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Abstract: Three-dimensional (3D) applications lead the digital transition toward more immersive and
interactive multimedia technologies. Point clouds (PCs) are a fundamental element in capturing and
rendering 3D digital environments, but they present significant challenges due to the large amount of
data typically needed to represent them. Although PC compression techniques can reduce the size of
PCs, they introduce degradations that can negatively impact the PC’s quality and therefore the object
representation’s accuracy. This trade-off between data size and PC quality highlights the critical
importance of PC quality assessment (PCQA) techniques. In this article, we review the state-of-the-art
no-reference (NR) objective quality metrics for PCs, which can accurately estimate the quality of
generated and compressed PCs solely based on feature information extracted from the distorted PC.
These characteristics make NR PCQA metrics particularly suitable in real-world application scenarios
where the original PC data are unavailable for comparison, such as in streaming applications.

Keywords: point cloud; quality of experience; no-reference metric; objective quality evaluation; 3D;
projection-based metric; model-based metric

1. Introduction

In recent years, the digital landscape has significantly moved toward more immersive
and interactive technologies. Three-dimensional applications are leading this digital transition
by gathering increasing attention from both researchers and industry professionals. Indeed,
3D applications represent a paradigm change in how we perceive and interact with digital
information by offering more natural and intuitive approaches to content engagement
and immersive first-person experiences when interacting with multimedia content. The
impact of this technology extends far beyond mere visual experience, by including various
sectors, from entertainment and education to professional training and remote working.
A comparative analysis of 2D and 3D communication and interaction has demonstrated
that immersive 3D technology is superior in creating collaborative and communicative
scenarios, highlighting its potential to revolutionize how we connect and work in digital
spaces [1].

Point clouds (PCs) represent a major way to capture and render 3D digital environments.
They consist of a collection of sparse points in the 3D space, each typically associated with
attributes such as color and normal vectors. One of the key advantages of PCs is their ability
to be recorded in real time using devices like Light Detection and Ranging (LiDAR) sensors.
This capability makes PCs particularly valuable in applications requiring immediate 3D
representation, such as augmented reality (AR) and virtual reality (VR) object streaming.
Despite their advantages, PCs present significant challenges in terms of data management.
Indeed, the high-fidelity representation of complex 3D scenes often requires an enormous
number of points, resulting in large datasets, which causes storage and transmission issues,
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particularly in bandwidth-constrained environments or applications requiring real-time
data transfer.

To address these challenges, compression techniques have become crucial in the PC
processing pipeline. Compression algorithms aim to reduce the data size of PCs while
preserving as much of the original information as possible. However, to achieve significant
data reduction, effective compression techniques must be lossy. This means that some
information is inevitably lost during the compression process, leading to various types
of distortions in the reconstructed PC. As a result, the compressed and subsequently
decompressed PC is typically an approximation of the original, with potential degradations
in quality and accuracy. This trade-off between data size and representation quality
highlights the critical importance of PC quality assessment (PCQA) techniques, which
are designed to measure the level of quality in reconstructed PCs, providing feedback
on the efficacy and efficiency of compression algorithms and the overall fidelity of the
3D representation. PCQA techniques are crucial for choosing compression parameters
or evaluating the performance of different algorithms. In this article, we aim to provide
a comprehensive overview of a subset of PCQA techniques: no-reference (NR) objective
quality metrics. The reason is that these metrics are designed to accurately estimate the
quality of generated and compressed PCs based solely on feature information extracted
from the compressed PC itself, without access to the original, uncompressed data. These
characteristics make NR PCQA metrics particularly suitable in real-world application
scenarios where the original PC data may not be available for comparison, such as in
streaming applications.

To the best of the authors’ knowledge, this is the first article reviewing NR PCQA
metrics. The survey in [2] is dated (published in 2017) and superficially describes some of the
traditional point-to-point and point-to-plane PCQA metrics. Instead, the systematic review
in [3] is very recent (published in 2024), but it is more focused on providing an overview of
current established approaches and open challenges for PCQA, without taking a look behind
technical details and performance comparison of the existing approaches. Therefore, by
providing a comprehensive overview and comparison of state-of-the-art (SOTA) NR-PCQA
techniques, this article aims to inform researchers on how to investigate the complex
landscape of no-reference modeling approaches for the objective assessment of PC quality.
As 3D technologies continue to advance and find new applications across diverse domains,
the ability to efficiently and accurately estimate PC quality will remain a critical factor
in ensuring the successful adoption of these immersive technologies. This review first
provides a general overview of PCQA techniques and the available PCQA datasets in
the SOTA. Then, the different approaches employed by NR PCQA models are detailed
and compared in terms of the achieved quality estimation performance to outline the
advantages and drawbacks of each method and to point out future research directions.

The paper is structured as follows. In Section 2, the background on PCQA and
an overview of existing PCQA datasets are provided. In Section 3, we review the SOTA
projection-based, model-based, and hybrid NR PCQA metrics. Section 4 discusses and
compares the reviewed NR PCQA algorithms, highlighting their adoption advantages and
drawbacks. Finally, Section 5 concludes the paper.

2. Background
2.1. Point Cloud Quality Assessment

The possible distortions introduced by the compression, reconstruction, and network
transmission of PCs may introduce visual quality impairments that can be assessed using
PCQA techniques. PCQA can follow a subjective or objective approach. Subjective
approaches require a set of people to evaluate the quality of the distorted PC, typically using
a 5-level Likert scale from which the Mean Opinion Score (MOS) is derived. Section 2.2
provides an overview of the most relevant PCQA datasets including subjective ratings
provided for several types of distorted PCs. While conducting a subjective assessment
provides the quality as perceived by the users, i.e., the Quality of Experience (QoE) [4],
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this approach has several drawbacks, such as being time-consuming and costly, and it may
introduce bias due to evaluation scale or previous user experience.

