Stefania Cometa¹, Maria Addolorata Bonifacio², Giuseppe Trapani³, Sante Di Gioia⁴, Laura Dazzi⁵, Elvira De Giglio^{2*}, Adriana Trapani^{3*}

¹Jaber Innovation s.r.l., 00144 Rome, Italy

²Chemistry Department, University of Bari "Aldo Moro", Bari, Italy

³Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy

⁴Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy

⁵Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy

*Corresponding author:

Prof. Adriana Trapani

Department of Pharmacy-Drug Sciences

University of Bari "Aldo Moro", Bari, Italy

Tel.: +39-0805442114. Fax: +39-0805442724.

E-mail: adriana.trapani@uniba.it

*Co-Corresponding author:

Prof. Elvira De Giglio

Chemistry Department

University of Bari "Aldo Moro", Bari, Italy

Tel.: +39-0805442021. Fax: +39-0805442021.

E-mail: elvira.degiglio@uniba.it

HIGHLIGHTS

- 1) Dopamine Solid lipid nanoparticles were prepared with the adhesive glycol chitosan
- 2) Glycol chitosan-Dopamine solid lipid nanoparticles showed 81% of neurotransmitter content
- 3) Thermal analysis evidenced high stability of lipid carrier and entrapped Dopamine
- 4) In 48 hours in buffer intact Dopamine was released from solid lipid nanoparticles
- 5) Overall, ATR, TGA and XPS analyses highlighted the effective-DA entrapment in SLN

1				
3		In vitro investigations on donamine loaded Solid Linid Nanonarticles		
4 5	Stefania Cometa ¹ , Maria Addolorata Bonifacio ² , Giuseppe Trapani ³ , Sante Di Gioia ⁴ , Laura Dazzi ⁵ ,			
6 7		Elvira De Giglio ² *, Adriana Trapani ³ *		
8 9 10 11 12	5	¹ Jaber Innovation s.r.l., 00144 Rome, Italy		
		² Chemistry Department, University of Bari "Aldo Moro", Bari, Italy		
12		³ Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy		
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 26		⁴ Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy		
		⁵ Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari,		
	10	Italy		
		*Corresponding author:		
		Prof. Adriana Trapani		
		Department of Pharmacy-Drug Sciences		
	15	University of Bari "Aldo Moro", Bari, Italy		
		Tel.: +39-0805442114. Fax: +39-0805442724.		
		E-mail: adriana.trapani@uniba.it		
		*Co-Corresponding author:		
	20	Prof. Elvira De Giglio		
		Chemistry Department		
37		University of Bari "Aldo Moro", Bari, Italy		
38 39		Tel.: +39-0805442021. Fax: +39-0805442021.		
40		E-mail: elvira.degiglio@uniba.it		
41 42 43	25			
44 45 46		Abstract		
47		The progressive degeneration of nigrostriatal neurons leads to depletion of the neurotransmitter		
48 49		dopamine (DA) in Parkinson's disease (PD). The hydrophilicity of DA, hindering its cross of the		
50 51	30	Blood Brain Barrier, makes impossible its therapeutic administration. This work aims at		
51 52 53 54		investigating some physicochemical features of novel Solid Lipid Nanoparticles (SLN) intended to		
		enhance DA brain delivery for PD patients by intranasal administration. For this aim, novel SLN		
55		were formulated in the presence of Glycol Chitosan (GCS), and it was found that SLN containing		
56 57 58 59		GCS and DA were smaller than DA-loaded SLN, endowed with a slightly positive zeta potential		

60 61						
 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 	35	value and, remarkably, incorporated 81% of the initial DA content. The formulated SLN were				
		accurately characterized by Infrared Spectroscopy in Attenuated Total Reflectance mode (FT-				
		IT/ATR) and Thermogravimetric Analysis (TGA) to highlight SLN solid-state properties as a				
		preliminary step forward biological assay. Overall, in vitro characterization shows that SLN are				
		promising for DA incorporation and stable from a thermal viewpoint. Further studies are in due				
	40	course to test their potential for PD treatment.				
		Keywords: Solid lipid nanoparticles, Dopamine, FT-IR/ATR, TGA, in vitro release				
		Dopamine hydrochloride (PubChem CID: 65340)				
		Chitosan (PubChem CID: 129662530)				
	45	Acetic acid (PubChem CID: 450349)				
		Potassium Chloride (PubChem CID: 4873)				
81 82		Sodium Chloride (PubChem CID: 5234)				
83						
84 85 86 87 88 90 91 92 93 94 95 96 97	HIGHLIGHTS					
	50	1) Dopamine Solid lipid nanoparticles were prepared with the adhesive glycol chitosan				
		 Glycol chitosan-Dopamine solid lipid nanoparticles showed 81% of neurotransmitter content 				
	55	3) Thermal analysis evidenced high stability of lipid carrier and entrapped Dopamine				
98 99		4) In 48 hours in buffer intact Dopamine was released from solid lipid nanoparticles				
100 101		5) Overall, ATR and TGA analyses highlighted the effective-DA entrapment in SLN				
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118						

