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Abstract. Android applications ship with several native C/C++ li-
braries. Research on Android security has revealed that these libraries
often come from third-party components that are not kept up to date by
developers, possibly posing security concerns. To assess if known vulner-
abilities in these libraries constitute an immediate security problem, we
need to understand whether vulnerable functions could be reached when
apps are executed (we refer to this problem as function reachability).
In this paper, we propose DroidReach, a novel, static approach to
assess the reachability of native function calls in Android apps. Our
framework addresses the limitations of state-of-the-art approaches by
employing a combination of heuristics and symbolic execution, allowing
for a more accurate reconstruction of the Inter-procedural Control-Flow
Graphs (ICFGs). On the top 500 applications from the Google Play
Store, DroidReach can detect a significantly higher number of paths
in comparison to previous works. Finally, two case studies show how
DroidReach can be used as a valuable vulnerability assessment tool.
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1 Introduction

The Android ecosystem has significantly evolved over the years. Applications
have become more user-friendly and feature functionalities such as advanced
graphics, database management, and modern encryption. While many features
can be directly implemented with Java code, developers rely on C/C++ libraries
(via the Java Native Development Kit) to achieve greater speed and flexibility.
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The analysis of Java code has dominated the Android security scene, as
malicious samples typically resort to Java components to carry out their opera-
tions [40,8]. Conversely, the focus of research on the Android Native Environ-
ment has been limited. Nonetheless, the Android Native Environment conceals
more issues than what can be superficially assumed, as recent works showed a
significant presence of vulnerabilities in native code [3]. The problem becomes
significant as such vulnerabilities are mostly due to not-updated versions of
libraries that are continuously employed even in very popular applications (fea-
turing millions of downloads). However, the presence of vulnerabilities alone does
not immediately translate into a security problem because it depends on whether
they could be concretely exploited. While this question can be extremely difficult
to answer, especially in large-scale environments such as Android, we can study
whether such vulnerable functions could be reached when apps are executed. We
refer to this problem as function reachability.

Previous works on Android native code have proposed dataflow techniques
that work either statically or dynamically. Static approaches [38,39] mainly ex-
ploited symbolic execution – a powerful program analysis that struggles to scale
over complex and large Android apps – leading to results that are incomplete and
thus inaccurate when considering function reachability. Dynamic approaches [42]
can accurately analyze single execution paths but they still can hardly scale over
apps featuring even thousands of classes, leading to the so-called path explosion
problem. In this sense, it becomes crucial to find a proper balance between the
time needed for the analysis and the precision of the attained results.

In this paper, we propose DroidReach, a static approach to establish the
reachability of native methods in Android apps starting from the application
Java entry points. In particular, we propose the following contributions:

1. We discuss the technical limitations that hamper the analysis capabilities
of current analysis tools. In particular, we show limitations in: (a) properly
mapping Java native methods to Java Native Interface (JNI) methods, (b)
handling nested native libraries, and (c) accurately building the ICFGs.

2. We present the methodology underlying DroidReach: it combines several
heuristics and ICFG construction techniques to mitigate the limitations men-
tioned in the previous point. In this way, DroidReach can accurately and
effectively reconstruct possible paths to potentially vulnerable native calls.

3. We perform an evaluation considering 500 popular applications featuring
complex native libraries and ICFGs (with an average of 2, 000, 000 native
instructions and 1, 000, 000 Java instructions). We show that DroidReach
can reach more instructions than Argus-SAF [38], which is the state-of-the-
art static framework for analyzing the Java and native layers in Android.

4. We propose two real, practical case studies where we show howDroidReach
can be helpful to assess the reachability of vulnerable functions.

To foster further research, we make our contributions available at https:
//github.com/season-lab/DroidReach. We believe that DroidReach represents a
step forward for the Android community as it can provide valuable insights to
security experts in presence of large and complex apps.

https://github.com/season-lab/DroidReach
https://github.com/season-lab/DroidReach
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2 Background and Related Work

Android Apps. Android applications are zipped .apk (Android application
package) archives containing: (i) The AndroidManifest.xml file and other .xml
files, which provide the application metadata and layout; (ii) One or more
classes.dex files, which contain the executable bytecode of the Java/Kotlin
classes; (iii) External resources, such as images or native libraries.

The Android NDK. The Android Native Development Kit (NDK) is an
ensemble of tools that allow for the implementation of parts of Android apps in
native (C/C++) code. Such a code is typically employed to guarantee faster per-
formance in comparison to traditional Java code. The interface between the Java
and the native layer is called Java Native Interface (JNI). JNI essentially defines
how functions receive parameters or provide return values. Native libraries can
be loaded with the System.loadLibrary method. Then, the native methods to
be invoked are declared in the Java code by using the native keyword.

Native Libraries Analysis. Native libraries have been especially studied
in the context of vulnerability identification, i.e., understanding the presence
of vulnerabilities in native code. More specifically, prominent works concerned
the study of the JNI interface vulnerabilities [35,36,29,23,27,25], while others
involved the identification of possible vulnerabilities in Android libraries. Derr
et al. [17] conducted a test with 200 developers in which they showed that
many libraries embedded in apps are outdated and contain security vulnerabili-
ties. Various approaches have been proposed to detect them, based on machine
learning [21], similarities between functions [20,41], and hybrid analysis [31,30].

Recently, Almanee et al. [3] proposed an extended assessment of the presence
of vulnerable functions in Android native libraries. In particular, they showed
that applications contain libraries that have not been updated even for two years,
thus exposing vulnerabilities that typically require a long time to be fixed. We
base the beginning of our analysis on the results of this work, as it depicts a
critical scenario where various applications may feature critical security issues.