Objective approaches have been developed based on mathematical algorithms to
estimate the quality of the PC. According to the extent of reference PC data utilized to
compute the quality metric, objective approaches can be categorized into full reference
(FR), reduced reference (RR), and no reference (NR), which are illustrated in Figure 1.
The FR needs the complete original and distorted PCs, the RR needs specific features
extracted from the original and distorted PCs, while the NR only needs information from
the distorted PC. Examples of SOTA FR approaches are GraphSIM [5], PC-SSIM [6], and
PCQM [7]. GraphSIM [5] was designed to overcome the limitations of the earliest point-wise
distance-based metrics adopted by MPEG, such as p2point [8], p2plane [9], and p2mesh [10].
Indeed, GraphSIM jointly considers the geometry and color distortion and uses the graph
signal gradient as a quality index to evaluate PC distortions. PC-SSIM [6] explored the
applicability of the Structural Similarity (SSIM) index (developed for images) in PCs, i.e., in
a higher-dimensional, irregular space, including color and topological coherence among
local regions. The authors investigated the effectiveness of various features derived from
explicit and implicit information in a PC model and analyzed the impact of neighborhood
size on quality scores. PCQM [7] is based on a weighted linear combination of geometry-
and color-based features to estimate the quality of compressed PCs. Concerning RR
approaches, the PCMRR metric [11] extracts a small set of statistical features from the
reference PC in the geometry, color, and normal vector domains, which can be used to
assess the quality of the distorted PC quality at the receiver side. The RR model proposed
in [12] considers two features to evaluate the quality of PCs: the color fluctuation over
a geometric distance and the color block mean variance. Although FR and RR models
perform well for PCQA, they have the main drawback of requiring the complete reference
PC or a part of it, respectively. Therefore, NR models are the most suitable approach for
PCQA because they only need information from the distorted PC and thus can measure
the PC quality in a real-time fashion. Moreover, NR has been demonstrated to achieve
comparable or even increased quality estimation performance when compared with FR
and RR models.

Figure 1. The scheme of full-reference (FR), reduced-reference (RR), and no-reference (NR) metrics.

In this paper, we provide a review of the SOTA NR models for PCQA.

2.2. PCQA Datasets

This section provides an overview of the current PCQA datasets available in the
SOTA, which are compared in Table 1 in terms of the number of reference and distorted
samples and the number and type of considered distortion. PCQA datasets are essential to
define novel objective models that can estimate the quality of distorted PCs as perceived
by end-users. Thus, we focused on the datasets including a relevant number of distorted
PCs and providing subjective ratings for each of them. The LS-PCQA contains the
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greatest number of distorted PCs and considers the most numerous and diverse quality
impairments. The SIAT-PCQD is the only dataset whose PC qualities were evaluated using
a head-mounted display (the HTC Vive), whereas all the others used a 2D screen.

Table 1. Comparison of existing PCQA datasets.

Dataset
Number of
Reference
Samples

Number of
Distortions

Number of
Distorted
Samples

Distortion Types

SJTU-PCQA [13] 9 7 378 Compression, downsampling, geometry noise, color noise.
WPC [14,15] 20 5 740 Compression, downsampling, noise.
WPC2.0 [12] 16 25 400 Compression.
WPC3.0 [16] 14 25 350 Compression.
SIAT-PCQD [17] 20 17 340 Compression.
M-PCCD [18] 9 25 225 Compression.
LS-PCQA [19] 104 31 22,568 Compression, color noise, geometry noise, downsampling.

The SJTU-PCQA (https://vision.nju.edu.cn/28/fd/c29466a469245/page.htm, accessed
on 15 October 2024) dataset [13] provides 378 distorted PCs originating from 9 reference PCs.
Seven types of common distortions corrupted each reference PC at six levels. Specifically,
the considered distortions are OcTree-based compression, color noise, Geometry Gaussian
Noise, down-sampling, the combination of down-sampling and color noise, the combination
of down-sampling and Geometry Gaussian Noise, and the combination of color noise
and Geometry Gaussian Noise. In Figure 2, we show one PC from this dataset (Shiva)
impaired by three different distortions, namely OcTree-based compression, color noise,
and downscaling.

(a) (b) (c) (d)
Figure 2. Examples of distorted PCs from the SJTU-PCQA dataset [13]. (a) Original Shiva PC. (b) OcTree-
based compression (85%). (c) Color noise (70%). (d) Downscaling (90%).

The WPC (https://github.com/qdushl/Waterloo-Point-Cloud-Database, accessed on
15 October 2024) dataset [14,15] includes 20 high-quality reference PCs and 740 distorted
PCs created using five distortions: downsampling, Gaussian noise, and three types of
compression, i.e., G-PCC (Trisoup or Octree), and V-PCC. The same authors have provided
a second version of WPC, i.e., the WPC2.0 (https://github.com/qdushl/Waterloo-Point-
Cloud-Database-2.0, accessed on 15 October 2024) [12] dataset. This version includes
16 reference PCs from the WPC dataset (namely Bag, Banana, Biscuits, Cake, Cauliflower,
Flowerpot, House, Litchi, Mushroom, Ping-pong bat, Puertea, Pumpkin, Ship, Statue,
Stone, Toolbox), which were encoded using the MPEG V-PCC platform. Twenty-five
distorted PCs were then created for each reference PC, for a total of 400 distorted PCs.
Combinations of five geometry QPs (26, 32, 38, 44, and 50) and five color QPs (26, 32,
38, 44, and 50) were considered to create the distorted PCs. A third version, the WPC3.0
(https://github.com/qdushl/Waterloo-Point-Cloud-Database-3.0, accessed on 15 October
2024) dataset [16], is also provided, which consists of 350 distorted PCs. The 14 reference
PCs were again selected from the WPC dataset (namely, Biscuits, Cake, Cauliflower, Litchi,
Ping-pong bat, Puertea, Pumpkin, Ship, Statue, Toolbox, Coffeecup, Croissant, Saltbox,

https://vision.nju.edu.cn/28/fd/c29466a469245/page.htm
https://github.com/qdushl/Waterloo-Point-Cloud-Database
https://github.com/qdushl/Waterloo-Point-Cloud-Database-2.0
https://github.com/qdushl/Waterloo-Point-Cloud-Database-2.0
https://github.com/qdushl/Waterloo-Point-Cloud-Database-3.0
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Honeydew melon) and encoded with V-PCC using the same values of geometry and color
QPs used for WPC2.0.

