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1 Introduction

One of the outstanding challenges in QCD theory and phenomenology has been to describe
and predict the observed large transverse single spin asymmetries (TSSAs) in deep inelastic
scattering (DIS) processes using factorization theorems derived within perturbative QCD.

During the mid 70s, significant TSSAs in inclusive pion production in proton-proton
collisions, at center of mass (cm) energy of few GeV, were observed at the Argonne
Laboratory synchrotron [1–3], while during the same period at Fermilab, Λ-hyperons
produced in unpolarized proton-nuclear collisions at

√
s ≈ 24GeV and moderate transverse

momentum, PT (below ∼ 1.5GeV), displayed large transverse polarization with respect
to the production plane [4–6]. Large TSSAs (approx 30–40%) continued to be observed
in the 90s at Fermilab [7–10] in pseudo-scalar meson production with center of mass
energies of

√
s ≈ 20GeV. These results were confirmed by the STAR, PHENIX and

BRAHMS Collaborations at the Relativistic Heavy Ion Collider (RHIC), at cm energies
up to

√
s ≈ 500GeV covering a wide range in Feynman xF = 2PL/

√
s (where PL is the

longitudinal momentum of the final hadron) and PT [11–16]. More striking, is the transverse
polarization data for Λ-hyperon production from unpolarized hadron collisions. Along with
followup experiments from Fermi-lab [17, 18], fixed target measurements of this reaction
were reported by the NA48 Collaboration [19] and the HERA-B Collaboration [20]. At
CERN a Λ polarization of approximately 35% was also measured in pp collisions at the ISR
at cm energies of

√
s = 52 and 63GeV [21].

From the theory side we know that large transverse polarization effects cannot be
explained within the collinear QCD factorization at leading twist which, at large enough
PT , predicts negligible values [22]. Presumably then hyperon polarization, observed in
unpolarized collisions, necessarily has to originate from nonperturbative effects during the
hadronization process, as they are produced from parity conserving strong interaction and
in turn undergo self-analyzing weak decay. For this reason a study of the Λ polarization
enables us to obtain important information on this nonperturbative mechanism.

Within the context of QCD factorization theorems the hadronization of partons is
described in terms of nonperturbative matrix elements of QCD operators which can be
fitted to experimental data. This is a challenging endeavour on the basis of data taken from
nucleon-nuclear scattering experiments, since these processes are mediated solely by the
strong force where an analytical description is complicated due to competing effects that
enter QCD factorization formulas for spin dependent pp and/or pA reactions.

A simplification emerges for processes involving electromagnetic interactions such as
in semi-inclusive deep inelastic scattering (SIDIS) where polarized Λ’s can be produced in
ep → eΛ + X or in quasi-real photoproduction. Such experimental studies were carried
out by the HERMES collaboration [23–25] as well as in neutrino-nucleon scattering by the
NOMAD Collaboration [26, 27].

Probably the most direct process to gain access to (un)polarized Λ fragmentation
functions (FFs) is single and/or semi-inclusive hadron production in electron-positron
annihilation (SIA). Recently, the Belle Collaboration [28] has collected data for the
transverse polarization of Λ-hyperons produced together with light mesons in an almost
back-to-back configuration as well as for Lambda’s inclusively produced, where the Λ
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transverse momentum is measured with respect to the thrust axis. Also, data on polarized
Λ fragmentation in this reaction has been provided by the OPAL Collaboration at LEP [29].
This measurement was performed on the Z-pole, that is at the cm energy equal to the mass
of the Z boson.

In this paper, we investigate associated production of transversely polarized Λ-hyperons
in the process e+e− → Λ↑(π/K)+X as well as its inclusive production in e+e− → Λ↑(jet)+X.
We present a renewed analysis of Belle data by exploiting the CSS evolution equations and
the recent theory developments on the factorization of single-inclusive hadron production
in e+e− annihilation processes [30, 31].

A critical issue in the first phenomenological studies [32, 33] of the Λ polarizing FFs
from the analysis of Belle data is that the extraction of these TMD FFs was carried
out at fixed scale (Q = 10.58GeV). Thus these studies do not employ TMD evolution.
Moreover, and more relevant, in ref. [32] we used a simplified and phenomenological model
to study the transversely polarized Λ produced in a single-inclusive process,1 due to the
lack of a generalized TMD factorization formalism. Indeed, this approach does not enable
one to make predictions at different energy scales. For that, one should employ TMD
factorization theorems, and consequently proper evolution equations for both the double
and the single-inclusive hadron production cross sections.

In fact, unlike the cross section for double-hadron production in e+e− annihilation
processes, only recently new advancements in the TMD factorization of the cross section
for single-inclusive production processes have appeared. Among them, are the works of
refs. [30, 35], where the factorization has been formulated within an effective theory context,
and where a first phenomenological analysis of the Belle data based on the latter paper was
carried out in [31]. Moreover, a Collins-Soper-Sterman (CSS) formalism has been adopted
in refs. [36–38].

The purpose of this study is therefore to present a renewed analysis of Belle data by
exploiting the TMD framework in its full glory, paying special attention to scale evolution
effects and to the nonperturbative component of the polarizing FF. We will also touch a
couple of fundamental issues, namely the SU(2) isospin symmetry and the role of heavy
quark contributions.

The paper is organised as follows: in section 2 we present the main formulas and the
cross section for the production of a transversely polarized spin-1/2 hadron, in association
with a light hadron, in e+e− annihilation processes, and their expressions in the impact
parameter space. Then in section 3 we show how these convolutions can be treated within
TMD factorization, by employing the CSS evolution equations. In section 4 we summarize
some useful results already presented in ref. [30], giving expressions for the cross sections
for single-inclusive hadron production and for the transverse polarization. All these results
will be exploited to re-analyze the Belle data in section 5, where we show the outcomes
of the fits for the double-hadron production data alone and the combined fit of both data
set, discussing our main findings. Here we also consider the role of OPAL data, checking
our predictions (based only on Belle data) against them or including them in a global fit.

1We notice that a first attempt, within the same simplified model, to describe the transverse Λ polarization
in unpolarized pp collisions was carried out in ref. [34].
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Figure 1. Kinematics for the process e+e− → h1 h2 +X in the hadron-frame configuration.

Lastly, in section 6 we collect our concluding remarks.

2 Double-hadron production

We start considering the process e+e− → h1(S1)h2(S2) + X where h1 and h2 are two
spin-1/2 hadrons, with spin polarization vectors S1,2 and masses M1,2, produced almost
back-to-back in the center-of-mass frame of the incoming leptons. For more details we refer
to ref. [39].

2.1 Kinematics and cross section

We adopt the following kinematics set-up: we fix the ẑL axis (in a laboratory frame)
along the momentum of the second hadron, h2, with the first one, h1, moving in the
opposite hemisphere, with a small transverse momentum P1T with respect to the second
hadron direction. This is illustrated in figure 1, where (x̂L, ŷL, ẑL) are the unit vectors
in the laboratory frame and P1 and P2 are the momenta of, respectively, the first and
second hadron.

We notice that the frame adopted here has the unit vectors, ŷL, ẑL, inverted with
respect to those of the hadron frame used in [39]. This choice allows us to employ directly
the convolutions adopted in ref. [40] (see also ref. [41]), with a direct connection with the
convolutions in bT -space (see below).

We can define two planes: the Lepton Plane, determined by the leptons and the hadron
h2 momenta, and the Production Plane, determined by the momenta of the two observed
hadrons, h1,2, at an angle φ1 with respect to the Lepton Plane. In this configuration,
referred to as the hadron frame, one measures only the momenta of the two hadrons and the
azimuthal distribution of the hadron h1 around the hadron h2 direction. No information on
the original quark-antiquark direction is required.

From the theoretical point of view, it is however more convenient to adopt yet a
different frame, where the two hadrons are back to back, along a new ẑ axis, and the
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hadron transverse unbalance is now carried out by the virtual photon. All details of this
transformation are given in appendix A. In this frame the differential cross section can be
expressed as [40]

dσe
+e−→h1(S1)h2(S2)X

2dydz1dz2d2qT
, (2.1)

where qT is the transverse momentum of the virtual photon. This is related to the transverse
momentum of the first hadron as follows:

P1T = −z1qT . (2.2)

The two scaling variables in eq. (2.1) are the usual light-cone momentum fractions z1,2 of
the final-state hadrons, defined as

z1 = P−1
k−

, z2 = P+
2
p+ , (2.3)

where k and p are the four-momenta of the quark and the antiquark, fragmenting with a
certain transverse momentum k⊥ and p⊥, respectively, into the hadron h1 and h2. These
scaling variables are in turn directly related to another set of variables, usually adopted in
experimental analyses: the energy fraction

zh = Eh
Eq

= 2Eh
Q
' z

(
1 + M2

h

z2Q2

)
, (2.4)

and the momentum fraction

zp = |Ph|
Eq

= 2|Ph|
Q
' z

(
1− M2

h

z2Q2

)
, (2.5)

where Q is the cm energy of the process, Q2 = q2, with q being the four momentum of the
virtual photon. The last equalities are obtained neglecting powers of k2

⊥/Q
2. Notice that

the variable zh, usually defined also as an invariant, zh = 2Ph · q/Q2, coincides with the
energy fraction above in the hadron frame.

Finally, the fraction y is defined as y = P2 ·ke+/P2 ·q (with ke+ being the e+ momentum),
that in the hadron frame reduces to

y =
(
1−

√
1− 4M2

2 /z
2
h2
Q2 cos θ

)
/2 ' (1− cos θ)/2 , (2.6)

where θ is the angle between the hadron 2 momentum and the incoming lepton directions
(see figure 1). Notice that in all relevant variables we will keep kinematic corrections in
M2/Q2, useful for the study of massive hadron production. On the other hand, as we will
see below, the y (or the θ) dependence will not play any direct role in our analysis.

In general, the cross sections can be written in terms of convolutions of two generic
TMD fragmentation functions [39, 40], defined as follows

F [ωDD̄] =
∑
q

e2
q

∫
d2kTd

2pT δ
(2)(kT +pT−qT )ω(kT ,pT )D(z1,k⊥)D̄(z2,p⊥) , (2.7)
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where ω is a suitable weight-factor depending on the two transverse momenta, D and D̄ are
the TMD-FFs of the first and second hadron and kT and pT are the transverse momenta
of the quark/antiquark with respect to the hadron h1 and h2. Notice that one can easily
relate these transverse momenta to k⊥ and p⊥, the transverse momenta of the hadrons
with respect to their own parent quarks as follows (see appendix A)

kT = −k⊥
zp1

; pT = −p⊥
zp2

. (2.8)

2.2 Transversely polarized hadron production

We now consider specifically the associated production of a transversely polarized spin-1/2
hadron, h1, with an unpolarized hadron, h2. If the polarization is measured only as a
function of the hadron energy fractions, with the proper use of eqs. (2.4) and (2.5), we can
give it as the ratio of two qT -integrated convolutions

P h1
T (z1, z2) = − sin (φ1 − φS1)

∫
d2qT F

sin(φ1−φS1)
TU∫

d2qT FUU
, (2.9)

where φS1 is the azimuthal angle of the spin of the hadron h1 and where we have simplified a
common factor coming from the hard partonic subprocess (see below). The two convolutions
are defined as follows:

FUU = F
[
D1D̄1

]
(2.10)

F
sin(φ1−φS1)
TU = F

[
ĥ · kT
M1

D⊥1T D̄1

]
, (2.11)

where D1(z, k⊥) is the unpolarized TMD fragmentation function and D⊥1T (z, k⊥) is the
polarizing FF, with ĥ = P1T /|P1T |. Notice that there is another common notation for
the polarizing FF, related to the probability that an unpolarized quark fragments into a
transversely polarized spin-1/2 hadron [42]:

