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Abstract— Modern Fingerprint Presentation Attack Detection
(FPAD) modules have been particularly successful in avoiding
attacks exploiting artificial fingerprint replicas against Auto-
mated Fingerprint Identification Systems (AFISs). As for several
other domains, Machine and Deep Learning strongly contributed
to this success, with all recent state-of-the-art detectors leveraging
learning-based approaches. An insidious flip side is represented
by adversarial attacks, namely, procedures intended to mislead a
target detector. Indeed, despite this type of attack has been con-
sidered unrealistic, as it presupposes access to the communication
channel between the sensor and the detector, in a recent work,
we have highlighted the possibility of transferring a fingerprint
adversarial attack from the digital domain to the physical one.
In this work, we take a step further by introducing a new
procedure designed to make the physical adversarial presentation
attack i) more robust to the physical crafting of the PAI by
exploiting explainability techniques, ii) easier to adapt to different
fingerprint scanners and adversarial algorithms, and iii) usable
in a black-box scenario. To quantify the impact of these novel
adversarial presentation attacks family, designed to be robust
to the physical crafting process, we assess the performance of
both state-of-the-art PAD modules alone and integrated AFISs.
Results highlight the approach’s feasibility, opening a new series
of threats in the context of fingerprint PAD.

Index Terms— Fingerprint, adversarial, presentation attack,
AFIS.

I. INTRODUCTION

ECENT years have seen a substantial increase in

Automated Fingerprint Identification Systems (AFISs)
accuracy. This biometry can fairly be considered the most
academically and industrially mature and is one of the most
appropriate options for any application requiring a high level
of security [1]. This success is mainly due to its universality,
persistence, and uniqueness. However, AFISs are vulnerable
to presentation attacks (PA), the submission of artificial repli-
cas to the biometric sensor, with the aim of impersonating
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an authorized user [2]. This type of attack is prevalent in
real-world biometrics applications, as attackers do not need
access to the recognition system’s internal modules. Finger-
print Presentation Attack Detection (PAD) [3] methods are
used to counteract this possibility by classifying the images
acquired with the sensor in bona fide, i.e. belonging to a
real finger, or PA, i.e. obtained through an artificial replica.
PADs usually base their decision on measurement and analysis
of anatomical, physiological or texture-based characteristics
extracted from the fingerprint images [4]. The advent of deep
learning has made PAD systems even more accurate than
human expert analysis. However, the use of deep-learning
increases the vulnerability to adversarial attacks, which are
already present for generic machine learning-based systems.
An adversarial attack against PADs is the possibility of mod-
ifying the classification outcome by digitally perturbing the
input image [5]. Fortunately, this type of attack is realized
in the digital domain and requires the attacker to be able
to access the communication channel between the sensor
and the classifier. Access to the communication channel is
difficult to obtain. For this reason, adversarial attacks are not
as widespread as presentation attacks that target the biometric
sensor. However, it has recently been shown that adversarial
attacks can be presented to the biometric sensor when used
as the basis of the construction of the Presentation Attack
Instrument (PAI) for both attacking facial [6] and fingerprint
recognition systems [7]. The physical realization of the PAI,
starting from the adversarial images and their presentation
to the sensor, allows attacking the system directly from the
“exposed” component. In the following, we refer to this type
of attack as “adversarial presentation attack” (ADV-PA), that
is, an adversarial attack carried out in the physical domain.
However, the physical realization of the adversarial PA can
alter information about the user (in particular, the position
and characteristics of the minutiae), making the attack on the
AFIS useless. In this work, we proposed a new perturbation
generation technique called “Focus Attention” to obtain a
digital perturbation robust to the printing process that does
not alter the fingerprint user-specific characteristics. In par-
ticular, we adopted an iterative perturbation method based on
image processing techniques to highlight the information of
the fingerprint, namely ridges and valleys, and modify just
the pixels within it since such changes result after printing
and PAI re-acquisition. The obtained perturbation is used to
provide novel PAIs. Since both digital adversarial attacks
and adversarial presentation attacks are claimed to require
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Fig. 1. Transfer of a presentation adversarial attack designed on a known
AFIS to a completely unknown AFIS.

knowledge about the comparator and PAD modules to compute
a proper perturbation and the manufacturers of AFISs for
today’s personal or public safety devices hide the implementa-
tion details, we assessed the actual threat level of the proposed
ADV-PA testing it on “black-box” AFISs. We show that if the
“Focus Attention” PAI is submitted to the sensor of a black-
box PAD, there is a high possibility that it will be misclassified
as a bona fide fingerprint despite the attacker having zero
knowledge about the target system.

Figure 1 simulates a realistic attack context where the
attacker knows neither the comparator nor the PAD of the
targeted AFIS. We stress that it is not required that the same
sensors be adopted during the attack design (on white-box
systems) and implementation (on black-box systems) [3]. The
rest of this paper is organized as follows: Section II makes
an overview of the current literature in order to explain the
different ways of attacking an AFIS and adequately collocate
the proposed analysis; Section III describes the purpose of the
experimentation and the proposed method; The experimental
methodology and results are presented in Section IV; Conclu-
sions are drawn in Section V.

II. RELATED WORK
A. Vulnerability of Integrated Authentication Systems

A biometric system can be attacked in all its components
(Fig. 2). The possible attacks are to the communication chan-
nels among the modules (points 2, 4 and 6 in the figure),
such as replay attacks and hill-climbing attacks, to the specific
modules via malware infection (points 3, 5, 7, 9 in the figure)
or to the template database via template theft, substitution,
or deletion (point 8) [8]. Digital adversarial attacks compro-
mise the channel at point 2. However, as the sensor is the
most exposed part of AFISs, PAs are the most concrete risk
(point 1).

For this reason, PADs [9] are in charge of managing the
threats due to the presentation of artificial fingerprint replicas,
also known as presentation attacks (PAs). Over two decades,
scientific and applied research proposed new techniques for
the design of PADs [10], [11]. In recent years, PADs based on
deep learning have become the most common due to their very
high accuracy and the availability of data and computational
resources [12]. However, the use of these methods has accen-
tuated pre-existing vulnerabilities, such as the possibility of
deceptively modifying the PAD decision with the perturbation
of a few pixels. These attacks, called adversarial attacks, are
described in detail in the following Section.

B. Adversarial Attacks

In [13] the authors showed that deep-learning models can be
easily fooled into making a wrong prediction by imperceptibly
perturbing target samples with noise. These noise injections
are known as adversarial perturbations or adversarial attacks.
This vulnerability has led researchers to develop many
attack techniques that can be classified into white-box and
black-box attacks. Their difference lies in the knowledge of
the attackers. White-box attacks assume that the adversary
has complete knowledge of the targeted model and none in
black-box attacks. Over the years, numerous adversarial attack
algorithms have been proposed, most of them white-box, such
as limited-memory Broyden—Fletcher—Goldfarb—Shanno’s
(L-BFGS) [13], the fast gradient sign method (FGSM) [14],
the basic iterative method (BIM)/projected gradient descent
(PGD) [15], distributionally adversarial attack, Carlini and
Wagner (C&W) attacks [16], Jacobian-based Saliency Map
Attack (JSMA) [17], and DeepFool [18]. The Fast Gradient
Sign Method (FGSM) is the first method that uses the
network gradient to generate an additive adversarial attack
[14] multiplying a user-defined €, serving as the adversarial
perturbation’s co-norm bound, by the sign of the prediction
gradient. Based on the functioning of the FGSM, other
methods have been developed including the FGSM Iterative
Method, the DeepFool and the Momentum Iterative Method.
More specifically, DeepFool [18] computes a more optimal
adversarial example, approximating the smallest possible
perturbation to reverse the classification. It is based on
an efficient iterative approach that exploits the network
gradient of a localized version of the loss. Other methods
of generating gradient-based attacks include C&W, JSMA
and PGD. In particular, PGD [15] is an attack based on the
multiple executions of FGSM until an incorrect classification
is obtained, which allows for generating a perturbation that
maximizes the loss of a model on a particular input while
keeping the size of the perturbation less than a specified
amount called epsilon. A couple of years later, a new version
of the attack was released under the name of Auto Projected
Gradient Descent (APGD) [19]. As the name suggests,
it improves the standard PGD by auto-optimising the attack
strength across iterations before restarting and re-running
the attack from the best-found example. Another noteworthy
adversarial attack is the One-Pixel Attack [20], based on
Differential Evolution, an evolutionary optimisation method
that changes one or a few pixels to mislead the classification
of a network. It is important to note that the One-Pixel attack
does not need access to the target CNN’s white-box and may
be conducted without any previous network knowledge.