60 1. Introduction

Parkinson's disease (PD) is a neurodegenerative disorder with typical dyskinesia, due to low levels of the striatal neurotransmitter dopamine (DA). Unfortunately, DA depletion could not be treated with exogenous DA, because the latter cannot cross by itself the Blood-Brain Barrier (BBB), due to its hydrophilicity and ionized form at physiological pH. Therefore, currently, the so-called "dopamine (DA) replacement therapy" mainly consists of the administration of DA prodrugs or DA receptor agonists able to cross the BBB. In this context, L-Dopa still represents the gold standard treatment for PD but severe side effects, connected to its long-term treatment, induce several researchers to find new strategies to reduce PD symptomatology. Several papers have investigated the effect of intranasal administration of dopamine on its cerebral content by means of autoradiographic studies with [3H] DA, microdyalisis experiments and DA nasal metabolism/nasal mucosal transport [1,2], their findings suggesting that the systemic absorption of the neurotransmitter by nasal administration can be considered lower enough than that occurring in the brain. As a consequence, also the corresponding systemic side effects should be more limited and, perhaps, less relevant. Based on these findings, it can be concluded that intranasal administration of ¹⁴⁵ 75 DA can be employed for "DA replacement strategy therapy" of PD and can constitute an alternative to the current oral L-Dopa therapy. Concerning novel formulations capable to deliver DA in the brain, we had previously investigated some DA-polymeric nanoparticles [3,4] in an attempt to supply it into the brain in a "masked" manner, capable to hide its unfavorable physicochemical properties. In addition, some DA receptor agonists for PD treatment have already been described for administration via lipid-based colloidal carriers, namely solid lipid nanoparticles (SLN) [5]. However, to the best of our knowledge, the potential of SLN carriers for DA delivery is still unexplored. Indeed, through SLN, the design of a nanoparticulate system, potentially able to release DA in a sustained manner, could be achieved. Thus, the present work aims at formulating novel SLN, loaded by DA, and to characterize them *in* vitro, in view of a potential intranasal administration for PD treatment. Herein, a DA entrapment efficiency around 80% was achieved, when SLN were formulated with the mucoadhesive polysaccharide Glycol Chitosan (GCS). Moreover, to determine DA content in the SLN, an enzymatic digestion of SLN was herein proposed, followed by HPLC analysis. The characterization of the novel SLN also involved Fourier Transform Infra-Red spectroscopy (FT-IR), in Attenuated Total Reflectance mode (ATR), as well as thermogravimetric analysis (TGA).

2. Experimental

2.1. Materials

- Gelucire® 50/13 was kindly supplied by Gattefossè (Milan, Italy). Dopamine hydrochloride (DA),
 Polysorbate 85 (Tween® 85), acetic acid (HAc), Glycol Chitosan (GCS, MW 400 KDa according
 to the manufacturer) and carboxyl ester hydrolase (E.C. 3.1.1.1, 15 units/mg solid) from porcine
 liver were provided by Sigma Aldrich (Milan, Italy). Throughout this work, double distilled water
 was used. All other chemicals were of reagent grade.
- 1882.2. Preparation of DA-SLN189

DA-SLN and GCS-DA-SLN were prepared according to the melt-emulsification method [6, 7]. 190100 191 60 mg of Gelucire[®] 50/13 were melted at 70 °C and, in a separate vial, 1.37 mL of a diluted HAc 192 193 solution, 0.01%, w/v containing the surfactant (Tween 85[®], 60 mg) were heated at 70 °C. In the 194 HAc solution, 10 mg of DA were poured, prior to the addition of the resulting mixture to the melted 195 196 lipid at 70 °C. Then, an emulsion was obtained by homogenization at 12300 rpm for 2 min, with an 197 UltraTurrax model T25 apparatus (Janke and Kunkel, Germany). Finally, the nanosuspension was 198 105 199 cooled at room temperature, the resulting SLN centrifuged ($16,000 \times g, 45 \min$, Eppendorf 5415D) 200 201 and the obtained pellet was re-suspended in distilled water for further studies. For FT-IR and TGA 202 analysis (see below) freeze-drying of SLN was performed for 48–72 h using a Lio Pascal 5P 203 204 (Milan, Italy). 205

To allow SLN modification in the presence of GCS, the aqueous phase containing 1.37 g of a previously formed solution of GCS (5 mg/mL in HAc 0.01, v/v) was employed. Afterwards, the procedure was the same above reported for DA-SLN. Control SLN were either the ones without DA and GCS (namely, SLN) or the ones without DA, but containing GCS (namely, GCS-SLN).