∆NDh↑/q(z, k⊥) = k⊥
zMh

D⊥1T (z, k⊥) . (2.12)

When the polarization is measured perpendicularly to the production plane, that is
along the unit vector n̂ defined as:

n̂ ≡ (cosφn, sinφn, 0) = −P2 × P1
|P2 × P1|

= − sinφ1x̂L + cosφ1ŷL , (2.13)

the factor entering eq. (2.9) simplifies as [39]

− sin(φ1 − φS1) = 1 . (2.14)

Generally, one uses the TMD fragmentation functions in the conjugate bT -space. More
precisely, the Fourier transform of the unpolarized FF is defined as:

D̃1(z, bT ) =
∫
d2kT e

ibT ·kTD1(z, k⊥) = 2π
∫
dkT kTJ0(bTkT )D1(z, k⊥) , (2.15)
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where we have used eq. (B.4), the integral definition of J0, the Bessel function of the first
kind of order zero. With the above relation, the FUU convolution in bT -space can be
written as:

FUU = F
[
D1D̄1

]
= B0

[
D̃ ˜̄D] =

∑
q

e2
q

∫
dbT
(2π) bTJ0(bT qT )D̃1(z1, bT ) ˜̄D1(z2, bT ) . (2.16)

Regarding the bT -space convolution of F sin(φ1−φS)
TU , we first define the Fourier transform of

the product of the polarizing fragmentation function with kiT , the i-th component of the
quark transverse momentum with respect to the hadron direction, see appendix B:∫

d2kT
kiT
M1

eibT ·kTD⊥1T (z, k⊥) = ibiTM1D̃
⊥(1)
1T (z, bT ) , (2.17)

where D̃⊥(1)
1T (z, bT ), the first moment of the polarizing fragmentation function in bT -space,

is defined as
D̃
⊥(1)
1T (z, bT ) = − 2

M2
1

∂

∂b2T
D̃⊥1T (z, bT ) , (2.18)

and D̃⊥1T (z, bT ) is the Fourier transform of the polarizing FF, eq. (B.11). Notice that the
first moment of the polarizing FF in kT -space, D⊥(1)

1T (z), defined as

D
⊥(1)
1T (z) =

∫
d2k⊥

(
k2
⊥

2z2M2
h

)
D⊥1T (z, k⊥) , (2.19)

can be related to the corresponding one in bT -space, eq. (2.18), as follows:

lim
bT→0

D̃
⊥(1)
1T (z, bT ) = 1

z2D
⊥(1)
1T (z) . (2.20)

Employing the above equations and using the integral definition of the Bessel function J1,
eq. (B.20), we can find the expression of F sin(φ1−φS1 )

TU in bT -space:

F
sin(φ1−φS1 )
TU = F

[
ĥ · kT
M1

D⊥1T D̄1

]
= M1B1

[
D̃
⊥(1)
1T

˜̄D1
]

= M1
∑
q

e2
q

∫
dbT
2π b2TJ1(bT qT )D̃⊥(1)

1T (z1, bT ) ˜̄D1(z2, bT ) . (2.21)

Finally, we can express the polarization of the final hadron, eq. (2.9), along the n̂ direction
as the ratio of the two convolutions in bT -space:

P h1
n (z1, z2) =

∫
d2qT F

sin(φ1−φS1 )
TU∫

d2qT FUU
=
M1

∫
dqT qT dφ1 B1

[
D̃
⊥(1)
1T

˜̄D1
]

∫
dqT qT dφ1 B0

[
D̃1
˜̄D1
] , (2.22)

where

B0
[
D̃1
˜̄D1
]

=
∑
q

e2
q

∫
dbT
2π bTJ0(bT qT )D̃1(z1, bT ) ˜̄D1(z2, bT ) (2.23)

B1
[
D̃
⊥(1)
1T

˜̄D1
]

=
∑
q

e2
q

∫
dbT
2π b2TJ1(bT qT )D̃⊥(1)

1T (z1, bT ) ˜̄D1(z2, bT ) . (2.24)
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The last step is to integrate both convolutions on qT . The integration over the azimuthal
angle, φ1, is trivial, giving a factor of 2π that cancels out in the ratio. Moreover, since
the only terms inside the convolutions depending on qT are the Bessel functions, we can
separately integrate them, obtaining∫ qTmax

0
dqT qTJ0(bT qT ) = qTmax

bT
J1(bT qTmax) (2.25)

∫ qTmax

0
dqT qTJ1(bT qT ) = πqTmax

2bT
{J1(bT qTmax)H0(bT qTmax)− J0(bT qTmax)H1(bT qTmax)} ,

(2.26)

where H0,1 are the Struve functions of order zero and one respectively. Notice that in
the above integration we have introduced a maximum value qTmax , that has to fulfil the
condition qTmax � Q, in order to respect the validity of the TMD factorization [43]. In the
phenomenological analysis, section 5, we will test different choices of the ratio qTmax/Q.

3 Double-hadron production: CSS formalism

In this section we elaborate on the convolutions, presented in section 2, with the proper
treatment of the scale evolution within the Collins-Soper-Sterman (CSS) approach (see
refs. [43–45] for more details). According to the CSS formalism, the complete expressions
of the two convolutions entering the transverse polarization observable, eq. (2.22), are
given by:

B0
[
D̃1
˜̄D1
]

=
∑
q

e2
q H(e+e−)(Q)

×
∫

dbT
(2π) bTJ0(bT qT )D̃1,q/h1(z1, bT ; ζ1, µ) ˜̄D1,q̄/h2(z2, bT ; ζ2, µ) (3.1)

B1
[
D̃
⊥(1)
1T

˜̄D1
]

=
∑
q

e2
q H(e+e−)(Q)

×
∫
dbT
2π b2TJ1(bT qT )D̃⊥(1)

1T,q/h1
(z1, bT ; ζ1, µ) ˜̄D1,q̄/h2(z2, bT ; ζ2, µ) , (3.2)

where H(e+e−)(Q) is the hard scattering part (depending also on y), for the massless on-shell
process e+e− → qq̄, at the center-of-mass energy Q. With respect to the expressions given
in the previous section, the two fragmentation functions now depend explicitly on two scale
arguments: the renormalization scale µ and the ζ scale, that describes the effect of the
recoil against the emission of soft gluons into an energy range determined approximately by
µ and ζ. The dependence on these two scales is regulated by the CSS and Renormalization
Group (RG) equations.

3.1 Evolution equations for TMD fragmentation functions

The CSS evolution equation for the ζ dependence of the unpolarized TMD-FF has the
following form:

∂ ln D̃1(z, bT ; ζ, µ)
∂ ln
√
ζ

= K̃(bT ;µ) , (3.3)
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where K̃ is the CSS kernel [44]. It is flavour and spin independent, but different for quarks
and gluons. Its RG equation is

dK̃(bT ;µ)
d lnµ = −γK(g(µ)) , (3.4)

where the anomalous dimension γK has no dependence on bT , since the UV divergences
only arise from virtual graphs [44]. The corresponding RG equation for the fragmentation
function is given by

d ln D̃1(z, bT ; ζ, µ)
d lnµ = γD(g(µ); ζ/µ2) . (3.5)

Since the derivatives of the FF with respect to µ and ζ commute, we can finally obtain the
energy dependence of γD:

γD
(
g(µ); ζ/µ2

)
= γD(g(µ); 1)− 1

2γK(g(µ)) ln ζ

µ2 . (3.6)

In addition, the anomalous dimensions and the CSS kernel can be computed order by order
perturbatively. By solving eq. (3.3), that gives us the evolution in ζ, and by using it in
eq. (3.5), we get the scale evolution from µ0 to µ (with µ0 large enough to start already in
the perturbative region). This eventually leads to

D̃1(z, bT ; ζ, µ) = D̃1(z, bT ; ζ0, µ0) exp
{

1
2K̃(bT ;µ0) ln ζ

ζ0

}

× exp
{∫ µ

µ0

dµ′

µ′

[
γD(g(µ′); 1)− 1

2γK(g(µ′)) ln ζ

µ′2

]}
.

(3.7)

The dependence of the FF on ζ involves the function K̃, implying an energy dependence
on the shape of the transverse momentum distribution. Moreover, the function D̃1, at its
reference scales ζ0 and µ0, can be thought as the Fourier transform of an intrinsic transverse
momentum distribution of the hadron with respect to its parent parton.

The full solution of the evolution equations in terms of the anomalous dimensions and
the CSS kernel, and all the above results, can be directly extended to the D̃⊥(1)

1T function [44].

3.2 Small-bT expansion

The first term on the right hand side of eq. (3.7) is the TMD-FF at the reference energy
scale: it is related to the short distance and small-bT behaviour of D1 and therefore
computable in perturbation theory. For such reason, at small-bT , the unpolarized TMD-FF
can be matched onto the corresponding integrated fragmentation function dj/h(z;µ) via an
Operator Product Expansion (OPE):

D̃1,q/h(z, bT ; ζ0, µ0) =
∑
j

∫ 1

z

dẑ

ẑ3−2ε C̃j/q(z/ẑ, bT ; ζ0, µ0, g(µ0)) dj/h(ẑ;µ0) +O[(mbT )p] ,

(3.8)
where the error term is suppressed by some power of the transverse position. The sum is
over all parton types j, including gluons and antiquarks. When bT is small, the coefficient
function C̃j/q can be expanded in perturbation theory and calculated from Feynmann graphs
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with external on-shell partons of type j, with a double-counting subtraction in order to
cancel all collinear contributions [44]. The lowest-order coefficient is simply given as:

C̃j/q(z/ẑ, bT ; ζ, µ, g(µ)) = δjq δ(z/ẑ − 1) +O(g2) . (3.9)

An OPE of the same kind applies also to other collinear fragmentation functions, e.g. G1L
and H1T , but they generally have different coefficient functions beyond lowest-order. For
the other, polarization-dependent, TMD fragmentation functions, like the Collins and the
polarizing fragmentation functions, it is possible to generalize the OPE involving quantities
that are associated to matrix elements of higher-twist operators [46]. For the Sivers function,
for instance, this would be the Qiu-Sterman function [47, 48].

3.3 Matching the perturbative and nonperturbative bT regions

TMD evolution follows from generalized renormalization properties of the operator definitions
for TMD parton distribution and fragmentation functions. In order to combine the small-bT
dependence coming from perturbative calculations with the one from the nonperturbative
part (that must be extracted from experimental data) it is necessary to introduce a matching
procedure. To match the perturbative and nonperturbative contributions, one defines large
and small bT through a function of bT that freezes above some bmax and equals bT for
small values.

We adopt the following standard procedure [49]. First, we introduce the parameter
bmax, representing the maximum distance at which perturbation theory is to be trusted,
usually taken within an interval of [0.5 − 1.5]GeV−1. Then we define a function b∗(bT ),
that almost equals bT at small bT and saturates at bmax at large bT :

b∗ = bT√
1 + b2T /b

2
max

, (3.10)

and re-define the CSS Kernel as:

K̃(bT ;µ) = K̃(b∗;µ)− gK(bT ; bmax) . (3.11)

In this way, K̃(b∗;µ) is computed in a region where perturbation theory is appropriate and
the correction term, gK , is important only at large bT . This last term, gK , to be extracted
from data fits, is a function of bT and can depend explicitly or not on the parameter bmax.
Since it is the difference of K̃ calculated at two values of its position argument, it is RG
invariant and has to vanish as bT → 0.