The reported list is not intended to be exhaustive but just to
report those that, over the years, contributed the most to the
domain’s advance, highlighting that several different ways can
be pursued to perform an adversarial attack.

1) Adversarial Attacks to Biometric Authentication Systems
in the Digital Domain: Recently, it has been shown that it
is possible to adapt adversarial perturbation to CNN-based
biometric recognition. An AFIS was attacked first by [5].
The authors proposed to breach an AFIS equipped with a
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the biometric data (2) and sends it to the presentation attack detection module (3). The response (4) is used by the feature extraction module (5) to decide
whether to elaborate the input biometrics or reject it. In the former case, extracted features (6) are compared by the comparator (7) against the set of features
extracted for authorised users (8). Based on the stages’ outputs, the comparator module (9) calculates a similarity score s between them, comparing it to a
decision threshold 7 in excess of which the sample is deemed a mated trial. Given this schema, the possible attacks are to the communication channels among
the modules (points 2, 4 and 6), such as replay attacks and hill-climbing attacks, to the specific modules via malware infection (points 3, 5, 7, 9) or to the
template database via template theft, substitution, or deletion (point 8). However, as the sensor is the most exposed part of AFISs, PAs are the most concrete

risk (point 1).

PAD module starting from an artificial replica of the victim’s
fingerprint. Three adversarial methods are used: FGSM, Deep-
Fool and One-Pixel Attack. The methods, albeit with different
results, have proved effective in piercing integrated AFISs
based on different acquisition sensors. Nonetheless, it is worth
noting that this first proof-of-concept might not be able to
mislead an expert as they tend to introduce distortions not
common in fingerprint images.

On the same line, [21] analysed the transferability of
some adversarial perturbation attacks against face recognition
systems. The results showed that even “naive” attacks (i.e.,
performed without adapting the attack to face recognition)
can be successfully transferred under specific settings. Further
analyses are reported in [22] and [23].

However, all these attacks are white-box. More recently,
in [24], the authors took a first step toward a completely black-
box attack, albeit in the digital domain, by examining whether
transferring a perturbation between different CNN PADs is
possible. Although these attacks have proved to be successful,
they are also purely theoretical: they presuppose direct access
to the comparator or to the PAD module, which, if available,
can be used directly with an original sample “stolen” from
the victim (a face photo or a fingerprint capture). In other
words, they need to attack, at the same time, the AFIS and
the communication channel.

2) Adversarial Attacks to Biometric Authentication Sys-
tems in the Physical Domain: Transferring digital adversarial
attacks into the physical domain, that is, fabricating a PAI
from adversarial images, means converting a theoretical risk
into a real risk. In the following, we refer to this as adver-
sarial presentation attack or ADV-PA. The first transfer of an
adversarial attack into the physical domain was against a face
authentication system equipped with a deep learning-based
PAD in 2020 [6], demonstrating that it is possible to cheat
an integrated face recognition system in a white-box context
by submitting to the sensor biometric traits modified by
adversarial perturbations.

In the fingerprints field, the first case was presented by [7],
in which a DeepFool white-box attack against a CNN-based
PAD showed the feasibility of an ADV-PA and highlighted
how some variables of the acquisition process affect the final

result. In particular, to carry out the physical attack, a layer
of liquid latex was dripped over the prints of the perturbed
fingerprints and once dry, it was presented to the acquisition
Sensor.

This paper represents the follow-up of that early publication
[7], with the following significant additions:

o We introduced a novel perturbation generation technique
designed to optimize the attack, keeping the fingerprint’s
user-specific information unchanged and adapting it as
best as possible to the printing process. In particular, three
different versions of two adversarial methods, namely
APGD and DeepFool, were presented. The novel pertur-
bation generation technique is based on a focus attention
mechanism capable of aligning the perturbation and the
ROI of the white-box PAD. This mechanism, which is
detailed in the next Section, allows the perturbation to
be concentrated on the image areas engaged in the PAI
realization.

« The fingerprints chosen to carry out the perturbation come
from a different sensor than the one used to acquire the
corresponding physics. This choice was made to compare
the detectors presented at the LivDet 2019 and LivDet
2021 competitions with the same sensor. In this manner,
a cross-sensor analysis is performed.

« In addition to the effectiveness of the attack on stan-
dalone PADs, we also evaluated the effectiveness on an
integrated system to evaluate whether the new generative
method allows keeping the information used by the
comparator to authenticate the individual.

o The experimental study has been supplemented by
entirely black-box tests to assess the threat of the attack
in a realistic context.

III. ADVERSARIAL PRESENTATION ATTACKS:
THE FOCUS ATTENTION METHOD

Fingerprint adversarial PAs are difficult to carry out because,
if not properly designed, the printing process can destroy
the perturbations introduced into the image. Furthermore, the
fingerprint image has unique characteristics that should not be
altered because they are critical in the authentication process.
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The authentication of the fingerprint is based, in particular,
on the analysis of local ridge features known as minutiae.
Moreover, highlighting the noise between the ridges of the
fingerprint or that present in the image’s background must
be avoided. Our previous works [7] on adversarial PA were
limited to printing a digital adversarial attack without taking
the above critical issues into consideration.

This paper proposes a new approach for generating a
customized perturbation to create realistic fingerprint adver-
sarial PAs. Three distinct versions have been proposed to
determine which procedure is more robust to the printing
process. We tested different white-box and black-box AFISs
under different experimental protocols. The goal is to assess
these attacks’ risks and acquire knowledge to prevent them.

Section II pointed out that realising an ADV-PA is not
trivial because of the high number of involved factors that
make the result reliable, reproducible and effective. In the
case of a fingerprint adversarial presentation attack, the main
difficulties to be taken into account are:

o dealing with the nature of fingerprint images, where all
the information is located in a reduced portion of the
whole image and is characterised by extremely domain-
specific patterns, unique for each subject (i.e., images
very different from other classification problems where
the target classes are objects, animals, road signs, etc.);

« taking into account how the PAD is operating: (i)
are only sub-portions of the whole image processed
(e.g., by focusing on minutiae-centred patches)? (ii) are
pre-processing techniques to reduce noise introduced dur-
ing the fingerprint acquisition process?;

« designing a suitable crafting strategy able to physically
cast the PAI without destroying the injected adversarial
alterations as a result of the crafting operation itself;

« to be of a practical appeal, the attack should operate in a
black-box scenario, namely without any prior knowledge
about the targeted AFIS.