The SIAT-PCQD (https://ieee-dataport.org/documents/siat-pcqd-subjective-point-cloud-
quality-database-6dof-head-mounted-display, accessed on 15 October 2024) dataset [17]
comprises 20 reference PCs, distorted using 17 pairs of geometry and texture quantization
parameters (QPs) with the V-PCC codec. In total, the dataset includes 340 distorted PCs.
The M-PCCD (https://www.epfl.ch/labs/mmspg/downloads/quality-assessment-for-
point-cloud-compression/, accessed on 15 October 2024) dataset [18] includes nine
reference PCs, which have been compressed using five different encoders (namely,
OctreeLifting, Octree-RAHT, TriSoup-Lifting, TriSoup-RAHT, and V-PCC) at five quality
levels. The total number of distorted PCs is 225. Finally, the LS-PCQA (https://smt.sjtu.
edu.cn/database/large-scale-point-cloud-quality-assessment-dataset-ls-pcqa/, accessed on
15 October 2024) [19] dataset contains 104 reference PCs, which were distorted with
31 types of impairments (such as Gaussian noise, contrast distortion, and local missing
and compression loss) at seven distortion levels. The total number of distorted PCs is
22,568. In Figure 3, we show two PCs from this dataset (Asterix and Aya) impaired by
different types and levels of distortions.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Figure 3. Examples of distorted PCs from the LS-PCQA dataset [19]. (a) Original Asterix PC.
(b) Gamma noise with parameter 1. (c) Gamma noise with parameter 7. (d) Multiplicative Gaussian
noise with parameter 1. (e) Multiplicative Gaussian noise with parameter 7. (f) Poisson Reconstruction
with parameter 3. (g) Poisson Reconstruction with parameter 7. (h) Original Aya PC. (i) Poisson
noise with parameter 3. (j) Poisson noise with parameter 7. (k) GPCC-Lossless geometry and lossy
attributes with parameter 3. (l) GPCC-Lossless geometry and lossy attributes with parameter 7.
(m) AVS-Limited lossy geometry and lossy attributes with parameter 3. (n) AVS-Limited lossy
geometry and lossy attributes with parameter 7.

3. No-Reference PCQA Models

No-reference PCQA metrics are mathematical models that utilize information from the
distorted PC received at the destination side to estimate the PC quality as perceived by the
end user. To measure the accuracy of the quality estimation, this is typically compared with
the mean subjective quality score (MOS) provided by a set of people during a subjective
assessment. Common performance metrics are the Pearson linear correlation coefficient
(PLCC), the Spearman’s rank correlation coefficient (SRCC), the Kendall rank correlation
coefficient (KRCC), and the root mean square error (RMSE), which are all computed

https://ieee-dataport.org/documents/siat-pcqd-subjective-point-cloud-quality-database-6dof-head-mounted-display
https://ieee-dataport.org/documents/siat-pcqd-subjective-point-cloud-quality-database-6dof-head-mounted-display
https://www.epfl.ch/labs/mmspg/downloads/quality-assessment-for-point-cloud-compression/
https://www.epfl.ch/labs/mmspg/downloads/quality-assessment-for-point-cloud-compression/
https://smt.sjtu.edu.cn/database/large-scale-point-cloud-quality-assessment-dataset-ls-pcqa/
https://smt.sjtu.edu.cn/database/large-scale-point-cloud-quality-assessment-dataset-ls-pcqa/
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between the predicted and actual quality scores. The PLCC measures the linear correlation
between the sets of actual and predicted quality data and can assume values between
−1 and +1, indicating a positive and a negative linear correlation between the data sets,
respectively. PLCC values around 0 mean the two data sets are not linearly correlated. The
SRCC is a measure of rank correlation that assesses monotonic relationships between the
two sets of data, i.e., whether the correlation between actual and predicted quality scores is
linear or not. An SRCC of 0 means the data sets are not correlated, whereas SRCC values
of −1 and +1 indicate perfect decreasing and increasing monotonic trends, respectively.
The KLCC is also a measure of rank correlation, but it measures the ordinal association
between the two data sets. Similar to PLCC and SRCC, the KLCC can assume values
between −1 and +1. Finally, the RMSE is the quadratic mean of the differences between
the actual and predicted quality values. The lower the RMSE, the higher the prediction
accuracy of the quality model. Moreover, to be practically reliable, PCQA metrics need
to deal with different kinds of distortions that may affect the PC during the compression,
transmission, and reconstruction processes. Thus, most of the SOTA NR objective metrics
are trained and validated on one or some of the datasets described in Section 2.2, which
include an important number of PCs impaired by diverse distortions and accompanied by
mean subjective scores.

NR PCQA approaches can be further classified into model-based and projection-based
metrics based on the PC information considered for the quality estimate. Model-based
approaches directly utilize the 3D PC to extract color and geometry information, which
are used to identify and evaluate the impact of distortions on the PC quality. Model-based
approaches are complex metrics, especially when dealing with sparse PCs where the
point distribution may not adequately represent the underlying surface geometry. While
dense PCs may contain millions of points, their regular distribution often simplifies
the computation of quality metrics compared to sparse representations with fewer but
irregularly distributed points. Thus, PC complexity is determined by the combination of
the number of points and their spatial distribution (sparse or dense). Projection-based
approaches rely on PC visualizations (2D projection of the PC) whose quality is analyzed
and estimated using well-known techniques derived from SOTA images and/or video
quality assessment algorithms or defining novel quality evaluation techniques, often based
on deep learning. If information from both the 3D PC and 2D projections are used to extract
data for quality estimation, the model follows a hybrid approach. Figure 4 illustrates the
three approaches above.

Figure 4. The scheme of model-based, projection-based and hybrid NR PCQA approaches.

The following sections review the most relevant SOTA studies proposing projection-
based, model-based, and hybrid NR PCQA metrics.
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3.1. Model-Based Approach

Model-based approaches extract color and geometry features from the 3D PC to
estimate the quality of the PC. These models often make use of machine learning
(such as in [20]) and deep learning architecture (such as in [19,21,22]), especially when
dealing with sparse PCs composed of many points because computational complexity
increases tremendously.