Dataflow Analysis. Dataflow analysis has been extensively studied in An-
droid, with a focus on how data propagates in Java code. This problem has been
addressed with static and dynamic approaches. Regarding static approaches,
FlowDroid [7] was among the first to introduce proper handling of the Android
callbacks. Other works improved FlowDroid in many aspects, such as proper
dataflow tracking for intents [26,22,28,13]. Amandroid [39] is deemed as the cur-
rent reference point for static dataflow analysis in Android. Wei et al. [38,39]
expanded Amandroid by releasing JN-SAF (now known as Argus-SAF), which
introduced the analysis of the information flows between the Java and the native
layer. The approach employs symbolic execution to handle the native layer. In
particular,Argus-SAF uses CFGEmulated fromAngr [33] to reconstruct ICFGs
of the native code (§3.1) and compute approximate dataflow facts. Argus-SAF
will be the main reference point for the analyses discussed in this paper.

Dynamic approaches employ code instrumentation and execution to perform
taint analysis. Droidscope and TaintDroid [44,19] are among the first approaches
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to have adopted this technique. Subsequent works built upon and improved
TaintDroid [34,43,42] by using, e.g., concolic execution [14,12,11]. Unfortunately,
a challenge is how to generate the right executions that will reach a function.

Input Generation. Several works [6,4,15,24,1,40,45,37] aim at generating
user inputs that can lead to the execution of specific functions. Systems based
on static analysis allow for faster code coverage, but they can lack precision.
Conversely, approaches based on dynamic analysis can be much more precise,
but they can often be unfeasible due to the so-called path explosion problem. One
notable example is Intellidroid [40], an approach that uses static and dynamic
analysis to generate those inputs that allow for reaching specific calls. Intellidroid
only focuses on the Java layer without exploring the native layer.

Automatically finding the right set of stimulations for an app remains an
open research problem, especially when considering large and complex apps.
DroidReach cannot find the inputs able to reproduce a specific path but can
provide insights about the existence of a path toward a specific target point.

3 DroidReach

In this section, we present the main ideas behindDroidReach. First, we discuss
the problem targeted by DroidReach and the challenges that affect existing
approaches. Then, we present the design and the components of DroidReach.

3.1 Problem Statement and Reachability Challenges

Terminology. In the following, we define a few terms used across the paper:

– A code point p for our analysis is an instruction inside the set of instructions
from the Java layer (J) or the native layer (N) of an app, i.e., p ∈ (J ∪N).

– A Control-Flow Graph (CFG) is a graph representation of possible paths
that can be taken during the execution of a function. Each node represents
a contiguous sequence of code points. Edges represent jumps across nodes.

– A Call Graph (CG) is a graph that represents the calls across different
functions of an app.

– An Inter-procedural Control-Flow Graph (ICFG) connects the CFGs
of different functions using the information from the CG. In practice, it can
encode all the app’s paths starting from a specific entry point.

– A source ps is a code point in an app that could start the execution of some
Java code. Hence, a source could be seen as an entry point for the Java layer.

– A sink pt is a code point inside a native library, i.e., pt ∈ N . The sink iden-
tifies an interesting point that we would like to reach during the execution.

Goal. Given the Java instructions J , the native instructions N , and a sink
pt, our goal is to identify at least one path starting from one source ps and ending
in the sink pt. The path is represented as the sequence of points traversed in the
ICFG from the source ps. Identifying a path in the ICFG can be valuable for
several program analyses and security tasks. This paper focuses on sinks that
could be associated with vulnerable code points within native libraries.
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com.telkomsel.
telkomselcm

libjniPdfium.so libmodpdfium.so libmodft2.so
CALLCALL CALL

Fig. 1: Example of nested libraries.

Reachability Challenges. Argus-SAF (§2) is the state-of-the-art solution
for statically analyzing both the Java and the native layers of an Android app.
When testing it on real-world apps for our goals, we have identified a few critical
challenges which affect its accuracy (and also of other existing works):

C1 Mapping Java native methods to JNI methods. To execute the code of
a native library, the Java code invokes a Java native method. Java native

methods at running time could be seen as jumps to JNI methods, which
are the entry points for the native layer. Unfortunately, statically identifying
the mapping between Java native methods and JNI methods is not always
trivial. State-of-the-art solutions may fail (§4) to resolve a large number of
these mappings, possibly ignoring several entry points of the native layer.

C2 Nested native libraries. A JNI method is part of a shared library, e.g.,
libA.so. A shared library may call methods of other libraries, i.e., one li-
brary may link another one (e.g., libB.so). State-of-the-art solutions may
not perform analyses across multiple native libraries in the case of nest-
ing. This is crucial on Android, since apps often: (a) integrate open-source
libraries, which may rely on other ones, and (b) devise wrappers to work
with libraries that were not originally written for Android and thus do not
implement the JNI API. An example of nested libraries is given in Figure 1.

C3 Scalability versus accuracy. Argus-SAF uses symbolic execution to an-
alyze the native code. While this technique can be very accurate during the
ICFG construction, allowing the tool to even compute data flow facts, it
does not scale on complex libraries. Indeed, Argus-SAF trades accuracy
for scalability, halting its analysis when the call depth is larger than, e.g.,
5, which is not enough in several cases, thus generating incomplete ICFGs.
Approaches based on traditional binary frameworks [32], may provide better
scalability but then generate less accurate ICFGs, e.g., in the presence of
indirect jumps.

To help the reader grasp the technical aspects behind these challenges, we
show them in the context of a running example in the remainder of the section.
However, we first present at a high level the design behind DroidReach.

3.2 Architecture of DroidReach

Figure 2 depicts the main steps performed by DroidReach:

S1 Static analysis of the Java layer. The first step builds the ICFGs of the
Java code, identifying sources and calls to Java native methods.

S2 Analysis of interactions between Java and native layer. After detect-
ing the Java native methods that could be reached during an execution,
DroidReach identifies the mappings between Java native methods and
JNI methods. This step is thus designed to tackle challenge C1.
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Fig. 2: Main steps of DroidReach.

S3 Static analysis of the native layer. Given a list of JNI methods that
could be reached during the execution,DroidReach builds the ICFGs of the
native libraries. This step aims at challenges C2 and C3, combining different
techniques to target a nice trade-off between accuracy and scalability.

S4 Reachability analysis. The last step is where DroidReach puts together
the pieces constructed in the previous stages. It first merges the ICFGs of
the Java layer with the ICFGs of the native layer and then evaluates whether
there exists a path from a source ps to a user-defined sink pt.

