy for wastewater treatment and 

simultaneous H2 production [2–5]. 

In this article attention has been paid on the recent literature to verify the research progress 

on one of the most used electrode materials, TiO2 nanotubes (NT), and to verify if it is still 

appealing for PEC wastewater treatment processes. The discussion on these data, will be 

preceded by a brief analysis of metadata related to PEC processes. 

 

Metadata analysis on Photoelectrocatalysis 

Starting from bibliographic data available on SCOPUS, which allowed a preliminary numerical 

analysis, data have been elaborated by the software VOSviewer2, an effective visualization 

tool developed by Eck and Waltman [6] which can be used to cluster publications and to 

obtain a comprehensive overview of the results. Records from SCOPUS included data of 

publication year, author, institution, and source journal, as well as data related to the 

documents, such as keywords (kwds), titles, and abstracts. Simply typing the kwd 

"Photoelectrocatalysis", without any time limit, 1288 documents were extracted, from which 

the beginning of the research on this technology can be traced back to 2001 (see figure1). 

Articles were initially published only on Electrochimica Acta, then in the last 10 years, other 

sources were also involved. Particularly noteworthy is, in the last 10 years, the surge in 

articles on Hazardous Materials and Chemical Engineering Journal, and the decrease of papers 

on Electrochimica Acta which could indicate that the technology is moving from the 

fundamentals to real applications. 
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Figure 1 - Trend of the number of documents per year (a) and documents per year by source 

for the top five sources ordered by number of documents (b), found searching 

“photoelectrocatalysis” in SCOPUS. 

 

The records were then imported on VOSviewer and subjected to a first Co-authorship 

analysis, which allows evaluating the original countries of the authors of the selected works, 

and the possible collaboration between them. Scientific articles are considered, whereas 

reviews are excluded from the following analysis. The map of the result is shown in Figure 2: 

 

Figure 2 - Co-authorship analysis: Visualization map of countries participating in research 
involving photoelectrocatalysis. Colors in the map are based on the average citations of 
articles from the country (evaluated as total citation/total articles). An interactive 
visualization of the map is available at  http://bit.ly/35RWQr0 3 

 
Dimension of the dots depends on the number of documents published by authors belonging to 

the related country. Links between items indicate the relatedness between the countries, which is 

determined based on the number of co-authored documents.  

Among the 62 countries involved, the map represents the 35 of them which have had at least 5 

published articles. The highest number of papers is related to China (636 documents with 22 co-

authorship links), followed by the United State and Brazil with 99 and 33 documents, co-authored 
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with 24 and 10 countries, respectively. Colors in the map are also indicative of citation: in the 

above visualization data are weighted by the average number of citations that total papers of a 

country received. Spain, France, Italy and Singapore are among the countries that produced works 

with the highest average number of citations. 

Figure 3 presents the result of the Co-occurence analysis:  

 

Figure 3- Co-occurrence analysis: Visualization map of keywords in articles involving 
photoelectrocatalysis. Colors in the map are based on the average year of publication of the 
articles that report the related kwds. An interactive visualization of the map is available at 
http://bit.ly/3sxFj0W 4 
 
 
In this case the items represent the kwds provided in the selected articles. More than 2000 

kwds have been identified. Among them 31 kwds were selected as the most influential ones, 

which were repeated at least 10 times in the whole mass of the articles. The dot size varies 

depending on the occurrence (ocr) of the kwd; the links between kwds indicate a relatedness, 

based on the number of documents in which they occur together: the higher this number, the 

thicker the link. Colors give indication on the topics which are more currently under study: a 

score is attributed to the items, evaluated as the average year of publication of the articles 

that report the related kwds. If size of the items is compared, high relevance assume terms 

such as photocatalysis (ocr = 120), as the photocatalytic performances are very often 
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compared with those of PEC processes; then TiO2 (ocr = 95) the most investigated 

semiconductor, and TiO2 NT (ocr = 47), which represents the most studied morphology. The 

weight of these items is around the value of 2015 (purple colored in the map) to indicate the 

average date of articles on these topics.  