To cope with these aspects, we introduce an iterative
multi-stage fingerprint adversarial presentation attack (ADV-
PA) equipped with a mechanism we called Focus Attention
(FA). This aims to focus the adversarial perturbations on the
image portion where the distinguishing features are found.
The ADV-PA process is based on the concept of “shadow”
presentation attack detector [24] (i.e., the known white-box
detector used to craft the adversarial samples), and leveraging
the experience we matured in printing latex-based PAIs [7],
[25]. The idea aims to generalize the concept of adversarial
perturbation of fingerprint images since, whichever the PAD
functioning is, it is reasonable to hypothesize that the salient
features are located along ridges, which must also be repro-
ducible when printing the adversarial image. The proposed
attack stages (Fig. 3) are the followings:

1) An attacker replicates the targeted fingerprint and
presents it to the acquisition scanner. The attack is
unsuccessful because the PAD module correctly clas-
sifies the PA and blocks authentication;

2) The fingerprint identified in the previous step undergoes
the fingerprint adversarial perturbation stage, an iterative

process to create adversarial images that mislead the
targeted PAD, leveraging the shadow detector. This stage
is detailed in Section III-A;

3) If successful, the digital adversarial fingerprint is phys-
ically cast, obtaining a physical replica or PAI (PAI).
This stage is detailed in Section III-B;

4) The PAI is acquired by using the fingerprint scanner.

It is worth noting that all the process is designed to be black-
box. Indeed, Stage 2 uses the known white-box PAD approach
only to determine a suited adversarial perturbation without any
prior knowledge about either the fingerprint scanner or the
PAD used in Stage 4. Similarly, Stage 3 prints the fingerprint
having the same size as the original image without focusing
on the particular fingerprint scanner used afterwards. The next
sections detail the core procedure (Stages 2-3), including the
rationale behind our choices and a final practical description
of the physical printing and casting process.

A. Digital Attack

As described in Section II-B, adversarial fingerprints are
harder to realise than adversarial natural images due to their
peculiarities in shape and patterns. This is even harder if the
realised adversarial fingerprint has to be robust to the physical
casting process while preserving the subject authentication
characteristics. Unfortunately, the two aspects are in contrast,
as the former would benefit from stronger/wider injected
perturbations, which are more likely to destroy the subject’s
minutiae. Moreover, to make the process as general as possible
and potentially easier to adapt to future developments, since
PAD is an arms-race problem, we also want the adversarial
fingerprint attack to be based on standard adversarial pertur-
bation algorithms [16], [17], [18]. To deal with these needs,
we designed an iterative process consisting of the following
stages:

1) As adversarial algorithms need a target classifier to
be attacked, the attacker trains a CNN-based PAD to
the aim. In the following, we refer to this with the
term white-box PAD to specify that the attacker knows
every implementation detail of this classifier. It is worth
highlighting that this PAD is not the actual target of
the attack (as we are in a total black-box scenario) but
a different PAD trained by the attacker with the aim
of supporting the development of the adversarial attack.
For this reason, we referred to it as shadow classifier
[24] when we first introduced it, as the PAD based on
it is crafted by the attacker in a fully white-box term
setting as an adaptation of the substitute technique to the
presentation attack detection application. The white-box
PAD is used to determine the adversarial perturbation to
be injected into the targeted fingerprint image. As this
serves as the attacker’s starting point, it is of crucial
importance to maximise its detection rate as much as
possible. In fact, a weak detector is easily misled,
causing the adversarial fingerprints not to be effective
against a better PAD, as explained by [24];

2) The targeted fingerprint image is resized to match the
white-box PAD input size. For example, if the white-box
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PAD requires an image of N x M as input, the targeted
fingerprint image will be resized with this size;

3) The resized sample undergoes the iterative adversar-
ial perturbation process until it is recognised as bona
fide. In particular, whatever adversarial perturbation
algorithm is adopted:

a) The RGB adversarial perturbation is determined for
the whole image by using the white-box PAD as a
target. Please note that this step is iterative itself;

b) The RGB perturbation is masked to remove all
the perturbed pixels belonging to the background,
obtaining the perturbation ROIL. To produce the
mask (Fig.4), opening and closing with a 5px-
diameter circular structural element followed by
Otsu’s thresholding were used, as proposed in [5];

¢) The masked RGB perturbation is converted to
greylevels, where R, G and B are the colour
channels. It is worth noting that this procedure
results in a single-channel perturbation. Thus, if the
considered white-box CNN-based PAD expects a
3-channel input, the so-obtained greylevel pertur-
bation can be replicated over all the channels;

d) The perturbation is injected into the targeted fin-
gerprint, and the obtained adversarial perturbed
fingerprint is tested against the considered PAD.
Points 1-2-3 are repeated until one of the following
stopping conditions is met: i) a fixed maximum
number of iterations is reached (/T ER_MAX);,
ii) the adversarial attack is successful (i.e., the pre-
dicted class is “bona fide” in our case). The latter
condition is very important as, usually, an attack is
considered successful as soon as the class changes.
However, as in our case we need a more robust
perturbation, we change the stopping condition by
adding a value c¢*, acting as “bona fide” class
probability threshold. The value of ¢* has been
set to 0.8 based on [24], while ITER_MAX is
automatically selected by the algorithm, with a
maximum possible value of 200 (very high, used
just as a cap) and an early stopping strategy based
on a patience of 50 (set as a cap to reduce the
computational effort in the case of semi-plateau
regions);

4) If the attack in the previous point is successful, the per-
turbed fingerprint image is resized back to the original
fingerprint size (the one before point 1).

Instrument

Stages implementing a fingerprint ADV-PA, starting from a PA sample classified as PA by the target PAD.

(b)

Fig. 4. The original fingerprint (a) and the corresponding binary mask (b),
obtained by using morphological operators and Otsu’s threshold.

The pseudo-code for the whole procedure is reported in algo-
rithms 1-2. In particular, algorithm 2 describes the white-box
classifier training procedure. Although in this work we used
DeepFool [18] and APGD [19] as adversarial techniques, it is
worth noting that the whole method is independent of the
perturbation algorithm adopted.

Algorithm 1 Pseudo-Code for the Black-Box Adversarial
Perturbation of Fingerprints. Italic Words Represent Variables,
While Bold Ones Functions and Procedures. The Adversarial
Method Can Be Any of Those Described in This Paper or
Others Not Analyzed. The White-Box PAD (white_pad) Is
Trained on a Dataset Acquired With the Same or a Different
Sensor Than the Target AFIS. The PAD Takes as Input
Images of white_pad.InputSize Size. targ_fing Is the Target
Fingerprint From Which the Adversarial PA Is Generated.
targ_fing.OriginalSize Is the Target Fingerprint’s Original
Size. succeed and failed Are Two Keyword Used to Simplify
the Concept of “Digital PAD Attack Successful” and “Digital
PAD Attack Failed” Respectively. adv_fing Is the Obtained
Adversarial Perturbed Fingerprint Image.

1: procedure GENERATE_ADVERSARIAL_FINGERPRINTS(targ_fing, white_pad)

2: white_pad < Train_WhiteBox_Classifier

3: resize rarg_fing to white_pad.InputSize

4: adv_fing, succeed < Fingerprint_Adversal_Perturbation(targ_fing, white_pad)
5:  if succeed then

6: resize adv_fing to targ_fing.OriginalSize

7: return adv_fing

8: end if

9: return failed
10: end procedure

B. From a Digital Attack to a Printable Cast: The Focus
Attention Mechanism

The proposed attack returns excellent results in the digi-
tal domain, but the crafting process destroys the introduced
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Pseudo-Code of
print_Adversarial_Perturbation Used Within the
Algorithm 1. In Particular, It Describes the Specific
Process of Generating an Adversarial Perturbation on a Target
Fingerprint (targ_fing). Italic Words Represent Variables,
While Bold Ones Functions and Procedures. The Adversarial
Method (Adversarial_Perturbation) Can Be Any, Including
Those Described in This Paper and Others Not Analyzed.
The Adversarial Perturbation (rgb_adv) Is Applied Only to
the Pixels Belonging to the ROI (fp_mask) Containing the
Fingerprint to Avoid Enhancing the Noise in the Background.
The Perturbation Process Is Iterated Until the Probability of
Being Bona Fide of the Perturbed Image Is Greater Than
a User-Specified Confidence Value ¢ or After ITER_MAX
Iterations

1: procedure
white_pad)