In the remainder of this section, we review in detail these steps. Throughout
our discussion, we use a running example: Figure 3 shows an excerpt of its
code. This is an app with two activities, where the first one (LoginActivity,
omitted from the code) checks the credentials of the user, while the second one
(JavaLayerActivity) runs some tasks using some native libraries (native-lib
.so and other-native-lib.so) when the user clicks a button. Differently from
dynamic approaches, DroidReach can directly focus on JavaLayerActivity

without necessarily satisfying the execution requirements of LoginActivity,
which could be arbitrarily hard to automatically identify and satisfy.

3.3 Static analysis of the Java Layer

Different state-of-the-art frameworks already exist to analyze the Java layer,
providing different trade-offs in terms of accuracy and scalability. The current
implementation of DroidReach can work with Androguard [18] and Flow-
Droid [7], while support for Amandroid [39] is being worked on. Regardless of
the specific framework in use, DroidReach performs three stages:

1. Identification of sources. DroidReach looks for sources by considering
the class methods of several Android components, following the guidelines
and suggestions proposed in previous works [18,7].

2. ICFG construction. For each source, DroidReach builds an ICFG con-
sidering the entire Java code of the app, connecting the CFGs of the methods
based on their caller-callee relationships.

3. Identification of Java native methods. Finally, this step identifies Java
native methods which are invoked in the ICFGs of the Java layer. At this
stage, a call to a Java native method is not yet mapped to its JNI method,
which contains the actual binary implementation of the Java nativemethod.

Running example. When considering the JavaLayerActivity class, there
are two sources: onCreate (J1), which is executed at the activity startup; the
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// Java layer: classes.dex
public class JavaLayerActivity

extends AppCompatActivity {
J0. static {

System.loadLibrary("native-lib"); }

J1. protected void onCreate(Bundle state) {
J2. super.onCreate(state);
J3. setContentView(

R.layout.activity_native_buttons);
J4. findViewById(R.id.btn_1).setOnClickListener
J5. (v -> { execMethod(); });

}

J6. private static native void execMethod();
}

// Native layer: native-lib.so
N0. JNIEXPORT jint JNI_OnLoad(JavaVM* vm,

void* reserved) {
JNIEnv* env; vm->GetEnv(&env, JNI_VERSION_1_6);
jclass c = env->FindClass("JavaLayerActivity");
static const JNINativeMethod mappings[] =
{ {"execMethod", "()", execMethod} };

// Native layer: native-lib.so (cont’d)
/* some complex code */
return env->RegisterNatives(c, mappings,
sizeof(methods)/sizeof(JNINativeMethod));

}
N1. static void execMethod(JNIEnv* env,

jclass clazz) {
N2. Handler* h = build();
N3. h->callback(); // use of fn pointer

}
N4. Handler* build() {
N5. auto* h = new Handler();
N6. h->init(); // virtual call
N7. return h;

}

N8. void Handler::init()
{ this->callback = &foo1; }

// Native layer: other-native-lib.so
N9. void foo1() { foo2(); }
N10. void foo2() { foo3(); }
N11. void foo3() { foo4(); }
N12. void foo4() { bug(); }

Fig. 3: Running example.

J1 J2 J3 J4

source

J5 J6 N1

source

C1
N2 N10 N11 N12

sink

S1

S2

S3

N3

N4 N5 N6 N7

N9

N8
C3

C3+C2

Fig. 4: ICFGs of the running example: shades of gray highlight different steps.

anonymous handler (J5) for button events. Figure 4 shows in blue the Java
code points for the ICFGs starting from these two sources. J6 is a Java native

method. An additional implicit source, considered by DroidReach but omitted
from Fig. 4, is J0, which triggers the execution of JNI OnLoad (see next section).

3.4 Analysis of interactions between Java and native layer

Each Java native method is mapped to a JNI method in the native layer. The
mapping can be defined statically or dynamically, as described in the following.

Static mapping. The name of the JNI method is a symbol exported by the
library that follows a specific mangling scheme, allowing the dynamic linker to
uniquely identify the Java native method associated with it. For instance, the
native method com.lyrebirdstudio.lyrebirdlibrary.EffectFragment.sha

dows in Figure 5 maps to the JNI method Java com lyrebirdstudio lyrebirdl

ibrary EffectFragment shadows. As in previous works [38], DroidReach
uses a decoder of the mangling scheme to resolve statically defined JNI methods.

Dynamic mapping. When the dynamic loader loads a library, it runs the
JNI OnLoad function exported by the library. This function may dynamically de-
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// Java layer: classes.dex
package com.lyrebirdstudio.lyrebirdlibrary;
public class EffectFragment extends Fragment {

private static native void shadows(Bitmap arg0, float arg1)
{ /* statically resolved by dlsym() based on the name of the JNI method */ }

// Native layer: libfilter.so
void Java_com_lyrebirdstudio_lyrebirdlibrary_EffectFragment_shadows(

JNIEnv *env, jclass c, jfloat arg1) { /* native implementation of the JNI method */ }

Fig. 5: A statically defined JNI method.

// Java layer: classes.dex
package com.aviary.android.feather.headless.moa;
public class Moa {

static native void n_applyActions() { /* dynamically resolved by JNI_OnLoad() */ }

// Native layer: libaviary_native.so
JNIEXPORT jint JNI_OnLoad(JavaVM* vm, void* reserved) { ...;
jclass c = env->FindClass("com/aviary/android/feather/headless/moa/Moa");
static const JNINativeMethod m[] =
{ ..., {"n_getEffects", "()[Ljava/lang/string;]", (void*)(n_getEffects)}, ... };

env->RegisterNatives(c, m, sizeof(m) / sizeof(JNINativeMethod)); ...; }

jobjectArray n_getEffects(JNIEnv *env, jclass c) { /* native implementation of the method */ }

Fig. 6: A dynamically defined JNI method.

fine mappings between Java methods and native functions using the JNI primi-
tive RegisterNatives, which takes as one of its arguments a pointer to an array
of JNINativeMethod. This struct is defined as:

typedef struct {

char *name; // ex: "nativeCtor"

char *sign; // ex: "(Ljava/lang/String;)J"

void *fnPtr; // function code pointer

} JNINativeMethod;

The struct states that the native implementation of the Java native method
name having the signature sign (which defines, in smali, the types of the method
arguments and the return value) is available at the address fnPtr. Figure 6 shows
how a real app is defining the mapping for the JNI method n getEffects.

