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1 Introduction

In the last five decades, the quest for a theory where the gravitational interaction and
quantum mechanics can be combined consistently has seen a resurgence of candidates [1],
to the point where, although we do not yet have a single fully consistent and controllable
theory dominating the others, it is no longer tenable to claim that we do not know at all
how to quantize gravity. If anything, the problem is that we are aware of far too many
ways in which we could do it and too few ways to test their predictions with observations.
Supergravity [2, 3], the low-energy limit of string theory [4–7], group field theory [8–10],
loop quantum gravity and spin foams [11–14], asymptotically safe quantum gravity [15–18],
causal dynamical triangulations [19–21] and others combine different notions of spacetime,
quantization methods and dynamics. The degree of success in quantizing gravity and the
level of completion of our understanding of the properties and phenomenology of the theory
greatly vary among these scenarios. While some of them are non-perturbative, others are
based on perturbative quantum field theory (QFT), let it be defined on a group manifold
as in group field theory, on a higher-dimensional smooth spacetime where all fields enjoy
supersymmetry as in supergravity, or on more minimalistic scenarios with a four-dimensional
spacetime and without supersymmetry. In the latter case, of course, the price to pay to
stay in a conservative perturbative QFT setting is to add new ingredients or to modify
some of the traditional ones, such as making the dynamics fundamentally nonlocal (nonlocal
quantum gravity, minimally [22–37] or nonminimally [38–42] coupled to matter), imposing
a prescription on the propagators and a projection on the spectrum to get rid of physical
ghost modes (fakeon gravity [43–51]), or giving up the notion of point particles in favour of a
gas of quasi-particles living on a fractal spacetime (fractional gravity [52–55]).

Among the most recent perturbative approaches, the one that has perhaps received
more attention is nonlocal quantum gravity or, more precisely, asymptotically local quantum
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gravity. The action of the theory is characterized by asymptotically polynomial nonlocal
operators, entire functions of the Laplace-Beltrami operator □ which do not add extra poles
in the propagator while, at the same time, taking the form of finite-order polynomials in
the ultraviolet (UV). Thanks to these properties, perturbative unitarity is preserved, a
power-counting analysis of divergences is possible and there are robust indications that the
theory is super-renormalizable or, in some of its versions, finite. Despite these advances,
however, certain basic aspects of the theory have not been discussed with the due emphasis.
For example, many works have been devoted to Feynman diagrams and scattering amplitudes
but little has been said about their origin from a path integral. Moreover, these diagrams and
amplitudes are invariably calculated in Euclidean momentum space due to the difficulty, or
even impossibility, to handle a well-defined nonlocal QFT exclusively in Lorentzian signature.
Therefore, questions may arise on whether the fundamental formulation of nonlocal quantum
gravity is based on a Lorentzian or a Euclidean path integral, whether such path integral
is convergent, and so on.

It is the purpose of this paper to address these questions. The theory is defined by a
Lorentzian path integral, which is presented in detail in section 2 together with its perturbative
expansion and the quantum effective action. We will start from a purely gravitational action
in D topological dimensions:

S = M2
Pl

2

∫
dDx

√
|g| L , (1.1)

where L is the Lagrangian, we work in mostly plus signature (−,+, · · · ,+) and MPl :=
(8πG)−1/2 is the reduced Planck mass with energy dimensionality [MPl] = (D − 2)/2. When
giving a concrete name to the Lagrangian, we will consider four theories:

• Einstein gravity:
L = R , (1.2)

where R = gµνRµν = gµνRµσν
σ is the Ricci scalar and Rρ

µσν := ∂σΓρ
µν−∂νΓρ

µσ+Γτ
µνΓρ

στ −
Γτ

µσΓρ
ντ is the Riemann tensor.

• Stelle gravity [56–63]:

L = R + γ0R
2 + γ2RµνRµν + γ4Rµνστ Rµνστ , (1.3)

where γ0,2,4 are constants of dimensionality [γi] = −2.

• Minimally coupled nonlocal quantum gravity [22–37]:

L = R + Rγ0(□)R + Rµνγ2(□)Rµν + Rµνστ γ4(□)Rµνστ , (1.4)

where the γi(□) are form factors depending on the Laplace-Beltrami operator □ and, in
principle, on three energy scales Λ1,2,4 to make the arguments □/Λ2

0,2,4 dimensionless.
The first two form factors can be parametrized as [29–31]

γ0 = −(D − 2)(eH0 − 1) + D(eH2 − 1)
4(D − 1)□ + γ4 , γ2 =

eH2 − 1
□

− 4γ4 , (1.5)
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where H0,2(□) are two entire functions which, in the case of asymptotically local
quantum gravity, are asymptotically polynomial in the ultraviolet (UV) and such that
H0,2(0) = 0 in the infrared (IR). The reason for this specific form of nonlocal operators
will be discussed in section 3. For simplicity, one can set H0(□) = H2(□) = H(□) but we
will not do that until later. Due to the Gauss-Bonnet theorem, the Riemann-Riemann
term and its associated form factor γ4 play no role in the renormalizability of the theory,
since its presence amounts to a redefinition of the form factors appearing in the graviton
propagator and scattering amplitudes:

γ0 → γ′
0 = γ0 − γ4 , γ2 → γ′

2 = γ2 + 4γ4 . (1.6)

• Nonminimally coupled nonlocal quantum gravity [38–42]: in the absence of matter,

L = GµνF µνστ (□)Gστ , Gµν := Rµν − 1
2gµνR , (1.7)

F µνστ (□) = gµνgστ 1
(D − 2)2 [4γ0(□)− (D − 4)γ2(□)] + gµσgντ γ2(□) , γ4 = 0 .

(1.8)

Then, the action reduces to the same as in the minimally coupled case, with γ4 = 0.
The form factors in the class of nonlocal theories considered here are of asymptotically
polynomial type,

eH0,2(z) = eγe+Γ[0,p0,2(z)] p0,2(z) , (1.9)

where γe is the Euler-Mascheroni constant, Γ is the upper incomplete gamma function
and p0,2(z) are two polynomials of the same degree (this condition is required for
renormalizability [25, 28]). In the IR, H0,2(z) ≃ p0,2(z) and exp[H0,2(z)] ≃ 1+ p0,2(z) if
the polynomials do not have a constant term, while in the UV exp[H0,2(z)] ≃ eγep0,2(z),
hence the name asymptotically polynomial.

In section 2.5, we recall the analytic continuation of scattering amplitudes to Euclidean
signature. In section 3, we calculate the free-level (i.e., tree-level) graviton propagator for the
generic theory (1.4) in a general gauge, without specifying the form factors; the final result
applies to all the above cases upon the choice of γ0,2,4. In section 4, we discuss the conformal
instability problem in the Euclidean path integral and show that it can be solved by gauge
invariance at the perturbative level for any of the above theories. In general, the conformal
instability arises when one ignores gauge-fixing terms in the action, which are necessary to
invert the graviton kinetic term. Section 5 contains our conclusions and future extensions
of these results, in particular, at the non-perturbative level.

