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ROBUSTNESS OF STATISTICAL MANIFOLDS

ANDREA LOI AND STEFANO MATTA

Abstract. A statistical structure (g, T ) on a smooth manifold M induced by (M̃, g̃, T̃ )
is said to be robust if there exists an open neighborhood of (g, T ) in the fine C∞-topology

consisting of statistical structures induced by (M̃, g̃, T̃ ). Using Nash–Gromov implicit
function theorem, we show robustness of the generic statistical structure induced on M
by the standard linear statistical structure on RN , for N sufficiently large.

Keywords: Statistical manifolds, statistical models, isostatistical maps, free statistical
maps, robustness, Nash-Gromov implicit function theorem.

Subj.Class: 53B12, 53C05, 53C42, 58C15.

1. Introduction

The concept of statistical manifold [10] provides an intrinsic approach and a useful
abstraction to encompass various concepts and results in information geometry. A sta-
tistical manifold is a manifold M endowed with a statistical structure (g, T ), where g is
a Riemannian metric and T is a 3-symmetric tensor, which generalize the Fisher metric
and the Amari-Chentsov tensor, respectively [10].

Recently, [11] has positively addressed a question raised by [10] on whether a statistical
manifold (M, g, T ) is a statistical model, i.e. a smoothly parametrized family of probabil-
ity measures on some sample space Ω, P(Ω), whose parameters belong to M . The answer
has been provided by [11] showing the existence of an immersion of any statistical mani-
fold in some P(Ω), which preserves the statistical structure. More precisely (see [11, 4]),
any statistical manifold admits an isostatistical embedding in P (Ω) endowed with the
statistical structure represented by the Fisher metric and the Amari-Chentsov tensor.

We recall that an immersion h : (M, g, T ) → (M̃, g̃, T̃ ) is isostatistical if it preserves
the statistical structure, i.e. f ∗g̃ = g and f ∗T̃ = T . The statistical structure (g, T ) on M
is then said to be statistically induced by (M̃, g̃, T̃ ). Hence it follows from this definition
that a probability density for the structure (g̃, T̃ ), p : Ω× M̃ → R, induces a probability
density for (g, T ). Observe that, as highlighted by [4], this immersion, being metric and
tensor preserving, can be seen as an “intrinsic counterpart” of sufficient statistic.

In this paper we follow this intrinsic approach. Our aim is to study the robustness prop-
erty of the class of statistical structures {(g, T )} on a manifold M , which are statistically
induced by (g̃, T̃ ), the statistical structure of a manifold M̃ . We provide the following
definition of robustness.

Definition 1. A statistical structure (g, T ) on a smooth manifold M induced by (M̃, g̃, T̃ )
is said to be robust if there exists an open neighborhood of (g, T ) in the fine C∞-topology
consisting of statistical structures induced by (M̃, g̃, T̃ ).
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2 ANDREA LOI AND STEFANO MATTA

We think that this investigation is either natural, since the function space {(g, T )} can
be equipped with the fine (Whitney) C∞-topology, which coincides with the ordinary
C∞-topology if M is compact, either (hopefully) interesting.

The tool used in our analysis, Nash-Gromov implicit function theorem [12, 8, 9], high-
lights a case of special interest, i.e. when (M̃, g̃, T̃ ) is the standard linear statistical mani-

fold, namely M̃ = RN , g̃ = gcan =
∑N

i dx2
i and T̃ = Tcan =

∑N
i dx3

i . Hence, in the sequel,
by a N -induced statistical structure we will mean a statistical structure on M induced by
(RN , gcan, Tcan).

The main result of the present paper is the following theorem, which shows that, for
N -induced statistical structures, robustness generically holds true, if N is assumed to be
sufficiently large. In other words, the space of robust N -induced statistical structures is
dense in the space of N -induced statistical structures.

Theorem 1. Let M be a smooth n-dimensional manifold and let (g0, T0) be a N-induced

statistical structure on M . Assume N ⩾ n(n2+9n+20)
6

. Then (g0, T0) can be approximated
in the Whitney C∞-topology by robust N-induced statistical structures.