Previous works [38] perform symbolic execution from JNI OnLoad to identify
the array passed to RegisterNatives. This strategy has two downsides: (a) the
exploration is halted when reaching a given call depth (e.g., 5 in Argus-SAF)
to mitigate path explosion, possibly failing to reach RegisterNatives, and (b)
the exploration may incur a large overhead when JNI OnLoad is not trivial.

For these reasons, our approach devises a more scalable heuristic to detect
dynamic mappings. The key idea is that several developers follow the guidelines
of Android [5] and statically define the JNINativeMethod array at compilation
time, placing it in the global data section. DroidReach thus scans the data
section of a library, looking for an array with elements following the pattern:

1. Pointer to a valid string (name).
2. Pointer to a valid string (sign).
3. Pointer to a function in the text section (fnPtr).
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Since some apps may instead allocate and initialize the array during the
execution of JNI OnLoad, DroidReach fallbacks to symbolic execution when:

1. The heuristic fails to identify mappings for a library containing JNI OnLoad.
2. The heuristic identifies some mappings, but there are clashes on the pair

(name, signature) of some methods, e.g., there are multiple Java methods
from different classes called name with the same signature, requiring to
inspect additional arguments of RegisterNatives to solve the ambiguity.

Hence, DroidReach fallbacks to a more heavyweight analysis only when there
are insights that the heuristic is not working correctly.

Running example. When loading the JavaLayerActivity class, the loader
is executed due to J0, processing native-lib.so. The JNI OnLoad function of
this library defines the mapping (J6, N1). DroidReach identifies it by analyzing
the array mappings. Symbolic execution analyses may instead struggle when
JNI OnLoad integrates some complex code before the call to RegisterNatives.

3.5 Static analysis of the native layer

After identifying the JNI mappings, DroidReach constructs the ICFGs for the
native layer considering each JNI method as a possible entry point. To cope
with challenge C2, DroidReach recursively builds the ICFG if one function
of a library is calling a function of another library. Additionally, to cope with
challenge C3, our approach combines the ICFGs built by different techniques.

ICFG construction. For each JNI method, DroidReach builds the CFGs
and the CGs of the native functions to obtain the ICFGs. Our implementation
uses the Ghidra reversing framework [32], as it worked particularly well when
considering libraries found in Android apps. The ICFGs derived in this stage
include only code points from the same shared object of the starting JNI method.

Library dependency graph. Given the ICFG for a JNI method, our ap-
proach analyzes the calls to imported functions, i.e., calls to functions from
other libraries. To represent this information for all ICFGs, it defines a library
dependency graph, where the nodes represent libraries and the edges are calls
across different libraries. Each edge is annotated with a list of caller-callee tu-
ples to track the different calls that may involve the same pair of libraries.

ICFG refinement: nested libraries. Using the library dependency graph,
DroidReach refines the ICFG of each JNI method to include code points from
nested libraries. Since this stage may need to build the ICFG of methods never
met before (or it may discover new calls to other imported functions), our ap-
proach iteratively repeats the two previous stages until a fixed point is reached.

ICFG refinement: symbolic exploration. The previous stages can build
ICFGs that may traverse several libraries, potentially representing paths able
to reach even deep code points in an execution path. However, the previous
stages may still miss some critical edges in the ICFG: e.g., in the presence of a
callee that performs an indirect call using a target defined by its caller. While
reverse engineering frameworks, such as Ghidra, have reduced the need for
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heavyweight dataflow analyses significantly, there are still several cases where
they may be needed to accurately build an ICFG. For this reason, for each JNI
method, our approach performs a symbolic exploration using CFGEmulated of
angr [33] to recover the missed edges. To control path explosion, the exploration
stops its analysis when the call stack contains more than 5 nested calls (as in
Argus-SAF). Moreover, path branches are not evaluated, thus skipping most
symbolic queries. After running this refinement step, we repeat the two previous
stages until a fixed point is reached. Hence, DroidReach combines two different
techniques for building the ICFGs: the first one is more scalable but less accurate,
while the second one is more accurate but less scalable. Previous approaches, such
as Argus-SAF, have favored ICFG construction approaches based on symbolic
execution, which however can struggle at reaching deep code points.

Running example. Starting from N1, DroidReach builds one ICFG with
code points {N1, N2, N3, N4, N5, N6, N7}. Indirect jumps (N6, N8) and (N3, N9)
are not discovered byGhidra but can be recovered using a symbolic exploration.
Since N3 calls a function of other-native-lib.so, DroidReach builds the
library dependency graph, analyzes this library, and adds {N9, N10, N11, N12}.

3.6 Reachability Analysis

The last step is in charge of computing a path from a source to a sink.

Defining the sink. In general, the sink is a user-defined choice that is tightly
connected to the goal targeted by an analysis. In this paper, given a vulnerability
report, we define the sink as the closest code point (or even the set of code points
if there is not a unique choice) that the app execution should reach in order to
reproduce the bug described in the report. To identify the open-source project
related to a library from an Android app, including the adopted release, we refer
to solutions, such as [3], that have proposed effective binary similarity techniques.

Merging ICFGs. Given a sink, DroidReach exploits the JNI mappings
to connect ICFGs of the Java layer to the ICFGs of the native layer.

Finding a path from a source to a sink. Finally, for each source ps and
for each sink pt, our approach evaluates whether there exists a path from ps to
pt. In practice, since there could be several alternative paths between ps and pt,
our current implementation by default emits the shortest one as it typically is
the simplest to check for a user. However, alternative paths can be requested.

Running example. Assuming that N12 is part of a known vulnerability in
other-native-lib.so, DroidReach builds the ICFGs in Figure 4 and quickly
computes the path {J5, J6, N1, N2, N3, N9, N10, N11, N12}.