2.3. Physicochemical properties and determination of Encapsulation Efficiency

Particle size and polydispersity index (PDI) of SLN were determined by a ZetasizerNanoZS (ZEN 3600, Malvern, UK) apparatus in photon correlation spectroscopy (PCS) mode. Each sample was diluted 1:1 (v:v) with double distilled water. Laser Doppler anemometry (ZetasizerNanoZS, ZEN 3600, Malvern, UK) was used to determine the zeta-potential values after dilution of the sample 1:20 (v:v) in presence of KCl (1 mM, pH 7).

224 120 To determine the loading efficiency of DA in the SLN, freeze dried SLN were firstly obtained by 225 lyophilization of previously centrifuged and re-suspended particles. Afterwards, they were cleaved 226 227 upon enzymatic digestion operated by esterase. Firstly, the enzyme was dissolved at 12 I.U./mL in 228 phosphate buffer (pH 5) and aliquots of freeze dried SLN in the range 1-2 mg were incubated with 1 229 230 mL of the enzyme solution for 30 minutes in an agitated (40 rpm/min) water bath set at 37 °C 231 232 125 (Julabo, Milan, Italy). Afterwards, samples were centrifuged ($16,000 \times g, 45 \min$, Eppendorf 233 5415D) and the resulting supernatant was analyzed by HPLC for DA content, according to the 234

235 236

213

237	5
230 239 240 241 242 243 244 130	HPLC method already described in [8]. The encapsulation efficiency (E.E.%) was calculated as
	follows:
	E.E.% = DA in the supernatant after esterase assay/Total DA $*100$
	where total DA is intended as the starting amount of neurotransmitter used for SLN preparation.
245 246	Each measurement was performed in triplicate.
247	2.4. FT-IR/ATR
248 249	Pure materials and SLN samples were analyzed with a Spectrum Two PE instrument (PerkinElmer,
250 251	USA) equipped with the universal ATR accessory (UATR, Single Reflection Diamond/ZnSe),
252 135	transferring the freeze-dried formulations directly onto the crystal of the horizontal ATR accessory.
253 254	FT-IR/ATR spectra were acquired from 400 to 4000 cm ⁻¹ , with a resolution of 4 cm ⁻¹ . The recorded
255	signals were reported as transmittance percentages.
256 257 258 259	2.5. TGA
	Thermal behavior of SLN samples, as well as their feed materials, was studied heating 5-10 mg of
260 140	sample in nitrogen-saturated atmosphere, using a PerkinElmer TGA-400 instrument (PerkinElmer
261 262	Inc., Waltham, MA). The heat range was set between 30 and 600°C at a flow rate of 20°C/ min. The
263 264	gas flow was set at 20 mL/min. Thermograms (TG) with respective derivative curves (DTG) were
265	recorded and data were analyzed using the software TGA Pyris series.
266 267	2.6. In vitro DA release from SLN
268 145	For in vitro release studies, DA-SLN and DA-GCS-SLN were freshly prepared and each pellet of
269 270	the particles, originated from centrifuged SLN, was aliquoted in order to provide DA in the range
271 272	of 1- 1.2 mg. Simulated Nasal Fluid (SNF) was prepared dissolving CaCl ₂ . 2H ₂ O (0.32 mg/mL),
273 274	KCl (1.29 mg/mL) and NaCl (7.45 mg/mL) in water, providing a final pH value in the range 5-5.5.
275	In each Eppendorf tube 1.5 mL of SNF was poured and in vitro release test started once the
277 150	abovementioned aliquots of SLN pellet were pipetted at 37 °C-40-rpm/min. At scheduled time-
278 279	points (0, 2, 5, 17, 24 and 48h), the Eppendorf tube was centrifuged at $16,000 \times g$ for 45 min,
280	(Eppendorf 5415D, Germany), and the DA concentrations were determined in the resulting
281	supernatants by HPLC, as previously described. All release experiments were carried out in
283 284	triplicate.
285 155	2.7. Statistical analysis
286 287	Data from physic-chemical characterization properties of SLN formulations were statistically
288	analyzed by one-way analysis of variance (ANOVA) and Bonferroni's post hoc test for multiple
289 290	comparison at 99.9% confidence level was used throughout data analysis (GraphPad Prism v.4
291 292 293 160	software). Differences were considered statistically significant when $p < 0.05$.
294	