2 Lorentzian path integral

The path-integral quantization of nonlocal quantum gravity in the background-field gauge
follows the same line as that of higher-derivative local theories [64]. In this section, we
consider only the gravitational sector of nonlocal quantum gravity, i.e., the action (1.4),
without specifying the type of form factors (hence, what follows applies also to fractional

– 3 –



J
H
E
P
0
7
(
2
0
2
4
)
2
7
7

gravity [52–55]). Introduce the background metric g̃µν and the Green’s functions generating
functional

Z[g̃, J ] := eiW [g̃,J ] :=
∫

DgµνDC̄αDCβDbσe
i

(
S[g]+Sgf [g̃,g]+Sgh[g̃,g,C,C̄,b]+

∫
g̃

gµνJµν

)
, (2.1)

where S[g] is a generic gravitational action, while the action terms for the gauge fixing
Sgf [g̃, g], the Faddeev-Popov ghosts C, C̄ and the third ghost b are

Sgf [g̃, g] = 1
2

∫
g̃

χα[g̃, g]Gαβ [g̃]χβ [g̃, g] , (2.2)

Sgh[g̃, g, C, C̄, b] =
∫

g̃
C̄αMα

β [g̃, g]Cβ + 1
2

∫
g̃

bαGαβ [g̃]bβ , (2.3)

where we introduced the definition ∫
g̃
:=
∫

dDx
√
|g̃| (2.4)

and the functionals Gαβ [g̃] depending only on the background metric g̃µν . The explicit form
of the matrix Gαβ[g̃] will be given later. The energy dimensionality of the elements in (2.2)
are [χα] = 1 and [Gαβ] = D − 2.

The integration measure we wrote in the simplified notation “DgµνDC̄αDCβDbσ” is
actually more complicated and includes factors of the metric determinant preserving dif-
feomorphism invariance. In D dimensions [65–68],

DgµνDC̄αDCβDbσ =
∏
µ⩽ν

D
[
|g|

D−4
4D gµν

] ∏
α

D
[
|g̃|

D−2
4D C̄α

]
×
∏
β

D
[
|g|

D+2
4D Cβ

] ∏
σ

D
[
|g|

D+2
4D bσ

]
, (2.5)

where the determinant associated with C̄α is of the background metric because the anti-ghost
C̄α is a vector under background parametrizations.

Let us recall how the ghost modes in the generating functional (2.1) emerge [64]. Ignore
the source J for the time being. The generating functional for any metric gravitational theory
and a given classical background g̃µν should be something of the form

Z[g̃] =
∫
M

Dgµν eiS[g] ,

where M is the space of all possible metrics gµν = g̃µν + hµν , hµν are quantum fluctuations
of the metric and S[g] is the classical action. However, this expression overcounts the
metrics due to gauge invariance; in the case of gravity, diffeomorphism invariance. Functional
integration should run only over physical metrics, i.e., metrics that are not equivalent under
a diffeomorphism transformation over the manifold coordinates. Calling G = Diff the
diffeomorphism group of transformations on such manifold, the generating functional in terms
of physical fields or gauge orbits gphysµν living in the quotient space M/Diff is

Z[g̃] = det(Diff)
∫
M/Diff

Dgphysµν eiS[g] ,
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where we factored out the gauge-group volume. This functional integral can also be expressed
in terms of the original field g via a constrained surface χα[g̃, g]−lα = 0 in the space M, where
lα = lα(x) are arbitrary functions of spacetime coordinates x. Employing the Faddeev-Popov
gauge-fixing procedure [64, 69], one can show that

Z[g̃] =
∫
M

Dgµν eiS[g]δ(χα − lα) detM , (2.6)

where χα and the matrix Mα
β depend both on the total metric gµν and on the background

metric g̃µν separately. The gauge condition is expressed in terms of a functional tµν
α [g̃]

depending only on the background metric g̃µν ,

χα[g̃, g] = tµν
α [g̃] gµν , (2.7)

which is linear in the field gµν . The ghost operator Mα
β [g̃, g] is

Mα
β [g̃, g] = δχα

δgµν

δgµν

δζβ
= tαµν [g̃] rµνβ [g] , (2.8)

where the generators of the infinitesimal diffeomorphism transformations x′α = xα − ζα

with parameter ζα are defined by

δgµν = rµνα[g] δζα ,

rµνα[g] := gµα∂ν + gνα∂µ − ∂αgµν = gµα∇ν + gνα∇µ . (2.9)

Given an arbitrary non-degenerate matrix Gαβ[g̃], one can use the identity

√
detG

∫
Dlα exp

(
i

2

∫
g̃

lαGαβ [g̃] lβ
)
= 1 (2.10)

to reexpress eq. (2.6) as

Z[g̃] =
∫
M

Dgµν exp
(

iS[g] + i

2

∫
g̃

χαGαβχβ

)
detM

√
detG . (2.11)

The last two terms, also known as Faddeev-Popov determinants, can be written as functional
integrals of the ghost spinors Cα, C̄α and the ghost vector boson bα:

detM =
∫

DC̄αDCβ exp
(

i

∫
g̃

C̄αMα
β Cβ

)
, (2.12a)

√
detG =

∫
Dbα exp

(
i

2

∫
g̃

bαGαβbβ

)
. (2.12b)

This leads to the final form (2.1) of eq. (2.11).
Now we have all the ingredients to introduce the quantum effective action.

2.1 Quantum effective action

Define the mean field

ḡµν := 1√
|g̃|

δW [g̃, J ]
δJµν

(2.13)
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and the quantum effective action

Γ[g̃, ḡ] := W [g̃, J ]−
∫

g̃
ḡµνJµν . (2.14)

Equations (2.13) and (2.14) lead to the equation of motion for the mean field
1√
|g̃|

δΓ[g̃, ḡ]
δḡµν

= −Jµν . (2.15)

Making the field redefinition

gµν = ḡµν + hµν (2.16)

in the functional integral (2.1) and using the definition (2.14) for W [g̃, J ], we find

e
iΓ[g̃,ḡ]+i

∫
g̃

ḡµνJµν

=
∫

DhµνDC̄αDCβ Dbγ exp
(

i

{
S[ḡ + h]

+ 1
2

∫
g̃

tµν
α [g̃](ḡµν + hµν)Gαβ [g̃] tρσ

β [g̃](ḡρσ + hρσ)

+
∫

g̃
C̄α tαµν [g̃] rµνβ [ḡ + h]Cβ + 1

2

∫
g̃

bαGαβ [g̃] bβ

+
∫

g̃
(ḡµν + hµν) Jµν

})
. (2.17)

The second exponential on the left-hand side matches the next-to-last one on the right-hand
side. Moreover, the last exponential on the right-hand side can be expressed in terms of
the quantum effective action using eq. (2.15):

eiΓ[g̃,ḡ] =
∫

DhµνDC̄αDCβDbγ exp
(

i

{
S[ḡ + h]−

∫
η

δΓ[g̃, ḡ]
δḡµν

hµν

+ 1
2

∫
g̃
[tµν

α [g̃] (ḡµν + hµν)] Gαβ [g̃]
[
tρσ
β [g̃] (ḡρσ + hρσ)