Algorithm 2 the Finger-

FINGERPRINT_ADVERSARIAL_PERTURBATION(targ_fing,

2 fp_mask < Extract_Fingerprint_ROI(targ_fing)

3 adv_pert < zeros(white_pad.InputSize)

4: iter < 0

5: repeat

6: iter++

7 rgb_adv < Adversarial_Perturbation(targ_fing, white_pad)
8: masked_rgb_adv < rgb_adv * fp_mask

9: masked_rgb_adv_gray < RGB2GRAY (masked_rgb_adv)
10: adv_pert < adv_pert + masked_rgb_adv_gray

11: adv_fing < targ_fing + adv_pert

12: live_prob < white_pad.Classify(adv_fing)

13: until iter > ITER_MAX OR live_prob > c*

14: succeed < 0

15: if live_prob > c* then succeed <— True

16: end if

17: return adv_fing, succeed
18: end procedure

perturbation, making the attack unusable. Indeed, some of
the so-obtained adversarial details are not replicable dur-
ing the crafting processes described in Section III-C. However,
the generation of the adversarial attack is an iterative process
that includes the classification of each iteration outcome
through the white-box classifier. We can take advantage of
these repetitions to verify (and then enforce) that the perturba-
tion procedure always operates within the same PAD’s Region
of Interest (ROI, i.e., the only portion of the image where
the fingerprint is actually located). To the aim, we evaluate
the behaviour of the PAD adopted in the design process (the
white-box PAD) using a XAl technique [26] known as Occlu-
sion [27]. This is a perturbation-based approach that allows
evaluating the contribution of each pixel of the input image
for a two-class classification model, producing an attribution
map reproducing the original input to which a different colour
into a green-red range is attributed according to the final
classification.

Some examples of attribution maps for some fingerprint
images are reported in Fig. 5, where pixels in green contribute
positively to the activation of the target output and lead the
network to decide on the predicted class (whatever is, “PA”
or “bona fide”), while red ones lead the network towards the
opposite class. The attribution maps show that the background
pixels often influence the classifier prediction, especially for

TABLE I

MEAN AND STANDARD DEVIATION OF THE NUMBER OF SIGNIFICANT
PIXELS OUTSIDE THE ROI ON THE LIVDET2015 TEST SET USING THE
OCCLUSION EXPLAINABILITY METHOD ON THE
WHITE-BOX PAD [28]

Percentage of significant
pixels outside the ROI
[mean + std dev]

BF samples classified as BF 65.53 + 17.22
BF samples classified as PA 75.75 £+ 20.61
PA samples classified as PA 90.93 +11.74
PA samples classified as BF 50.03 +7.19

images classified as “PA’. To evaluate the influence of
background pixels on the classification of fingerprint images,
in Table I we reported the percentage of significant pixels
outside the ROI obtained through the Occlusion method
on LivDet2015 test images. This analysis confirms that the
adopted PAD tends towards the PA class when it finds informa-
tion outside the ROI. We claim this is due to the “filth” present
in the background, especially among the valleys introduced by
the acquisition of an artificial replica. This clearly may lead to
a misalignment between the PAD’s ROI and the perturbation’s
ROL: if the perturbation affects the background, there is no
way to provide a successful PAL Thus, a very effective digital
attack would be only because of the false correlation induced
by the network and the image’s label. Therefore, we need
to nullify the role of background and, in general, of out-of-
fingerprint pixels.

A possible solution is to create the equivalent of a constant
signal for those pixels, such that, during the perturbation
generation, the gradient is strongly reduced. Consequently,
pixels belonging to the fingerprint ROI are the only ones
leading the classification, and the perturbation is, in turn,
focused on that region only. In contrast, unifying the pixel
values in the background areas allows to prevent them from
affecting the classifier’s decision. In particular, if we represent
the fingerprint image as a set of piecewise signals (Fig. 6),
i.e. one signal for each row or for each column, the dirt in
the background and in the valleys constitute spikes of low
intensity. The elimination of these small spikes that randomly
contribute to the gradient can be done by thresholding the
intensity level of the image pixels, as these are characterized
by low-intensity levels. In this work, we achieve this through
a binarization process. It is important to underline that with
binarization, not only are the values above a certain threshold
brought to 255 but the values below the threshold are brought
to 0. This results in a better definition of the ridges and valleys.
Figure 7 shows the attribution maps of the same images after
binarization. It is evident how binarization leads the classifier
to analyze the portion of the image containing information,
as the dirt in the background is eliminated. In other words,
the binarization effect is to align the ROI of the white-box
classifier with the ROI of the perturbation, what we call Focus
Attention mechanism. This is a crucial pre-processing stage
before the crafting stage, as the focus attention mechanism
allows concentrating the perturbed pixels within the fingerprint
regions. These regions will then be crafted as explained in
the following and may retain the altered pixels in the foil.
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(a) Bona fide sample classified as(b) Bona fide sample classified as
bona fide bona fide

(c) PA sample classified as PA

(d) PA sample classified as PA (e) PA sample classified as PA

Fig. 5. Explainability through occlusions method on the VGG-CNN white-box network for bona fide and PA images. The attribution maps highlight in green
pixels that contribute positively to the activation of the target output and in red pixels that suppress it.
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Fig. 6. Analysis of the 40th row (choice as an example) of a fingerprint image (a), marked with a red line. Pixels belonging to the real fingerprint image’s
texture start at pixel 168 and end at pixel 314. Dirt in the background and between the ridges produces small spikes in the intensity level signal (b).

Otherwise, they would be dispersed in the background and
lost during crafting.

Starting from this modelling, three different versions of
the attack have been proposed, each intended to produce
images more robust to the crafting process by different image
processing techniques. It is worth noting that the binarization
phase is always done in all the variants, as it helps to eliminate
noise that would be enhanced in the crafting phase and is
crucial to shift the attention of the classifier to the ROI of the
fingerprint. The following versions have been implemented for
both DeepFool and APGD methods:

o Focus Attention adversarial presentation attack (FA): The
binarization process is applied before and after each
adversarial iteration;

Uniform Focus Attention adversarial presentation attack
(UFA): In general, perturbations are primarily applied
in certain areas of the image depending on the gradient
value. If the crafting process corrupts the portion of the
image where the attack is concentrated, the perturbation
is lost, and the adversarial attack is not effective. For this
reason, at each iteration, the perturbation is applied to a
different area of the ROI of the fingerprint in order to
obtain uniformly distributed perturbations. Also in this
case, the binarization process is applied before and after
each adversarial iteration;

o Robust Focus Attention adversarial presentation attack

(RFA): The binarization process often makes the ridges

and minutiae too thin. The crafting process could cor-
rupt fine lines, changing the fingerprint structure and
making the comparison process based on the analysis
of the minutes impossible. Therefore, a binarization step
followed by a dilation step is applied before and after
each adversarial iteration.

Therefore, six versions of PAIs for ADV-PAs have been devel-
oped: the Focus Attention, the Uniform Focus Attention, and
the Robust Focus Attention based on DeepFool perturbations
are respectively referred to with the terms FA-DF, UFA-DF
and RFA-DF, whilst the Focus Attention, the Uniform Focus
Attention, and the Robust Focus Attention based on APGD are
respectively referred to with the terms FA-APGD, UFA-APGD
and RFA-APGD.

C. Adversalial PAI Crafting

For the realization of the PA, starting from the digital
adversarial image, the moulds of the adversarial fingerprints
are created. The perturbed image is inverted to obtain the
negative and printed on a translucent sheet using a standard
laser printer, keeping the PA’s original size. Then, a layer
of latex is placed over the prints, ensuring that there is
no air swelling and that the resulting layer has a suitable
thickness for accurate removal and subsequent acquisition
through the sensor (Fig. 9). As shown in Fig. 10, which
contains the acquisition of two replicas of the same fingerprint
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(a) Bona fide sample classified as(b) bona fidesample classified as
bona fide bona fide

Fig. 7.