300 301

3. Results and discussion

3.1. Characterization of DA containing SLN

302 The main physicochemical properties of DA-loaded SLN prepared by the melt-emulsification 303 304 method with or without GCS are shown in Table 1. Firstly, being DA susceptible of spontaneous 305 autoxidation when pH value of an aqueous solution is above 7, [8], a diluted solution of HAc (pH 3) 306 165 307 [3,9] was adopted as aqueous phase during emulsion. GCS was selected to study its potential 308 309 modulation role onto the final particle properties for the following reasons. Firstly, GCS has been 310 already seen to be endowed with a mucoadhesive effect and this activity was also expected to take 311 312 place in the nasal mucosa. Secondly, its P-glycoprotein efflux pump inhibition activity [10] could 313 lead to a penetration enhancer mechanism at the level of the nasal mucosa. Finally, unlike parent 314 170 315 chitosan, GCS is highly soluble in PBS, hence its precipitation at pH values higher than 6.5 is 316 prevented. As shown in Table 1, the controls SLN and GCS-SLN, prepared without DA, were 317 318 similar in particle size to the corresponding ones embedding DA (170 vs 171 nm, respectively). On 319 320 the other hand, unloaded GCS-SLN displayed higher mean diameter as compared to GCS-DA-SLN 321 322 **175** (265 nm vs 147 nm, respectively, $p \le 0.001$). It is not clear why such decrease in size for GCS-DA-323 SLN occurs but a similar situation was already observed in the case of DA-loaded chitosan-based 324 325 nanoparticles [3]. As in the case previously examined, it can be hypothesized that, in the presence 326 of neurotransmitter, a conformational reorganization of the GCS occurs, leading to GCS-DA-SLN 327 328 shrinkage. However, it should be noted that the size of GCS-DA-SLN ≤ 200 nm is suitable for their 329 transport to the brain via the olfactory and trigeminal nerve pathways [11]. Furthermore, for SLN ₃₃₀ 180 331 and DA-SLN, zeta potential values were close to neutrality (i.e., -4.9 mV and -2.0 mV respectively, 332 see Table 1). Moreover, the presence of GCS in the formulation always led to slightly positive zeta 333 334 potential values (*i.e.*, +8.5 mV and +5.2 mV), as expected for the presence of a positively charged 335 336 polycation, i.e. GCS, in acidic medium. These zeta potential values near to neutrality could suggest 337 ₃₃₈ 185 physical instability over time of SLN but results from preliminary studies indicate that the particle 339 size is maintained at least for one week. The detailed investigation in this regard will be reported in 340 a forthcoming paper (manuscript in preparation). As reported in Table 1, the most promising result 341 342 consists in the high DA E.E.%, that reached 81% in GCS-DA-SLN. Conversely, without the 343 344 polycation GCS, the DA E.E.% was limited to 19%, as resulted from enzymatic digestion. 345 ₃₄₆ 190 According to manufacturer, Gelucire® 50/13 is composed of PEG-esters (stearoyl polyoxyl-32 347 glycerides), a small glyceride fraction and free PEG chains. The cleavage of ester linkages, 348 enzymatically performed on lyophilized SLN, allowed us to calculate the DA amount effectively 349 350 entrapped into each formulation. Available literature measures drug content in Gelucire® 50/13-351 based SLN subtracting the amount of drug released in the supernatant after centrifugation from the 352 353