]
+
∫

g̃
C̄α tαµν [g̃] rµνβ [ḡ + h]Cβ + 1

2

∫
g̃

bαGαβ [g̃] bβ

})
, (2.18)

where the first spacetime integral is
∫

η :=
∫

dDx because the 1/
√
|g̃| prefactor in eq. (2.15)

cancels the one in the integral measure.
Finally, we identify g̃µν = ḡµν and we denote

Γ[ḡ] := Γ[g̃, ḡ]
∣∣∣
g̃=ḡ

. (2.19)

The functional Γ[ḡ] is the quantum effective action computed in a special gauge depending
on the mean field ḡ. From eq. (2.18) and the definition (2.19), it follows that

eiΓ[ḡ] =
∫

DhµνDC̄αDCβDbγ exp
(

i

{
S[ḡ + h]−

∫
η

δΓ[g̃, ḡ]
δḡµν

∣∣∣
ḡ=g̃

hµν

+ 1
2

∫
ḡ
[tµν

α [ḡ] (ḡµν + hµν)] Gαβ [ḡ]
[
tρσ
β [ḡ] (ḡρσ + hρσ)

]
+
∫

ḡ
C̄α tαµν [ḡ] rµνβ [ḡ + h]Cβ + 1

2

∫
ḡ

bαGαβ [ḡ] bβ

})
. (2.20)
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We can slightly simplify the computations imposing a derivative gauge condition, namely,
tµν
α [g̃] in eq. (2.7) is a derivative operator with respect to the background metric g̃αβ and

acting on the metric gαβ. Therefore, the gauge functional in eq. (2.7) simplifies to

χα[g̃, h] = tµν
α [g̃]hµν , (2.21)

as a consequence of ∇̃αg̃βγ = 0. Notice that the gauge-fixing condition is linear in the field
hµν . The ghost operator Mβ

α [g̃, g] (2.8) explicitly depends on g̃ and h,

Mα
β [g̃, h] = δχα

δgµν

δgµν

δζβ
= tαµν [g̃] rµνβ [g̃, h] , (2.22)

where we replaced ∇ in eq. (2.9) with ∇̃ because the generator rµνα is at most linear in gµν :

δgµν = rµνα[g̃, h] δζα ,

rµνα[g̃, h] = gµα∇̃ν + gνα∇̃µ = g̃µα∇̃ν + hµα∇̃ν + g̃να∇̃µ + hνα∇̃µ . (2.23)

Using the gauge-fixing functional [70] (in our signature)

tµν
α [g̃] = g̃µσδν

α ∇̃σ − λ g̃µν∇̃α , (2.24)

where βg is a constant, the gauge function reads

χα[g̃, h] = tµν
α [g̃]hµν =

(
g̃µσδν

α ∇̃σ − λ g̃µν∇̃α

)
hµν = ∇̃σhσ

α − λ∇̃αh . (2.25)

Similarly, we can derive the ghost operator

Mα
β [g̃, h] = tαµν [g̃] rµνβ [g̃, h]

= □̃δα
β + ∇̃β∇̃α − 2λ∇̃α∇̃β + ∇̃µ

(
hµβ∇̃α

)
+ ∇̃µ

(
hα

β∇̃µ

)
− 2λ∇̃α

(
hµβ∇̃µ

)
, (2.26)

which consists in a kinetic operator (third line of eq. (2.26)) and a few interaction terms all
linear in the graviton. Note that the ghost nature of the field Cα is not due to a wrong sign
in front of the kinetic term (the kinetic matrix Mα

β has the canonical sign for a complex
scalar) but to the fact that Cα is a Grassmann variable. Overall,

Sgf =
1
2

∫
dDx

√
|g̃|χα[g̃, h]Gαβ [g̃]χβ [g̃, h] , (2.27)

χα[g̃, h] = ∇̃σhσ
α − λ∇̃αh , (2.28)

Gµν [g̃] = −M2
Pl

4
[
2g̃µν(λ1 + γ′

2λ3□̃) + γ′
2λ2∇̃µ∇̃ν − 2γ′

2λ3∇̃ν∇̃µ
]

, (2.29)

Sgh =
∫

dDx
√
|g̃|
[
C̄α Mα

β [g̃, h]Cβ + 1
2bαGαβ [g̃]bβ

]
, (2.30)

Mα
β [g̃, h] := Mα

β [g̃] + Mα
β [C̄, C, h] , (2.31)

Mα
β [g̃] = □̃δα

β + ∇̃β∇̃α − 2λ∇̃α∇̃β , (2.32)

Mα
β [C̄, C, h] = ∇̃µ

(
hµβ∇̃α

)
+ ∇̃µ

(
hα

β∇̃µ

)
− 2λ∇̃α

(
hµβ∇̃µ

)
, (2.33)
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where γ′
2 = γ′

2(□̃) and the gauge-fixing parameters λ, λ1, λ2 and λ3 are dimensionless
constants, [λ] = [λi] = 0, just like for a local theory.1 In eq. (2.27), we used the compatibility
condition ∇̃α g̃βγ = 0 for the background metric. Note that, on a curved background, covariant
derivatives do not commute, hence the separation of the last two factors in (2.29). The
expression for Gµν generalizes the one of [70] to the case of nonlocal theories.

The action for the Faddeev-Popov ghosts only has two derivatives (eq. (2.32)) but it
can be modified in order to have the same number of derivatives as in the gravitational and
in the gauge-fixing action in the UV, which is higher-order but finite in nonlocal quantum
gravity with asymptotically polynomial operators. This can be done introducing the identity
in the path integral in the form of (det Gαβ)−1/2 × (det Gαβ)1/2 [60, 70].

To summarize, the quantum effective action is given by the path integral (2.20) with
the gauge-fixing action (2.27), the ghost action (2.30) and with the metric g̃αβ identified
with the background metric ḡαβ.

2.2 Loop expansion

In the previous subsection, we derived the path-integral formula (2.20) for the quantum
effective action. However, in order to solve such equation for Γ we recall a perturbative
technique that goes under the name of loop expansion.

We expand the functional S[ḡ + h] as a Taylor series of the field ḡµν ,

S[ḡ + h] = S[ḡ] +
∞∑

n=1

1
n!Sn[ḡ]hn , (2.34a)

Sn[ḡ]hn :=
∫

η1
. . .

∫
ηn

δS[ḡ]
δḡµν(x1) . . . δḡστ (xn)

hµν(x1) . . . hστ (xn) , (2.34b)

where
∫

ηn
:=

∫
dDxn, and define

Γ1[ḡ]h :=
∫

η

δΓ[g̃, ḡ]
δḡµν(x)

∣∣∣∣∣
ḡ=g̃

hµν(x) . (2.35)

Equation (2.20) can be recast as

eiΓ̄[ḡ] =
∫

DhµνDC̄αDCβDbγ exp
(

i

{
1
2S2[ḡ]h2 +

∞∑
n=3

1
n!Sn[ḡ]hn + (S1[ḡ]− Γ1[ḡ])h

+ 1
2

∫
ḡ
[tµν

α [ḡ] (ḡµν + hµν)] Gαβ [ḡ]
[
tρσ
β [ḡ] (ḡρσ + hρσ)

]
+
∫

ḡ
C̄α tαµν [ḡ] rµνβ [ḡ + h]Cβ + 1

2

∫
ḡ

bαGαβ [ḡ] bβ

})
, (2.36)

where Γ̄[ḡ] := Γ[ḡ] − S[ḡ] encodes all the quantum corrections augmenting the classical
action S[ḡ]. In the right-hand side, we separated explicitly the quadratic term defining the
propagator from non-linear interactions. The term S1 − Γ1 cancels one-particle-reducible
diagrams coming from other contributions in the expression, so that the right-hand side only
contains one-particle-irreducible diagrams [64].