If we want to match the perturbative and nonperturbative part of the unpolarized FF
D̃1, we can then use b∗ as defined in eq. (3.10).

Generalizing eq. (3.11), it is possible to define an intrinsically nonperturbative part of
the FF with the following decomposition:

D̃1,q/h(z, bT ; ζ, µ) = D̃1,q/h(z, b∗; ζ, µ)
[
D̃1,q/h(z, bT ; ζ, µ)
D̃1,q/h(z, b∗; ζ, µ)

]
(3.12)

= D̃1,q/h(z, b∗; ζ, µ) exp
[
− gq/h(z, bT ; bmax)− gK(bT ; bmax) ln

√
ζ√
ζ0

]

= D̃1,q/h(z, b∗; ζ, µ) exp
[
− gq/h(z, bT ; bmax)− gK(bT ; bmax) ln

√
ζ z

Mh

]
,
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where in the second line we have introduced the perturbatively calculable D̃(b∗) and in the
last line we have used the reference value ζ0 = M2

h/z
2 [44]. By employing eq. (3.7), the

anomalous dimensions, γD and γK , cancel between numerator and denominator in the square
brackets (first line) and only gK survives. The remaining factor, e−gq/h , defined as [43–45]

exp
[
− gq/h(z, bT ; bmax)

]
=
D̃1,q/h(z, bT ; ζ, µ)
D̃1,q/h(z, b∗; ζ, µ)

exp
[
gK(bT ; bmax) ln

√
ζ/
√
ζ0
]
, (3.13)

can be interpreted as the nonperturbative part of the intrinsic transverse momen-
tum distribution.

Some comments are in order: both gK and gq/h vanish approximately as b2T at small
bT [44], and become significant when bT approaches bmax and beyond; they are independent
of ζ and µ, being invariant under the application of the CSS and RG equations, while they
do depend on the choice of bmax. On the other hand, the full TMD fragmentation function
and the function K̃ are independent of bmax and the use of the b∗ prescription. The flavour
and z dependences of gK and gq/h follow from those of the corresponding parent functions,
respectively K̃ and the TMD fragmentation functions [45]. Since K̃ is independent of the
quark’s and hadron’s type, polarization and fraction z, so is gK . The same, of course, is not
true in general for the TMD fragmentation functions and therefore for the factor e−gq/h .

It is worth mentioning that this last term is usually written as MD(bT , z; bmax) or
DNP (bT , z; bmax), a generic function of bT : this is because it could assume also a non-
exponential functional form, still preserving its properties, and the fact that at small bT it
goes like 1 + O(b2T ); it is referred to as the nonperturbative part of the fragmentation function,
and within a parton model, can be seen as the Fourier transform of the transverse momentum
distribution. Like gK , the function MD can depend explicitly or not on the parameter bmax.
In a more general way, the phenomenological extraction of both nonperturbative functions
is affected by the choice of the bmax value.

To use the perturbative small-bT result from eq. (3.8), it is necessary to evolve the
D̃ term in eq. (3.12), with the b∗ prescription, from a region where no large kinematic
ratios appear in the coefficient function C̃, whose logarithms could spoil the use of the
perturbative approach [44]. The standard choice is to replace µ0 by:

µb = C1
b∗(bT ) , (3.14)

where C1 = 2e−γE (with γE being the Euler-Mascheroni constant), and use for the reference
value ζ0 the same value, that is ζ0 = µ2

b . Then the TMD fragmentation function can be
written as:

D̃1,q/h(z,bT ;ζ,µ) =
∑
j

∫ 1

z

dẑ

ẑ3−2ε C̃j/q
(
z/ẑ,b∗;µ2

b ,µb,g(µb)
)
dj/h(ẑ;µb)

×MD(bT ,z;bmax)exp
{
−gK(bT ;bmax) ln

√
ζ z

Mh

}
(3.15)

×exp
{

1
2K̃(b∗;µb) ln ζ

µ2
b

+
∫ µ

µb

dµ′

µ′

[
γD(g(µ′);1)− 1

2γK(g(µ′)) ln ζ

µ′2

]}
.
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Finally, in order to properly control the low-bT region (to ensure the matching at high kT ),
we modify the bT definition using [43]:

bc(bT ) =
√
b2T + b2min , (3.16)

where bmin = 2e−γE/Q, decreasing like 1/Q in contrast to bmax, which remains fixed. This
definition reduces to bT when bT � 1/Q but it is of order 1/Q when bT is small, thereby
providing an effective cutoff at small bT . Consistently, b∗ has to be replaced by:

b∗(bc(bT )) =
√

b2T + b2min
1 + b2T /b

2
max + b2min/b

2
max

, (3.17)

in order to ensure the requested behaviour simultaneously at small and large bT . Indeed,
we have:

b∗(bc(bT ))→


bmin bT � bmin

bT bmin � bT � bmax

bmax bT � bmax

. (3.18)

Lastly, we also redefine µb, replacing it by:

µ̄b(bc(bT )) = C1
b∗(bc(bT )) , (3.19)

implying a maximum cutoff on the renormalization scale equal to µ̄b ' C1/bmin. Recollecting
all the above results we can now write the TMD fragmentation function, eq. (3.15), employing
the new definitions of bT , as:

D̃1,q/h
(
z,bc(bT );Q2,Q

)
=
∑
j

∫ 1

z

dẑ

ẑ3−2ε C̃j/q(z/ẑ,b∗(bc(bT )); µ̄2
b , µ̄b,g(µ̄b))

×dj/h(ẑ; µ̄b)MD(bc(bT ),z;bmax)exp
{
−gK(bc(bT );bmax) ln Qz

Mh

}

×exp
{

1
2K̃(b∗; µ̄b) ln Q

2

µ̄2
b

+
∫ Q

µ̄b

dµ′

µ′

[
γD(g(µ′);1)− 1

2γK(g(µ′)) ln Q
2

µ′2

]}
,

(3.20)

where we have adopted ζ = Q2 and µ = Q.

3.4 Convolutions

Thanks to the evolution equations and the matching procedure, we can write the full form
of the convolutions in eqs. (3.1) and (3.2). For the convolution B0 we have:

B0
[
D̃ ˜̄D] = H

(e+e−)(Q)
z2

1z
2
2

∑
q

e2
q

∫
dbT
(2π) bTJ0(bT qT ) dq/h1(z1; µ̄b) dq̄/h2(z2; µ̄b)

×MD1(bc(bT ), z1)MD2(bc(bT ), z2) exp
{
− gK(bc(bT ); bmax) ln

(
Q2z1z2
M1M2

)}

× exp
{
K̃(b∗; µ̄b) ln Q

2

µ̄2
b

+
∫ Q

µ̄b

dµ′

µ′

[
2γD(g(µ′); 1)− γK(g(µ′)) ln Q

2

µ′2

]}
,

(3.21)
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where in the second line we have omitted the implicit bmax dependence in MD and used
the lowest-order coefficient, eq. (3.9), of the OPE expression for both the fragmentation
functions. Similarly, for the convolution B1 we have:

B1
[
D̃
⊥(1)
1T

˜̄D1
]

= H
(e+e−)(Q)
z2

1z
2
2

∑
q

e2
q

∫
dbT
(2π) b

2
TJ1(bT qT )D⊥(1)

1T (z1; µ̄b) dq̄/h2(z2; µ̄b)

×M⊥D1(bc(bT ), z1)MD2(bc(bT ), z2) exp
{
− gK(bc(bT ); bmax) ln

(
Q2z1z2
M1M2

)}

× exp
{
K̃(b∗; µ̄b) ln Q

2

µ̄2
b

+
∫ Q

µ̄b

dµ′

µ′

[
2γD(g(µ′); 1)− γK(g(µ′)) ln Q

2

µ′2

]}
,

(3.22)

where again we have used the lowest-order coefficient for the OPEs and M⊥D1
as the

nonperturbative part for the polarizing fragmentation function for the hadron h1.
The last lines of eqs. (3.21) and (3.22) are usually referred to as perturbative Sudakov

factors and, as explained above, they can be computed analytically. The anomalous
dimension of the fragmentation functions at order αs(µ) is [50]:

γD
(
αs(µ); ζ/µ2

)
= 4CF

(3
2 − ln ζ

µ2

)(
αs(µ)

4π

)
+O(α2

s(µ)) , (3.23)

where CF = 4/3. Meanwhile the anomalous dimension of the CSS Kernel K̃ at one-loop
order is:

γK(αs(µ)) = 8CF
(
αs(µ)

4π

)
+O(α2

s(µ)) , (3.24)

with K̃ = 0 at first order. For the running coupling [50] we use the form:

αs(µ) = A

2 ln(µ/ΛQCD) , (3.25)

with
A = 1

β0
= 12π

33− 2nf
, (3.26)

where nf is the number of active flavours.2 Notice that this choice is fully consistent at
leading-order accuracy also with the fragmentation function sets adopted in section 5. We
can then get, by analytical integration, the following expression for the exponent in the
perturbative Sudakov factor

K̃(b∗; µ̄b) ln Q
2

µ̄2
b

+
∫ Q

µ̄b

dµ′

µ′

[
2γD(g(µ′); 1)− γK(g(µ′)) ln Q

2

µ′2

]
(3.27)

= 2A
π

[
ln
(

ln(Q/ΛQCD)
ln(µ̄b/ΛQCD)

)
− 4

3 ln(Q/ΛQCD) ln
(

ln(Q/ΛQCD)
ln(µ̄b/ΛQCD)

)
+ 4

3 ln(Q/µ̄b)
]
.

2Actually we consistently use nf = 3 with ΛQCD = 0.2123GeV [50].
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3.5 Nonperturbative parts

We discuss now the nonperturbative contributions, entering the above convolution formulas.
We will give some details on the corresponding parametrizations available in the literature,
focusing on those we will use directly in our phenomenological analysis: namely gK and MD.
For the moment, we will leave apart the other fundamental quantity, M⊥D , one of the main
focus of our study, that will be properly addressed when we discuss our fitting procedure.

Notice that, while for gK we will use functional forms depending explicitly on bmax, for
MD this dependence enters only implicitly (as discussed previously) and, for the sake of
notation, we will drop it in the sequel.

3.5.1 gK(bT ; bmax)

We start considering gK , an intrinsically nonperturbative quantity, that cannot be computed
from first principles. Nevertheless, as shown in ref. [45], it is possible to extract some of its
properties from perturbative calculations. Indeed, the lowest-order formula for K̃ gives:

gK(bT , bmax) = αs(C1/b∗)CF
π

ln
(
1 + b2T /b

2
max

)
, (3.28)

that behaves like b2T at small bT , but shows a slower logarithmic rise above bmax. A similar
functional form has been adopted in refs. [50, 51] (AFGR/SIYY in the following) with the
following expression

gK(bT ; bmax) = g2 ln
(
bT
b∗

)
, (3.29)

with an extracted value of g2 = 0.84.
For large-bT values, eq. (3.28) is not expected to be an accurate parametrization. Indeed,

it is an extrapolation of a lowest-order perturbative calculation and it depends strongly
on bmax at large bT . The b2T behaviour at small bT can be found expanding eq. (3.28) in
powers of bT , obtaining:

gK(bT ; bmax) = CF
π

b2T
b2max

αs(µb) , (3.30)

with an explicit quadratic form of the gK function. This justifies the use of the follow-
ing expression:

gK(bT ; bmax) = g2b
2
T

2 , (3.31)

employed and fitted to data in ref. [52] (BLNY in the following) and in ref. [53] (KN) where
they found, respectively, a value of g2 = 0.68GeV2, with bmax = 0.5GeV−1, and a value of
g2 = 0.18GeV2, with bmax = 1.5GeV−1. Notice that such a large value of bmax, as we will
discuss in the next section, implies a too small renormalization scale, preventing its use in
our calculation.