The ResSCNN model in [19] defines a sparse CNN architecture to extract the hierarchical
features directly from 3D PCs. Indeed, the input of the hierarchical feature extraction
module is a sparse tensor for PC, represented as a set of geometry coordinates and
associated color features. In this study, the LS-PCQA dataset was also provided, which
was used, together with the SJTU-PCQA and WPC2.0 datasets, to test the performance of
the ResSCNN model. The PLCC between the actual and predicted quality of the distorted
PCs achieved by ResSCNN is 0.60, 0.86, and 0.72 for the LS-PCQA, SJTU-PCQA, and
WPC2.0 datasets, respectively. In [20], the 3D-NSS model is presented, which computes
natural scene statistics (NSS) on different geometry and color features for the quality
prediction of PCs. Geometry features include curvature, anisotropy, linearity, planarity,
and sphericity, all calculated at the point level. The color features include the LAB color
channels of each PC point. A set of statistical parameters (i.e., mean, standard deviation,
entropy, generalized Gaussian distribution (GGD), asymmetric GGD (AGGD), and the
shape-rate Gamma distribution) was then applied to the selected features to detect PC
distortion. This set of features was used to train a support vector regressor (SVR) model,
whose performance was validated on the SJTU and WPC databases. The 3D-NSS model
achieved a PLCC of 0.7382 and 0.6514 and an RMSE of 1.7686 and 16.5716 on the SJTU
and WPC databases, respectively. The ablation study shows that geometry features are
major contributors to quality prediction, while color features and the application of
statistics contribute to a lesser extent.

The graph convolutional PCQA network (GPA-Net) in [21] includes a new graph
convolution kernel, i.e., GPAConv, which attentively captures the perturbation of the
structure and texture of a 3D PC. Then, a multi-task decoder predicts the type and
degree of the distortion and performs quality score regression. In the final step, coordinate
normalization is performed to achieve the shift, scale, and rotation invariance that aims
to stabilize the results of GPAConv. The PLCC between the actual and predicted quality
of the distorted PCs achieved by GPA-Net is 0.886, 0.628, and 0.769 for the SJTU-PCQA,
LS-PCQA, and WPC datasets, respectively. The model in [22], called GQI, considers
geometric distance, mean curvature, and grey-level features from patches extracted around
a set of PC points. The collected features are stacked and fed as input to a CNN model,
which aggregates the predicted patch quality indexes to compute a global quality index for
the PC. The PLCC achieved by the GQI-VGG19 (the model trained with VGG19 achieved
the best performance) between the actual and predicted quality of the distorted PCs is 0.925
and 0.952 for the SJTU-PCQA and ICIP20 datasets, respectively.

The performance results achieved by these models evidence the superiority of deep
learning architectures in identifying patterns and relationships between the color and
geometry features extracted from the PC and the assessed PC quality. However, the
drawback is that it is not easy to understand precisely what input–output relationships are
established by the deep neural networks, in particular when they are composed of different
layers and complex learning functions. Table 2 compares the reviewed model-based metrics
in terms of considered distortion, used geometry and color features, considered feature
statistics, and proposed quality prediction model.
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Table 2. Comparison of SOTA NR model-based PCQA metrics.

Ref. Distortion Geometry Features Color
Features Feature Statistics Quality Prediction

Model

[19]
Compression,

downsampling, geometry
noise, color noise

3D coordinates,
occupation index

R, G, B color
channels - Sparse CNN

[20]
Compression,

downsampling,
geometry noise, color noise

Point-level: curvature,
anisotropy, linearity,

planarity, and
sphericity

L, A, B color
channels

Mean, standard
deviation, entropy,

GGD, AGGD, Gamma
SVR

[21]
Compression,

downsampling, geometry
noise, color noise

PC structure PC texture - Graph convolutional
network

[22]
Compression,

downsampling, geometry
noise, color noise

Geometric distance,
mean curvature

Gray-level
features - CNN

3.2. Projection-Based Approach

Projection-based methods perform PC quality assessment based on the quality of PC
2D projections. The reference encoder for PCs is the MPEG V-PCC (video-based point
cloud compression), which achieved the best performance in a call for proposals on
PCC in 2017 [23]. The V-PCC encoding utilizes orthogonal projection onto a 2D grid
to divide a PC into a set of patches, which are then merged into two separate video
sequences containing the geometry and the texture information, respectively. The resulting
video sequences can be compressed using traditional video compression techniques,
which provide high compression ratios while maintaining the same visual quality. The
majority of SOTA projection-based studies estimate the quality of PCs encoded using
different values of geometry and texture QPs with the V-PCC algorithm. To build the
prediction model, deep learning architectures (e.g., convolutional neural networks (CNN))
are widely used to extract features from 2D PC projections and find correlation with PC
quality variations [24–27]. However, machine learning algorithms [28,29] and mathematical
models were also considered [16,30]. Finally, the performance evaluation of the proposed
models is performed on subjective ratings achieved from public PC datasets [16,24,25] or
ad hoc subjective assessment results [27,29,30].

The IT-PCQA model, presented in [26], utilizes the rich prior knowledge in natural
images to build a bridge between 2D and 3D quality assessment. First, IT-PCQA adopts
a six-perpendicular-projection approach to create images from the PCs. These 2D images are
fed into a Hierarchical Shallow CNN (H-SCNN), which extracts features from four different
layers and combines them into a concatenated feature vector through average pooling.
Then, a conditional-discriminative network employs adversarial domain adaptation to
distinguish whether the features come from natural images or PCs. Finally, a quality
regression network converts these features into objective quality scores. A Conditional
Cross-Entropy Loss (CCEL) is introduced to penalize features that contribute less to the
quality regression, thus refining the features for better objective score prediction. IT-PCQA
was trained on two datasets of natural images (TID2013 [31] and LIVE [32]) and tested
on two PC datasets (SJTU-PCQA and WPC). IT-PCQA (trained on TID2013) achieved
comparable PLCC on SJTU-PCQA and WPC, i.e., 0.5791 and 0.5491, respectively. On the
other hand, when trained on LIVE, the model achieved a PLCC of 0.5662 on SJTU-PCQA
and 0.3099 on WPC.