1As we will see in section 4, there is no need to generalize λ and λi to non-trivial operators.
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2.3 One-loop effective action

In order to derive the one-loop quantum effective action, we have to expand the action
at the second order in the fields. In particular, we expand the gravitational action at the
second order in hµν , so that no gravitational coupling appears between the ghosts and the
graviton. Therefore, (2.20) simplifies to

eiΓ[ḡ] =
∫

DhµνDC̄αDCβDbγ exp i

[
S[ḡ] + 1

2hµν
δ2S[ḡ + h]
δhµν δhρσ

∣∣∣∣∣
h=0

hρσ

+ 1
2

∫
ḡ

χα[ḡ, h]Gαβ [ḡ]χβ [ḡ, h] +
∫

ḡ

(
C̄α Mα

β [ḡ]Cβ + 1
2bαGαβ [ḡ]bβ

)]

= eiS[ḡ] (det ∆µνρσ)−
1
2 (det Mα

β) (det Gµν)
1
2 , (2.37)

where the gauge-fixing and the ghost operators are given by eqs. (2.28) and (2.32), respectively,
while the Hessian is

∆µνρσ := δ2S[ḡ + h]
δhµνδhρσ

∣∣∣∣∣
h=0

+ δχα

δhµν
Gαβ [ḡ] δχβ

δhρσ

∣∣∣∣∣
h=0

, (2.38)

where Gαβ[ḡ] is given in eq. (2.29).
Taking −i ln of eq. (2.37), we finally get the quantum effective action at one loop,

Γ(1)[g] = −i ln eiΓ[ḡ] = S[g] + i

2 ln detH− i ln detM − i

2 ln detC. (2.39)

The effective action in nonlocal quantum gravity has not been calculated in full yet and
super-renormalizability has been checked so far with the power-counting argument and via the
calculation of the one-loop effective action in scalar toy models and in gravitational models
with fewer derivatives than those appearing in the UV limit of asymptotically polynomial
form factors, in particular, six [71]. However, increasing the number of derivatives makes
the power counting even more powerful because the beta functions do not depend on the
running couplings. In general, divergences come only from the polynomial (local) parts of the
theory, while diagrams with nonlocal form factors within are, by definition, all convergent on
the domain of such operators. It is important to stress that power counting is valid, as a
general argument, to conclude that the theory is super-renormalizable. The reason is that the
counter-terms to be added to the bare Lagrangian are local operators [42], which implies that
the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) subtraction scheme holds and that the
theory is also BPHZ renormalizable [55]. This conclusion is somewhat obvious from the fact
that the UV limit of nonlocal theories with asymptotically polynomial form factors is local
but, surprisingly, it also holds for some nonlocal theories with a nonlocal UV limit such as
fractional gravity [55]. An immediate consequence is that BPHZ renormalization guarantees
that sub-divergences can always be absorbed by a standard one-loop counter-term in the
action. Hence, the power-counting argument is sufficient to account for all divergences at
any loop order. Note also that these complications do not appear in the finite version of
the theory. In this case, there are no sub-divergences at higher loop orders because there
are no divergences at all at lower order, since all beta functions vanish [28, 42]. Thanks to
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these general results, the explicit calculation of the one-loop quantum effective action (2.39)
becomes secondary in the discussion of the renormalizability of nonlocal quantum gravity,
although, of course, it should be on top of the future agenda.

2.4 Green’s functions

This subsection is devoted to the path-integral formulation of any gravitational theory in
Minkowski spacetime. Namely, the background spacetime is globally Minkowski. Here we
treat gravity in exactly the same way as the other fundamental interactions in Nature. Indeed,
the choice of the Minkowski background in gravity is analogue to the trivial zero background
for gauge bosons, scalars, or fermions and it is dictated by the equivalence principle.

The Green’s functions for quantum gravity are related to the generating functional Z[J ]
through multiple derivatives with respect to the source Jµν :

Gµ1ν1µ2ν2...µnνn(x1, . . . , xn) := ⟨hµ1ν1(x1) . . . hµnνn(xn)⟩

= 1
in

δnZ[J ]
δJµ1ν1(x1) δJµ2ν2(x2) . . . Jµnνn(xn)

∣∣∣∣∣
J=0

, (2.40)

where the right-hand side has to be evaluated in J = 0. The generating functional is obtained
simply replacing g̃µν = ηµν in eq. (2.1):

Z[η, J ]= eiW [η,J ]

=
∫

Dhµν DC̄αDCβDbγ e
i

(
S[g]+Sgf [η,g]+Sgh[η,g,C,C̄,b]+

∫
η

hµνJµν

)
, (2.41)

where gµν = ηµν + hµν , while the gauge-fixing and ghost operators (2.2) and (2.3) simplify to

Sgf [η, h] = 1
2

∫
η

χα[h, η]Gαβ [η]χβ [h, η] , (2.42)

Sgh[h, C, C̄, b] =
∫

η
C̄αMα

β [η, h]Cβ

︸ ︷︷ ︸
Sgh[η,h,C,C̄]

+ 1
2

∫
η

bαGαβ [η]bβ︸ ︷︷ ︸
Sgh[η,b]

. (2.43)

In perturbation theory, we split the action into a kinetic and an interacting part. The
kinetic Lagrangian is quadratic in the perturbation hµν , while interactions are at least cubic
in hµν . Let us rename the action for the free theory S0[h] and reserve the subscript 0 for
any quantity evaluated with the free dynamics. Therefore, the generating functional for
the free theory reads

Z0[J ] =
∫

DhµνDC̄αDCβDbγ e
i

(
S0[h]+Sgf [h]+Sgh[C,C̄,b]+

∫
η

hµνJµν

)
, (2.44)

where we have omitted the background Minkowski metric from the arguments of the func-
tionals.

Since ghosts cannot appear as asymptotic states, we did not include source terms for such
fields in eq. (2.1). However, in formulating perturbation theory it is convenient to consider
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also Green’s functions involving ghost fields. The generating functional (2.1) is extended to

Z[J, JC , JC̄ , Jb] =
∫

DhµνDC̄αDCβDbγ exp i

[
S[g] + Sgf [h] + Sgh[h, C, C̄, b]

+
∫

η

(
hµνJµν + JC,αCα + J C̄,αC̄α + Jb,αbα

)]
, (2.45)

where the gauge-fixing action and the actions for the ghosts are obtained from eqs. (2.27),
(2.29), (2.30) and (2.33) after replacing g̃αβ with the Minkowski metric ηαβ.