(c) PA sample classified as PA

(d) PA sample classified as bona(e) PA sample classified as bona

fide fide

Explainability through occlusions method on the VGG-CNN white-box network of bona fide and PA binarized fingerprint images. The attribution

maps highlight in green pixels that contribute positively to the activation of the target output and in red pixels that suppress it.

Fig. 8. Image processing in the process of creating the digital adversarial PA
in order to make it robust for printing: starting from the original image (a),
binarization (b) is applied after each iteration of each version of the attack.
In version 4 of the attack, dilatation (c) is applied after binarization.

Fig. 9. Adversarial PA realization: the material is poured on the sheet with
one or more prints of perturbed fingerprints. Once dried (24 to 72H), each
replica is detached, cut out and presented to the biometric sensor.

Fig. 10. PAs of the same fingerprint obtained from two castings with different
material thicknesses.

with different thicknesses of material, the skill and experience
with the material by the operator is essential to obtain a good
PAIL. A realistic PAI, maintaining the adversarial perturbations
after the print, is obtained by preliminary tests; the smallest
printable detail and the best thickness of the latex on the sheet
are found, and the final PAI is provided.

IV. EXPERIMENTS
A. Datasets

In the following experimental analysis, we adopted LivDet
2015 [29], LivDet 2019 [30] and LivDet 2021 [12] Green Bit
data sets. These datasets consist of bona fide and PA fingerprint
images. The three datasets were acquired with two different
sensors: LivDet 2015 with Green Bit DactyScan 26 and LivDet
2019 and LivDet 2021 with Green Bit DactyScan 84c. The
composition of the datasets is shown in Table II. In particular:

o The LivDet 2015 training set was used to train the white-
box PAD;

o The black-box PADs are pre-trained on LivDet 2019 and
LivDet 2021 training sets;

o The adversarial PAIs were created from the latex sam-
ples of LivDet 2015 GreenBit. The adversarial PAs are
cross-sensor because the original samples were acquired
with Green Bit DactyScan 26 and, after the application
of the perturbation and the re-print, were acquired with
Green Bit DactyScan 84c;

o The LivDet 2019 and LivDet 2021 test sets were used as
the baseline for the error rates of the black-box systems.

B. Experimental Protocol

To verify the potential of adversarial PAs, as a first analysis,
we started with a white-box AFIS, consisting of a Bozorth3
comparator! in series with the VGG-CNN PAD [28] (Fig. 11)
and a set of PA images correctly classified as PA (as an already
successful PA does not require an adversarial perturbation).
As shown in the reported diagram (Fig. 11), the white-box
AFIS foresees a first check by the PAD module [31]; only
if this check is passed, i.e. the fingerprint image is classified
as “bona fide”, then the comparison is evaluated via state-of-
the-art NIST Bozorth. The white-box protocol represents the
design phase of the attack from the attacker’s point of view.
For this reason, the VGG-CNN PAD, winner of the LivDet
2015 competition, has been selected as the white-box PAD:
it is simply implementable by fine-tuning the well-known
and open-source VGG neural network pre-trained on natural
images. In this way, we acted as an actual attacker who uses
an open-source, white-box PAD to obtain perturbed images,

1 https://www.nist.gov/services-resources/software/nist-biometric-image-
software-nbis
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TABLE II
COMPOSITION OF THE LivDET 2015, LivDET 2019, LivDET 2021 GREEN BIT DATASETS
Dataset Training set Test set
LivDet 2015 Green Bit Bona fide Latex WoodGlue | Gelatine \ Ecoflex Bona fide | Ecoflex \ Gelatine | Latex \ WoodGlue | Liquid Ecoflex | RTV
DactyScan 26 1000 250 250 250 | 250 1000 250 [ 250 250 ] 250 250 250
LivDet 2019 Green Bit Bona fide | WoodGlue Ecoflex BodyDouble Bona fide Mix1 Mix2 Liquid Ecoflex
DactyScan 84c 1000 400 400 400 1020 408 408 408
LivDet 2021 Green Bit Bona fide Latex RProFast Bona fide Mix1 BodyDouble ElmersGlue
DactyScan 84c 1250 750 750 2050 820 820 820
TABLE 1II

Is the image

Is th X Is the image classified
s, Cl35sified as "live"?, Yes B i

as "genuine’

The fingerprintis
No accepted

Fig. 11. Schematic of the white-box integrated AFIS consisting of a
VGG-CNN PAD and the standard Bozorth3 comparator.

No

The fingerprintis
rejected

fabricate PAIs and hack a black-box, targeted PAD. The net-
work fine-tuning is necessary to obtain a classifier capable of
discriminating a bona fide image from a PA and was done on
the LivDet 2015 training set (sec. IV-A). After the white-box
protocol allows us to evaluate the effectiveness of the attack
from a design point of view, we evaluate the attack from the
victim’s point of view with a black-box protocol. As black-
box PAD and black-box AFIS, we selected eight algorithms
submitted to the 2019 and 2021 editions of the Fingerprint
Liveness Detection Competition (LivDet) [12], [30]. The algo-
rithms of these two Livdet editions were chosen because these
systems are “integrated”, i.e. they simultaneously evaluate both
the match and the probability of being a PA. In both scenarios,
the analyzed PADs work at an acceptance threshold equal to
0.5, i.e. samples with a probability > 50% are considered bona
fide, and samples with a probability < 50% are considered
PAs.

The adversarial PAs were obtained from the application of
the new Focus Attention techniques (Table III) on 248 latex
PAs of the LivDet 2015 test set, originally classified correctly
as PA by the network. The adversarial PAIs were acquired
through the Green Bit DactyScan 84c scanner.

It is important to notecannot accesstack versions contain
incremental changes that lead to the full RFA attack. There-
fore, the assessments of such attacks can be read as an ablation
study of the Robust Focus Attention Adversarial PA. As a mat-
ter of statistical significance, each PAI created was acquired
10 times, slightly modifying each of the 10 acquisitions by
varying the angle, the surface fed into the sensor and the
applied pressure. The adversarial attacks that have been created
physically are those that are successful in the digital domain,
thus resulting in a different number for each method and
each version of the attack (Table IV). Since the physical
PAI crafting procedure and the binarization process might
introduce a bias in the PAD score, for all the PA images we
also crafted the corresponding physical replica without any
adversarial perturbation applied (re-printed, see Table III) and

ABBREVIATIONS USED IN THE EXPERIMENTAL EVALUATION TO REFER TO
THE ANALYZED VERSIONS OF THE PRESENTATION ATTACKS

Abbreviation Concept
ADV-PA Adversarial presentation attack obtained by adding an adversarial
perturbation to a digital PA image and subsequent reprinting and acquisition of it.
Re-printed PA images printed and
e-printe reacquired with the same original material as the first acquisition
s . PA images are binarized, printed and
Binarized . . . : L. .
re-acquired using the same starting material as the original acquisition.
FA DF Focus Attention adversarial presentation attack
— based on DeepFool perturbations.
- Uniform Focus Attention adversarial presentation attack
UFA_DF N
based on DeepFool perturbations.
Robust Focus Attention adversarial presentation attack
RFA_DF .
based on DeepFool perturbations.
Focus Attention adversarial presentation attack
FA_APGD based on APGD perturbations.
Uniform Focus Attention adversarial presentation attack
UFA_APGD based on APGD perturbations.
Robust Focus Attention adversarial presentation attack
RFA_APGD based on APGD perturbations.

TABLE IV

NUMBER OF SUCCESSFUL ATTACKS IN THE DIGITAL DOMAIN THAT WERE
PRINTED FOR THE GENERATION OF THE ADVERSARIAL PAIs. EACH OF
THE RESULTING ADVERSARIAL PAIs WAS ACQUIRED TEN TIMES

[ FALDF | UFA_DF | RFA_DF | FA_APGD | UFA_APGD | RFA_APGD |
| 147 | 16 | 220 | 210 | 160 | 235 |

Original
Presentation Attack

Original Presentation
Attack acquisition

Liveness Score:
Fake

Adversarial
Attack
(ADV-PA)

Liveness Score:

— — .
Ive

Spoof
Fabrication

.