356 ³⁵⁷ 195 total drug used for particle formulation. To the best of our knowledge, this is the first study in 358 which esterase assay is performed onto Gelucire[®] 50/13-embedding SLN, leading to high DA 359 360 E.E.%, not previously found in colloidal carriers for potential applications in PD (e.g. liposomes [8, 361 362 12], polymeric NPs based on polysaccharides [13,14]). To account for the marked increase in 363 E.E.% observed for GCS-DA-SLN, it is necessary to consider the core-shell structure suggested for 364 ³⁶⁵200 the Gelucire® 50/13-based SLN. In particular, they should be constituted by a hydrophilic shell of 366 polyoxyethylene chains together with an internal lipid core comprising the stearoyl moieties [6]. In 367 368 this model, the neurotransmitter could be adsorbed on the particle surface or entrapped in the 369 370 hydrophilic shell as well as in the lipidic core as DA nanoemulsion, being Gelucire® 50/13 able to 371 self-emulsify on contact with aqueous media. However, in the case of DA-SLN, leakage of the 372 ³⁷³205 neurotransmitter adsorbed on the particle surface or entrapped in the hydrophilic shell could occur 374 during sample manipulations lowering the corresponding E.E.%. Instead, as for GCS-DA-SLN, the 375 376 observed marked increase in E.E.% may be due to the formation of a network structure resulting 377 378 from hydrogen bonding and polar interactions involving the polyoxyethylene chains, GCS and the 379 functional groups of DA. Besides the leakage of the neurotransmitter adsorbed on the particle 380 ³⁸¹210 surface, this network could hamper leakage of DA entrapped in the hydrophilic shell. Furthermore, 382 the melt-emulsification method, in combination with the acidic environment adopted, led to DA 383 384 protection during encapsulation in the SLN, as demonstrated by HPLC analysis, which did not 385 386 reveal DA metabolites derived from autoxidation [8]. 387

[Insert Table 1]

390 215 3.2. FT-IR (ATR) characterization

391 To gain insight into the solid-state composition of SLN, FTIR and TGA analyses were performed 392 393 on lyophilized particles. FT-IR is widely employed in literature to ascertain interactions between 394 chemical compounds of drug formulations, or modifications of the encapsulated active molecules 395 396 [15]. SLN FT-IR spectra, in ATR mode, are shown in Fig. 1. For all systems, the spectra appeared 397 similar, except for the phenol O-H stretching at about 3270 cm⁻¹ in the DA-loaded SLN samples, 398 220 399 with and without GCS, as well as in the wavenumber range reported in the inset of Fig.1. A 400 401 significant prominence of the absorption features relevant to the lipid matrix made of Gelucire® 402 50/13 was observed. However, an effective drug entrapment in the vehicles was obtained, especially 403 404 when GCS was used in the formulation. Indeed, in DA-GCS-SLN system, both DA and GCS were 405 clearly present, as demonstrated by the contributions in the spectra reported in the inset, in which 406225 407 the peak at 1560 cm⁻¹ was ascribable to the N-H bending of protonated amine groups belonging to 408 409 GCS (absent in neutral GCS, [16]). Moreover, the absorption at 1522 cm⁻¹ can be referred to DA 410 aromatic C=C stretching [17]. Finally, the absence of keto-carbonyl peaks in both formulations (i.e., 411

412 413

388 389

414	8				
416	DA-SLN and DA-GCS-SLN) at about 1740 cm ⁻¹ , typical of quinones [18], supported the hypothesis				
417 418 230	that DA was in 5.6-dihydroxyindole form, rather than in indole-5.6-quinone.				
419 420					
421	[Insert Figure 1]				
422 423					
424 425	2.2 Thomas quantum stuis qualusia				
426	Additional thermogravimetric analysis (TGA) have been performed to determine the thermo				
427233	stability of SLN as already reported in literature for other delivery systems targeting brain diseases				
429 430	[18, 19] TG of the feed materials, recorded in inert nitrogen-saturated atmosphere from 30 to				
431	600°C are reported in Fig. 2A while the relevant DTG are shown in Fig. 2B. The analysis				
432 433	revealed the following main degradation steps: <i>i</i>) for DA the main pyrolytic event occurred at a				
434 435 240	$T_{\text{resk}} = 327^{\circ}\text{C}$ with a residue at 600°C of 29%: <i>ii</i>) for GCS the first and more important thermal				
436	degradation occurred at 268°C, with a high water/volatiles content (17%) and a residue at 600°C of				
437 438	16% <i>iii</i>) Gelucire \mathbb{R} 50/13 presented two thermal events of equal entity at 291 and 355°C with				
439	zero residue at 600° C; <i>iv</i>) Tween [®] 85 presented a decomposition at 416°C. with a water/volatiles				
440 441	content of 3% and a residue at 600°C equal to 4%.				
442 443 245	As far as SLN formulations are concerned, the TG and the DTG are reported in Figures 2C and D.				
444	Even if an unequivocal attribution of the different thermal events could not be made, due to the				
445 446	complexity of the SLN systems and the overlapping of thermal events, some important speculations				
447 448	can be argued.				
449	Firstly, TGA highlighted the thermal stability of DA-loaded SLN. As shown in Fig. 2D, a mass loss				
450 451 250	between 25 °C and 130 °C was observed only in GCS-containing SLN, due to the polysaccharide				
452 453	water content. Indeed, the TG curve relevant to DA-GCS-SLN presented a peculiar profile of water				
454	surface elimination between 30 and 80°C, with thermal stability between 100 and 160°C. From this				
455 456	result, it could be concluded that DA in the SLN formulation preserved its high stability against				
457	temperature. In all the SLN systems, the T_{onset} was between 137 e 164°C, and the moisture content				
458 459255	was less than 2%, acceptable in the pharmaceutical industry [20]. The highest residue at 600°C was				
460 461	recorded for DA-GCS-SLN (residue of 11%), likely due to the simultaneous presence of DA and				
462	GCS (with respect to DA-SLN, which showed a residue of 1.6%).				
463 464					
465 466	[Insert Figure 2]				
⁴⁶⁷ 260					
408 469	3.4. In vitro release of DA from SLN				
470 471					
472					