Therefore, the Green’s functions are

⟨hµν(x1) . . . C̄α(y1) . . . Cβ(z1) . . . bγ(w1) . . . ⟩

= 1
in

δnZ[J, JC , JC̄ , Jb]
δJµν(x1) . . . δJ C̄,α(y1) . . . δJC,β(z1) . . . δJb,γ(w1) . . .

∣∣∣∣∣
J=0

, (2.46)

where the notation ⟨. . . ⟩ means that we are integrating eq. (2.45) with insertions of graviton
and ghosts fields,

⟨hµν(x1) . . . C̄α(y1) . . . Cβ(z1) . . . bγ(w1) . . . ⟩

=
∫

DhµνDC̄αDCβDbγ hµν(x1) . . . C̄α(y1) . . . Cβ(z1) . . . bγ(w1) . . .

× exp i

[
S[g] + Sgf [h] + Sgh[h, C, C̄, b]

+
∫

η

(
hµνJµν + JC,αCα + J C̄,αC̄α + Jb,αbα

)]
. (2.47)

It is straightforward to prove that eq. (2.47) is simply the multiple functional derivative of
the generating functional Z with respect to the currents iJ , as stated by eq. (2.46).

2.5 Efimov analytic continuation

It has become progressively clear that even the best behaved nonlocal quantum field theories
have problems if scattering amplitudes are calculated directly in Lorentzian signature [72].
In other words, usually, naive Lorentzian nonlocal theories where the internal energies k0

are integrated on the real line do not exist. If, instead, one defines the Feynman diagrams
with imaginary external and internal energies (Euclidean signature in momentum space) and
afterwards analytically continues external energies to real ones after integrating, then loop
integrals can be performed consistently and the theory admits a unique Lorentzian limit.
This is the so-called Efimov analytic continuation [34, 73–77], which consists of three steps.

For any given loop Feynman diagram in Lorentzian quantum gravity, namely, where the
path integral is performed on Lorentzian metrics (perturbations on Minkowski spacetime)
with the iϵ Feynman prescription:

1. Assume that both internal and external energies (respectively, k0 and p0) take complex
values in the loop amplitudes.
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2. Integrate on the imaginary axis in the (Re k0, Im k0) complex plane. (Note that, in
general, there will be poles k̄0(p) of the integrand to the left and to the right of the
path, but none on the path itself [34].)

3. After the loop integrations, analytically continue the external energies p0 back to
real values.

We can express the above three steps into other, equivalent ways.
One, which we might call deformed-paths view, is to assume that only the internal energies

k0 are complex valued, while the external energies p0 stay real. Then, internal energies are
integrated along special paths in the complex plane. According to the previous description,
these paths are obtained moving analytically the external energies from complex to real
values. Each path is deformed in such a way as to accommodate analytically the poles
that migrate across the imaginary k0 axis, thus guaranteeing safe integration [34]. The
advantage of understanding Efimov analytic continuation according to steps 1-3 instead of
in the deformed-paths view is that the correct deformed path and the homotopic class it
represents can hardly be guessed if external energies stay real and internal ones are imaginary.

Another equivalent form (Euclidean theory view) is to invoke the Euclidean version of the
theory, which corresponds to the third line of (4.5) below. In step 2, define first a Euclidean
version kD = −ik0 and pD = −ip0 of both internal and external energies and integrate on
real values of kD. Obviously, in Euclidean quantum gravity this step would be automatically
implemented. Then, it is clear that the Lorentzian amplitudes of the nonlocal theory are
nothing but Euclidean amplitudes analytically continued to imaginary external energies pD.
Therefore, at the perturbative level, the Lorentzian theory as defined in sections 2.1–2.4 is
indistinguishable from an analytically continued Euclidean version of the theory.

Of course, this means that the Lorentzian and the pure Euclidean theory (i.e., without
analytic continuation) are physically inequivalent, as also noted in [77], since there is a highly
non-trivial analytic continuation differentiating the two. In the pure Euclidean case, one
integrates straight on top of the real axis in the (Re kD, Im kD) plane, and this is it. In contrast,
in the Lorentzian case one deforms this path when sending the external energies to real values
and some poles get across the imaginary axis [34]. This is also the reason why we started with
a Lorentzian path-integral formulation instead of a Euclidean one: the final result is unique
because the power counting and all the integrals are defined in Euclidean momentum space.

Summarizing, at the perturbative level there is no conceptual difference between gravity
and any other interactive gauge theory. Perturbative quantum gravity is the theory of
interacting gravitons and loop amplitudes can be computed exactly as in those cases. All
loop amplitudes are computed with purely imaginary internal and external energies and,
in the end, one makes the above analytic continuation and the final result is a Lorentzian
quantum effective action. The only difference with respect to two-derivative theories is
that the analytically continued theory is not equivalent to the theory defined with internal
real energies because of the contribution of the pole at infinity (essential singularity) due
to the nonlocal form factor.
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3 Tree-level graviton propagator

In this subsection, we calculate the tree-level graviton propagator for the general action (1.4)
with arbitrary form factors γ0,2,4, following the same steps as in [78]. This will be central
to the perturbative solution of the conformal instability problem.

The tree-level propagator for the dimensionless gravitational perturbation hµν defined by

gµν = ηµν + hµν , (3.1)

can be computed in a standard albeit lengthy way. The expansion at second order of the
action (1.4) yields the Lagrangian2

LK = M2
Pl

8
{

hµν□hµν + AµAµ + (Aµ − ∂µφ)(Aµ − ∂µφ)

+□hµνγ′
2(□)□hµν − (∂µAµ)γ′

2(□)∂νAν − F µνγ′
2(□)Fµν

+ (∂µAµ −□φ)[γ′
2(□) + 4γ′

0(□)](∂νAν −□φ)
}

=: 12 hαβ OK
αβµν hµν + . . . , (3.2)

where Aµ := ∂νhµν , Fµν := ∂µAν − ∂νAµ, φ := hµ
µ, γ′

0,2 are defined in (1.6) and dots denote
total derivative terms. Since the kinetic term OK is not invertible, one must add to LK
the gauge-fixing Lagrangian in (2.27). On Minkowski background g̃µν = ηµν , the covariant
derivatives in (2.29) become ordinary commuting derivatives. Since χµ = Aµ−λ∂µφ, we obtain

Lgf =
M2

Pl

8
[
− 2λ1(Aµ − λ∂µφ)(Aµ − λ∂µφ)

+ λ2(∂αAα − λ□φ)γ′
2(□)(∂βAβ − λ□φ) + λ3Fµνγ′

2(□)F µν
]

=: 12 hαβ Ogf
αβµν hµν + . . . . (3.3)

In momentum space, □ = −k2 = (k0)2 − k2. In Euclidean momentum space, = −k2 =
−k2

D − k2 ⩽ 0.
Contrary to OK, the kinetic operator O = OK + Ogf is invertible. In the basis of

Barnes-Rivers projectors [79–81] and in momentum space, it is

O(k) = c1P
(1) + c2P

(2) + c0P
(0) + c̄0P̄

(0) + ¯̄c0 ¯̄P (0), (3.4)

2Here is how to compare the conventions and results of [78] with ours. Spacetime signature is mostly minus
in [78] and mostly plus for us. Also, their Ricci scalar R is −R for us, so that there is an extra overall − sign in
the total action and in its coefficients α = −M2