The reader may notice that our result can be interpreted as a (local) variant of the
celebrated Nash’s isometric immersion theorem [12], which says that every n-dimensional
Riemannian manifold Mn can be isometrically embedded in some RN(n) endowed with
the flat metric. Indeed, the above statement is weaker than Nash’s because there is an
obstruction stemming from the invariance of the norm of the 3-symmetric tensor which
prevents a straightforward generalization of Nash’s theorem. For example, (S(2)n+, g+, T+),
the n-dimensional positive upper sphere of radius 2 endowed with the metric gcan|S(2)n+

and

the tensor
∑n

i=1
dx3

i

xi |S(2)n+
, which identifies the space of all positive probability measures

on a sample space of n + 1 elementary events endowed with the Fisher metric and the
Amari-Chentsov tensor, does not admit any isostatistical immersion on (RN , gcan, Tcan),
even if Tcan is multiplied by a positive constant (the reader is referred to [4, Sec 4.5.2] for
obstructions for the existence of an isostatistical immersion between statistical manifolds).
The fact that S(2)n+ is not compact plays a crucial role. In fact, [11] proves that any n-
dimensional compact statistical manifold (M, g, T ), can be isostatistically embedded into
(RN , gcan, aTcan), for a suitable a > 0 and a sufficiently large N .

In this paper we are not assuming any topological assumption on M and, moreover, we
are dealing with the standard 3-symmetric tensor Tcan and not with its multiples.

The proof of Theorem 1 is based on Nash’s implicit function theorem for infinitesimally
invertible differential operators. Roughly speaking, the idea of the proof of Theorem 1 is
as follows. Since (g0, T0) is N -induced, then there exists a smooth immersion f0 : M → RN

such that f ∗
0 gcan = g0 and f ∗

0Tcan = T0. The strategy is to show that the linearization
Lcan of the smooth operator Dcan, which assigns to each smooth immersion f : M → RN

the induced statistical structure (g, T ) = (f ∗gcan, f
∗Tcan) on M , can be infinitesimally

inverted.
This paper is organized as follows. In Section 2 we derive the linearization formula for

the differential operator Dcan which corresponds to the statistical structures under study.
In Section 3, after introducing and discussing the notion of free statistical maps, which is
relevant to define the class of maps where Gromov’s tecnique is applicable, namely where
the linearization is invertible, we prove Theorem 1.
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2. The operator Dcan and its linearization Lcan

Our study of statistically inducing maps follows the same approach and uses the same
terminology as in [8], where the reader is referred to for a general discussion on induced
geometric structures developed in the context of Nash’s immersion theory. The key tool is
a Nash-type implicit function theorem proved by Gromov for a special class of differential
operators (see Section 2.3.1 in [8] for its various formulations and refinements). A general
criterion for the validity of the Nash-Gromov implicit function theorem is the infinitesimal
invertibility of the relevant differential operator and, in fact, we will work it out explicitly
for the inducing differential operator Dcan, namely the operator which assigns to each
smooth immersion the induced statistical structure (g, T ) = (f ∗gcan, f

∗Tcan) on M for
the fixed pair (gcan, Tcan) on RN . More precisely, the operator Dcan : {f} → {(g, T )} is
a differential operator between the space {f} of smooth immersions M → RN and the
space of statistical structures {(g, T )} on M , namely the set of pairs (g, T ) where g is a
Riemannian metric on M and T is a symmetric 3-tensor on M . We equip these spaces
with the fine C∞-topology.
Observe that Riemannian metrics g (resp. symmetric 3-tensors T ) on M are viewed as

smooth sections g : M → S2(M) (resp. T : M → S3(M)) where S2(M) (resp. S3(M))
denotes the symmetric square (resp. the symmetric cube) of the cotangent bundle of M .
This allows us to interpret our pair of structures (metric, 3-tensor) = (g, T ) as elements of
the space Γ (S2(M)⊕ S3(M)) of smooth sections of the smooth bundle S2(M)⊕ S3(M).
Thus, the space {(g, T )} of statistical structures of M can be seen as a proper subspace
of the space Γ (S2(M)⊕ S3(M)) (it is a proper subspace since a Riemannian metric g on
M viewed as a smooth section of S2(M) is positive definite, while a generic section of
S2(M) is just a symmetric 2-tensor).