In [24], the authors designed a video capture framework that rotates a camera around
the PC via four symmetric circular pathways to cover sufficient quality-aware content and
viewpoint changes. Then, spatial- and temporal-related features are extracted from the
captured videos using a 2D-CNN and a 3D-CNN, respectively. These features are then
fused and inputted to a two-stage fully connected layer consisting of 128 and 1 neuron,
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respectively, for feature regression and quality prediction. The proposed model achieved
a PLCC of 0.8702, 0.8001, and 0.7244 and an RMSE of 1.1012, 13.5578, and 0.5561 on the
SJTU-PCQA, WPC, and LSPCQA-I datasets, respectively. The LSPCQA-I is a reduced
version of LSPCQA made up of 930 distorted PCs generated with 5 distortion levels
of 31 types of distortions. The MS-PCQE neural network, presented in [25], extracts
PC quality information using advanced visualization technology, i.e., projection scales
and viewport attributes. The MS-PCQE consists of two main components: a multi-focal
length feature interaction module and a Dual-branch Vision Transformer. The former
module analyzes features based on distortion visibility under different focal lengths of
the projection image, while the latter further processes the features to enhance global
visual information by introducing long-distance feature characterization and mask-aware
attention in convolutional features. The performance of the MS-PCQE model was evaluated
on the WPC, SJTU-PCQA, and SIAT-PCQD datasets, yielding a PLCC of 0.8747, 0.9326, and
0.7879, and an RMSE of 11.0276, 0.8241, and 0.0785, respectively.

In [27], the proposed deep neural network, called PQA-Net, is structured into three
main modules. The first module uses a multi-view projection to capture six 2D images of the
PC; the feature extraction is performed through four CNN blocks, progressively reducing
the images’ spatial resolution. The final feature vector, a 384-dimensional representation,
i.e., 64 features for each of the six projections, is shared with the other two modules. The
second module classifies the distortion type using fully connected layers into one of the
predefined distortion categories. The last module is responsible for predicting the quality
score of the PC and processing the features through additional fully connected layers. The
output of this module is then multiplied by the distortion probability vector, obtained from
the second module, to compute the overall quality score for the PC. The PQA-Net was
trained and tested on the Waterloo Point Cloud Sub-Dataset, a dataset of 7920 distorted
PCs created by augmenting the WPC dataset. Moreover, additional experiments were
conducted using other datasets, where the PQA-Net achieved a PLCC of 0.85, 0.58, and
0.60 on the SJTU-PCQA (only distorted PCs with individual distortion types), IRPC, and
M-PCCD datasets. Among these four deep learning-based models, the MS-PCQE [25]
achieved the best quality prediction performance followed by [24] and PQA-Net [27], with
this last one limited to considering one distortion at a time. Being trained on image datasets,
IT-PCQA achieved the lowest performance.

The bitstreamPCQ model in [16] is a bitstream-layer model for coding the distortion
assessment of V-PCC encoded PCs. In particular, this model first estimates texture complexity
(TC) from the texture QP (TQP) and texture bitrate per pixel (TBPP); then, it develops
a geometry distortion model as a function of the geometry QP (GQP). The quality prediction
of the PC is provided by a mathematical model combining the texture and geometry
assessment models. The bitstreamPCQ model performance was tested on the WPC3.0
dataset, achieving a PLCC of 0.9057 and an RMSE of 8.9586 between the predicted quality
and the MOS. This is the only model tested on this dataset, so it is not comparable with the
other SOTA models.

The last three projection-based models considered in this review focused on the streaming
of dynamic PCs. Regression algorithms were utilized to determine the relationship between
PC quality and PC distortion parameters, including those related to PC streaming, such
as bandwidth and frame rate [28–30]. In [28], a sigmoidal fitting of a linear regression
(LR) model was performed using several NR metrics (i.e., bandwidth, blur, blur ratio,
noise, noise ratio, blockiness, and spatial information) calibrated against an objective FR
benchmark (VMAF). The different weights and parameters of the LR were determined
based on the particular video class, which was evaluated through the k-nearest neighbors
(KNN) algorithm. After performing the LR, the model applies a sigmoidal mapping to
the output to better model the perceived quality. The sigmoidal fitting is carried out per
cluster, meaning each video class has a different set of sigmoid parameters. For the training
and quality evaluation, the proposal made use of the dataset in [33], obtained from [34]
by expanding with additional conditions and video scenes. The complete dataset results
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in a collection of sixteen source videos, each representing a generated viewport of a scene
containing four PC objects. These objects were encoded using the V-PCC encoder, with
five different quality levels ranging from 2.4 Mb/s to 53.5 Mb/s. The videos were then
streamed using the Dynamic Adaptive Streaming over HTTP (DASH) protocol, employing
various bandwidth conditions, resolutions, buffer lengths, and allocation algorithms. The
total number of distorted PC videos is 453. The achieved PLCC and RMSE between the
predicted quality and the objective quality computed with VMAF were 0.977 and 0.077,
respectively.

In [29], a Gradient Boost regression model is proposed, which predicts the quality of
PC videos in terms of compression information (geometry and attribute QPs, occupancy
precision), video frame rate, and viewing distance. The dataset used to train the model was
derived from a subjective assessment where test participants were asked to rate the quality
of PCs compressed with the V-PCC algorithm at five different quality and three frame rates,
and watched at three different viewing distances. The reference PCs were the Dancer from
the Owlii dataset [35] and the Thaidancer from the 8iVSLF dataset [34]. The model achieved
an R2 = 0.9754 and a MSE = 0.0175 between the predicted quality and the MOS. In [30],
the authors introduced a fine-tuned ITU-T P.1203 model designed for predicting the quality
of streamed dynamic PCs. The rationale is that PC streaming shares some parameters that
can be used in the ITU-T P.1203 [36] model, such as bitrate, framerate, stall events, and
viewing distance. The dataset utilized in [37] was considered to train the model. It consists
of four PC objects (Loot, LongDress, RedAndBlack, and Soldier) from the 8i Voxelized Full
Bodies Database [34], which were encoded with MPEG V-PCC using three different pairs
of geometry and texture QPs to achieve different quality levels of PC videos. Moreover,
video quality switches (quality switches in the middle of the sequences) were introduced,
and different viewing distances were considered. Indeed, the distorted dynamic PC videos
were watched and rated using the AR HoloLens 2. The coefficients of the ITU P.1203
were recomputed by applying regression between the achieved MOS and the considered
distortion parameters. The fine-tuned P.1203 achieved a PLCC and an RMSE of 0.958
and 0.813, respectively, outperforming those achieved by the standard P.1203 model [36],
i.e., 0.918 and 0.887. Although these models achieved high prediction performance, no
validation with subjective scores was performed in [28], and ad hoc datasets were used
in [29,30], making them not comparable with other SOTA approaches.