Since the real nonperturbative physics is at larger bT values, one wants to extract
gK(bT ; bmax) with a more general parametrization and be sure that the data used to extract
it are sensitive to high values of bT . Moreover, the complete TMD factorization formalism
is bmax independent and, in principle, optimized fits should not depend on its choice.
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For a more exhaustive comparison, we will also consider another set of nonperturbative
functions, as those extracted from fits on SIDIS, Drell-Yan and Z-boson production and
discussed in ref. [54]. Concerning gK , this has the same functional form as BLNY, but with
a different value for g2, namely g2 = 0.13GeV2 (PV17). This implies a softer behaviour in
bT . Moreover, this has been obtained with an ad hoc b∗ prescription

b∗ ≡ b∗(bT ; bmin, bmax) = bmax

(1− e−b4
T /b

4
max

1− e−b4
T /b

4
min

)1/4
(3.32)

and the corresponding parametrization of MD (see below). Quite recently a new and
refined global analysis, at N3LL accuracy, has been performed by the Pavia group [55]. For
consistency we will not adopt it in our study, where we are using the anomalous dimensions
only at one-loop order.

Summarizing, in the phenomenological analysis, section 5, we will employ the fol-
lowing functional forms of the nonperturbative function, gK , adopting bmax = 0.6GeV−1,
see figure 2:

gK(bT ; bmax) = g2b
2
T

2 ; g2 = 0.68GeV2 BLNY

gK(bT ; bmax) = CF
π

b2T
b2max

αs(µb∗) Quadratic

gK(bT ; bmax) = αs(C1/b∗)CF
π

ln(1 + b2T /b
2
max) Logarithmic

gK(bT ; bmax) = g2 ln
(
bT
b∗

)
g2 = 0.84 AFGR/SIYY

gK(bT ; bmax) = g2b
2
T

2 ; g2 = 0.13GeV2 PV17 .

(3.33)

Thanks to their universality, all of them can be used to predict observables or be supportive
in the extraction of other nonperturbative functions, in processes like e+e− collisions,
Semi-inclusive DIS and Drell-Yan processes.

3.5.2 MD(bT , z)

The other relevant nonperturbative function entering our convolutions is MD(bT , z). In
ref. [45] it has been shown that the arguments for the approximately quadratic behaviour
of gK(bT ) at small bT are also valid for the function gq/h(bT ), and this corresponds, after
an exponentiation, to a Gaussian model for the TMD-FF:

MD(bT , z) = exp
(
−ab

2
T

2

)
. (3.34)

This justifies the use of the following parameterization:

MD(bT , z) = exp
(
−〈p

2
⊥〉b2T
4z2

)
, (3.35)
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Logarithmic
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Figure 2. Graphical representation of the different forms of the nonperturbative function exp(−gK),
listed in eq. (3.33), with bmax = 0.6GeV−1.

corresponding in the conjugate p⊥-space3 to

M̃D(p⊥) = e−p
2
⊥/〈p

2
⊥〉

π〈p2
⊥〉

, (3.36)

where 〈p2
⊥〉 is the usual transverse momentum Gaussian width. Notice that, assuming it as

a constant, in p⊥-space there is no explicit z dependence.
The commonly assumed quadratic behaviour of gK(bT ) and the Gaussian behaviour of

the TMD fragmentation function can only be a valid approximation, at best, for moderate
bT . Appropriate parametrizations for the nonperturbative large-bT behaviour of the TMD-
FFs and of the CSS kernel need to be inferred from general principles of quantum field
theory [45], that suggest an exponentially decaying behaviour at large bT . From several
one-loop calculations of TMD quantities, a typical integral giving the proper bT dependence
is of the form ∫

d2pT
eipT ·bT

p2
T +m2 . (3.37)

One possible functional parametrization that generalizes, in bT -space, the Fourier transform
of the previous equation, and preserves the quadratic behaviour at small bT , used in
refs. [36, 56, 57], is the following:

MD(bT , z, p,m) = 22−p

Γ(p− 1) (bTm/z)p−1Kp−1(bTm/z) , (3.38)

where Kp−1 is a Bessel function of the second kind, with the condition p > 1. Its Fourier
transform in p⊥-space is given by:

M̃D(p⊥) = Γ(p)
πΓ(p− 1)

m2(p−1)

(p2
⊥ +m2)p . (3.39)

We will refer to this as the Power-law model.
3This space is equivalent to the k⊥-space used in previous sections.
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Gaussian < p2 > = 0.2 GeV2
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z = 0.6

bT (GeV 1)

Figure 3. Representation of nonperturbative hadronic models for MD(bT , z) as a function of bT
at different values of z: Gaussian (orange solid line), Power-Law (blue dot-dashed line) and PV17
(green dotted line) model.

Notice that for a massive hadron, on the right-hand side of eq. (3.35) one has to replace
zp with z, in order to properly get eq. (3.36). The same happens for going from eq. (3.38)
to eq. (3.39).

As mentioned above, the Pavia group [54] provided a complete set of nonperturbative
functions, for pions and kaons: for MD, to be used together with its corresponding gK (last
line of eq. (3.33)), they propose:

MD (bT , z) =
g3 e
−b2

T
g3

4z2 + λF
z2 g

2
4

(
1− g4

b2
T

4z2

)
e−b

2
T

g4
4z2

g3 + λF
z2 g

2
4

, (3.40)

where

g3,4 = N3,4

(
zβ + δ

)
(1− z)γ

(ẑβ + δ) (1− ẑ)γ (3.41)

ẑ = 0.5; N3 = 0.21GeV2; N4 = 0.13GeV2

β = 1.65; δ = 2.28; γ = 0.14; λF = 5.50GeV−2 .
(3.42)

The three parametrizations, discussed above, are shown in figure 3.
Finally, for the nonperturbative component of the polarizing FF, M⊥D , in the subsequent

phenomenological analysis we will adopt the same functional forms as those in eqs. (3.35)
and (3.38), extracting the corresponding parameters from the fit.

4 Single-inclusive hadron production

As already mentioned, there is another interesting and related process relevant in this
context: namely the single-inclusive production of (un)polarized spin-1/2 hadrons in e+e−

annihilation processes. In ref. [32] a first attempt to consider this case, within a simplified
phenomenological TMD scheme, was discussed. As we will see, this case is more subtle
and deserves a proper and dedicated treatment within the TMD factorization scheme. We
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Figure 4. Kinematics for the process e+e− → h+X in the thrust-frame configuration.

will present here only some relevant formulas, summarizing the kinematics and giving the
expression of the cross section. We refer the reader to refs. [30, 31], where a complete
TMD formulation of the process e+e− → h(Sh) +X is discussed. It is worth noticing that
the issues of proper factorization and universality for such a process have been formally
addressed in a series of recent papers [35–38], where a detailed, and somehow complementary,
approach can be found.

In this configuration, as shown in figure 4, the hadron is produced with a transverse
momentum j⊥ with respect to the thrust axis T̂ , defined as the vector, T̂ , which maximizes
the thrust variable T

T =
∑
i |pi · T̂ |∑
i |pi|

, (4.1)

where pi represent the three-momenta of the measured final-state particles. This is referred
to as the thrust frame configuration, where one plane is defined by the lepton direction and
the thrust vector (Lepton plane) and the second plane by the thrust axis and the hadron
momentum. Moreover, the full phase space is divided into two hemispheres by the plane
perpendicular to the thrust axis at the e+e− interaction point. Similarly to the previous
case, the hadron has a certain energy fraction

zh = 2Ph · q
Q2 , (4.2)

where once again q is the virtual photon four-momentum and Q2 = q2 = s.
The most important aspect is that, for this process, one hemisphere is fully inclusive,

while the single-inclusive measurement is carried out in the hemisphere that contains the
thrust axis. Thus, only soft radiation which is emitted into this hemisphere will contribute to
j⊥. Indeed the factorized expression used in ref. [31] and given at next-to-leading logarithm
accuracy (NLL) in [30] introduces the hemisphere soft function Shemi, that is different
from the typical soft function S usually defined to describe the almost back-to-back double
hadron production in e+e− collisions. On the other hand, as demonstrated in [30], since
Shemi at one-loop order accuracy equals

√
S, both the unpolarized and polarizing FFs, in
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the single-inclusive process, are the same FFs appearing in the double-hadron production
process. The cross section for the unpolarized hadron production, for jT � Q, is then
given by:

dσ

dzd2j⊥
= σ0
z2

∑
q

e2
q

∫
dbT
(2π) bTJ0(bT qT ) dq/h(z; µ̄b)UNG(µ̄b, Q)

×MD(bc(bT ), z) exp
{
− gK(bc(bT ); bmax) ln

(
Qz

Mh

)}

× exp
{
K̃(b∗; µ̄b) ln Q

µ̄b
+
∫ Q

µ̄b

dµ′

µ′

[
γD(g(µ′), 1)− γK(g(µ′)) ln Q

µ′

]}
, (4.3)

where z is the hadron light-cone momentum fraction, related to zh as shown in eq. (2.4), and

σ0 = 4Ncπα
2
em

3Q2 . (4.4)

Here we find the same elements already discussed in section 3: dq/h is the integrated
unpolarized FF, MD and gK are the nonperturbative model functions. Similarly, the cross
section for transversely polarized hadron production has the following form:

d∆σ
dzd2j⊥

= sin(φSh
− φj)

σ0
z2

∑
q

e2
q

∫
dbT
(2π) b

2
TJ1(bT qT )D⊥(1)

1T (z, µ̄b)UNG(µ̄b, Q)

×M⊥D (bc(bT ), z) exp
{
− gK(bc(bT ); bmax) ln

(
Qz

Mh

)}

× exp
{
K̃(b∗; µ̄b) ln Q

µ̄b
+
∫ Q

µ̄b

dµ′

µ′

[
γD(g(µ′), 1)− γK(g(µ′)) ln Q

µ′

]}
, (4.5)

where D⊥(1)
1T , see eq. (2.20), is the small-bT limit of the first moment of the polarizing

fragmentation function.
Since soft radiation is restricted to only one hemisphere, the cross section is a non-global

observable. The factorization formulas for this kind of observables have been derived within
an effective field theory framework [58–61], where a multi-Wilson-line structure [62–64] is the
key ingredient to capture the non-linear QCD evolution effects from the so-called non-global
logarithms. For this reason in both cross sections, eqs. (4.3) and (4.5), we have introduced
the function UNG (see ref. [30]), which accounts for the effects of such non-global effects.

In the following we will use the parametrization given in ref. [65]

UNG(µ̄b, Q) = exp
[
−CACF

π2

3 u
2 1 + (au)2

1 + (buc)

]
, (4.6)

with a = 0.85CA, b = 0.86CA, c = 1.33 and

u = 1
4πβ0

ln
[
αs(µ̄b)
αs(Q)

]
, (4.7)
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where β0 = (11CA − 4TFnf )/12π, with TF = 1/2, CA = 3, CF = 4/3 and nf is the
number of the active flavours. In addition, when the polarization is measured along the
axis n̂ = T̂ × P̂h, the spin and transverse momentum azimuthal angles are such that
sin(φSh

− φj) = 1. Finally, the expression of the transverse polarization can be given as:

P(z, j⊥) = d∆σ/dzd2j⊥
dσ/dzd2j⊥

, (4.8)

that will be used to fit the Belle data. This will allows us to extract the first moment of
the polarizing fragmentation function and its nonperturbative model function.