The linearization of the operator Dcan

Here we construct the linearization of the operator Dcan. In easy terms, this linearization,
denoted by Lcan, is the differential of Dcan at f ∈ {f} and so it is a linear operator from
the tangent space Tf{f} to the tangent space T(f∗gcan,f∗Tcan){(g, T )}. It is worth pointing
out that these tangent spaces have to be considered as formal structures since the spaces
involved are not smooth manifolds in the usual sense. More precisely, a map f : (−ε, ε) →
{(g, T )} ⊂ Γ (S2(M)⊕ S3(M)) is by definition a smooth curve if f(t)(x) = F (x, t), for a
smooth map F : M × (−ε, ε) → S2(M)⊕ S3(M) and, for (g0, T0) ∈ {(g, T )}, the tangent
space T(g0,T0){(g, T )} is, by definition, the set of all velocity vectors f ′(0) of smooth curves
f : (−ε, ε) → {(g, T )} starting at (g0, T0), i.e. f(0) = (g0, T0).
Observe that, due to the above splitting S2(M) ⊕ S3(M), one can decompose the

operator Dcan into the sum of two operators,

Dcan = Dgcan ⊕DTcan : {f} → {(g, T )},

where, for a given smooth immersion f : M → RN ,

Dgcan(f) := f ∗gcan = g

and

DTcan(f) := f ∗Tcan = T.

We start by analyzing the linearization of Dgcan and DTcan . Although, by the previous
decomposition, we can analyze the linearization of these two components separately, in
the following, for the resolution of the system (4)+(5), we should consider them jointly
as they depend on the same argument f .
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The linearization of the operator Dgcan

Our first operator Dgcan in a neighborhood of x ∈ M equipped with local coordinates
x1, . . . , xn, can be expressed by

Dgcan(f) = {gij = gcan(fi, fj)}, i, j = 1, . . . , n,

where fi = df( ∂
∂xi

), i = 1, . . . , n, denote the images of the vector fields ∂
∂xi

on M under
the differential of f and where gij are the components of the metric g = f ∗gcan in our
local coordinates.

The linearization of the operator Dgcan at f is the linear operator

Lgcan : C∞(M,RN) → S2(M),

assigning to each vector field y on RN along f(M) a quadratic form g on M . We take a
smooth one-parameter family of smooth maps ft : M → RN , t ∈ (−ε, ε), such that f0 = f
and dft

dt |t=0
= y for a given y : M → RN (here ft(x) = F (x, t), where F : M×(−ε, ε) → RN

is a smooth map).
Set yi = ∂y

∂xi
, i = 1, . . . n Then (compare either [8, 2.3.1] or [12]) the expression for

Lgcan(y) =
d
dt
Dgcan(ft)t=0 in local coordinates x1, . . . , xn is as follows:

y 7→ gcan(fi, yj) + gcan(fj, yi), i, j = 1, . . . , n. (1)

The linearization of the operator DTcan

The second operator DTcan reads, in local coordinates, x1, . . . , xn, as

DTcan(f) = {Tijk = Tcan(fi, fj, fk)}, i, j, k = 1, . . . , n,

where Tijk are the components of the 3-symmetric tensor T = f ∗Tcan in our local coordi-
nates. The linearization of the operator DTcan at f is the linear operator

LTcan : C∞(M,RN) → S3(M).

As before, we take a smooth 1-parametric family of maps ft : M → RN , t ∈ (−ε, ε) such
that f0 = f and dft

dt |t=0
= y for a given y : M → RN . Then (cf. [8, 3.1.4]) LTcan(y) =

d
dt
DTcan(ft)t=0 is given by:

y 7→ Tcan(yi, fj, fk) + Tcan(fi, yj, fk) + Tcan(fi, fj, yk), i, j, k = 1, . . . , n. (2)

The inversion of the operator Lcan = (Lgcan , LTcan)
To (locally) invert the operator Dcan, we invert its linearization Lcan = (Lgcan , LTcan). This
amounts to solving the equation