Plγ0, β = −M2
Plγ2 and γ = −M2

Plγ4. Then, b = βκ2/2 = −2γ2,
c = α/β = γ0/γ2 and d = γκ2/2 = −2γ4, where κ = 2/MPl. Finally, the graviton in [78] is dimensionful and
defined as gµν = ηµν + κhµν , while our hµν is dimensionless. Therefore, our coefficients ci ∈ {c1, c2, c0, c̄0, ¯̄c0}
are related to the coefficients xi ∈ {x1, x2, x0, x̄0, ¯̄x0} in [78] by ci(k2) = −(M2

Pl/4) xi(k2). The expressions
in [78] immediately generalize to the weakly nonlocal case with non-trivial form factors and we have recalculated
them anew.
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where we omitted spacetime indices and

P (1)
µνρσ := Θµ(ρωσ)ν +Θν(ρωσ)µ , ωµν := kµkν

k2 , Θµν := ηµν − ωµν , (3.5a)

P (2)
µνρσ := 1

2 (ΘµρΘνσ +ΘµσΘνρ)−
1

D − 1ΘµνΘρσ , (3.5b)

P (0)
µνρσ := 1

D − 1Θµν Θρσ , (3.5c)

P̄ (0)
µνρσ = ωµν ωρσ , (3.5d)
¯̄P (0)

µνρσ = (Θµνωρσ + ωµνΘρσ) . (3.5e)

The coefficients ci are

c1 =−M2
Pl

4 k2
(
λ1−k2λ3γ

′
2

)
, (3.6a)

c2 =−M2
Pl

4 k22
(
1−k2γ′

2

)
, (3.6b)

c0 =
M2

Pl

4 k2
{
(D−2)−2(D−1)λ2λ1+k2

[
4(D−1)γ′

0+Dγ′
2+(D−1)λ2λ2γ

′
2

]}
, (3.6c)

c̄0 =−M2
Pl

4 k2(λ−1)22
(
2λ1−k2λ2γ

′
2

)
, (3.6d)

¯̄c0 =−M2
Pl

4 k2λ(λ−1)2
(
2λ1−k2λ2γ

′
2

)
. (3.6e)

Note that [O] = D = [ci]. In order to find the propagator

O−1(k) = s1P
(1) + s2P

(2) + s0P
(0) + s̄0P̄

(0) + ¯̄s0 ¯̄P (0), (3.7)

one has to solve the linear system

O · O−1 =



c1 0 0 0 0
0 c2 0 0 0
0 0 c0 0 ¯̄c0
0 0 ¯̄c0 0 c̄0
0 0 0 c̄0 ¯̄c0
0 0 0 ¯̄c0 c0




s1
s2
s0
s̄0
¯̄s0

 =



1
1
1
0
1
0


.

Using the echelon matrix form [78]

c1 0 0 0 0 1
0 c2 0 0 0 1
0 0 c0 0 (D − 1)¯̄c0 1
0 0 ¯̄c0 0 c̄0 0
0 0 0 c̄0 (D − 1)¯̄c0 1
0 0 0 ¯̄c0 c0 0


R∼



c1 0 0 0 0 1
0 c2 0 0 0 1
0 0 c0 0 (D − 1)¯̄c0 1
0 0 0 c̄0 (D − 1)¯̄c0 1
0 0 0 0 c0c̄0 − (D − 1)¯̄c20 −¯̄c0
0 0 0 0 0 0


,

where R∼ denotes row equivalence, the graviton propagator is

O−1 = 1
c1

P (1) + 1
c2

P (2) + 1
c0c̄0 − (D − 1)¯̄c20

[
c̄0P

(0) + c0P̄
(0) − ¯̄c0 ¯̄P (0)

]
. (3.8)
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All these expressions hold also in the case where γ′
0 and γ′

2 are non-trivial functions of the
momentum as in the theory (1.4). Note that the coefficients in front of P (2) and P (0) do
not depend on the gauge parameters and we can isolate a gauge-independent part O−1

K
in the propagator:

O−1(k) = O−1
K (k) + gauge

= 1
c2

P (2) + c̄0
c0c̄0 − (D − 1)¯̄c20

P (0) + gauge

= − 4
M2

Pl

(
P (2)

k2 [1− k2γ′
2(k2)] −

P (0)

k2 {(D − 2) + k2 [4(D − 1)γ′
0(k2) + Dγ′

2(k2)]}

)
+ gauge . (3.9)

This expression is equivalent to O−1
K = P (2)/c2 + P (0)/c0 when setting λ1 = λ2 = λ3 = 0. In

general, different gauge choices become handy when exploring different aspects of the theory,
for instance, when showing that the spin-0 mode with the wrong sign does not propagate or
when checking positivity of the eigenvalues of the kinetic operator in Euclidean signature.
Some common gauge choices are the Julve-Tonin gauge (λ = 0) [58], the de Donder gauge
(λ = 1/2, λ2 = 0 = λ3) and the Feynman gauge (λ = 1/2, λ1 = 1, λ2 = 0 = λ3) [78].

The gauge-independent part of the propagator (3.9) has already been studied in the
literature. As its equivalent form shows, both in the minimally and in the nonminimally
coupled version of nonlocal quantum gravity one has

O−1(k) = − 4
M2

Pl

[
P (2)

k2eH2(k2) −
P (0)

(D − 2)k2eH0(k2)

]
+ gauge , (3.10)

which does not have extra poles beside from the usual ones. This conservation of the unitarity
property is the physical motivation for choosing the form factors (1.5) and one of the main
pillars of nonlocal quantum gravity.

4 Conformal instability

Consider a generic theory of quantum gravity plus matter fundamentally defined by a
Euclidean path integral

Z[Φi] =
∫ ∏

i

[dΦi] e−SE[Φi], (4.1)

where the fields Φi include the Euclidean metric gEµν and SE is the Euclidean action. This
theory can suffer from a conformal instability problem [82–84], which we illustrate in Einstein
gravity. A conformal transformation of the metric

gµν = Ω2ĝµν (4.2)

in the Ricci term R produces a kinetic term for the conformal factor Ω with the wrong
sign. The Lorentzian action is

S = M2
Pl

2

∫
dDx

√
|g|R = M2

Pl

2

∫
dDx

√
|ĝ|ΩD−4

[
Ω2R̂ + (D − 1)(D − 2)∂̂µΩ∂̂µΩ

]
, (4.3)
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where we have dropped boundary terms. The ghost mode Ω translates into an unboundedness
of the Euclidean action SE := −iS. In our conventions, x0 = −ixD and k0 = ikD, so that,
for ĝµν = ηµν , calling ω := Ω(D−2)/2MPl

√
2(D − 1)/(D − 2),

S =
∫

dDx ∂µω∂µω

=
∫

dx0dD−1x[−(∂0ω)2 + ∂iω∂iω]

= −i

∫
dxDdD−1x[(∂Dω)2 + ∂iω∂iω]

= −i

∫
dDxE

D∑
i=1

(∂iω)2

= iSE . (4.4)

Therefore, the Euclidean path integrand exp(iS) = exp(−SE) has an anti-Gaussian term
∼ exp[

∫
(∂ω)2] and is unbounded from above. To avoid this arbitrarily large instability,

one can deform the integration contour over the fields, in particular, taking a functional
measure [Dgµν ] over complex Euclidean metrics (complex conformal factor), in such a way
as to get a convergent result [83, 85–89].