4 Experimental Evaluation

In this section, we evaluate the efficacy of DroidReach. Due to lack of space,
we omit the discussion of step S1 as it involves well-known mainstream Java
analysis frameworks, which we did not alter in DroidReach. Experiments were
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conducted in a Ubuntu 20.04 Docker container, using two Intel Xeon E5-4610v2
CPUs and 256 GB of RAM. APK hashes of evaluated apps can be found at [9].

4.1 Microbenchmarks

To validate DroidReach, we considered existing benchmarks from the Android
literature. DroidBench [7] does not involve native libraries. On NativeFlow-
Bench [38], DroidReach performs consistently with Argus-SAF when con-
sidering the reachability goal. Since NativeFlowBench ignores the challenges
from §3.1, we designed a new benchmark suite composed of 13 apps that exhibit
these aspects from different perspectives (see Table 6 in the Appendix). The
source code and a detailed discussion of this suite can be found in a dedicated
repository [10]. On 12 out of 13 apps, DroidReach correctly builds accurate na-
tive ICFGs, improving on Argus-SAF (8 out of 13). The failing case involves an
indirect jump at deep call depth: this app was specifically designed to highlight
that DroidReach cannot solve, in general, the scalability issues that inherently
affect static analyses, and it can only help to mitigate them (hopefully in several
cases). Further details on the results are available at [10].

4.2 Real-World Dataset

Dataset. To evaluate the efficacy of DroidReach on real-world apps, we col-
lected the top-20 apps from each category of the Google Play Store, keeping the
ones containing ARMv7 libraries. Overall, we obtained 500 apps, whose popular-
ity ranges from a minimum of 100K downloads to more than 1 billion downloads.
Such selection choice has also been guided by the idea of representing apps whose
vulnerability may have a very large impact on the end-users. The average com-
plexity of these apps is very high, as detailed in Table 5 from the Appendix, in
terms of the number of Java and native instructions (more than 2.3 million of
native LoC on average), the number of Java native methods (more than 204
methods on average) and of ARMv7 libraries (at least 5 on average).

Fine-grained evaluation. To evaluate the correctness of DroidReach, we
need to analyze the false negatives (code points that are missing from the ICFGs)
and the false positives (code points that are wrongly inserted in the ICFGs).

For the false negatives, we randomly picked 15 apps from our dataset and then
manually stimulated them in the Android emulator as a user would do in a short
usage session, recording the executed native function entry points. Any recorded
code point should thus be contained in the ICFGs. While our sample set may
seem small, the effort for validating the results took more than 1.5 man-months.
Table 1 divides the 15 apps into three groups: apps where DroidReach was
able to identify more than 95% of the executed code points are in the first group,
more than 50% of the code points in the second group, less than 50% of code
points in the third group, respectively. DroidReach significantly outperforms
Argus-SAF and Ghidra (when used in step S3 in place of DroidReach) on
several apps. This result comes from the effective combination of different tech-
niques: Argus-SAF fails to scale its analysis and Ghidra misses indirect jumps
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APK
# of executed code points found in the native ICFGs from

Argus-SAF Ghidra DroidReach

com.sec.android.easyMover 33/33 33/33 33/33
com.jb.zcamera 11/11 11/11 11/11
com.mi.android.globalFileexp. 31/48 47/48 47/48
com.space.cleaner.smart.tool 52/75 65/75 75/75

com.soundcloud.android 57/102 72/102 72/102
video.like 197/518 272/518 320/518
com.zentertain.photocollage 186/331 174/331 239/331
com.picsart.studio 442/1282 203/1282 736/1282
shareit.lite 33/60 44/60 47/60
com.imangi.templerun 60/326 67/326 248/326
com.amazon.mp3 92/395 218/395 239/395
com.cam001.selfie 282/344 211/344 322/344
com.tripadvisor.tripadvisor 2/42 30/42 30/42

com.yodo1.crossyroad 3/79 25/79 25/79
com.king.candycrushjellysaga 5/54 6/54 6/54

Table 1: Analysis of false negatives: executed code points found in the ICFGs.

APK
Validation

Confidence
# code points # validated

mode to validate code points

com.imangi.templerun Dynamic High 2357 1565
com.picsart.studio Dynamic High 1307 748
com.cam001.selfie Dynamic High 974 326
com.king.candycrushjellysaga Dynamic High 168 63
com.amazon.mp3 Mixed Medium 625 441
shareit.lite Static Medium 12 12
com.sec.android.easyMover Static Medium 107 60

Table 2: Analysis of false positives: validated code points in the ICFGs.

that could be recovered with a symbolic execution analysis, while DroidReach
shows the best of the two approaches (see [9] for detailed debug results). How-
ever, there are some apps where evenDroidReach is unable to statically recover
some executed code points. On some apps, slightly increasing the maximum call
depth in the symbolic exploration can lead to better results (e.g., from 5 to 10
allows to find +9% of executed code points in com.amazon.mp3). Similarly, in-
creasing the maximum analysis timeout can improve the accuracy, but there is
a trade-off that must be taken into account between accuracy and analysis time.
Even when extending the analysis time, DroidReach cannot cope with some
patterns (§5): e.g., com.yodo1.crossyroad loads a library using a custom loader
and com.imangi.templerun indirectly executes code from the Mono framework.

For the false positives, the evaluation is significantly harder as it requires
to exhaustively stimulate an app, which can hardly be done automatically for
most apps. Nonetheless, we attempted to still validate at least a subset of the
code points. In particular, we compared the ICFGs from DroidReach to the
ones from Ghidra and Argus-SAF, extracting the code points detected only
by our approach and then keeping only the function entry points. To keep the
evaluation sustainable, we considered a subset of the 15 apps and analyzed how
to stimulate their JNI methods based on the reports from FlowDroid (S1). We
then executed each app under a debugger during an extended usage session,
tracking which function entry points found by DroidReach were actually ex-
ecuted. Table 2 shows the results of our experiments. On four applications, we
were able to validate a large fraction of the selected code points, bringing high
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# Recovered Mappings Analysis Time (secs)
Argus-SAF DroidReach Argus-SAF DroidReach

Static JNI mappings 4,610 4,610 8,542 8,542
Dynamic JNI mappings 765 1,912 259,136 20,345

Both 5,375 6,522 267,678 28,887

Table 3: Resolved JNI mappings during step S2.