Lcan(y) = (Lgcan(y), LTcan(y)) = (g′, T ′) (3)

where the right-hand side (g′, T ′) consists of an arbitrary quadratic 2-tensor g′ on M and
an arbitrary 3-tensor T ′ on M , respectively. In view of (1) and (2), we express (3) by the
following system of p.d.e. in the unknowns y:

gcan(fi, yj) + gcan(fj, yi) = g′ij (4)

Tcan(yi, fj, fk) + Tcan(fi, yj, fk) + Tcan(fi, fj, yk) = T ′
ijk, (5)

where g′ij and T ′
ijk, i, j, k = 1, . . . n, are smooth functions on M representing, in the local

coordinates xi, the components of g′ and T ′, respectively.
Next, we impose the following two technical conditions for the field y (see [5] and [12]),

namely
gcan(fi, y) = 0, i = 1, . . . , n, (6)



ROBUSTNESS OF STATISTICAL MODELS 5

and
Tcan(fj, fk, y) = 0, j, k = 1, . . . , n, (7)

These conditions are imposed in order to transform the system (4)-(5) into the system
(12)-(13) which does not involve the derivatives yi of the unknown vector field y.
By differentiating (6) and alternating the index i and j, the system (4) together with

the extra-condition (6) becomes equivalent to:

gcan(fij, y) = −1

2
g′ij, gcan(fi, y) = 0, i, j = 1, . . . , n (8)

where fij = ∂i∂jf . On the other hand, if we differentiate (7), we get

Tcan(fj, fk, yi) = −Tcan(fij, fk, y)− Tcan(fj, fik, y), i, j, k = 1, . . . , n.

Therefore the system (5) with the conditions (7) is equivalent to

Tcan(fi, fjk, y) + Tcan(fj, fik, y) + Tcan(fk, fij, y) =

= −1

2
T ′
ijk, Tcan(fj, fk, y) = 0, i, j, k = 1, . . . , n (9)

Notice now that since Tcan =
∑n

i=1 dx
3
i and gcan =

∑n
i=1 dx

2
i , one gets

Tcan(u, v, w) = gcan(u⊙ v, w), ∀u, v, w ∈ RN , (10)

where
u⊙ v := (u1v1, . . . , uNvN), (11)

for u = (u1, . . . , uN) and v = (v1, . . . , vN). Notice that (11) is well-defined because it is
expressed in terms of the global basis of vector fields on RN associated with Cartesian
coordinates.

Therefore, by (8) and (9), the issue of infinitesimally inverting the operator Dcan is
reduced to find the solution y of the following system (12)+(13):

gcan(fij, y) = −1

2
g′ij, gcan(fi, y) = 0, i ⩽ j, (12)

gcan(fi ⊙ fjk + fj ⊙ fik + fk ⊙ fij, y) = −1

2
T ′
ijk, gcan(fj ⊙ fk, y) = 0, i ⩽ j ⩽ k, (13)

in the unknown field y. For each x ∈ M , this system is an algebraic system consisting
of

mn := n+ 2sn +

(
n+ 2

3

)
=

n(n2 + 9n+ 14)

6
(14)

equations, where sn := n(n+1)
2

. Notice that every solution of the system (12)+(13) also
gives a solution of the original linearized system (4)+(5) with the extra conditions (6)
and (7).

3. Free statistical maps and the proof of Theorem 1

The previous discussion enables us to see how the linearization of the operator Lcan,
expressed by the system (12)+(13) (and the consequent infinitesimal invertibility of the
differential operator Dcan) can be used for obtaining our desired result (Theorem 1).
The key step is to show that the operator Dcan, which associates to each immersion
f : M → RN the induced statistical structure (f ∗gcan, f

∗Tcan), is an open map on a
dense subset in the space of maps. We call these maps, which satisfy a certain regularity
condition, free statistical maps (see Definition 2 below). Our proof follows the line of
reasoning of Theorem 0.4.A in [6] and Theorem 1.1 in [7]. In fact, both papers follow
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the same pattern of the case of Riemannian isometric immersions (see [12] and also [8]),
where the relevant regularity condition is freedom of the involved map f : M → RN , i.e.

linear independence of the n+ n(n+1)
2

vectors of the first and second partial derivatives of
f (see Remark 3 below).