5 Phenomenological analysis

We can now proceed with the analysis of Belle data [28] for the transverse Λ polarization
measured in e+e− collisions, employing the approach presented in the previous sections.
Two data sets are available: one where the Λ particle is produced almost back-to-back with
respect to a light unpolarized hadron, that we will refer to as double-hadron production
(2-h) data set, and one where the Λ transverse momentum is measured with respect to the
thrust axis, the single-inclusive production (1-h) data set. We will start considering only
the double-hadron production data set and present the corresponding results. In a second
phase, we will include in the study also the single-inclusive hadron production case.

5.1 Double-hadron production data fit

In this section, by employing eqs. (2.22), (2.25), (2.26), (3.21) and (3.22), we present the
analysis of the polarization of Λ/Λ̄ hyperons produced with a light hadron, π± or K±,
measured at

√
s = 10.58GeV. The 128 data points are given as a function of zΛ and

zπ/K , the energy fractions of the Λ/Λ̄ and π/K particles. For the current analysis we start
imposing a cut on large values of the light-hadron energy fractions, zπ/K < 0.5, keeping
only 96 data points. We will come back to this point in the following.

Notice that here we consider the transverse polarization for inclusive Λ particles, namely
those directly produced from qq̄ fragmentation and those indirectly produced from strong
decays of heavier strange baryons. The purpose of this analysis is to extract D⊥(1)

1T,Λ/q and
M⊥D,Λ, the first moment and the nonperturbative component of the Λ polarizing FF.

We will use the following expression to parametrize the z dependence of D⊥(1)
1T,Λ/q:

D
⊥(1)
1T,Λ/q(z;µb) = N p

q (z) dq/Λ(z;µb) , (5.1)

with, as adopted and motivated in ref. [32], q = u, d, s and sea, and where N p
q (z) (the apex

refers to the polarizing FF) is parametrized as:

N p
q (z) = Nqz

aq (1− z)bq
(aq + bq)(aq+bq)

a
aq
q b

bq
q

. (5.2)

dq/Λ is the collinear unpolarized Λ fragmentation function for which we employ the AKK08
set [66]. Notice that, even if this set has been extracted at next-to-leading-order accuracy,
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our calculation has to be considered valid only up to leading order. This parametrization is
given for Λ + Λ̄ and adopts the longitudinal momentum fraction, zp, as scaling variable. In
order to separate the two contributions we assume

dq/Λ̄(zp) = dq̄/Λ(zp) = (1− zp) dq/Λ(zp) . (5.3)

This is a common way to take into account the expected difference between the quark and
antiquark FF with a suppressed sea at large zp with respect to the valence component.
Other similar choices have a very little impact on the fit.

Concerning the nonperturbative function M⊥D,Λ we employ two different functional
forms. The first one is the Gaussian model, analogous to eq. (3.35):

M⊥D,Λ(bT , z) = exp
(
−〈p

2
⊥〉pb2T
4z2
p

)
, (5.4)

where 〈p2
⊥〉p is the Gaussian width, a free parameter that we extract from the fit. The

second one is the Power-Law model, eq. (3.38):

M⊥D,Λ(bT , z) = 22−p

Γ(p− 1) (bTm/zp)p−1Kp−1(bTm/zp) , (5.5)

where we will extract the values of p and m (with the condition p > 1).
Regarding the collinear FFs of the unpolarized light hadrons, π and K, we adopt the

DSS07 set [67], while for MD we assume a Gaussian model, compatible with previous
extractions, with 〈p2

⊥〉 = 0.2GeV2 [68]. We will also consider the PV17 model with its
proper nonperturbative functions.

For what concerns the Λ unpolarized FFs, for MD we use either a Gaussian model,
with the same width as for the light hadrons, or a Power-Law model, eq. (3.38), with the
parameters values p = 2 and m = 1GeV. These are represented in figure 3. Notice that all
the conversions among the different scaling variables (z, zh, zp) involved, eqs. (2.3), (2.4)
and (2.5), are properly taken into account. For the gK function, we use the expressions
presented in section 3, see eq. (3.33) and figure 2. Concerning the b∗-prescription, we use:

bmin = 2e−γE/Q ; bmax = 0.6GeV−1 ,

with Q = 10.58GeV. Bearing in mind that the larger is the value of bmax, the smaller is
the value assumed by µb, we chose the value of bmax to be as large as possible, taking into
account at the same time that the AKK set is defined for scales ≥ 1GeV.

Lastly, for the integration in eqs. (2.25) and (2.26), we use qTmax = 0.25Q, exploring
also the impact of different values of qTmax/Q. To perform the phenomenological analysis
we use iMINUIT [69] as a minimizer for the χ2 function, and for the Fourier transforms we
employ the Fast Bessel Transform algorithm presented in [70].

5.2 Fit results

Concerning the first moment of the polarizing FF, eqs. (5.1) and (5.2), we adopt the same
parameter choice considered in ref. [32], that is:

Nu, Nd, Ns, Nsea, as, bu, bsea , (5.6)
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M⊥D MD gK χ2
dof (2-h) χ2

dof (2-h + 1-h)

Gaussian Power-Law Logarithmic 1.192 2.9

Power-Law Power-Law Logarithmic 1.21 2.43

Gaussian Power-Law PV17 1.198 3.159

Table 1. Values of the χ2
dof obtained fitting the double hadron production data set only (column

“2-h”), and those obtained for the combined fit (column “2-h + 1-h”).

0 1 2 3 4
bT (GeV 1)

0.0

0.2

0.4

0.6

0.8

1.0

M
D

(b
T)

z = 0.5

Power Law p = 3, m = 0.35 GeV
Gaussian < p2 > = 0.066 GeV2

Gaussian (PV17) < p2 > = 0.103 GeV2

Figure 5. Nonperturbative functions extracted from the double-hadron data fit: Gaussian (orange
solid line), Power-Law (blue dash-dotted line) and PV17 Gaussian (green dotted line) model.

with all other a and b parameters set to zero. This indeed ensures, once again, a good quality
of the fit, keeping the number of parameters under control. Regarding the nonperturbative
functions, we have explored various combinations of them, for a total of 36 fits, plus
the PV17 set. We have also considered different initial values of the p parameter of the
Power-Law model, noticing that this leads to different chi-square minimum values. This
means that we have 8 or 9 free parameters depending on whether we use the Gaussian or
the Power-Law model for the polarizing nonperturbative function. The best results for the
double-hadron production fit are reported in table 1, adopting different combinations of the
gK , MD and M⊥D parametrizations.

As reported in table 2, the parameters values extracted employing the Gaussian or Power-
Law models are totally consistent and, similarly, the two polarizing nonperturbative models
M⊥D are compatible, as shown in figure 5. As in the case of the previous extraction [32], we
find that only the first moment of the up quark is positive, confirming, moreover, that the
contributions to the Λ transverse polarization given by the up and the down quarks are
opposite in sign.

In figure 6 we show the estimates of the transverse Λ polarization, produced in asso-
ciation with a light-hadron, compared against Belle data [28], adopting the parameters
extracted with the Gaussian model. The shaded areas, corresponding to a 2σ uncertainty,
are computed according to the procedure explained in the appendix of ref. [71].
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Parameters Gaussian Power-Law Gaussian (PV17)

Nu 0.093−0.052
+0.092 0.100−0.054

+0.095 0.168−0.007
+0.008

Nd −0.100−0.036
+0.035 −0.107−0.041

+0.036 −0.138−0.011
+0.012

Ns −0.117−0.09
+0.059 −0.115−0.089

+0.057 −0.161−0.03
+0.033

Nsea −0.055−0.058
+0.033 −0.058−0.062

+0.034 −0.104−0.008
+0.008

as 2.19−0.83
+1.07 2.12−1.0

+1.5 2.19−0.32
+0.28

bu 3.5−2.2
+2.8 3.5−1.9

+2.8 4.02−0.26
+0.28

bsea 2.3−1.8
+2.5 2.3−1.9

+2.7 2.91−0.16
+0.18

〈p2
⊥〉p 0.066−0.031

+0.039 0.103−0.014
+0.015

p 3.0−1.4
+2.5

m 0.35−0.22
+0.3

Table 2. Best parameter values for the first moment of the polarizing FF and for the two
nonperturbative functions employed to fit the double-hadron data set.
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Figure 6. Best-fit estimates (Gaussian model with the parameters of table 2) of the transverse
polarization for Λ, Λ̄ in e+e− → Λ(Λ̄)h+X, for Λπ± (a), Λ̄π± (b), ΛK± (c), Λ̄K± (d), as a function
of zh (h = π,K) for different zΛ bins. Data are from Belle [28]. The statistical uncertainty bands,
at 2σ level, are also shown. Data for zπ,K > 0.5 are not included in the fit. The results of the fit of
ref. [32] (dotted line) are also shown.
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gK χ2
dof range

Logarithmic 1.192 - 1.287
Quadratic 1.4 - 1.472
AFGR 1.474 - 1.514
BLNY 1.67 - 1.783
PV17 1.198 - 1.524

Table 3. Range of the χ2
dof values for different nonperturbative gK functions.

As in the previous fit [32], where the full TMD machinery was not employed, ΛK±
data with zK > 0.5 cannot be described. This can due to different reasons, like the large
uncertainty on the last zπ,K bin and/or the uncertainty affecting the unpolarized FFs in
this region.

In table 3 we report the χ2
dof ranges for different fits. In this comparison we combine

different nonperturbative functions to fit data. At fixed gK function and adopting four
combinations of the polarizing and unpolarized FFs with Gaussian and Power-law model,
the χ2 goes from a minimum to a maximum value as reported in table 3. It is worth noticing
that the extractions are consistent and stable when we employ the same gK .

Moreover, we see that the best fits are found when we make use of the Logarithmic
gK function (quite similar to the PV17 model), while the Quadratic and AFGR functional
forms give similar results with worse χ2

dof. Finally, the worst χ2
dofs are obtained with the

BLNY functional form.
In figure 7 we show the impact of choosing different values of qTmax/Q on the quality of

the fit, obtained using the Power-Law and the Gaussian models. In general, the Gaussian
model gives smaller χ2

dof values. Both models reach their minimum χ2
dof value around

qTmax/Q = 0.22, while the Gaussian model with the PV17 parametrization reaches its
minimum χ2

dof value at qTmax/Q ' 0.27. The growth of the χ2
dof, as qTmax/Q increases, can

be explained considering that we are gradually going out of the validity region of the TMD
factorization. Meanwhile, the growth for lower values of qTmax/Q can be attributed to the
fact that the smaller is qTmax/Q, the larger is the distance between the nodes of the Bessel
functions. Hence, the Fast Bessel Transform algorithm [70] is not anymore able to sample
sufficiently well the integrand, whose Fourier transform is to be computed.

5.3 Combined fit: double- and single-inclusive hadron production data

We now discuss the role of single-inclusive polarization data in extracting the polarizing
FF, in view of a combined fit of both data sets. We start checking whether by adopting the
results from the 2-h fit one is able to describe the single-inclusive hadron data. This data
set is given as a function of p⊥, the transverse momentum of the Λ/Λ̄ particle with respect
to the thrust axis, that coincides with j⊥ in eqs. (4.3) and (4.5), for different bins of the
energy fraction zΛ [28].
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qTmax/Q
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f

Power-Law Mod.
Gaussian Mod.
Gaussian Mod. (PV17)

Figure 7. χ2
dof values for the fits obtained adopting the Power-Law (blue short-dashed line), the

Gaussian (red dotted line), both with the Logarithmic gK function, and the PV17 model (green
long-dashed line) with the PV17 gK functional form, as a function of qTmax/Q.
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Figure 8. Estimates of the transverse polarization for single-inclusive Λ/Λ̄ production compared
with Belle data. The results are obtained using eqs. (4.3), (4.5) and (4.8) and the parameter values
of table 2, for the Gaussian model (with the logarithmic functional form for gK) and the 2-h fit.