Adversarial
Presentation Instrument

Digital Adversarial

Liveness Score_1
Liveness Score_2

Liveness Score_n

Adversarial Presentation
Attack acquisitions

Fig. 12.  Process of creation and acquisition of adversarial PAIs. Each PAI
is acquired ten times by varying pressure and position on the sensor.

the corresponding binarized replica of the image (binarized,
see Table III), with the aim of measuring the effect that a
simple print and re-acquisition (with or without binarization)
has on the AFISs.

1) Performance:
[32], [33]:

« APCER (Attack Presentation Classification Error Rate):
the proportion of attack presentations using the same PAI
species incorrectly classified as bona fide presentations at
the PAD subsystem, that is the rate of presentation attacks
classified as bona fide;

We used the following ISO metrics



872 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

« TAPAR (Impostor Attack Presentation Accept Rate): the
proportion of PAs using the same PAI species that result
in acceptance, that is, the rate of PAs classified as bona
fide and mated trial.

This choice is motivated by the need to evaluate the impact
of adversarial PAs, whilst the performance on the bona fide,
which ISO expresses in terms of BPCER, is unaltered by keep-
ing constant the classification threshold at 0.5. In particular,
the average BPCER was 2,58% in LivDet 2019 (page 5 in
[30]) and 4,34% in LivDet 2021 (page 6 in [12]).

2) White-Box Test: PAs are acquired with the GreenBit
DactyScan 84c scanner and submitted to the VGG-CNN PAD.
It is, therefore, a cross-sensor test. Three alternative protocols
were used to carry out such accuracy tests:

o Single attack: Each PAI acquisition is evaluated on a
single sample basis;

o Multiple attacks: An ADV-PA with the same PAI is
performed ten times. If at least one out of ten is classified
as “bona fide”, the attack on the PAD is considered
successful; if at least one out of ten is classified as “bona
fide” and “mated”, the attack on the integrated AFIS is
successful;

o Incremental Attack: this is a sort of ablation study where
all versions of the ADV-PAs, including a simple one
based on providing a PAI after image binarization, are
combined incrementally. If at least one of the PAs is
capable of piercing the PAD (for the APCER) or the
integrated AFIS (for the IAMPR), the incremental attack
is successful.

The white-box protocol allows the analysis of the adversarial
PAs from the attacker’s point of view.

3) Black-Box Test: The black-box protocol allows the anal-
ysis of the adversarial PAs from the point of view of the
attacked subject (victim), whilst the previous one represents
the attacker’s viewpoint in the most effective PAI design.
The black-box tests consist of submitting ADV-PAs to com-
pletely unknown PAD or integrated AFIS systems (PAD and
comparator). This means that the implementation details of
neither the PADs nor the comparators are known, nor their
integration rule (sequential, in parallel, etc.). Four algorithms
participating in LivDet2019 and four algorithms participating
in LivDet2021 were used as black-box algorithms. We selected
four PADs and four integrated PAD-AFISs, as shown in
Table V. It is important to highlight that the black-box
algorithms are very different from each other and have been
classified into handcrafted, deep-learning and hybrid systems.
Furthermore, the LivDet2019 algorithms have been trained on
different materials than latex; thus, ADV-PAs are fully “never-
seen-before” (Table II). In LivDet2021, the algorithms were
trained on PAIs made of latex, and the tests on these algorithms
are intra-material.

C. White-Box Results

White-box outcomes impact the attacker’s decisions during
the PAI’s fabrication phase. The attacker aims to fool an AFIS
equipped with a PAD with the least effort, that is, with as few
attempts as possible.

TABLE V

CHARACTERISTICS OF THE PAD SUBMITTED TO THE TWO EDITIONS OF
LivDET USED AS BLACK-BOX TARGET

Algorithms Type System Ref.
PADUnkFv Handcrafted PAD [34]
. Spoof Buster (FSB) | Deep-learning PAD [11]
LivDet2019 ZJUT_Det_A Deep-learning | Integrated -
JLWs Deep-learning | Integrated -
contreras Handcrafted PAD [35]
. megvii ensemble Deep-learning PAD -
LivDet2021 hallymMMC Deep-learning | Integrated
JLWLivDetD Hybrid Integrated
100 . T T
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80 ® Re-printed
70 : ® Binarized
60 FA-APGD
= UFA-APGD
50 .
u RFA-APGD
40 i u FA-DF
30y = UFA-DF
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Fig. 13.  Boxplots of the VGG-CNN network probabilities after acquiring
re-printed original images, printed binarized images and adversarial PAIs.

1) Single Attack: Figure 13 shows the boxplots of the
VGG-CNN network probabilities after acquiring the ADV-
PAs. The graph includes the boxplot related to the re-printed
and binarized samples to evaluate the influence of the
re-printing and binarised processes. It is crucial to note that,
with the exception of a few outliers, the re-printed image
scores are all close to zero. As previously shown in [7],
re-printing does not provide effective PAIs. Binarizing the
images before re-printing results in a higher percentage of
outliers. Also in this case, the percentage of samples with
a score far from zero is very low. The attacker cannot,
therefore, use these “zero-effort” techniques to reverse the
PAD classification. On the other hand, after the application of
adversarial manipulations and the printing/acquisition process,
a good percentage of attacks exceed the 50% score threshold.
This is evident from the results on the PAD, highlighted by the
APCER value, and on the integrated system, by the IJAMPR
value, reported in Table VI. Although the FA_DF method
seems to be the most effective (Fig. 13), Table IV shows that
the number of created FA_DF samples is lower than RFA_DF
and RFA_APGD ones. This is the reason why, although the
method allows obtaining very high scores with an average of
40% of “liveness”, FA-DF is not the most effective in APCER
terms (Table VI): few digital samples have been successfully
converted into PAIs resulting in a low number of successful
PAs. The most effective attack is RFA_DF with 2.82% of the
samples being classified as both bona fide and mated. This
was expected as the RFA method is designed to be robust to
print by incorporating a dilatation step after binarization.

To show the vulnerability of the white-box PAD to ADV-
PAs at different operating points, we have reported in Fig. 14
the APCER vs BPCER DET curve. This figure shows that the
previous considerations can be generalized to any operational
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COMPARISON OF THE ADV-PAS ON A WHITE-BOX AFIS WITH THE SINGLE ATTACK PROTOCOL. THE ADV-PAS WERE CREATED STARTING FROM
THE PAS CORRECTLY CLASSIFIED AS PAS OF THE ORIGINAL LivDET2015 TEST SET. EACH ACQUISITION WAS CONSIDERED A SINGLE ATTACK.
EACH COLUMN CORRESPONDS TO A PAI SPECIES WHOSE ACRONYMS ARE REPORTED IN TABLE III

PAI species
Ll.v ]?et2015 Re-Printed | Binarized | FA_DF | UFA_DF | RFA_DF | FA_APGD | UFA_APGD | RFA_APG
Original Test
[ APCER 0,00% 0,16% 6,94% 22,10% 18,06% 25,56% 23,31% 16,85% 16,21%
| TAPAR 0,00% 0,00% 1,21% 1,77% 1,21% 2,82% 1,01% 1,61% 1,73%
TABLE VII

COMPARISON OF THE ADV-PAS ON A WHITE-BOX AFIS WITH THE MULTIPLE ATTACK PROTOCOL. EACH ATTACK CONSISTS OF 10 ACQUISITIONS:
THE ATTACK IS SUCCESSFUL IF ONE OF THE 10 IS CLASSIFIED AS BONA FIDE AND BELONGS TO THE DECLARED USER. EACH COLUMN
CORRESPONDS TO A PAI SPECIES WHOSE ACRONYMS ARE REPORTED IN TABLE III