Table 3 compares the reviewed projection-based metrics in terms of considered
distortion, used features, and proposed quality prediction model.

Table 3. Comparison of SOTA NR projection-based PCQA metrics.

Ref. Distortion Features Quality Prediction Model

[16] Compression Geometry QP, Texture QP, Texture bitrate
per pixel (TBPP) Mathematical Model

[24] Compression, donwsampling, geometry
noise, color noise Video spatial and temporal information CNN and DNN

[25] Compression Geometry QP, Texture QP Dual-branch Transformer

[26] Compression, downsampling, geometry
noise, color noise H-SCNN generated features DNN

[27] Compression, downsampling, geometry
noise, color noise CNN generated features CNN and DNN

[28] Compression, bandwidth, resolution,
buffer length, allocation algorithm

Blockiness, noise, noise ratio, spatial
information, and bandwidth, blur, blur

ratio

KNN, LR and Sigmoidal
Fitting

[29] Compression, frame rate, viewing
distance

Geometry and attribute QPs, occupancy
precision, frame rate, and viewing distance Gradient Boost Regression

[30] Compression, quality switch,
viewing distance ITU-T P.1203 model features Fine-tuned ITU-T P.1203 model
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3.3. Hybrid Approach

To the best of the authors’ knowledge, the model in [38], called MultiModal Point
Cloud Quality Assessment (MM-PCQA), is the only one leveraging the advantages of
both 3D PC and 2D projected image modalities. In particular, the PC is first divided into
sub-models to represent local geometry distortions, such as point shift and down-sampling,
using a PC encoder. Simultaneously, an image encoder is used to extract texture features
from 2D-rendered image projections of the PC. Finally, a symmetric cross-modality attention
module is employed to fuse multi-modal quality-aware information. The PLCC achieved
by MM-PCQA between the actual and predicted quality of the distorted PCs is 0.9226,
0.8556, and 0.8024 for the SJTU-PCQA, WPC, and WPC2.0 datasets, respectively. RMSE
values are 0.7716, 12.3506, and 13.4289, respectively.

4. Discussion

This section discusses the main advantages and disadvantages of the approaches
analyzed in the previous section. Additionally, the analysis of their performance on the
community’s most well-known and recognized datasets is provided.

Tables 2 and 3 provide a comparison of NR model-based and projection-based approaches,
respectively. Each metric is evaluated based on diverse aspects, such as the type of distortions
it tested against, the features used (geometry, color, and feature statistics), and the model
implemented for quality prediction. The tables illustrate a common aspect among the
approaches is their focus on testing similar types of distortions, particularly compression,
downsampling, and noise, both geometrical and related to the color. This reflects the fact
that these distortions are prevalent in PC processing and transmission and are usually
included in the datasets used for testing.

Concerning the quality model, the focus of these approaches varies, with some relying
on deep learning techniques (e.g., CNNs) to extract features from image projections [24],
while others prefer to establish correlations between geometrical and color features and
the perceived image quality [22]. It is interesting to note that while some methods extract
detailed geometric descriptors like curvature and planarity [20], others rely on simpler
features, such as geometry and texture QPs [29]. Furthermore, the choice of quality models
varies, with deep learning techniques like CNNs [26] or DNNs [27] in general being widely
adopted in some approaches, while others, like [20,29], prefer more traditional machine
learning models like SVR or gradient boosting for computational efficiency. Another
difference is represented in the use of feature statistics, which were relegated only to the
model-based approaches. Also, it is easy to note that projection-based approaches are more
numerous, probably because estimating the PC quality from the 2D projections makes it
possible to reuse all the well-established knowledge concerning image and video quality
assessment research studies.

However, even if the features change among the various methods, it emerges that
the approaches using directly projected image frames as input require a very deep neural
network to extract the information. All the other methodologies are lighter because they
already have meaningful, elaborated features. Moreover, the latter approaches can weigh
the meaning of each feature, highlighting their contribution to predicting PC quality. For
instance, in [29], the authors noticed that higher quantization levels and frame rates lead to
a higher MOS. In [24], the authors demonstrated through an ablation study that increasing
the angular separation between keyframes leads to decreased performances. Moreover,
the viewpoint-max-distance-sampled 7th/8th/22nd/23rd key frame selections can help
improve the performance since these viewpoints can cover more PC content.

4.1. Performance Comparison

With regard to performance comparison, only a few of the reviewed studies are
fairly comparable because of the evaluation performed using different datasets as well as
diverse training/validation processes. However, a reliable comparison has been carried
out in [25], which has implemented six SOTA models and compared them using the
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same training/validation procedures on the same datasets. Specifically, the considered
NR metrics are two model-based (3D-NSS [20] and ResSCNN [19]), three projection-based
(IT-PCQA [26], PQA-Net [27], and MS-PCQE [25]), and the hybrid approach MM-PCQA [38].
In the next sections, we compare and discuss the performance of these models on five SOTA
PC datasets: SJTU-PCQA, WPC, SIAT-PCQD, M-PCCD, and LS-PCQA.

4.1.1. SJTU-PCQA Dataset

Figure 5 compares the overall quality estimation performance of the six models on
the SJTU-PCQA dataset in terms of PLCC, SRCC, KRCC, and RMSE. MS-PCQE slightly
outperforms MM-PCQA in terms of PLCC (0.933 vs. 0.923) and SRCC (0.918 vs. 0.910),
whereas MM-PCQA slightly outperforms MS-PCQE in terms of KRCC (0.784 vs. 0.774)
and RMSE (0.772 vs. 0.824). The diverse types of distortions (compression, downsampling,
geometry, and color noise) considered in this dataset are well captured by these two models
compared to the others. However, good performance is also achieved by ResSCNN and
IT-PCQA, while PQA-Net and 3D-NSS achieved the lowest performance results.