DroidReach vs
# JNI methods % apps for which DroidReach has # code points found by

processed less same more DroidReach (ratio w.r.t. competitor)

by both code points than competitor total total ratio
geo. mean

ratio

Ghidra 5,623 2.8% 9.8% 87.3% 64,818,031 1.24× 1.95×
Argus-SAF 4,711 1.3% 7.2% 91.5% 54,901,175 7.58× 5.64×
Argus-SAF-MLIB 4,527 1.6% 8.5% 89.9% 51,618,223 6.51× 5.09×
Table 4: ICFG results on methods analyzed using different approaches in S3.
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Fig. 7: ICFG results (step S3) on the full set of JNI methods over all apps.

confidence in their correctness. On three other applications, we could not dy-
namically validate most code points. This is not unexpected as several program
behaviors depend on external events (e.g., server-side interactions) and specific
usage patterns that cannot always be reproduced. For instance, the considered
code points from com.sec.android.easyMover are within a library related to
USB OTG functionalities in Samsung devices, which we could not stimulate. On
shareit.lite, the code points are mostly related to C++ exception handling,
making them hard to trigger. On com.amazon.mp3, we experienced some crashes
when inserting the breakpoints in some libraries, allowing us to dynamically val-
idate only a few points. For these three applications, we thus also performed a
manual static validation by analyzing a subset of their code points with IDA Pro,
validating whether the points are reasonable, i.e., they are likely reachable within
an execution, reporting, however, lower confidence as we did not validate them
by running the app. Regarding unvalidated code points, they should not neces-
sarily all be seen as false positives, as proving or disproving their correctness is
hard: static analyses are often proposed when automatic dynamic analyses can-
not exhaustively cover the program code. We provide additional details at [9].
Overall, the effort for this validation was more than 1.5 man-months.

Coarse-grained evaluation. To get a wider evaluation ofDroidReach, we
now consider the full dataset. We focus our discussion on steps S2 and S3. Step S1
brings the same results for all tools as they can use the same analysis framework.
Similarly, step S4 can be implemented in the same way for all compared tools.

A crucial challenge tackled by DroidReach during step S2 is the identifica-
tion of mappings between Java native methods and JNI methods. In our dataset,
step S1 identifies 7, 463 reachable Java native methods. This is quite interesting
since the total number of Java native methods in our dataset is 113, 316: this
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suggests that even if an app contains some code, then it may not necessarily ex-
ecute it. Our manual investigation has confirmed that most apps are integrating
third-party frameworks, but they often only use a subset of their functionalities.

Table 3 reports the cumulative number of mappings successfully resolved by
DroidReach compared to Argus-SAF, and the cumulative analysis time for
these two approaches. Overall, a large fraction (61.8% of 7, 463) of the map-
pings are statically defined by the apps and can be resolved by both frame-
works. The remaining 2853 (38.2%) mappings are defined dynamically though
RegisterNatives: DroidReach performs significantly better than Argus-
SAF on these methods, resolving 2.5× dynamic mappings. DroidReach is
also significantly more efficient: the analysis time is reduced by a factor of 9.3×.

Overall, DroidReach has resolved 87.4% of the methods (compared to
72.0% in Argus-SAF), suggesting that 941 (12.6%) methods do not follow the
implementation patterns expected by DroidReach. While the symbolic explo-
ration helped resolve 79 methods, it still failed on the 941 unresolved methods.
In these cases, the JNI OnLoad function was too complex and the exploration
was aborted after a 15-minutes timeout. Users can customize this timeout in
DroidReach to possibly increase the accuracy of S2. While there are still some
unresolved mappings, the improvement from DroidReach can be quite signifi-
cant in practice: when considering the Adobe PDF reader (com.adobe.reader),
all mappings were found exclusively by DroidReach, meaning that Argus-
SAF would completely skip any analysis on the native layer for this app.

After finding the JNI mappings for our dataset, we evaluate the effective-
ness and performance of DroidReach during the ICFG construction (step S3).
Besides DroidReach, we consider: (a) Ghidra, as it is internally used by
DroidReach, (b) Argus-SAF, which is the main competitor, and (c) Argus-
SAF-MLIB, a variant of Argus-SAF that we developed, which can continue
its analysis even in the presence of nested libraries (while the original approach
would ignore them). This is important since 340 (68%) apps out of 500, have at
least one nested library and some apps may even have a nested chain with up
to three libraries. Each solution was executed for 2 hours for each application,
reconstructing in sequence the ICFGs of the reachable JNI methods. To make a
fair comparison, all tools received the same output from step S2.

Since different tools come with different trade-offs in terms of accuracy and
performance, leading to a very different number of JNI methods processed within
the 2-hour experiment, we first present in Table 4 a pairwise comparison be-
tween DroidReach and the other solutions considering the common set of
JNI methods which were processed by each pair of frameworks. When consid-
ering the 5, 623 JNI methods analyzed by both DroidReach and Ghidra,
DroidReach can identify more code points in 87% of the apps. On average for
each app, DroidReach finds 1.95× code points than Ghidra. When consider-
ing the 4, 711 JNI methods analyzed by both DroidReach and Argus-SAF,
our approach identifies more code points in 91% of the apps. On average for each
app,DroidReach finds 5.64× code points thanArgus-SAF. When considering
our custom variant Argus-SAF-MLIB, DroidReach is still more effective.
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Figure 7 summarizes the results when considering all JNI methods from all
apps: one approach could be less accurate but more efficient on one method,
thus having the chance to process more methods within the 2-hour per-app
timeout. The left chart shows that Ghidra was able to process more methods
than the competitors, followed by DroidReach. The right chart confirms that
DroidReach is indeed slower than Ghidra. However, the center chart shows
that the number of code points is still in favor of DroidReach. This is expected:
DroidReach is performing the same work as Ghidra, plus additional analyses.
Hence, its running time is always larger than Ghidra, leading to some apps
reaching the 2-hour per-app timeout before processing the entire set of methods.