PAI species
Re-Printed | Binarized | FA_DF | UFA_DF | RFA_DF | FA_APGD | UFA_APGD | RFA_APGD
APCER 0,81% 22,98% 45,56% 38,71% 55,24% 47,98% 43,55% 41,94%
TIAPAR 0,00% 4,84% 4,44% 6,05% 5,65% 4,44% 4,03% 4,44%
TABLE VIII

COMPARISON OF THE ADV-PAS ON A WHITE-BOX AFIS WITH THE INCREMENTAL ATTACK PROTOCOL. THE FIRST COLUMN RELATES ONLY TO
BINARIZATION AND RE-PRINTING. THE LAST COLUMN RELATES TO A CONSECUTIVE ATTACK ON THE SENSOR WITH PAIS OBTAINED WITH
BINARIZATION AND WITH ALL THE TECHNIQUES FOR CREATING ADV-PAS. THE COLUMNS IN THE MIDDLE ARE RELATED TO THE

CONSECUTIVE ATTACK WITH PAIS OBTAINED WITH ONLY BINARIZATION AND ONE OF THE TECHNIQUES

FOR CREATING ADV-PAS

PAI species
. . Bin+FA_DF+ Bin+FA_DF+ . Bin+FA_APGD+ Bin+FA_APGD+ .
Bin Bin+FA_DF UFA_DF UFA_DF+RFA_DF || Bin+FA_APGD UFA_APGD UFA_APGD+RFA_APGD || Bin+All
APCER | 6,94% 25,89% 36,65% 48,59% 27 ,46% 37,90% 15, 44% 64,40%
TAPAR | 121% 327% 391% 552% 3.67% 4,60% 5,56% 85%
DET Curve

1.0

LivDet 2015 Original Test
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—— Binarized
FA DF
UFA_DF
—— RFA_DF
FA_APGD
UFA_APGD
RFA_APGD

0.8
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BPCER
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APCER

Fig. 14.  White-box PAD DET curves comparing the baseline LivDet
2015 samples classification and the ADV-PAs classification.

point: it is, therefore, impossible to simply act on the
acceptance threshold to limit the damage of this type of
attack.

2) Multiple Attack: This protocol shows the potential dan-
ger of an ADV-PA. In fact, having made a successful digital
attack, an attacker can exploit it to create multiple PAls.
Additionally, each PAI can be presented multiple times to
the sensor. One success out of N trials allows the attacker
to access a fingerprint-protected system. Table VII shows the
results of this analysis. More than half of the multiple attacks
pass the PAD control, and more than 40% are able to cheat
the integrated system. Despite the fact that the most effective
attacks are RFA_DF for the single PAD system and UFA_DF
for the integrated system, it is essential to note that all attacks
are successful. Using the proposed focus attention approach,

it is possible to manipulate a fingerprint in order to reverse
the decision of the PAD while preserving a significant portion
of the comparison-sustaining details.

3) Incremental Attack: The worst case for the security
of a fingerprint authentication system is an attacker who
knows several techniques for making a PAIL In this scenario,
the attacker could use all his knowledge to create different
PAIs and attack multiple times until the system is broken or
evaluate which part of the PAI fabrication algorithm is more
effective. The incremental attack protocol aims to analyze
this possibility, considering multiple attacks consisting of the
re-printing of the binarized fingerprints and an adversarial
attack, up to the serial use of all the techniques. Combining
an adversarial attack with an attempt to print a binarized PA
image increases the attacker’s chances of success, as demon-
strated in Table VIII. This means that the two attacks have a
degree of complementarity since fingerprint replicas that were
unsuccessful with the adversarial modification are successful
with the binarization attack and vice versa. The use of four
combined techniques, whether DeepFool-based or APGD-
based, exceeds 45% of APCER and 5% of IAPAR. This means
that with only four PAIs the attacker has a high chance of
cheating the integrated system. Using the seven versions of the
attack sequentially allows him/her to reach 64.40% of APCER
and almost 7% of IAMPR. It is important to underline that
these errors must be added to a normal AFIS performance
baseline as these experiments are performed starting from PAs
correctly classified [31]. As a result, in a real context, it is
necessary to consider the existence of PAs that, without adver-
sarial perturbation, pass through their original characteristics
as bona fide.
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TABLE IX
RESULTS ON THE TARGET BLACK-BOX PADS SUBMITTED TO THE LIVDET2019 EDITION WITH THE SINGLE ATTACK PROTOCOL.
THE 2019 TRAINING SET DOES NOT CONTAIN PAS MADE OF LATEX; THIS EVALUATION IS CROSS-MATERIAL
PAI species
Algorithms OL‘." Det2019 | LivDet2021 [ g i/ed | FA_DF | UFA_DF | RFA_DF | FA_APGD | UFA_APGD | RFA_APGD
riginal Test | Original Test
PADUnkFv 1,55% 9,27% 4,28% 12,86% 55,82% 41,55% 34,9% 40,37% 33,62%
APCER FSB 0,08% 0,41% NA 0,20% 6,10% 57,36% 14,62% 6,94% 57,28%
ZJUT_Det_A 1,14% 1,67% 0,00% 0,07% 1,51% 56,55% 0,48% 1,50% 44,00%
JLWs 1,14% 1,67% 0,00% 0,07% 1,58% 57,36% 0,57% 1,50% 45,02%
IAPAR ZJUT_Det_A 2,65% 2,93% NA 6,92% 1,12% 36,24% 1,41% 9,69% 25,03%
JLWs 2,60% 1,67% NA 3,42% 0,52% 31,70% 0,37% 1,10% 21,62%
TABLE X
RESULTS ON THE TARGET BLACK-B0OX PADS SUBMITTED TO THE LIVDET2021 EDITION WITH THE SINGLE ATTACK PROTOCOL.
THE 2021 TRAINING SET CONTAINS PAS MADE OF LATEX: THIS EVALUATION IS INTRA-MATERIAL
PAT species
Algorithms OL‘.V Det2019 | LivDet2021 | po . . cd | FA_DF | UFA_DF | RFA_DF | FA_APGD | UFA_APGD | RFA_APGD
riginal Test | Original Test
contreras 12,90% 3,94% 0,73% 1,16% 0,41% 7,05% 0,29% 0,31% 8,04%
APCER megvii_ensemble 0,49% 2,72% 1,58% 0,00% 2,40% 5,18% 3,52% 2,00% 4,04%
hallymMMC 23,92% 39,17% 32,59% 31,77% 59,52% 54,27% 42,80% 58,62% 44.21%
JLWLivDetD 6,69% 8,16% 6,62% 2,52% 5,96% 93,09% 24,48% 4,12% 62,04%
TAPAR JLWLivDetD 6,69% 6,26% NA 4,44% 2,50% 37,09% 6,07% 1,17% 21,62%
TABLE XI
APCER@1%BPCER AND APCER@10%BPCER FOR LIVDET2019 DETECTORS
PAI species
Algorithms Error Ll.v ]?et2019 FA_DF | UFA_DF | RFA_DF | FA_APGD | UFA_APGD | RFA_APGD
Original Test
PADUnkEvY APCER@1%BPCER 0,00% 41,97% 88,42% 77,64% 71,76% 81,44% 71,79%
APCER@10%BPCER 0,00% 4,63% 35,34% 23,00% 17,38% 18,94% 16,21%
FSB APCER@1%BPCER 0,00% 0,00% 4,73% 73,00% 12,57% 5,63% 52,89%
APCER@10%BPCER 0,00% 0,00% 0,27% 33,32% 1,00% 0,25% 12,30%
ZJUT Det A APCER@1%BPCER 0,00% 0,00% 0,21% 36,05% 0,00% 0,19% 22,68%
- APCER@10%BPCER 0,00% 0,00% 0,00% 3,55% 0,00% 0,00% 1,45%
TLWs APCER@1%BPCER 0,00% 0,00% 0,21% 37,00% 0,00% 0,19% 23,19%
APCER@10%BPCER 0,00% 0,00% 0,00% 3,77% 0,00% 0,00% 1,87%
TABLE XII
APCER@1%BPCER AND APCER @ 10%BPCER FOR LIVDET2021 DETECTORS
PAI species
Algorithms Error Ll.v ]?et2019 FA_DF | UFA_DF | RFA_DF | FA_APGD | UFA_APGD | RFA_APGD
Original Test
contreras APCER@1%BPCER 0,00% 100,00% | 100,00% 100,00% 100,00% 100,00% 100,00%
APCER@10%BPCER 0,00% 1,00% 0,41% 7,05% 0,29% 0,31% 8,04%
meavii ensemble APCER@1%BPCER 0,00% 0,00% 0,00% 0,27% 0,00% 0,00% 0,64%
gV APCER@10%BPCER 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
hallymMMC APCER@1%BPCER 0,00% 100,00% | 100,00% 100,00% 100,00% 100,00% 100,00%
y APCER@10%BPCER 0,00% 99,86% 100,00% 100,00% 99,90% 99,81% 99,91%
JLWLivDetD APCER@1%BPCER 0,00% 100,00% | 100,00% 100,00% 100,00% 100,00% 100,00%
APCER@10%BPCER 0,00% 0,20% 0,21% 78,05% 6,24% 0,00% 32,21%