Definition 2 (Free statistical maps). Let f : M → RN be a smooth map and fix local
coordinates x1, . . . , xn around a point x ∈ M and denote by fi and fij, i, j = 1, . . . , n
the first and second derivatives of the map f with respect to these coordinates. The map
f : M → RN is called a free statistical map if, for all x ∈ M , the mn (see (14)) vectors

{fi(x), fij(x), fj(x)⊙ fk(x), fi(x)⊙ fjk(x) + fj(x)⊙ fik(x) + fk(x)⊙ fij(x)} (15)

are linear independent, for every x ∈ M and and for all i ⩽ j ⩽ k.

Remark 2. It is not hard to see that Definition 2 does not depend on the choice of local
coordinates.

Remark 3. Let f : M → RN be a smooth map. Denote by T 1
f (x) ⊂ T 2

f (x) ⊂ RN the
first and second osculating space respectively of the map f at the given point x ∈ M .
Namely, T 1

f (x) = dfx(TxM) and T 2
f (x) ⊂ RN is the subspace spanned by fi(x) and fij(x),

i, j = 1, . . . , n, at x. Then the dimension of T 2
f (x) can vary between 0 and min(N, n+sn),

for sn = n(n+1)
2

and the map f is free in the sense of Nash if dimT 1
f (n) = n = dimM ,

dimT 2
f (n) =

n(n+3)
2

= n+ sn or, equivalently, the n+ sn vectors {fi(x), fij(x)} are linear
independent, for every x ∈ M and for all i ⩽ j.

In Gromov’s terminology (see [8, 3.1.4]), a smooth map f : M → RN is called Tcan-free
if the sn +

(
n+2
3

)
vectors

{fi(x)⊙ fjk(x) + fj(x)⊙ fik(x) + fk(x)⊙ fij(x), fj(x)⊙ fk(x)}
are linear independent, for every x ∈ M. and for all i ⩽ j ⩽ k. Hence our definition of
free statistical map extends both Nash’s freedom and Gromov’s Tcan-freedom conditions.

Example 4. When M = Rn it is not hard to see that the map f : Rn → Rmn given by(
x1, 2x1, . . . , xn, 2xn, {xjxk}j⩽k, {xj + xk}j<k, {xp + x2

q}p,q=1,...n, {xa + xbxc}a<b<c

)
(where the strings are ordered in lexicographic order) is a free statistical map.

In the following proposition we prove that the operator

(dDcan)f = Lcan : Tf{f} → T(f∗gcan,f∗Tcan){(g, T )}
is invertible if f is free statistical.

Proposition 5. Let f : M → RN be a free statistical map. Then the linear operator Lcan

is invertible over all of M by some differential operator Mf , i.e. Lcan ◦Mf = id.

Proof. It follows from Section 2 that we need to find a solution y of the system of equations
(12)+(13). Since the map f : M → RN is free statistical, it follows that the solution of
(12)+(13) forms an affine bundle over M of rank N − mn. Now, every affine bundle
admits a section over M . To choose it in a canonical way, one may use any fixed auxiliary
Riemannian metric on RN (e.g., we can use gcan) and then take as canonical solution, say
y0, the solution y of (12)+(13) which has the minimal norm with respect to this metric at
every point f(x) ∈ RN (see, e.g., [8], [9], [12]). Finally, we define the inverse Mf of Lcan

by Mf (g
′, T ′) = y0. □

To make sure that the results we get are non-empty, we show the following:
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Proposition 6. For N ⩾ n(n2+9n+20)
6

, generic maps f : M → RN are free statistical.

Proof. We shall interpret non free statistical condition as a singularity in the space
J2(M,RN) of 2-jets of our maps M → RN , so that we can use an argument based
on Thom’s transversality theorem. Recall that the 2-jet, J2

f (x), of a given smooth map

f : M → RN at the point x is given by:

J2
f (x) = (x, f(x), Dfx, D

2fx),

where Dfx : TxM → Tf(x)RN = RN (resp. D2fx : S2(TxM) → Tf(x)RN = RN ) is the first
(resp. second) derivative of f at x, and where S2(TxM) denotes the symmetric square of
TxM . For fixed x ∈ M consider thet set

J2
x = {(x, y, α, β) | y ∈ RN , α ∈ Hom(TxM,TyRN), β ∈ Hom(S2(TxM), TyRN)}

and the 2-jet bundle J2(M,RN) =
⊔

x∈M J2
x . Then J2(M,RN) inherits the structure of

smooth bundle over M with fibers J2
x and natural projection

J2(M,RN) → M, (x, y, α, β) 7→ x.