As shown in figure 8 the Gaussian model from the 2-h fit (but the same happens also
for the Power-Law model) cannot describe the pattern and the size of the polarization.

As a further step, we perform a combined fit including both the single-inclusive (1-h)
and the 2-h hadron data sets. In such a case we obtain a large χ2

dof, as shown in the last
column of table 1. The main outcome is that while the single-inclusive data can be described
better than in the previous case, the agreement for the associated light-hadron production
case (in particular for pions) is spoiled. This is the main reason for the increasing of the χ2

(see also table 5, where we show the χ2 for data points). Even exploring all other different
combinations of nonperturbative models, as we have done in the double-hadron production
section, we keep getting χ2

dof values ranging from 2.4 to 5.4.
Since the first moment of the polarizing FF is a collinear quantity, it is expected to

be the same in both the double-hadron and the single-inclusive cross sections. Therefore,
the fact that the two data sets cannot be fitted simultaneously could suggest that these
processes cannot be described within the same factorization theorem and/or by the same
nonperturbative function M⊥D (see also refs. [36–38]). An attempt to explore this issue will
be discussed in the following section.

– 24 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
4

Gaussian Power-Law

χ2
dof = 1.801 χ2

dof = 1.565

2-h 1-h 2-h 1-h

〈p2
⊥〉p 0.04−0.02

+0.03 0.2−0.01
+0

p 1.352−0.055
+0.068 1.623−0.011

+0.011

m 0.151−0.024
+0.026 0.48−0.005

+0.005

Table 4. Values of the best fit parameters for the nonperturbative function, M⊥D , using two
independent sets of parameters for the 2-h and 1-h data sets, for the Gaussian and Power-Law models.
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Figure 9. Comparison of our fit estimates for the Λ/Λ̄ single-inclusive polarization against Belle
data, adopting the double parametrization for the Power-Law model.

5.3.1 Different nonperturbative functions M⊥
D for the 2-h and 1-h cases

In order to investigate the possible reasons why the combined fit is not satisfactory and
why the parameters extracted in the double-hadron fit cannot describe the single-inclusive
polarization data, we try to fit both data sets using the same parametrizations for the first
moment of the polarizing FF and the same functional form for M⊥D , but with two different
sets of parameters for the latter. Notice that this has to be considered as an attempt
to explore the compatibility of the two data sets with the use of a unique and universal
nonperturbative function.

More precisely, for the Gaussian model we fit two different Gaussian widths, while in
the case of the Power-Law model we fit two different (p,m) parameter pairs, one for the 2-h
data set and one for the 1-h data set. Concerning gK and the unpolarized nonperturbative
functions we use the same functional forms as in table 1. As reported in table 4, with this
approach we can find much better χ2

dof’s with respect to those reported in the last column
of table 1. Indeed, we obtain a χ2

dof = 1.801 and 1.565 respectively for the Gaussian and
the Power-Law models.

Focusing on the results obtained with the Power-Law model, that gives a better χ2
dof,

in figure 9 we can see how the estimates for the single-inclusive polarization describe the
experimental data much better than those in figure 8 (without spoiling the agreement with

– 25 –



J
H
E
P
1
2
(
2
0
2
2
)
0
7
4

0.2 0.3 0.4 0.5 0.6 0.7
z

0.000

0.002

0.004

0.006
z

D
(1

)
1T

(z
)

(a)

Q = 10.58 GeV

up 2h & 1h
2h

0.2 0.3 0.4 0.5 0.6 0.7
z

0.012

0.008

0.004

0.000

z
D

(1
)

1T
(z

)

(b)

Q = 10.58 GeV

down 2h & 1h
2h

0.2 0.3 0.4 0.5 0.6 0.7
z

0.003

0.002

0.001

0.000

z
D

(1
)

1T
(z

) (c)

Q = 10.58 GeV

strange2h & 1h
2h

0.2 0.3 0.4 0.5 0.6 0.7
z

0.0105

0.0070

0.0035

0.0000

z
D

(1
)

1T
(z

) (d)

Q = 10.58 GeV

sea 2h & 1h
2h

Figure 10. First moments of the polarizing FFs, for the up (a), down (b), strange (c) and sea (d)
quarks, as obtained from the combined fit (red dashed lines) and the 2-h fit (blue dot-dashed lines).
The corresponding statistical uncertainty bands are also shown.

the 2-h data set, see below). The two different pairs of (p,m) are given in table 4. In
figure 10 we also show a comparison of the first moments of the polarizing FFs as extracted
in the 2-h fit and in the combined fit, adopting the double model parametrization for
M⊥D . As one can see the two extractions seem not to be compatible, at least within the
uncertainty bands (the full theoretical uncertainty bands, very difficult to estimate, might
be larger than the statistical ones). On the other hand, as already stressed, the combined
fit requires further insight for what concerns the single-inclusive hadron production. We
also notice that the qualitative behaviour and the size of the first moments are comparable
with those extracted in ref. [32].

In table 5 we try to summarize the main findings of our phenomenological analysis,
by reporting the χ2 per data points for each case considered, and still focusing on the
Power-Law model. Starting with the 2-h fit (second column), we see that, besides a small
tension in the ΛK data set, the overall χ2

point is extremely good (as already discussed above).
Moving to the results for the combined fit (2-h+1-h), adopting a unique parametrization
for M⊥D (third column), we see that the description of the Λπ data set is completely spoiled.
Moreover, the χ2

point for the inclusive data is also extremely high and the overall χ2
point

doubles its value with respect to the 2-h fit. Finally, the combined fit, but with two separate
parametrizations for M⊥D (last column), shows that for this scenario the 2-h data sets can
be described at the same level of accuracy as in the 2-h fit. More important, the χ2

point
for the inclusive data set reduces significantly, leading to an improvement in the overall
description (χ2

point = 1.43)
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2-h 2-h+1-h (one param.) 2-h+1-h (two param.)

Data χ2
point Data χ2

point Data χ2
point

Λπ 48 0.79 48 2.2 48 0.8

ΛK 48 1.4 48 1.7 48 1.4

Λ 31 3.1 31 2.4

TOT. 96 1.1 127 2.3 127 1.43

Table 5. χ2 per data points for the 2-h, 2-h+1-h (single parametrization) and 2-h+1-h (double
parametrization) fits, adopting the Power-Law model.

0 3 6 9
0.0

0.2

0.4

0.6

0.8

1.0

M
D

(b
T) z = 0.25

0 3 6 9

z = 0.35

0 3 6 9

z = 0.45

0 3 6 9

z = 0.6

2h
1h

bT (GeV 1)bT (GeV 1)bT (GeV 1)bT (GeV 1)

Figure 11. Results within the Power-Law model fit for the two M⊥D parametrizations in bT -space:
2-h (blue solid line) and 1-h (orange dash-dotted line) case.

Let us move to the results obtained for the soft nonperturbative functions, M⊥D .
Comparing the two Power-Law models as extracted from the 2-h and 1-h data fits in
figure 11, we can see that they have almost the same behaviour and size at small bT , as
expected since the two fragmentation functions should be the same in the collinear limit,
but they differ significantly as bT increases: the model related to the 2-h data set, blue solid
line, is wider than the model related to the 1-h data set, orange dash-dotted line. This
corresponds in p⊥-space to a similar behaviour at large p⊥ values, figure 12, and a sizeably
different one at small p⊥.

These findings suggest that the two models (same functional form but different param-
eters) could represent effective convolutions involving two distinct soft factors and that the
effects of the recoil against the emission of soft gluons might be different in the two cross
sections [38].

Notice that the fragmentation functions of the single-inclusive hadron production, in
the factorization scheme presented in ref. [30], coincide with those in the double-hadron
production at one-loop order. Indeed, only in this case the hemisphere soft factor, Shemi,
corresponds to the soft factor,

√
S, convoluted with each one of the fragmentation functions

in the double-hadron production cross sections.
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Figure 12. Results within the Power-Law model fit for the two M⊥D parametrizations in p⊥-space:
2-h (blue solid line) and 1-h (orange dash-dotted line) case. The functional form is given in eq. (B.27).

Hence in future analyses, in order to have a more consistent and robust combined fit
without using, as an ansatz, two different sets of parameters, one should try to calculate and
employ the soft factor Shemi beyond the one-loop order. An alternative strategy would be
to exploit the cross sections as formulated in ref. [35] within an effective theory framework,
or in refs. [37, 38], where the derivation is based on a CSS approach.

5.4 Predictions

We can now try to check explicitly the consistency of the whole approach as well as the role
of the TMD evolution by considering another set of data, namely those from the OPAL
Collaboration [29], collected at much larger energy,

√
s = MZ . This data set refers to the

single-inclusive Λ production, integrated over almost the entire zh range [0.15–1]. Even if
they have large errors, this is the only other available data set for this observable and it is
therefore worth studying the impact on our findings.

In figure 13 we show a series of predictions obtained adopting the different models
discussed in the previous sections: all of them are almost compatible with data, within the
large error bars, with some differences that deserve several comments.

Let us start from the 2-h fit extraction (left panel). Both the Power-law (blue dot-dashed
line) and the Gaussian (red solid line) models are not able to describe the lowest p⊥ data,
while they work pretty well above 0.4GeV. This behaviour shows the same features of the
description of the single-inclusive Belle data adopting the 2-h parametrization, see figure 8.
On the other hand, OPAL data are integrated over a single, much larger zh bin and this
somehow reduces the discrepancies with the theoretical estimates. For completeness we also
show the predictions from the analysis performed in ref. [32], where a TMD scheme with a
simple Gaussian parametrization at fixed scale was adopted (green dashed line, labelled
GPM for simplicity). The main difference with respect to the results obtained in the present
analysis is the strong suppression, starting already at p⊥ ' 0.5GeV. We will come back to
this point below.
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Figure 13. Predictions for the transverse Λ polarization in e+e− → ΛX as a function of p⊥ at√
s = MZ , integrated over zh in the range [0.15, 1], against OPAL data [29]. Left panel, 2-h fit:

Power-Law (blu dot-dashed line), Gaussian (red solid line) model and GPM results [32] (dashed green
line) from double-hadron fits. Right panel, combined fits within the Power-Law parametrization:
double-model fit (blue solid line), one-model fit (violet dotted line) and global analysis (Belle +
OPAL data) within the double-model fit (orange dot-dashed line). We also show the results within
the GPM approach [32] (green dashed line). For some cases uncertainty bands are shown.

In the right panel we present the corresponding predictions obtained from the combined
fit. In such a case we focus on the Power-Law model that gives the best χ2 values. Both
extractions, the one based on the single-model parametrization (red dotted line) and the
one coming from the double-parametrization fit, with the parameter set for M⊥D from the
single-inclusive hadron production (blue solid line), are able to describe the data in size and
sign pretty well. On the other hand, one has to recall, see table 5, that the single-model
parametrization for the combined fit gives very large χ2 for the associated pion production
data set.

Even if with some caution, we could observe how the flattening behaviour in p⊥ of
these predictions reproduce the puzzling plateau of the transverse Λ polarization observed
in unpolarized hadron-hadron collisions as a function of the transverse momentum of the Λ
with respect to the direction of the incoming hadrons.