(a) (b)
Figure 5. Performance comparison of six SOTA NR PCQA models on the SJTU-PCQA dataset as
provided in [25]. (a) PLCC, SRCC, and KRCC. (b) RMSE.

Figures 6 and 7 confirm these results by illustrating the performance of each model
across the four individual distortion types considered in this dataset, i.e., OcTree-based
compression (OT), color noise (CN), Geometry Gaussian Noise (GGN), and downsampling
(DS), as well as three combined distortions: downsampling with color noise (D+C),
downsampling with Geometry Gaussian Noise (D+G), and color noise with Geometry
Gaussian Noise (C+G). MS-PCQE achieves the top performance in PLCC and SRCC across
most distortion types, including OT, DS, D+G, and C+G, underscoring its capability to
handle both single and combined distortions effectively. At the same time, MM-PCQA,
a hybrid model, also performs consistently well, leveraging both 3D geometric and 2D
projection features. ResSCNN shows strong results with specific distortions, particularly
downsampling and geometry noise, due to its model-based focus on geometric fidelity. Still,
it underperforms in scenarios involving subtle color degradations and compression, such
as in the CN and OT categories. These findings emphasize the advantages of hybrid and
projection-based models in handling diverse distortions. Hybrid models like MM-PCQA,
which integrate both 3D geometric features and 2D projections, demonstrate the ability
to address both spatial and visual quality, making them versatile in mixed-distortion
cases. Projection-based models such as MS-PCQE show solid performance in perceptual
distortions, capturing color and texture fidelity through multi-view simulations. In contrast,
while effective in handling geometric distortions due to their focus on spatial features,
model-based approaches tend to be less sensitive to perceptual factors like color variations
and compression, limiting their adaptability in more complex distortion scenarios.
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Figure 6. Performance comparison of six SOTA NR PCQA models, in terms of PLCC, on the various
distortion types on the SJTU-PCQA dataset, as provided in [25].

Figure 7. Performance comparison of six SOTA NR PCQA models, in terms of SRCC, on the various
distortion types on the SJTU-PCQA dataset, as provided in [25].

4.1.2. WPC Dataset

Figure 8 compares the overall quality estimation performance of the six models on the
WPC dataset in terms of PLCC, SRCC, KRCC, and RMSE. The MS-PCQE and MM-PCQA
models again achieve the best performance (PLCC of 0.875 and 0.855, respectively),
significantly outstripping all the other NR metrics. The third and fourth comparable
best results are achieved by PQA-Net and 3D-NSS (PLCC of 0.667 and 0.628, respectively).
The SRCC, KRCC, and RMSE results are consistent with the PLCC results. Thus, only the
MS-PCQE and MM-PCQA metrics were demonstrated to be able to efficiently deal with
the compression, noise, and downsampling distortions included in the WPC dataset.

Additional analysis on individual distortion types in the WPC dataset is shown in
Figures 9 and 10, including downsampling, Gaussian noise distortion, G-PCC Trisoup (T)
compression, V-PCC compression, and G-PCC Octree (O) compression. The chart reveals
that MS-PCQE performs well in handling downsampling and compression distortions,
demonstrating particularly high values in both PLCC and SRCC. MM-PCQA, as a hybrid
model, also demonstrates strong performance across the various distortions, except for
V-PCC compression. PQA-Net and 3D-NSS achieved good results for downsampling and
Gaussian noise distortions but fell short in compression distortions, particularly when
color fidelity was impacted, as in G-PCC and V-PCC distortions. Similar trend results are
achieved by ResSCNN, although with lower performance values. Finally, IT-PCQA did not
achieve good performance for any distortion.
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Similar to the findings described for the SJTU-PCQA dataset, these observations
illustrate that projection-based and hybrid models have significant advantages over model-
based approaches, especially in handling compression distortions. Projection-based models
excel by simulating visual perspectives from multiple 2D views, making them particularly
strong in assessing color and texture variations. Hybrid models, integrating geometric
and visual cues, prove effective in addressing both spatial integrity and perceptual quality,
adapting well to diverse and complex distortion environments. In contrast, model-based
approaches focus on 3D geometric fidelity and spatial characteristics, providing reliable
results for simpler geometric distortions but lacking sensitivity to color and texture variations
introduced by compression processes.

(a) (b)
Figure 8. Performance comparison of most SOTA NR PCQA models on the WPC dataset as provided
in [25]. (a) PLCC, SRCC, and KRCC. (b) RMSE.

Figure 9. Performance comparison of most of the SOTA NR PCQA models, in terms of PLCC, on the
various distortion types on the WPC dataset, as provided in [25].

Figure 10. Performance comparison of most of the SOTA NR PCQA models, in terms of SRCC, on
the various distortion types on the WPC dataset, as provided in [25].
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4.1.3. SIAT-PCQD

Figure 11 illustrates the comparison regarding the SIAT-PCQD dataset, which considered
compression distortions and is the only one including subjective scores provided using
the head-mounted display. Even in this context, MS-PCQE shows the best performance
(PLCC of 0.788) over the other methods, followed by MM-PCQA (PLCC of 0.712). All the
other models achieved insufficient PLCC lower than 0.5, confirming the major difficulties
of these models in dealing with compression distortions. Similar results were achieved for
the SRCC and KRCC coefficients. On the other hand, IT-PCQA is the only model achieving
an RMSE significantly greater than that achieved by the other models, whereas MS-PCQE
and MM-PCQA still obtain the lowest estimation error. Since the SIAT-PCQD only includes
compression distortions, these results may highlight the different quality perception of
test participants watching distorted PCs on head-mounted displays rather than on 2D
screens. Nevertheless, the distinction in model performance reveals that projection-based
and hybrid models, such as MS-PCQE and MM-PCQA, respectively, maintain a significant
edge over model-based approaches.

(a) (b)
Figure 11. Performance comparison of most SOTA NR PCQA models on the SIAT-PCQD dataset as
provided in [25]. (a) PLCC, SRCC, and KRCC. (b) RMSE.