Thus, using the 2-jets of a smooth function f : M → RN one can construct the smooth
section of this bundle, namely the smooth map

J2
f : M → J2(M,RN), x 7→ J2

f (x).

If we fix local coordinates x1, . . . , xn around x ∈ M , then the 2-jet J2
f (x) of a given map

f : M → RN at the point x is given by the first and second derivatives

J2
f (x) = (x, f(x), fi(x), fij(x)), i, j = 1, . . . , n.

We also notice that the non free statistical regularity at x ∈ M depends on J2
f (x) and

hence we can define the set Σx ⊂ J2
x consisting of 2-jets of non free statistical maps. Let

M(mn, N) be the set of mn ×N matrices with real entries, where mn is defined by (14).
Then it follows by Definition 2 that Σx can be identified with the matrices of M(mn, N)
of rank strictly less than mn. Thus (cf., e.g., [2] or [8, Section 1.3.1]) Σx ⊂ M(mn, N) is
a Whitney stratified space of codimension N −mn + 1. Therefore the set Σ = ∪x∈MΣx ⊂
J2(M,RN), which fibers over M , is a Whitney stratified space of codimension N−mn+1.
Now, by the very definition of Σ, it follows that a map f : M → RN is free statistical iff
J2
f (M) ⊂ J2(M,RN) does not meet Σ. Finally, (the special case of) Thom’s transversality

theorem (see , e.g. [8] Corollary D
′
, p. 33) tells us that generic maps do have the property

J2
f (M) ∩ Σ = ∅ if N −mn + 1 ⩾ n+ 1 or equivalently N ⩾ n(n2+9n+20)

6
. □

Proof of Theorem 1 By assumption, (g0 = f ∗
0 gcan, T0 = f ∗

0Tcan) for a smooth map

f0 : M → RN , N ⩾ n(n2+9n+20)
6

. Then, by Proposition 6, there exists a free statistical
map, say f1 : M → RN , which is arbitrarily C∞-close to the map f0. It follows that
the induced statistical structure Dcan(f1) = (g1 = f ∗

1 gcan, T1 = f ∗
1Tcan) is C∞-close to

(g0, T0). It remains to prove that (g1, T1) is robust. We know by Proposition 5 that the
linearization of the operator Dcan at f1 admits an inverse (or, using the terminology in
[8], that the operator Dcan is infinitesimally invertible at f1). This allows us to apply
the Nash-Gromov’s implicit function theorem to deduce that Dcan is an open operator
from a neighborhood of f1 to a neighborhood U of Dcan(f1). Therefore all the statistical
structures (g, T ) in U are N -induced and this concludes the proof of Theorem 1.
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[4] N. Ay, J. Jost, H. V. Lê, L. Schwachhöfer, Information Geometry, Springer Interna-
tional Publishing, 2017.

[5] G. D’Ambra, Constructions of Connections inducing maps between principal bundles,
part I, Trans. of AMS vol. 338 n.2 (1993), 783-797.

[6] G. D’Ambra, Induced Connections on S1-bundles over Riemannian Manifolds, Trans.
of AMS vol. 338 n.2 (1993), 783-797.

[7] G. D’Ambra, A. Loi, Inducing connections on SU(2)-bundles, JP J. Geom. Topol. 3
(1) (2003), 65-88.

[8] M. Gromov, Partial Differential Relations, Springer-Verlag (1986).
[9] M. Gromov and V. Rokhlin, Embeddings and immersions in Riemannian geometry,

Uspekhi Mat. Nauk. 25 (1970) n.5, 3-62.
[10] S. Lauritzen, Statistical manifolds, In : Differential geometry in Statistical Inference,

IMS Lecture Notes, Monograph Serie 10., Inst. of Math. Stat. Hayward, Califor-
nia,1987, 163-216.
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