Looking at the data more specifically, we note that, along with CO2 reduction  (ocr = 44, 

weight around 2018, yellow in the map), one of the sectors in which application of PEC is 

more recently addressed is water splitting (ocr = 72, weight 2017), which is also evidenced by 

the item Hydrogen evolution reaction (ocr = 48). As it could be expected, the production of 

green H2 is becoming an absolute priority, from an environmentally sustainable point of view. 

However, also PEC applications to wastewater (ocr = 18) and water treatment (ocr = 22), may 

be enclosed in the actual trend of articles aimed at PEC oxidation of biorefractory compounds, 

in which oxidation of organics may be combined with the H2 evolution at the cathode. 

 

TiO2 Nanotubes: use in PEC processes  

As indicated by the previous analysis, TiO2 is one of the most studied materials for PEC 

processes, which has been proposed in different highly porous nanostructures, and 

morphologies. As in all heterogeneous EC processes, high surface area of the electrode is one 

of the fundamental requirements to favor the electron transfer on specific active sites at the 

electrode surface. 

Among the various TiO2 structures, NT always aroused great interest. Especially when the NT 

are obtained directly by oxidation of titanium sheet, the resulting structure presents 

numerous advantages: supported catalysts avoid separation and recovery of the catalyst at 

the end of the process; NT are oriented perpendicular to the substrate surface, thus 

maintaining mechanical and electrical contact with the substrate, which represents another 

important point for the success of PEC catalysts [7]. 

The analysis of SCOPUS data (figure 4) indicated that in the last 5 years the average number of 

articles is always greater than 800 / year and about half of them are dedicated to application 

of NT in PEC processes. The figure below also shows the share of PEC articles per year 

involving specific applications. 

 



 
Figure 4- Annual trend of the number of articles on TiO2-NT (green);TiO2-NT and PEC 

(yellow); TiO2-NT and PEC and water splitting (red); TiO2-NT and PEC and wastewater 

treatment (blue); TiO2-NT and PEC and water disinfection (pink).  

In the following, a more detailed analysis is presented on specific aspects studied by the different 

articles which appeared in the literature, during the past year 2020, along with those already 

published in 2021. We noticed that only in rare cases, NT are proposed as such [8-11]. Most of the 

studies are mainly dedicated to understanding the operating mechanism of the structure and 

investigating the synthesis operating conditions to improve its performance [10,12-14] or to 

increase its stability to corrosion [15]. As it is well known, the used synthesis technique of the 

electrodes affects both the final morphology of the structure, and the distribution of active sites 

and defects, which play a key role on the light absorption, and in turn on the PEC performance of 

the final sample [16,17]. 

Most of the works concern with structures in which TiO2 NT are modified: the immobilization 

of metals / non-metals [18-19] as dopants, combination with inert layers like graphene oxide, 

graphitic carbon nitride or carbon NTs [20-23], noble metal [24-25], as well as with other 

oxides [26-27] and sulphides [28-29] , and functionalization with polymers [30] or visible light 

sensitizing [31], have been proposed to enhance the response to wider range of wavelengths.  

If we analyze the applications proposed for these kinds of structures, the following subtopics 

can be individuated inside the general topic of PEC wastewater treatment. 

o AOP of biorefractory compounds [18, 27, 32] 

o Degradation of organic microcontaminants (OMCs) and inactivation of bacteria [26-

33] 

o Removal of toxic metallic compounds such as Cr (VI) [34] 



o Degradation of drugs [23-25, 35-38], dyes [39-42], and volatile organic compounds 

[27]. 

 

Final considerations and future perspectives 

From the analysis above reported it’s clear that research on NT in PEC process is still very active. 

NT may be seen as a valid alternative to the bulk catalysts commonly used in PC process: in that 

case the bulk electrodes constructed by coating powdered catalysts on conductive glass, 

caused decrease in mass transfer rate and dispersion of the catalyst at the end of the process. 