When comparing DroidReach to Argus-SAF and Argus-SAF-MLIB,
the results in Figure 7 show that DroidReach was able to process more meth-
ods than these two solutions, detecting ∼8× their number of code points but
requiring also a larger analysis time. Indeed, Argus-SAF (and Argus-SAF-
MLIB) are generally faster (−60%) than Ghidra (and thus DroidReach) for
a large set (∼60%) of methods but: (a) these solutions are significantly less accu-
rate, identifying fewer code points on this large set, and (b) on the other methods,
these solutions fail to generate any ICFG as they reach the timeout or saturate
very early the memory (25GB in our experiments) due to path explosion. When
attempting to increase the maximum call depth in Argus-SAF-MLIB, we ob-
served a crucial increase in the number of timeouts and out-of-memory events.

Finally, the average analysis time of DroidReach per app was 0.7 hours,
0.4 for Ghidra, 0.3 for Argus-SAF, and 0.4 for Argus-SAF-MLIB.

4.3 Case Studies

Establishing that apps contain vulnerable libraries does not mean that such
functions constitute necessarily an immediate security concern. We present two
case studies where DroidReach can be used as an aid in evaluating the impact
of vulnerable functions. These apps were considered by a previous study [3,2].

Case study A: reachable function. We consider the function BN bn2dec

from libcrypto.so. This function is used in Amazon Alexa (com.amazon.dee.
app) and is vulnerable in OpenSSL ≤ 1.1.0 (CVE-2016-2182 [16]) with a score of
7.5. DroidReach finds the following path (depicted in Fig. 8 in the Appendix):

– The Java layer loads the OnStartCommand function belonging to the com.here.
android.mpa.service.MapService class. This function loads the (name ob-
fuscated) a method from the com.nokia.maps.SSLCertManager class.

– This method calls the x509 NAME HASH native function that belongs to the
com.nokia.maps.CryptUtils class, which is statically mapped to the JNI
method com nokia maps CryptUtils X509 1NAME 1HASH in libMAPSJNI.so.

– The JNI method calls X509 free, which is a function from libcrypto here.

so, that in turn invokes ASN1 item free, which calls a stripped function at
offset 0x5fdd4 (after reversing, it appears to be asn1 item combine free).

– From this function, the static exploration becomes challenging. There are
no direct jumps that connect the function to the target sink. However,
DroidReach identifies a reachable offset 0x5ba20 (which would allow for
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further exploration towards the sink). A deeper inspection shows that such
an offset is indirectly calculated and jumped to by accessing dedicated data
structures. This is the reason why the connection between the offsets was
not immediately evident. Moreover, it demonstrates the capability of Droid
Reach to identify non-obvious paths that do not involve direct jumps.

– The function at offset 0x5ba20 calls X509 NAME ONELINE, which invokes i2t
ASN1 OBJECT. Such a function invokes OBJ obj2txt, which calls BN bn2dec.

After having statically identified a path, we tried to stimulate it dynamically.
Unfortunately, reproducing it in the emulator is not easy: besides registering
an account and performing several interactions, additional events must be faked
to execute the interesting Java class. Nonetheless, we successfully reproduced a
similar path in com.nokia.maps, which includes the same third-party library.
Argus-SAF and Ghidra miss some crucial edges, failing to find the path.

Case study B: unreachable function. The goal of this case study is to
ascertain whether there is no path to a target vulnerable function. We consider
Zoom (us.zoom.video meetings) and the function SRP VBASE get by user in
libcrypto.so (CVE-2016-0798, score 7.8), for which DroidReach could not
find a path. To validate our claim, we directly patched the native library function
with an interrupt svc 11 instruction to see whether the function was invoked.
Then, we tested all possible functionalities. The application showed no signs of
a crash, meaning that the target function was not invoked during the execution.
Although we cannot guarantee that the function will never be invoked, we believe
that it cannot be executed by a normal user under normal conditions.

5 Limitations

Our current implementation of DroidReach has a few limitations:
– Like Argus-SAF, DroidReach is currently tuned for ARMv7 code. How-

ever, from the methodological side, nothing is tight to a specific architecture.
– DroidReach looks for native libraries in standard locations: fixes may be

needed in the case of a custom loader or packed libraries.
– DroidReach cannot prove the feasibility of a path, i.e., it does not currently

generate the inputs or stimulations that can reproduce the execution path.
Unfortunately, existing static solutions [38] do scale on large apps

– DroidReach represents the structure of the code using ICFGs. This rep-
resentation may be inadequate in the presence of frameworks that deviate
significantly from the traditional Android programming environment.

6 Conclusions

DroidReach statically analyzes Android apps to assess the reachability of na-
tive functions. Understanding this aspect can be crucial to assess the security of
apps featuring libraries with known vulnerabilities, as vulnerable but not reach-
able functions may not represent an immediate threat. Our experiments show
that DroidReach can reconstruct more accurate ICFGs than other solutions
and that it can be a valuable tool for an analyst during a security evaluation.
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Grosen, J., Feng, S., Hauser, C., Krügel, C., Vigna, G.: SOK: (state of) the art
of war: Offensive techniques in binary analysis. In: IEEE SP’16 (2016). https:
//doi.org/10.1109/SP.2016.17

34. Sun, M., Wei, T., Lui, J.C.: TaintART: A Practical Multi-level Information-Flow
Tracking System for Android RunTime. In: Proc. of the 2016 Conf. on Comp. and
Com. Sec. CCS ’16 (2016). https://doi.org/10.1145/2976749.2978343

35. Tan, G., Chakradhar, S., Srivaths, R., Wang, R.D.: Safe java native interface. In:
In Proceedings of the 2006 IEEE International Symposium on Secure Software
Engineering. pp. 97–106 (2006)

36. Tan, G., Croft, J.: An Empirical Security Study of the Native Code in the JDK.
In: Proc. of the 17th Conf. on Security Symposium. SS ’08, USENIX (2008). https:
//doi.org/10.5555/1496711.1496736