473 474	9
475 476 477 478 479 480 265 481 482	In vitro release of DA from DA-SLN and DA-GCS-SLN was studied in SNF, without
	enzymes, in view of a potential intranasal administration of SLN. The resulting DA delivery
	profiles are reported in Fig. 3. As shown, in 48h, less than 10% of DA was delivered in SNF
	from DA-SLN and DA-GCS-SLN. However, DA-SLN showed a burst effect within two
	hours followed by a slower release which reached the highest amount after18 h and then
483	decreased to 4% of DA delivered after 48 h (Fig. 3). Instead, DA-GCS-SLN released the
484 485	neurotransmitter continuously in a sustained manner leading to about 9 % of DA delivered
486 487	after 48 h (Fig. 3). Such release profiles could suggest that, as for the DA-SLN, the
⁴⁸⁸ 270	neurotransmitter is localized on the surface of the particles which is responsible of the
489 490	prompt burst effect within 2 h. The following slower release can be due to the DA localized
491	in the hydrophilic shell or in the core of the particles. Conversely, for DA-GCS-SLN, the
492	neurotransmitter should be localized either in the hydrophilic shell or in the core of the
494 495	particles. Furthermore, up to 48h, intact DA was detected in SNF through HPLC analyses
496 275	for both SLN. On the other hand, after 48h, for both DA-SLN and DA-GCS-SLN, a pink
497 498	color was optically detected, likely due to autoxidation processes, starting after this time
499 500	point and probably ascribable to the surface-allocated neurotrasmitter. It could be
501	hypothesized that DA is delivered from SLN systems and then, according to a subsequent
502 503	reaction, it could be oxidized after exposure to SNF for a long time. Overall, the amounts of
504 280	neurotransmitter in vitro delivered by SLN, in absence of enzymes, are quite similar to the
505 506	ones we already reported for uncoated DA-loaded liposomes [8]. This finding seems to
507 508	elucidate that, using lipophilic carriers (i.e. liposomes and SLN), DA release was
509	significantly low, irrespectively of the release medium because of the retention of the
510 511	neurotransmitter in the carriers themselves. Conversely, when hydrophilic delivery systems
512285	are exploited (i.e. chitosan (CS) and chitosan derivatives-based nanoparticles [13]), they
513	promptly release the active DA, leading to 30% of delivered active substance in the
515 516	receiving medium in the frame time of 1-3 hours, typically with a burst effect. Overall, a
517	sustained DA delivery to the brain is of great interest in clinical treatments, instead of an
518 519	irregular release of the neurotransmitter, as occurs during frequent and prolonged
520 290	administration of L-DOPA. Additionally, in the current in vitro study, the slow DA release
521 522	allows the delivery of the neurotransmitter for a long frame time (<i>i.e.</i> , 48h) as compared
523 524	with the 6h release that resulted when the same test was performed with chitosan NPs in
525	PBS [13]. Moreover, DA-GCS-SLN protected DA from autoxidation, while chitosan NPs
526 527	were unable to prevent this phenomenon, as demonstrated by the darker color of samples
528 295 529	collected up to 6h.