The physical significance of this procedure was criticized in [90–92] and motivated another
approach, where the fundamental definition of the path integral is Lorentzian and one derives
(instead of assuming) the correct Euclidean path integral by integrating over a suitable
contour in field space with real Lorentzian metrics [90–93]. Nonlocal quantum gravity is
defined with a Lorentzian path integral, so that the issue of the conformal instability can be
solved in this way. At least, there is no reason to suspect that this resolution, successful in
other theories, should not work also here. As is clear from the construction at the beginning of
section 2 and in section 2.1, all dynamics-independent tools developed to solve the conformal
instability problem are available also in nonlocal quantum gravity. In particular, the York
decomposition [94, 95] of metric perturbations hµν into transverse-traceless, scalar and gauge
(coordinate) modes holds, and we also have a DeWitt metric defining the quadratic form
⟨hµν , hστ ⟩ [96–98]. These tools allow one to handle the Jacobian factors in the path-integral
measure as usual and to factorize them into Gaussian integrals over each of the metric York
components. Then, since entire nonlocal form factors do not break Lorentz and diffeomorphism
invariance nor hide any extra pole in field redefinitions, all the manipulations of [92] and
of its non-perturbative extension [99] leading to a well-defined continuation to a Euclidean
path integral can be applied to the nonlocal action.

In this paper, we will not discuss the resolution of the conformal instability problem at
the non-perturbative level until section 5 because we mainly focus on perturbation theory,
where the Lorentzian path integral is employed. As described in section 2.5, amplitudes are
calculated in Euclidean momenta and then analytically continued to imaginary Euclidean
(i.e., real Lorentzian) external energies. However, at the non-perturbative level, the Lorentzian
and the Euclidean theory are distinguishable because the path integral, with its functional
measure and the space of metrics on which one integrates [93, 100], differs in the Euclidean
and Lorentzian formulations. Redefining and analytically continuing the Lorentzian momenta
of the fields appearing in the functional measure of the Lorentzian path integral produces a
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measure which is functionally inequivalent to the one obtained by analytically continuing the
Euclidean momenta of the fields appearing in the measure of the Euclidean path integral.
To put it very schematically,

Lorentzian path integral :=
∫

metrics (−,+,...,+)
Dgµν eiS

with Efimov prescription on k0 integration

=
∫

metrics (−,+,...,+)
Dgµν e−SE

with Efimov prescription on kD = −ik0 integration

=
∫

metrics (+,+,...,+)
DgEµν J e−SE

with Efimov prescription on kD integration

̸=
∫

metrics (+,+,...,+)
DgEµν e−SE

with naive analytic continuation
= Euclidean path integral with naive analytic continuation, (4.5)

where the action is expressed as an integral in momentum space and the Jacobian J =
Dgµν/DgEστ can be inferred from [99]. In particular, nonlocal quantum gravity is defined by
the left-hand side of the first line of (4.5), not by the last line.

From this discussion, it stems that the conformal instability problem does not affect
perturbative results because, in general, the Lorentzian perturbation theory is well defined [84,
101]. Let us expand on this statement. In order for the Lorentzian path integral to be well
defined in perturbation theory, the tree-level graviton kinetic term in Feynman prescription
k2 → k2 − iϵ must generate a Gaussian term in the path integral that makes it convergent.
If this was the case, then we would have convergence order by order in perturbation theory
because, at higher orders, one only has to include vertex insertions, which do not spoil the
tree-level convergence property. This is because all correlation functions in perturbation
theory are written as an expansion of the interactions Sint: schematically for a generic field Φ,

⟨Φ(x1) . . .Φ(xn)⟩ =
∑

n

∫
Φ(x1) . . .Φ(xn) inSn

int
eiS0

n! , (4.6)

where S0 =
∫
ΦOΦ and O = OK+Ogf is the tree-level kinetic term (inverse of the propagator),

where OK is the kinetic term coming from the bare action and Ogf is a contribution coming
from the gauge-fixing action. In order to explicitly compute any perturbative amplitude,
we should commute the functional integral with the sum. This issue is related to the Borel
summability of the perturbative series that deserves to be investigated also in gravity and, in
particular, in a finite theory of quantum gravity in the QFT framework.

If one naively considered only the gauge-invariant part O−1
K of the propagator, the

convergence problem would persist after the k2 → k2 − iϵ prescription because the spin-2
and spin-0 modes in OK have opposite sign, so that the spin-0 mode would generate an anti-
Gaussian profile. Thus, the role of Ogf cannot be ignored. If, after a Weyl transformation (4.2),
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a suitable gauge choice exists such that the eigenvalues of the kinetic operator of the conformal
factor Ω are all zero or negative in Euclidean signature, then there is convergence of the
Euclidean path integral at the perturbative level.

To show this, it is sufficient to consider the gravitational sector of nonlocal quantum
gravity and the generic action (1.4) where now γ0, γ2 and γ4 are generic form factors which
vanish for Einstein gravity and are constant in Stelle gravity, and Sgf is the gauge-fixing
action. In a Weyl invariant theory, the metric gµν composing the measure and the curvature
tensors is the one before making explicit the dilaton dependence. Decompose the metric as
in (3.1) and derive the perturbed action for the dimensionless spin-2 field hµν (the graviton
polarization modes are inside this object). On Minkowski background, the kinetic term is
∝ hµνOµνστ hστ , where the operator Oµνστ is given in section 3 and is a generalization of
the higher-derivative expression found in [78].

Consider now a Weyl transformation producing the incriminated kinetic term with the
wrong sign for the conformal factor Ω. To isolate the troublesome scalar mode, it is sufficient
to pick a conformally flat metric ĝµν = ηµν [91, 92, 102, 103]:

gµν = Ω2 ηµν ⇐⇒ hµν = (Ω2 − 1)ηµν =: ϕηµν , (4.7)

where ϕ is a scalar. Therefore,

hµνOµνστ hστ = ϕηµνηστOµνστ ϕ

= ϕ[(D − 1)c0 + c̄0 + 2(D − 1)¯̄c0]ϕ
=: ϕKϕ , (4.8)

where we used eq. (3.4), the Barnes-Rivers projectors (3.5) and the ensuing properties

ηµνηστ P (1)
µνστ = 0 = ηµνηστ P (2)

µνστ , (4.9a)
ηµνηστ P (0)

µνστ = D − 1 , (4.9b)
ηµνηστ P̄ (0)

µνστ = 1 , (4.9c)

ηµνηστ ¯̄P (0)
µνστ = 2(D − 1) . (4.9d)

Intuitively, only the spin-0 projectors survive because they act on a scalar. From the
expressions (3.6) for the coefficients c0, c̄0 and ¯̄c0, in momentum space we have

K = M2
Pl

4 k2
{
(D − 1)(D − 2)− 2(Dλ − 1)2λ1

+ k2
[
4(D − 1)2γ′

0 + D(D − 1)γ′
2 + (Dλ − 1)2λ2γ

′
2

]}
, (4.10)

where λ, λ1, and λ2 are gauge parameters (or, more generally, functions of k2) appearing
in the gauge-fixing contribution Ogf .