D. Black-Box Results

The main objective of this work is to evaluate whether
it is possible to carry out an ADV-PA in completely black-
box mode. In this case, the attacker does not know the
biometric recognition system they want to attack. This also
allows us to evaluate how much the previous analysis leads
the attacker to provide general-purpose PAIs. On the other
hand, the following results allow us to evaluate ADV-PAs
from the victim’s point of view in terms of potential dam-
age needing counteraction. For a fair comparison, the error
rates resulting from the different versions of ADV-PAs were

compared with the results of the methods on the original
LivDet2019 and LivDet2021 datasets. Table IX displays the
outcomes generated by the LivDet2019 algorithms. In the case
of integrated systems, the greatest risk associated with the
attack is evidenced by high APCERs and TAPARs. In this
case, the attack is effective both from the point of view
of the PAD and the comparator. From this point of view,
the RFA_DF attack is the most dangerous of all. For PADs
without integration, we can instead evaluate only how many
PAs are classified as bona fide samples. From this point of
view, we can highlight the difference between handcrafted
and deep-learning methods. While the latter seems to be
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Fig. 15. Analysis of the distribution of the output scores of the analyzed black-box PADs.
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exposed to RFA_DF and RFA_APGD PAIs, the former suffers
from all PAIs. In particular, UFA-based PAIs include uniform
perturbations on the ROI, and RFA-based PAIs include all the

pre-processing steps, that is, binarization and dilation, applied
to make the adversarial modifications robust to the printing
process.
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Table X shows the results of the LivDet2021 detectors.
In this case, the handcrafted algorithm appears to be the
less vulnerable, especially when comparing the error rates of
the analogous handcrafted algorithm in Table IX. However,
it should be noted that RFA-based PAIs are much more
effective: APCER is higher than the baseline one (fourth
column of Table X). Hybrid and deep-learning methods, on the
other hand, are vulnerable to ADV-PAs. For example, the
93.09% of the PAs obtained with the RFA_DF method cheated
the JLWLivDetD PAD and the 37.09% are classified by
the integrated system as bona fide and mated (last row of
Table X). The substantial differences among systems show
that the vulnerability to ADV-PAs is highly linked to the type
of PAD and comparator implemented. However, the attacks
represent a potential danger for all of them. In the worst cases,
IAMPR values are above 30%, very high for an authentication
system.

We remark that the results obtained are related to an
acceptance threshold set at 0.5 in both PAI’s design and attack
phases. In this scenario, the victim could try counteracting
by modifying the classification threshold, making it more
stringent. Thus, we calculated the APCER when BPCER=1%
and BPCER=10% and reported such values in Tables XI- XII.

Moreover, we analyzed the outcomes of the networks,
shown in Fig.15. These values correspond to the input image’s
probability of being bona fide. In particular, each row corre-
sponds to the outputs of a particular PAD: on the left, the
ones of LivDet2019 original samples, and on the right, the
ones of adversarial PAs. The RFA-based PAs curves (green and
brown curves) show in all cases a portion of samples with very
high scores, i.e., high probabilities of being classified as bona
fide. Consequently, the acceptance threshold increase would
impact the classification of bona fide samples. Since the score
distributions for both adversarial attacks and bona fide presen-
tations overlap, setting a higher threshold is not effective. This
is confirmed by values reported in Tables XI-XII.

V. DISCUSSION AND CONCLUSION

Digital adversarial attacks are effective against modern
fingerprint authentication systems even when protected with
PAD. However, they presuppose access to internal modules of
the system and are therefore unrealistic. This risk becomes
concrete when the modified fingerprint is brought into the
physical domain and submitted to the sensor, generating an
adversarial presentation attack. However, these kinds of attacks
were only tested on white-box classifiers, namely, the same
systems adopted to fabricate the PAIs. Results reported so
far were partial and did not allow for assessing if adver-
sarial presentation attacks were effective when conducted on
systems whose nothing is known. To better investigate this
perspective, in this paper, we followed all the phases of the
attack, from the perturbation algorithm to the realization of
the PAIL The selection of an appropriate white-box PAD and
AFIS simulated the attacker’s tools for the PAIs fabrication.
Finally, we provided a statistically significant set of PAIs to
carry out adversarial presentation attacks on fully black-box
integrated fingerprint recognition systems. With regard to the
PAI fabrication, we proposed a focus attention mechanism

able to align the perturbation and the ROI of the white-box
classifier by introducing a novel multi-stage process along
with saliency-aware guidance feedback, utilizing Explainable
Al (XAI) methods. We showed that this made the attack
more effective and allowed us to maintain effective adversarial
perturbations after the printing process. This was confirmed in
the design phase by a set of experiments under the white-box
protocol and in the attack phase under the black-box protocol.
In particular, the latter set of experiments was carried out
by adopting state-of-the-art PADs and integrated AFISs from
LivDet 2019 and LivDet 2021 competitions and represents
the first comprehensive analysis of the use of presentation
adversarial attacks in a realistic attack simulation on integrated
fingerprint recognition systems.

With the white-box protocol, we showed the effectiveness
of the focus attention mechanism proposed, highlighting that
an attacker can rely on the complementarity of different tech-
niques to generate more PAIs and increase her/his probability
of success.

From the victim’s point of view, the black-box protocol
proved the need to protect systems from adversarial presen-
tation attacks. In fact, the results showed that it is possible
to cheat completely black-box AFISs with PAD modules
obtaining APCER greater than 50% and IAMPR greater
than 30%. Obviously, knowing that these attacks are possible
enables AFIS designers to safeguard their systems. A trivial
solution could be to train the PAD even on adversarial PA
samples. However, this is both costly and time-consuming;
it requires high knowledge of fingerprint replication and
adversarial techniques, leading to a real “vicious circle” for
attackers and defenders. Other strategies might be proposed to
exploit the common characteristics of standard and adversarial
PAs. Alternatively, the two issues might be addressed in a
blended manner. For example, since adversarial perturbations
have been shown to modify the frequencies of the resulting
image spectrum [36], [37], an analysis in the frequency domain
could be exploited for the detection of adversarial presentation
attacks under the hypothesis that this frequency is kept along
the PAI fabrication process.

As a matter of fact, a thorough analysis must be conducted
to assess if this is true and to what extent; this is the next step
in our research pathway.
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