532	10
533	
535 535	
536	[Insert Figure 3]
537	
538	
539 540	4. Conclusions
541 542 300	Solid lipid nanoparticles administering the neurotransmitter DA have been investigated in vitro in
543	presence and absence of the polysaccharide GCS. FT-IR (ATR), TGA analyses, as well as
545	physicochemical characterization, including in vitro release assays, were the main tools herein
546 547	explored for a better knowledge of these novel solid lipid nanosystems. The enzymatic degradation
548	operated by esterases allowed the calculation of E.E.%, which resulted of 81% for SLN containing
⁵⁴⁹ 550305	GCS. Overall, ATR and TGA analyses highlighted the high stability against temperature and the
551	effective-DA entrapment (especially when GCS was employed) in the SLN formulations,
552 553	respectively. Further investigations are currently ongoing, in order to assess the in vivo
554 555 556	performances of these vehicles for nose-to-brain delivery approach applied to PD treatment.
⁵⁵⁷ 558310	Acknowledgements
559	This work was partially financed by University of Bari (Italy) to A.T. (Cod.
560 561	CUP:H91J11000160001). A.T. would also acknowledge Dr. Francesca Curci for her valuable
562 563 564	technical assistance.
⁵⁶⁵ 315	Conflict of interest
567 568 569	The authors declare that they have no conflict of interest.
570	References
571 572	
572 573 574 320	[1] M. Dahlin, B. Jansson, E. Björk, Levels of dopamine in blood and brain following nasal
575	administration to rats, Eur J Pharm Sci. 14 (2001) 75-80. https://doi.org/10.1016/S0928-
576 577	<u>0987(01)00151-8.</u>
578	[2] M.A. de Souza Silva, B. Topic, J.P. Huston, C. Mattern, Intranasal dopamine application
579 580	increases dopaminergic activity in the neostriatum and nucleus accumbens and enhances motor
⁵⁸¹ 582325	activity in the open field, Synapse. 62 (2008) 176-84. https://doi.org/10.1002/syn.20484.
583	[3] A. Trapani, E. De Giglio, N. Denora, G. Agrimi, T. Cassano, S. Gaetani, V. Cuomo, G. Trapani,
584 585	Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery, Int. J. Pharm.
586	419 (2011) 296-307. https://doi.org/10.1016/j.ijpharm.2011.07.036.
587 588	
589	
590	

650	12
651	
652 653	Cassano, Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether
654	cyclodextrin based nanoparticles, Eur. J. Pharm. Biopharm. 94 (2015) 180-193.
655 656 365 657	https://doi.org/10.1016/j.ejpb.2015.05.019.
	[14] A. Ragusa, P. Priore, A.M. Giudetti, G. Ciccarella, A. Gaballo, Neuroprotective investigation
659	on chitosan nanoparticles for Dopamine Delivery, Appl. Sci. 8 (2018) 474.
660 661	https://doi.org/10.3390/app8040474.
662	[15] M. Shubham, C. Kanwaljit, V.R. Sinha, B. Medhi, Galantamine-loaded solid-lipid
⁶⁶³ 664370	nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo
665	evaluations, Drug Deliv. 23 (2016) 1434-1443. https://doi.org/10.3109/10717544.2015.1089956.
667	[16] G. Lawrie, I. Keen, B. Drew, A. Chandler Temple, L. Rintoul, P. Fredericks, and L. Grondahl.
668 669	Interaction between alginate and chitosan biopolymers characterized using FTIR and XPS.
670	Biomacromol. 8 (2007) 2533-41. https://doi.org/10.1021/bm070014y.
⁶⁷¹ 672 375	[17] Thakur, Ankita & Ranote, Sunita & Kumar, Dharamender & Bhardwaj, Kamal & Gupta,
673	Reena & Chauhan, Ghanshyam. Synthesis of a PEGylated Dopamine Ester with Enhanced
674 675	Antibacterial and Antifungal Activity, ACS Omega. 3 (2018) 7925-7933.
676 677	https://doi.org/10.1021/acsomega.8b01099.
678	[18] A. Taeuk, L. Namhun, C. Hong-Jun, K. Seongsoo, S. Dong-Sik, L. Sang-Myung, Ultra-
⁶⁷⁹ 680380	selective detection of Fe ²⁺ ion by redox mechanism based on fluorescent polymerized dopamine
681	derivatives, RSC Adv. 7 (2017) 30582. https://doi.org/10.1039/c7ra04107a.
682 683	[19] G.P. Hansraj, S.K. Singh, P. Kumar, Sumatriptan succinate loaded chitosan solid lipid
684 685	nanoparticles for enhanced anti-migraine potential, Int. J. Biol. Macromol. 81 (2015) 467-76.
686	https://doi.org/10.1016/j.ijbiomac.2015.08.035.
⁶⁸⁷ 385	[20] W.N. Omwoyo, B. Ogutu, F. Oloo, H. Swai, L. Kalombo, P. Melariri, G.M. Mahanga, J.W.
689	Gathirwa, Preparation, characterization, and optimization of primaquine-loaded solid lipid
690 691	nanoparticles. Int. J. Nanomed. 9 (2014) 3865-74. https://doi.org/10.2147/ijn.S62630.
692 693	
694	
695 390 696	
697	
698 699	
700	
701 702	
703	
704 705	
706	
707	
708	

Stefania Cometa¹, Maria Addolorata Bonifacio², Giuseppe Trapani³, Sante Di Gioia⁴, Laura Dazzi⁵, Elvira De Giglio^{2*}, Adriana Trapani^{3*}

¹Jaber Innovation s.r.l., 00144 Rome, Italy

5 ²Chemistry Department, University of Bari "Aldo Moro", Bari, Italy

³Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy ⁴Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ⁵Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy

*Corresponding author:

10 Prof. Adriana Trapani

Department of Pharmacy-Drug Sciences

University of Bari "Aldo Moro", Bari, Italy

Tel.: +39-0805442114. Fax: +39-0805442724.