4.1.4. M-PCCD and LS-PCQA Datasets

Figure 12 depicts the quality estimation results on the M-PCCD (including only
compression distortions) and LS-PCQA (including different types of distortions) datasets
in terms of PLCC and SRCC. The MS-PCQE model continued to perform the best on both
datasets (PLCC of 0.957 and 0.7356, respectively), always followed by MM-PCQA (PLCC
of 0.937 and 0.649, respectively). PQA-Net is also confirmed in the third place for these two
datasets (achieving acceptable performance at least for M-PCCD), followed by 3D-NSS.
ResSCNN achieved the lowest performance on M-PCCD, while IT-PCQA performed the
worst on LS-PCQA. In these two datasets, the advantage of MS-PCQE and MM-PCQA again
underscores the strengths of projection-based and hybrid models, particularly when tested
across diverse distortion types and intensities as those included in LS-PCQA. These results
demonstrate that hybrid and projection-based approaches effectively address complex
distortion cases and various PC content types, whereas model-based approaches may need
further enhancement to adapt to the full range of distortions and higher complexity levels
represented in these larger datasets. The lower performance achieved by MS-PCQE and
MM-PCQA on the LS-PCQA highlights that there is a need to enhance the performance of
NR metrics on different types and levels of PC distortion as well as on different types of PC
contents. Indeed, the LS-PCQA includes the largest number of distorted PCs considering
the largest number of distortions.
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(a) (b)
Figure 12. Performance comparison of most of the SOTA NR PCQA models in terms of PLCC and
SRCC on the M-PCCD (a) and LS-PCQA (b) datasets as provided in [25].

4.1.5. Cross-Dataset Performance

Finally, Table 4 illustrates the cross-dataset performance of the two top-performing
approaches, i.e., MM-PCQA and MS-PCQE. Specifically, as provided in [25], the table
illustrates the cross-dataset analysis by training the two approaches on the LS-PCQA
dataset, which contains the most diverse distortion types, and then evaluating their
performance on the WPC and SJTU-PCQA datasets. The results show that MS-PCQE
exhibits the best performance, confirming that the projection-based models currently
perform the best compared to model-based or hybrid approaches even when evaluated
on unseen data. However, MM-PCQA achieved almost comparable performance at least
when validated on the WPC dataset.

Table 4. Cross-dataset performance comparison, as provided in [25].

Model
LS-PCQA→WPC LS-PCQA→SJTU-PCQA

PLCC SRCC PLCC SRCC

MM-PCQA 0.6219 0.6149 0.7539 0.6987
MS-PCQE 0.6653 0.6698 0.8210 0.7612

4.2. Challenges and Future Directions

From the analysis of the performance of the SOTA NR PCQA models conducted
in the previous section, we can identify the major challenges and future directions for
improving the models’ performance. First, it can be noticed that the quality estimation
performance achieved by these models is strictly related to the type of distortion impairing
the PC. Specifically, most of the SOTA models achieved good performance on PCs distorted
by Gaussian noise or downsampling distortions, whereas the major difficulties were
encountered with color noise and compression distortions. The reason is mostly related
to the features used to train the prediction model. As an example, IT-PCQA is trained
on distorted image datasets, and it does not achieve good performance for distortions
strictly related to PCs, such as those introduced by PC compression algorithms, which
are not present in distorted images. Thus, deriving PCQA metrics from IQA datasets is
quite limiting, although it can provide acceptable performance for distortions that are also
present in distorted images, such as Gaussian noise and downsampling.

Second, the modeling approach is important. In particular, projection-based and
hybrid approaches have been demonstrated to achieve greater performance than model-
based approaches overall, particularly when dealing with compression distortions. Indeed,
being typically based on geometry and color features, model-based approaches are more
suitable when PCs are impaired by downsampling or noise distortions only, whereas
they are not suitable for predicting the quality of compressed PCs. On the other hand,
both projection-based and hybrid approaches achieved good to excellent performance on
all types of distortions (except for IT-PCQA for the aforementioned reasons). The major
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strength of projection-based methods is to rely on different viewpoint projections and
corresponding extracted features, which, processed by deep neural networks, enable the
prediction model to deal with different types of distortions impairing the PCs. Additionally,
hybrid approaches combine viewport information with geometry and color attributes
extracted from the 3D PC. By including the strong points of model-based and projection-
based approaches, hybrid models achieved state-of-the-art performance results.

Thus, future directions can be summarized as follows:

• The identification of features specifically related to PC compression distortions.
• Focusing on projection-based or hybrid-based approaches, which have been demonstrated

to achieve the best performance. In particular, these models should consider multiview
projections, mini-patch map sampling, and multiscale-based techniques, which have
a relevant role in extracting features significant for quality estimation.

• Training the models on larger datasets including different types and levels of distortions.
The lower performance achieved by all models on the LS-PCQA dataset is evidence
that much still has to be carried out to enhance the robustness and generalization of
models’ performance on larger datasets including diverse distortions.

5. Conclusions

The rapid advancements in recent technologies have underscored the reliance on
PCs for real-time applications and underlined the importance of PCQA in ensuring that
the reconstructed PCs’ quality remains acceptable despite the loss of information during
compression. Unlike the FR or RR approaches, NR approaches have emerged as a practical
solution in scenarios where uncompressed data are unavailable. We have reviewed the
SOTA NR PCQA metrics by discussing the approach used (model-based, projection-based,
and hybrid), distortions considered, features selected to estimate the quality, and the type
of implemented model. We have compared the quality estimation performance achieved
by the considered models, when possible, to discover the advantages and drawbacks of the
diverse quality estimation approaches considered.

Our analysis showed that projection-based and hybrid models using deep learning
architectures achieved the best quality estimation performance on the SOTA PCQA datasets.
In particular, the MS-PCQE and MM-PCQA achieved the best performance on all kinds of
considered PC distortions, which makes them the current reference models in the PCQA
scenario. However, the lower performance results achieved by these models on datasets
including a large number of distortions (LS-PCQA) and subjective scores provided using
a head-mounted display rather than a 2D screen display (SIAT-PCQD) highlight that there
are still open challenges that need to be addressed to develop an NR PCQA metric capable
of performing the best in the majority of application scenarios.
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