NT structures may contribute solving these problems. Many attempts are still devoted to find 

new routes of their synthesis, and to identify particular structural changes that allow 

decreasing costs, increasing the lifetime [23] and performance [43] of the electrodes so they 

can be competitive with respect to those generally proposed in EAOP [19] such as BDD, PbO2, 

DSA and Pt anodes. An interesting article reports the results of a particular procedure to 

obtain NT powders starting from wastewater discharged from the nitrogen thermal plasma 

decomposition of refrigerants. The waste solution was reused to obtain high value-added TiO2 

nanopowders: owing to a weak adhesiveness between oxide and substrate, the nanotubes 

spontaneously detached from the substrate during anodization. Authors expect this process being 

applicable at an industrial scale  [44]*. NT are also proposed in solar multifield-driven hybrid 

chemical system for purification of organic in wastewater [45]*: nano-carbon/TiO2/Ti obtained by 

deposition of carbon NT onto TiO2 NT gave good mineralization of nitrobenzene, via multifield-

driven thermo-photo-electrochemistry. The results indicated that the three-field pattern system 

achieved greater oxidation efficiency compared to the one- or two-field patterns.  

The proposal of using NT in microreactors is also of great interest [46]*. The possibility of 

separating the reaction products in different channels may open new ways for application of 

these devices also for water splitting in which H2 and O2 have to be kept separated. Parallelly, 

we also assist to another direction of the research, towards the development and 

improvement of the unbiased self-driving photoelectrocatalytic reactors [47]**: a self-driven 

double-side illumination photo-electrocatalytic reactor was designed for simultaneous PEC 

H2 evolution on the photocathode (Pt cluster modified Si-nanowires) and organic pollutants 

degradation on TiO2 NT photoanode. 

A consideration can be made downstream of the analysis presented previously, regarding the 

fact that, if we exclude the work of Rajput [48]* which proposes Au / TiO2NT for the 

treatment of wastewater from the pulp and paper industry and extend the results on a pilot 



plant, most of the articles deal with laboratory-scale processes. There are not many proposals 

for applications on a large scale and real systems. 

The non-selectivity of the PEC process can be one of the reasons of this fact. Along with the 

organic compound of interest, real wastewater may also contain other organic/inorganic 

species which may have competition and/or inhibition effects, as well as electrode fouling 

problems. Natural organic matter may be present, which may be harmless to human health 

and may not need removal to a trace level. However, they can compete at active sites of the 

catalyst, so reducing the performance in the removal of the toxic compound. The combination 

of TiO2 NT with SiO2 with controlled porosity, is proposed [49]** to create a system that 

simultaneously filters and treats phthalates contained in a solution in which 10-fold higher 

concentration of natural organic matter is present.  

The choice of the reactor configuration may affect the possible extension of the processes on a 

real scale. With supported semiconductors, as is the case with Ti / TiO2-NT, problems can 

arise for the correct electrode setting, with respect to both counter electrode and light source, 

which may determine non-optimal current and potential distributions, and poor exploitation 

of radiation in PEC reactors [50, 51]**. Different performance of NT TiO2 were detected, 

depending on whether the electrode was placed in a three-electrode becker cell (BC) or in a 

two-electrode thin gap electrochemical cell [52]*. The greatest differences in performance 

were found when NT were decorated with TiO2 nanoparticles: the limited accessibility of the 

electrolyte to the bottom of NT resulted in the exclusion of the contribution of bulk sites to the 

exploitation of higher wavelength radiation. The specific effects of the structural 

conformation of NT in terms of electrolyte penetration, diffusion of the reacting species, and 

absorption of light radiation of different wavelengths in the solar spectrum, have been 

specifically modeled [53]**. Results indicated that depending on the specific organic 

compound which has to be treated, different morphologies could be effective. If purification of 

water is the aim of the process, tubes with 4 mm length or less should be used for low reactive 

compounds, whereas 2 μm is effective for removal of very reactive compounds, such as phenol. 

Longer tubes should be considered for wastewater treatment, with high pollutant concentrations. 
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