E-mail: adriana.trapani@uniba.it

15 *Co-Corresponding author:

Prof. Elvira De Giglio

Chemistry Department

University of Bari "Aldo Moro", Bari, Italy

Tel.: +39-0805442021. Fax: +39-0805442021.

20 E-mail: elvira.degiglio@uniba.it

25 e

Table 1. Particle size, polydispersity index (PDI), zeta potential measurements, encapsulation efficiency of different formulations prepared. ** $p \le 0.001$ for size and zeta is considered significantly different compared with size of GCS-SLN.

Formulation	Size (nm)	PDI	Zeta Potential (mV)	Encapsulation Efficiency (E.E.%)
SLN	170 ± 31	0.43-0.47	-4.9±1.7	-
DA-SLN	171±6	0.25-0.27	-2.0.±0.7	19±3
GCS-SLN	265±5	0.46-0.53	+8.5±0.6	-
DA-GCS-SLN	147±24**	0.44-0.58	+5.2±1.7	81±2

Declaration of interests

It has authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

⊠The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Bari, 28 February 2020

of.

Stefania Cometa¹, Maria Addolorata Bonifacio², Giuseppe Trapani³, Sante Di Gioia⁴, Laura Dazzi⁵, Elvira De Giglio²*, Adriana Trapani³*

¹Jaber Innovation s.r.l., 00144 Rome, Italy ²Chemistry Department, University of Bari "Aldo Moro", Bari, Italy ³Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy ⁴Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ⁵Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy

*Corresponding author: Prof. Adriana Trapani Department of Pharmacy-Drug Sciences University of Bari "Aldo Moro", Bari, Italy Tel.: +39-0805442114. Fax: +39-0805442724. E-mail: adriana.trapani@uniba.it

*Co-Corresponding author: Prof. Elvira De Giglio Chemistry Department University of Bari "Aldo Moro", Bari, Italy Tel.: +39-0805442021. Fax: +39-0805442021. E-mail: elvira.degiglio@uniba.it

Stefania Cometa: investigations; validation; writing - original draft

Maria Addolorata Bonifacio: investigations;

Giuseppe Trapani: formal analysis;

Sante Di Gioia: data curation;

Laura Dazzi: data curation;

Elvira De Giglio: conceptualization and project administration; writing - review & editing; Adriana Trapani: supervision; writing - review & editing.

Stefania Cometa¹, Maria Addolorata Bonifacio², Giuseppe Trapani³, Sante Di Gioia⁴, Laura Dazzi⁵, Elvira De Giglio^{2*}, Adriana Trapani^{3*}

¹Jaber Innovation s.r.l., 00144 Rome, Italy

²Chemistry Department, University of Bari "Aldo Moro", Bari, Italy

³Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy

⁴Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy

⁵Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy

*Corresponding author:

Prof. Adriana Trapani

Department of Pharmacy-Drug Sciences

University of Bari "Aldo Moro", Bari, Italy

Tel.: +39-0805442114. Fax: +39-0805442724.

E-mail: adriana.trapani@uniba.it

*Co-Corresponding author:

Prof. Elvira De Giglio

Chemistry Department

University of Bari "Aldo Moro", Bari, Italy

Tel.: +39-0805442021. Fax: +39-0805442021.

E-mail: elvira.degiglio@uniba.it

Captions to Figures

Figure 1. FT-IR (ATR) spectra of SLN formulations. In the inset, the wavenumber range evidencing the main differences occurring in GCS and/or DA presence in the relevant formulations.

Figure 2. TG (a and c) and DTG (b and d) thermograms performed in N_2 between 30 and 600°C of a) Dopamine, Glycol Chitosan, Gelucire @ 50/13 and Tween 85 and c) SLN formulations with or without DA and/or GCS.

Figure 3. *In vitro* release profiles of DA from DA-SLN (red) and GCS-DA-SLN (black) in SNF. Data are shown as mean \pm SD (n=3, for each type of SLN).