The corresponding GPM results (recall that for the single-inclusive case a simplified
phenomenological TMD scheme was adopted), while qualitatively good, show once again
their distinguishing Gaussian suppression at large p⊥. The main difference with the
corresponding GPM curve shown in the left panel is that the combined fit, even in the
GPM approach, gives a much larger Gaussian width and the suppression is somehow shifted
at larger p⊥.

It is worth noticing that the overall common good agreement, within the large error
bars, of the two approaches, CSS framework (this analysis) and GPM results from ref. [32],
is due to the fact that both of them are controlled by the collinear DGLAP evolution. In the
first case from the formal matching onto the collinear scale-dependent FFs, in the second one
by construction. What makes the difference, and improves somehow the description in the
present study, is the indirect scale dependence of the widths, through the CSS evolution [44],
not included in the simplified TMD scheme.

For the sake of completeness, we have also tried a sort of global fit, including the OPAL
data set in our analysis. By adopting the double-model parametrization and the Power-Law
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model we get an overall χ2
dof = 1.52. We have to notice that this somehow very low value

(at least for the combined fit) is affected by the fact that we have included further data
points with large errors. The resulting estimate, shown in the right panel of figure 13
(orange dot-dashed line) almost coincides with the prediction obtained within the same
scenario without including the OPAL data. Obviously, the large error bars prevent to draw
any definite conclusion. Nonetheless, the agreement is quite promising.

More precise data as well as more data at larger p⊥ would be extremely useful to test
the model predictions.

5.5 SU(2) symmetry and charm contribution

We conclude our phenomenological analysis by discussing here some important (and somehow
related) issues, as we will see below. We stress that what follows has to be considered as a
preliminary and exploratory study, to be addressed more carefully in future work.

The first aspect we would like to address is the SU(2) isospin symmetry, advocated for
instance in ref. [72]. In our phenomenological analysis, presented in the previous sections,
we have not imposed any constraint on the polarizing FFs for up and down quarks. As
already found in the first extraction of the Λ polarizing FFs [32, 33], the use of a unique
FF for up and down quarks (within a three-flavour parametrization), even adopting the
full TMD formalism, would lead to a very poor quality of the fit with a much larger χ2

dof
(around 2, reaching up to 2.5 if no large-zh cuts are imposed). When the normalization of
the up and down quark polarizing FFs are left free the χ2 minimization naturally leads to
different sizes and, more importantly, to opposite signs. Therefore, within a three-flavour
fit and with present data SU(2) symmetry seems to be ruled out. In this respect nothing
changes adopting the proper TMD framework.

Another important issue is the relevance of the charm contribution, as explicitly
discussed in the Belle experimental analysis [28]. As we will show below, this could play a
role also concerning the isospin symmetry issue, and, quite interestingly, in the description of
the large-zh ΛK data. These indeed have not been included in the fit, since they would spoil
its quality and, at variance with the large-zπ Λπ data, are very difficult to describe. We have
also to notice that the Kaon FFs, especially at large z, are affected by large uncertainties
and this has to be considered in conjunction with the large last experimental z bin.

At this stage we have tried to see what happens by including the charm contribution
only in the unpolarized cross section, the denominator of the transverse polarization. More
precisely, we have extended the sum over quark flavours in eq. (3.21) up to the charm
quark, while keeping the corresponding sum over u, d, s quarks in eq. (3.22), with nf = 4
and ΛQCD(nf = 4). This means that we are still considering the polarizing FFs only for
light quarks. For consistency, the same fragmentation function sets, namely DSS07 for light
hadrons and AKK08 for Λ hyperons, have been adopted. We also notice that heavy-quark
mass effects in the hard part coefficient are completely negligible at this energy.

While still obtaining a similar χ2
dof around 1.2 with no SU(2) symmetry, now one can

obtain a χ2
dof around 1.45 when imposing it. Quite interestingly also the description of the

large zh bins for ΛK data, even if not included in the fit, improves a lot, as one can see in
figure 14 for the ΛK+ data set. Notice that the agreement for Λπ data is preserved in all
cases considered.
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Figure 14. Impact of SU(2) symmetry, charm contribution and large zK-cut in the description of
ΛK+ data: without SU(2) sym., no charm and zK cut (blue solid line), without SU(2) sym., with
charm and zK cut (orange dot-dashed line), without SU(2) sym., with charm and without zK cut
(green dotted line) and imposing SU(2) sym., with charm and without zK cut (red dashed line).

Concerning the polarizing FFs we obtain the following results: the inclusion of the
charm contribution leads to an increase, in size, of all polarizing FFs; this effect is mainly
driven by the increase of the unpolarized cross section in the denominator of the transverse
polarization. When we impose also SU(2) symmetry, both the down- and up-quark polarizing
FFs come out positive (it is worth recalling that without SU(2) symmetry the down-quark
polarizing FF was negative) and there is a further general increase of all polarizing FFs.

As a general conclusion we can say that by including also the charm contribution (at
least in the unpolarized cross section) one can obtain similar good fits imposing or not
SU(2) symmetry and/or imposing or not the cut on the large-zh bin. On the other hand
these choices could affect in a different way the corresponding predictions for the transverse
Λ polarization in other processes, like in SIDIS. We have indeed carried out a preliminary
study confirming this hypothesis. A detailed analysis is in progress and will be presented in
a future paper (see also ref. [73]).

For its relevance, we also checked the impact of the above assumptions in the combined
fit. Once again the one-model fit would give very large χ2

dof . In the double-model fit,
focusing on the Power-law parametrization, we obtain similar results as those discussed
for the 2-h fit. In other words, imposing SU(2) symmetry once again leads to a very large
χ2. On the other hand, if one includes the charm contribution, without imposing SU(2)
symmetry the χ2 does not change, while imposing it the χ2 increases up to 1.7. In both
cases the agreement with the large zh bins for Λ-K data, even if not included in the fit,
improves significantly.

6 Conclusions

In this paper we have carried out a reanalysis of Belle data for the transverse Λ polarization
in e+e− annihilation processes by employing proper TMD factorization theorems and QCD
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evolution equations within the CSS approach. This is indeed an important observable in
the context of hadron physics and the fragmentation process, in particular to reach deeper
insights on the transverse polarization mechanism of Λ hyperons. Moreover, it is well
defined in terms of a TMD approach, allowing to extract the still poorly known polarizing
fragmentation function.

One of our main findings is that this study confirms, in many aspects, the results
previously obtained within a former, simplified, extraction of the Λ polarizing FF, allowing,
at the same time, to have a more robust framework for future studies at different energies
and/or for different processes. A common feature of the two analyses is that for the
extracted polarizing FFs a clear separation in flavours can be achieved. Within a three
flavour scenario, the best description is obtained with three different valence polarizing FFs
(breaking the SU(2) isospin symmetry), with their relative sign and size determined quite
accurately. The need of a sea contribution is also well supported.

Two data sets have been considered with their proper features, employing the corre-
sponding formal description and paying special attention to the nonperturbative functions:
the associated production case with a light unpolarized hadron and the inclusive case,
where one has to reconstruct the thrust axis direction. Focusing on the double-hadron
production data, we have shown how they can be described extremely well through different
combinations of nonperturbative functions. Moreover, the M⊥D functions so extracted,
within the Gaussian and the Power-Law model, are totally compatible. However, the other
relevant nonperturbative function, gK , plays a more distinctive role. Indeed, the smallest
χ2

dofs are found by employing a specific functional form: the Logarithmic one. One main
remark is that none of the models extracted from the double-hadron production data
can describe either the size or the pattern of the transverse Λ polarization data in the
single-inclusive production.

Another striking feature is that the ΛK+ and Λ̄K− polarization data, with zK > 0.5,
cannot be described even employing the CSS evolution equations.

As a further attempt we have performed a combined fit of the double and single-inclusive
hadron production data sets, by extracting a single or two different sets of parameters for the
M⊥D function. In the first case, the results are still unsatisfactory, while the double-model fit,
to be considered as a phenomenological attempt, allows for an overall quite good description.
These findings raise the issue that the two data sets could hardly analysed within the
same factorization scheme. For the same reason, the discrepancy between the two models,
extracted independently from the two data sets, could highlight that there are different
effects of recoil against emission of soft gluons, and distinct polarization mechanisms for Λ
hyperons between double and single-inclusive hadron production processes. This deserves a
more detailed analysis.

For completeness, we have also considered another data set, the one from the OPAL
Collaboration, for the inclusive production case, but at much larger energies. We have
checked our predictions against the data as well tried to include them in a global fit. As
for the Belle data, the predictions from the associated production data fit are not able to
describe the OPAL data, while the combined fit works pretty well. Including the OPAL
data set in the fit confirms this finding, with an even smaller χ2.
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Finally, we have explored the role of SU(2) symmetry and of the charm contribu-
tion (limiting it to the unpolarized cross section). Even without carrying out a detailed
phenomenological analysis, we can say that imposing SU(2) symmetry alone spoils the
description of the data. On the other hand, the inclusion of the charm contribution (with
or without SU(2) symmetry) allows still to get a good fit, improving also the description of
the ΛK data at large zK . Also in this case further work seems necessary and is underway.

Future experimental analyses and further theoretical developments will certainly help
in understanding and possibly unveiling the hadronization mechanism involved in the
transverse Λ polarization observed in the two processes considered. This issue together
with the universality properties of the polarizing FF and its TMD evolution, as well as
the role of SU(2) symmetry and heavy flavour contributions, could eventually be explored
and clarified in other processes, like SIDIS (in particular at the Electron Ion Collider) and
inclusive hadron production in pp collisions.
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A Transverse momenta in different frames and kinematic corrections

Here we give the relations among the different transverse momenta, presented in section 2,
in the hadron frame. Even if already discussed in the literature, it is worth presenting them
once again, taking into account also mass effects.