If we ignored the gauge-fixing terms and set λ = λ1 = λ2 = 0, then K > 0 in Euclidean
signature for non-negative form factors γ′

0,2 ⩾ 0 and the Euclidean action SE ∼ −
∫

ϕKϕ

would be unbounded from above. This is the conformal instability problem. However, by
virtue of gauge invariance, if we can find a range of gauge choices where K ⩽ 0 for all momenta
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k, then we can conclude that such problem is a gauge artefact and that the scalar mode
ϕ does not propagate (K = 0) or that it propagates with a kinetic term of the “straight”
sign (K < 0). In general, for γ′

2 ̸= 0 this happens when

λ1 ⩾
(D − 1)(D − 2)
2(Dλ − 1)2 , (4.11)

λ2 ⩽ − D − 1
(Dλ − 1)2

[
4(D − 1)γ′

0
γ′
2
+ D

]
. (4.12)

The first of these conditions appears in all theories with an Einstein-Hilbert term and implies
that both λ and λ1 can be chosen to be constant. In D = 4 dimensions, λ1 ⩾ 3/(4λ− 1)2 and
infinitely many gauges with λ ≠ 1/4 can fulfill eq. (4.11), including Julve-Tonin (λ = 0) and de
Donder (λ = 1/2, λ2 = 0 = λ3), but not the Feynman gauge (λ = 1/2, λ1 = 1, λ2 = 0 = λ3).

We give three applications of the inequalities (4.11) and (4.12):

• Einstein gravity: γ0 = γ2 = γ4 = 0. The gauge choice making the kinetic term vanish
or with negative eigenvalues is only (4.11).

• Stelle gravity: γ0, γ2, γ4 constant. Then, we impose eqs. (4.11) and (4.12). This range
includes the Julve-Tonin gauge and, depending on the ratio γ′

0/γ′
2, also the de Donder

gauge.

• Nnlocal quantum gravity: γ0, γ2, γ4 asymptotically polynomial form factors, where
γ4 = 0 in the nonminimally coupled version of the theory. The ratio in (4.12) is

γ′
0

γ′
2
= − 1

4(D − 1)

[
(D − 2)eH0 − 1

eH2 − 1 + D

]
, (4.13)

so that

λ2 ⩽ λ̄2 :=
(D − 1)(D − 2)

(Dλ − 1)2
eH0 − 1
eH2 − 1 . (4.14)

When H0 = H2, one has γ′
0/γ′

2 = −1/2 and (4.14) becomes

λ2 ⩽
(D − 1)(D − 2)

(Dλ − 1)2 , (4.15)

which forms a system with eq. (4.11). In D = 4 dimensions, λ2 ⩽ 6/(4λ − 1)2 and both
the Julve-Tonin and de Donder gauge are included. When H0 ̸= H2, it is easy to check
that the function λ̄2 is bounded from above and from below for all k2, so that it is
sufficient to take its lower limit as the upper bound for λ2.3 Therefore, λ2 can be taken
to be constant also in this case.

3From the asymptotic limits discussed below (1.9), it turns out that both in the IR and in the UV
[eH0(z) − 1]/[eH2(z) − 1] ≃ p0(z)/p2(z). For monomials p0,2(z) = a0,2zn, this asymptotic limit corresponds
to the upper (respectively, lower) bound of λ̄2(z) if a0 < a2 (respectively, a0 > a2). The lower (respectively,
upper) bound is given by the other two local extrema of λ̄2(z).
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5 Discussion

In this paper, we have formalized the path integral of nonlocal quantum gravity, in particular,
its version with asymptotically polynomial operators. We have presented the tree-level
propagator in arbitrary gauge and discussed how the conformal instability problem of the
Euclidean version of the theory disappears in perturbation theory thanks to gauge invariance.

The procedure detailed in section 4 works only at the perturbative level and it differs
from the one of [92] by the explicit use of the gauge-fixing action. This method has the
advantage of drastically simplifying the derivation of the main result. Since the tree-level
propagator is calculated anyway as one of the building blocks of Feynman diagrams, this
approach is fairly parsimonious in computation time.

To date, and modulo some very preliminary exceptions [104], nonlocal quantum gravity
has been studied only with perturbative techniques in relation with scattering amplitudes,
perturbative unitarity, renormalization, black-hole solutions and cosmology. However, the
conformal instability problem could arise when considering non-perturbative processes and
the full path integral is not expanded in terms of the interactions. As in the perturbative
case, once the Euclidean path integral is derived from the Lorentzian one, a non-trivial
choice of the gravitational measure of the path integral can make it convergent. The physical
interpretation is that this measure would enhance the weight of strong metric fluctuations
pushing away physical fluctuations from the conformal unbounded abyss [84]. This seems
indeed to be the case, both on a lattice at strong coupling [105, 106] and from a non-
perturbative extension [99, 107] of the perturbative calculation of [92]. In the case of the
Einstein-Hilbert action, after a Wick rotation of the non-perturbative Lorentzian path integral
defined on a causal dynamical triangulation (CDT), it turns out that the term responsible
for the conformal instability is cancelled by a compensating term arising from the integration
of the Faddeev-Popov determinant that arises in the path-integral measure when gauge
fixing [99, 107]. A cancellation mechanism virtually identical to this should apply also in
nonlocal gravity, since it amounts to a non-perturbative upgrade of the argument exposed
in section 4 based on the same physical principle of gauge invariance. In particular, the
calculation of the measure and the cancellation mechanism in [99, section 4] apply verbatim
also to nonlocal quantum gravity because the conformal divergence stems from the R term
in the action, eqs. (4.3) and (4.4); in fact, a conformal transformation of O(R2, RµνRµν)
operators with or without nonlocal form factors does not produce terms with the opposite
sign. Thus, keeping the leading conformal divergence from the Einstein-Hilbert term R

and integrating over the conformal mode after a field redefinition introduced in [108], the
compensation of the unbounded term by the functional determinant takes place. Numerical
analyses in CDT support this conclusion for Einstein gravity. Upon discretization, the action
is bounded from below for a fixed discrete spacetime volume. The minimum of the action
happens when the ratio N22/N3 between the number N22 of so-called 2-2 tetrahedra and the
total number N3 of tetrahedra is minimal. Numerical simulations in three dimensions show
that the expectation value ⟨N22/N3⟩ stays positive and away from zero in the continuum
limit [109, 110], meaning that the kinetic term of the conformal mode never dominates the
dynamics and its contribution to the path integral is suppressed in the continuum Lorentzian
limit [99, 107]. All of this is relevant also for nonlocal quantum gravity, since CDT is not an
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independent proposal of quantum gravity but, rather, a regularization method that can be
applied to any path integral with a diffeomorphism-invariant action. Entire form factors do
not add any extra poles nor change the sign of kinetic terms and asymptotically local quantum
gravity on a CDT should inherit the same qualitative properties found for Einstein gravity.
These theoretical and numerical aspects will deserve a check in the future in the nonlocal case.
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