37. Wang, X., Zhu, S., Zhou, D., Yang, Y.: Droid-AntiRM: Taming Control Flow
Anti-analysis to Support Automated Dynamic Analysis of Android Malware. In:
Proc. of the 33rd Annual Computer Security Applications Conference (2017). https:
//doi.org/10.1145/3134600.3134601

38. Wei, F., Lin, X., Ou, X., Chen, T., Zhang, X.: Jn-saf: Precise and efficient ndk/jni-
aware inter-language static analysis framework for security vetting of android ap-
plications with native code. In: Proc. of the 2018 ACM SIGSAC Conf. on Computer
and Communications Security. CCS ’18 (2018). https://doi.org/10.1145/3243734.
3243835

39. Wei, F., Roy, S., Ou, X., Robby: Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps. ACM Transac-
tions on Privacy and Security (2018). https://doi.org/10.1145/3183575

40. Wong, M.Y., Lie, D.: IntelliDroid: A Targeted Input Generator for the Dynamic
Analysis of Android Malware. In: Proceedings 2016 Network and Distributed Sys-
tem Security Symposium (2016). https://doi.org/10.14722/ndss.2016.23118

41. Xu, Y., Xu, Z., Chen, B., Song, F., Liu, Y., Liu, T.: Patch based vulnerabil-
ity matching for binary programs. In: Proc. of the 29th ACM SIGSOFT Int.
Symp. on Software Testing and Analysis. ISSTA ’20 (2020). https://doi.org/10.
1145/3395363.3397361

42. Xue, L., Qian, C., Zhou, H., Luo, X., Zhou, Y., Shao, Y., Chan, A.T.: NDroid: To-
ward Tracking Information Flows Across Multiple Android Contexts. IEEE Trans-
actions on Information Forensics and Security (2019). https://doi.org/10.1109/
TIFS.2018.2866347

43. Xue, L., Zhou, Y., Chen, T., Luo, X., Gu, G.: Malton: Towards on-device non-
invasive mobile malware analysis for ART. In: 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association (2017)

44. Yan, L.K., Yin, H.: DroidScope: Seamlessly Reconstructing the OS and Dalvik
Semantic Views for Dynamic Android Malware Analysis. In: 21st USENIX Security
Symposium (USENIX Security 12) (2012)

https://doi.org/10.1007/978-3-319-99073-6\_4
https://doi.org/10.1007/978-3-319-99073-6_4
https://ghidra-sre.org/
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/2976749.2978343
https://doi.org/10.1145/2976749.2978343
https://doi.org/10.5555/1496711.1496736
https://doi.org/10.5555/1496711.1496736
https://doi.org/10.5555/1496711.1496736
https://doi.org/10.5555/1496711.1496736
https://doi.org/10.1145/3134600.3134601
https://doi.org/10.1145/3134600.3134601
https://doi.org/10.1145/3134600.3134601
https://doi.org/10.1145/3134600.3134601
https://doi.org/10.1145/3243734.3243835
https://doi.org/10.1145/3243734.3243835
https://doi.org/10.1145/3243734.3243835
https://doi.org/10.1145/3243734.3243835
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3183575
https://doi.org/10.14722/ndss.2016.23118
https://doi.org/10.14722/ndss.2016.23118
https://doi.org/10.1145/3395363.3397361
https://doi.org/10.1145/3395363.3397361
https://doi.org/10.1145/3395363.3397361
https://doi.org/10.1145/3395363.3397361
https://doi.org/10.1109/TIFS.2018.2866347
https://doi.org/10.1109/TIFS.2018.2866347
https://doi.org/10.1109/TIFS.2018.2866347
https://doi.org/10.1109/TIFS.2018.2866347


20 L. Borzacchiello et al.

45. Yuanchun Li, Ziyue Yang, Yao Guo, Xiangqun Chen: DroidBot: a lightweight UI-
Guided test input generator for android. In: 2017 IEEE/ACM 39th Int. Conf. on
Software Engineering (2017). https://doi.org/10.1109/ICSE-C.2017.8

Appendix
Downloads

# apps
Avg # Avg # Java Avg Avg #

Range Java insns. native methods native insns ARMv7 libs

100K-1M 32 1,228,452 212.81 2,308,222 18

1M-10M 89 1,533,235 229.24 2,654,673 10.42

10M-100M 132 1,849,999 204.86 2,554,607 7.52

100M-500M 201 1,515,141 209.48 2,841,205 7.81

500M-1B 28 1,649,847 235.43 2,511,424 9.82

1B+ 18 1,945,265 565.94 2,392,670 5.39

Table 5: Statistics for the apps selected for the evaluation.

Challenge ID Description

C1 0 JNI mapping through static name mangling.
C1 1 JNI mapping through static name mangling and method overloading.
C1 2 JNI mapping dynamically defined using the RegisterNatives API.
C1 3 JNI mapping dynamically defined using the RegisterNatives API but with clash in the class name.
C1 4 JNI mapping dynamically defined using the RegisterNatives API but without following the Android guidelines.
C1 5 JNI mapping dynamically defined using the RegisterNatives API with a hard-to-analyze JNI OnLoad.
C2 6 JNI Method calls a function from a nested library.
C3 7 The target function is called at a high calldepth.
C3 8 The target function is called after an indirect call (C++ virtual call, lazy initialization).
C3 9 The target function is called after an indirect call (C++ virtual call, callback).
C3 10 The target function is called after an indirect call (function pointer).
C3 11 The target function is called at a high calldepth after an indirect call (small calldepth after the indirect call).
C3 12 The target function is called at a high calldepth after an indirect call (high calldepth after the indirect call).

Table 6: Description of the microbenchmarks [10].

0x5bbec: ldr r1, [#0x5bc08]
[...]

0x5bbf8: ldr r1, [pc, r1]
[...]

0x5fdd8: ldr r12, [r1, #0x10]
[...]

0x5fe1c: ldr r6, [r12, #0x10]
[...]

0x5fe94: blx r6

Fig. 8: Path found in the Amazon Alexa app (com.amazon.dee.app) that can
reach the vulnerable function BN bn2txt from OpenSSL (CVE-2016-2182 [16]).
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