More precisely, we work in a frame where the two final-state hadrons are exactly
back-to-back along the ±ẑ direction, the fragmenting quarks have a transverse momentum
with respect to the direction of their parent hadrons and the photon has a transverse
momentum as well. We label the momenta as follows:

• k is the four-momentum of the quark fragmenting into the hadron h1, with four-
momentum P1 and moving along −ẑ;

• p is the four-momentum of the anti-quark fragmenting into the hadron h2, with
four-momentum P2 and moving along +ẑ;

• kT and pT are respectively the transverse momenta of the quark and the anti-quark
with respect to their associated hadron momenta, while k⊥ and p⊥ are respectively the
transverse momenta of the two hadrons with respect to their parent quark directions
of motion;

• q is the four-momentum of the virtual photon and qT its transverse component.
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By adopting standard light-cone coordinates (a = (a+, a−,aT )), we define the quarks and
photon momenta as follows [40]:

k =
(
k2
T

2k− , k
−,kT

)
where kT = |kT | (A.1)

p =
(
p+,

p2
T

2p+ ,pT

)
where pT = |pT | (A.2)

q =
(
Q̃√

2
,
Q̃√

2
, qT

)
, (A.3)

with Q̃2 = Q2 + q2
T , where qT = |qT |. Since k + p = q, we have directly

k− = Q√
2

+O
(
q2
T /Q

2
)
; k+ = k2

T√
2Q

+O
(
q2
T /Q

2
)

(A.4)

k0 = Q

2 +O
(
k2
T /Q

2
)
; k3 = −Q2 +O

(
k2
T /Q

2
)

(A.5)

p+ = Q√
2

+O
(
q2
T /Q

2
)
; p− = p2

T√
2Q

+O
(
q2
T /Q

2
)
, (A.6)

with kT + pT = qT . Concerning the hadron momenta, we have:

P1 =
(

M2
1

z1Q
√

2
,
z1Q√

2
,0T

)

P2 =
(
z2Q√

2
,

M2
2

z2Q
√

2
,0T

)
,

(A.7)

where we have used the light-cone momentum fractions:

z1 = P−1
k−

; z2 = P+
2
p+ . (A.8)

A.1 kT vs. k⊥

We now derive the relation between the transverse momenta kT and k⊥. Firstly, without
loss of generality, we consider the hadron h1 and the fragmenting quark momenta sitting
on the x̂z plane, namely

P1 =
(
P 0

1 , 0, 0, P 3
1

)
k =

(
k0, kT , 0, k3

)
, (A.9)

with the quark transverse momentum, kT , along the positive x̂-axis. Then, we move to
a frame where the quark has zero transverse momentum component by employing the
following rotation:

Ry(ξ, λ) =


1 0 0 0
0 ξ 0 −λ
0 0 1 0
0 λ 0 ξ

 , (A.10)
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where ξ = −k3/k0 and λ = −kT /k0, with ξ2 + λ2 = 1. The transformed quark four-
momentum k′ is then given as:

k′ = Ry (ξ, λ) k =
(
k0, 0, 0, k′3

)
. (A.11)

By applying the above rotation to the hadron four-momentum P1, we get

P ′1 = Ry (ξ, λ) P1 =
(
P 0

1 ,−λP 3
1 , 0, P ′

3
1

)
, (A.12)

with

P 0
1 = z1Q

2

(
1 + M2

1
z2

1Q
2

)
(A.13)

P ′
3
1 = −ξ z1Q

2

(
1− M2

1
z2

1Q
2

)
(A.14)

−λP 3
1 = −kT z1

(
1− M2

1
z2

1Q
2

)
. (A.15)

The hadron transverse momentum with respect to the quark direction, usually called k⊥, is
now along the negative x̂-axis. Therefore, from the above relations, we can see that kT and
k⊥ are anti-parallel (neglecting k2

T /Q
2 corrections) and, using eq. (2.5), that k⊥ = kT zp1

(this indeed can be derived also as an exact relation). This eventually leads to:

k⊥ = −kT zp1 , (A.16)

that, for a massless hadron, reduces to the usual kT = −k⊥/z1 relation. The same is valid
for the second hadron, that is p⊥ = −pT zp2 .

A.2 P1T vs. qT

In order to find the relation between P1T , the transverse momentum of h1 with respect to
h2 in the hadron frame, and qT , the transverse momentum of the photon in the new frame,
where the two hadrons are back-to-back, we can use more directly the tensor gµν⊥ [40]:

gµν⊥ = gµν − t̂µt̂ν + ẑµẑν with t̂µ = qµ

Q
ẑµ = 2 Pµ2

zh2Q
− t̂µ . (A.17)

By contracting the above tensor with the four-momentum of hadron h1, we find

Pµ1T = gµν⊥ P1ν = Pµ1 + Pµ2

(
2 z1
zh2

− zh1

zh2

)
− z1q

µ , (A.18)

where we have neglected the mass of the second hadron, M2 = 0. By explicit calculation
one can then see that all components but the transverse one are zero, that is

P1T = −z1qT , (A.19)

where z1 is the light-cone momentum fraction.
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B Convolutions and Fourier transforms

In order to exploit the CSS evolution equations, in section 2 we showed how the convolutions,
in kT -space, can be written in the conjugate bT -space through Fourier transforms of the
TMD-FFs. We give here some details about this procedure. The first convolution we
consider is FUU , defined according to eq. (2.7),

F
[
ωDD̄

]
=
∑
q

e2
q

∫
d2kTd

2pT δ
(2)(kT + pT − qT )ω(kT ,pT )D(z1,k⊥)D̄(z2,p⊥) ,

(B.1)

as follows:

FUU =F
[
D1D̄1

]
. (B.2)

It is trivial to convert this convolution in bT -space by employing the Fourier transform
definition of the TMD unpolarized FF:

D̃1(z, bT ) =
∫
d2kT e

ibT ·kTD1(z, k⊥) = 2π
∫
dkT kTJ0(bTkT )D1(z, k⊥) , (B.3)

where we have used the integral representation of J0, the Bessel function of the first kind∫ 2π

0
dθ eibT kT cos θ = 2πJ0(bTkT ) . (B.4)

With the above relations, the FUU convolution in bT -space can be written as:

FUU =F
[
D1D̄1

]
=
∑
q

e2
q

∫
d2bT
(2π)2 e

−ibT ·qT D̃1(z1, bT ) ˜̄D1(z2, bT )

=
∑
q

e2
q

∫
dbT
(2π) bTJ0(bT qT )D̃1(z1, bT ) ˜̄D1(z2, bT ) = B0

[
D̃1
˜̄D1
]
.

(B.5)

The second convolution we consider is F sin(φ1−φS1 )
TU , defined as follows:

F
sin(φ1−φS1 )
TU =F

[
ĥ · kT
M1

D⊥1T D̄1

]
. (B.6)

To work out this convolution we need the Fourier transform of the unpolarized fragmen-
tation function, presented above, and the one of the polarizing fragmentation function
multiplied by kiT , the i-th component of the quark transverse momentum with respect to
the hadron direction:∫

d2kT
kiT
Mh

eibT ·kTD⊥1T (z, k⊥) = −i
Mh

∂

∂biT

∫
d2kT e

ibT ·kTD⊥1T (z, k⊥) (B.7)

= − i

Mh

∂

∂biT
D̃⊥1T (z, bT ) (B.8)

= −2 i

Mh
biT

∂

∂b2T
D̃⊥1T (z, bT ) (B.9)

= ibiTMhD̃
⊥(1)
1T (z, bT ) , (B.10)
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where we have used the definition of the Fourier transform of the polarizing FF

D̃⊥1T (z, bT ) =
∫
d2kT e

ibT ·kTD⊥1T (z,k⊥) . (B.11)

In the very last step we have also introduced the first moment of the polarizing FF in
bT -space:

D̃
⊥(1)
1T (z, bT ) =

(
− 2
M2
h

∂

∂b2T
D̃⊥1T (z, bT )

)
. (B.12)

This term can be related to the first moment in kT -space, defined as:

D
⊥(1)
1T (z) =

∫
d2k⊥

(
k2
⊥

2z2M2
h

)
D⊥1T (z, k⊥) , (B.13)

by using the relation:
lim
bT→0

D̃
⊥(1)
1T (z, bT ) = 1

z2D
⊥(1)
1T (z) . (B.14)

We have indeed that:

D̃
⊥(1)
1T (z, bT ) = − 2

M2
h

∂

∂b2T
D̃⊥1T (z, bT )

= − 2π
bTM2

h

∂

∂bT

∫
dk⊥ k⊥
z2 J0

(
bTk⊥
z

)
D⊥1T (z, k⊥)

= 2π
M2
hz

3

∫
dk⊥

k2
⊥
bT
J1

(
bTk⊥
z

)
D⊥1T (z, k⊥) ,

(B.15)

where we have used
∂

∂bT
J0(abT ) = −aJ1(abT ) . (B.16)

Then by employing the additional relation

lim
bT→0

J1(abT )
bT

= a

2 , (B.17)

we are able to proof eq. (B.14):

lim
bT→0

D̃
⊥(1)
1T (z, bT ) = 1

z2

∫
d2k⊥

(
k2
⊥

2z2M2
h

)
D⊥1T (z, k⊥) . (B.18)

Finally, with the above results we can write the F sin(φ1−φS1 )
TU convolution in bT -space:

F
sin(φ1−φS1)
TU = F

[
ĥ · kT
M1

D⊥1T D̄1

]

=
∑
q

e2
q

∫
d2kTd

2pT δ
(2) (kT + pT − qT ) ĥ · kT

M1
D⊥1T (z1,kT ) D̄1 (z2,pT )

=M1
∑
q

e2
q

∫
d2bT

(2π)2 e
−ibT ·qT

(
iĥ · bT

)
D̃
⊥(1)
1T (z1, bT ) ˜̄D1 (z2, bT )

=M1
∑
q

e2
q

∫
dbT
2π b2TJ1 (qT bT ) D̃⊥(1)

1T (z1, bT ) ˜̄D1 (z2, bT )

=M1B1
[
D̃
⊥(1)
1T

˜̄D1
]
,

(B.19)
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where we have used the integral definition of the J1 Bessel function:∫ 2π

0
dθ eibT kT cos θ cos θ = (2πi)J1(bTkT ) . (B.20)

B.1 Gaussian model

As a first example of parametrization for the transverse momentum dependence of the FFs
we present a simple Gaussian model, deriving its Fourier transform and first moment. We
use the following Gaussian model for a generic TMD fragmentation function:

D(z, k⊥) = D(z, 0) e
−k2
⊥/〈k

2
⊥〉D

π〈k2
⊥〉

, (B.21)

where 〈k2
⊥〉 is the Gaussian width of the unpolarized TMD-FF. According to eq. (B.13), its

first moment is:

D(1)(z) =
∫
d2k⊥

(
k2
⊥

2z2M2
h

)
D(z, k⊥) = D(z, 0) 〈k2

⊥〉2D
2z2M2

h〈k2
⊥〉

(B.22)

and the bT -space fragmentation function is

D̃(z, bT ) =
∫
d2kT e

ibT ·kTD(z, k⊥) = 2π
∫
dkT kTJ0(bTkT )D(z, k⊥)

= 2π
∫
dk⊥ k⊥
z2 J0

(
bTk⊥
z

)
D(z, k⊥) = D(z, 0)

z2
〈k2
⊥〉D
〈k2
⊥〉

e−b
2
T 〈k

2
⊥〉D/(4z

2) . (B.23)

We notice that, when 〈k2
⊥〉D = 〈k2

⊥〉, as in the case of the unpolarized FF,

lim
bT→0

D̃1(z, bT ) = 1
z2D1(z, 0) , (B.24)

where D1 coincides with dj/h in the OPE in eq. (3.8). Employing the first-moment definition
in bT -space, eq. (B.12), we have:

D̃(1)(z, bT ) =
(
− 2
M2
h

∂

∂b2T
D̃(z, bT )

)
= D(z, 0) 1

2z4M2
h

〈k2
⊥〉2D
〈k2
⊥〉

e−b
2
T 〈k

2
⊥〉D/(4z

2) . (B.25)

Then, by using eq. (B.14), we find:

lim
bT→0

D̃(1)(z, bT ) = 1
z2

[ 1
2M2

hz
2
〈k2
⊥〉2D
〈k2
⊥〉

D(z, 0)
]

= 1
z2D

(1)(z) . (B.26)

B.2 Power-Law model

The second model used to parametrize the transverse momentum dependence of FFs, of
which we calculate here its Fourier transform and first moment, is the Power-Law model.
This is defined as follows:

D(z, k⊥) = D(z, 0) Γ(p)
πΓ(p− 1)

m2(p−1)

(k2
⊥ +m2)p . (B.27)
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Its Fourier transform is:

D̃(z, bT ) = D(z, 0) 22−p

Γ(p− 1) (bTm/z)p−1Kp−1(bTm/z) . (B.28)

The integrated first moment and the first moment in bT space are:

D(1)(z) = D(z, 0) 1
M2
hz

2
m2

2(p− 2) (B.29)

D̃(1)(z, bT ) = D(z, 0) 22−p

Γ(p− 1)
m2

M2
hz

2 (bTm/z)p−2Kp−2(bTm/z) . (B.30)
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