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Abstract
In this paper, we focus on the numerical solution of nonlinear inverse problems in applied
geophysics. Our aim is to reconstruct the structure of the soil, i.e., either its electrical
conductivity or the magnetic permeability distribution, by inverting frequency domain elec-
tromagnetic data. This is a very challenging task since the problem is nonlinear and severely
ill-conditioned. To solve the nonlinear inverse problem, we propose an alternating direction
multiplier method (ADMM), we prove its convergence, and propose an automated strategy
to determine the parameters involved. Moreover, we present two heuristic variations of the
ADMM that either improve the accuracy of the computed solutions or lower the computa-
tional cost. The effectiveness of the different proposed methods is illustrated through few
numerical examples.

Keywords Nonlinear inverse problems · Alternating direction multiplier method · FDEM
data inversion

Mathematics Subject Classification 65K10 · 65J15 · 45G15

1 Introduction

We are interested in the solution of an inverse problem arising in geophysics. We wish
to determine some properties of the ground, such as the electrical conductivity and/or the
magnetic permeability distributions, by non-invasive techniques. This can be achieved by
inverting FDEMdata. For simplicity of notation, we assume that themagnetic permeability of
the ground is knownand constant.We consider a bi-dimensional discretization of the problem,
that is, we are interested in a vertical section of the soil. The extension to unknown magnetic
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permeability and tridimensional ground is straightforward and will not be investigated here.
This geophysical application is described by a nonlinearmodel.Once discretized, the problem
can be expressed as

min
�

‖M(�) − B‖2F , (1)

where � ∈ R
n×m collects the values of electrical conductivity in m sites at n depths, B ∈

R
s×m contains the s measured data, obtained with different configurations of the FDEM

device, in m sites, M : R
n×m → R

s×m is a nonlinear function that maps the electrical
conductivity to the measured data, and ‖·‖F denotes the Frobenius norm. The data matrix B
is usually corrupted by some measurement errors that we assume can be well approximated
by white Gaussian noise. We will also assume that M is Fréchet differentiable and s < n.
In this application, since s < n and because of the ill-conditioning of the Jacobian of M ,
the problem is extremely ill-conditioned, i.e., it is very sensible to perturbation in the data.
Therefore, we need to regularize the problem.

A regularization approach that has gathered a lot of attention in the past few years is the
�p-�q regularization [8, 12, 31, 33]. AMatlab toolbox for the solution of the �p-�q minimiza-
tion for linear problems has been recently proposed in [11] and a Python implementation
is included in [40]. This approach has been successfully applied to this problem in [5]. In
this work we wish to expand from the work in [5]. In particular, we propose an Alternat-
ing Directions Multiplier Method (ADMM) for the inversion of the problem, we show the
convergence of the obtained method, and propose an automated strategy to determine the
parameters involved in the method.

Following [5],we propose to compute a regularized solution of (1) by solving the following
minimization problem

min
�

1

2
‖M(�) − B‖2F + μ

q
‖L(�)‖qq , 0 < q ≤ 2, (2)

where μ > 0, L : R
n×m → R

p is a linear operator, and the �q -norm is ‖�‖qq =
∑n

i=1
∑m

j=1

∣
∣(�)i, j

∣
∣q . If 1 ≤ q ≤ 2, then ‖·‖q is a norm, otherwise it is not a norm

since it does not satisfy the triangular inequality. However, with a slight abuse of notation,
we will refer to ‖·‖q as �q -norm regardless of the value of q . To solve the minimization
problem (2) we construct an ADMM that decouples the �2 part from the �q part of the
functional. At each iteration of ADMM, the solution of two minimization problems is per-
formed. The first one is a least-squares nonlinear problem, while the second one is an �2-�q

minimization problem where all the operators involved are linear. The first one is solved
efficiently using the algorithm proposed in [6], to solve the latter we use an adaptation of
the Majorization-Minimization (MM) algorithm proposed in [31]. The difference between
the �2-�q minimization procedure proposed here and the one in [31] is the fact that, since
we select L with a favorable structure, we do not need to project the problem in generalized
Krylov subspaces; see below.

Here, our purpose is to reconstruct a 2D representation of the electrical conductivity. The
most common device used to collect FDEMmeasurements is the Ground ConductivityMeter
(GCM). Its principle of operation is based on an alternating electrical current which flows
through a small electric wire coil (the transmitter) and a second coil (the receiver) positioned
at a fixed distance from the first one. The transmitter sends electromagnetic waves into the
subsoil generating a primary electromagnetic field HP. This primary magnetic field sends, in
turn, small eddy currents within the ground, generating in turn a secondary magnetic field HS

which propagates back to the surface and the air above. The ratio between bothmagnetic fields
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is recorded by the receiver as the apparent conductivity of the soil. The two coil axes may be
aligned either vertically or horizontally with respect to the subsurface. The measurements are
complex data and depend on the instrument configuration, like the frequency of the device,
the inter-coil distance, the height of the instrument above the ground, or the orientation of
the coils.

A brief explanation of the model which describes the interaction between the soil and the
GCM is provided in the next section. This nonlinear FDEM model has been developed in
[47, 48] and solved in several papers for different device configurations and using different
techniques; see [3, 14, 17–19, 23, 29, 41, 46]. The Matlab package FDEMtools including a
graphical user interface (GUI) for the inversion procedure has been introduced in [15]. More
recently, an updated version of this Matlab package together with a GUI for the forward
model has been implemented in [16].

In most of the papers cited above, only one-dimensional inversions have been considered
and, in the case of two-dimensional reconstructions, the result is obtained by juxtapos-
ing one-dimensional approximate solutions. However, this approach results in a “spliced”
two-dimensional reconstruction since the horizontal information is not considered and no
horizontal continuity of the computed two-dimensional solution is required. As mentioned
above, the variational model (2) was proposed in [5]. The novelty of the proposed method is
that the one-dimensional reconstructions are coupled along the horizontal axis ensuring the
continuity of the two-dimensional solution. This allowed the authors to obtain very accurate
reconstructions of the electrical conductivity of the ground and avoided the so-called “splic-
ing”. In [5] the authors provided a theoretical analysis of (2) and showed that it induces a
regularization method; see [5, 24] for more details. The authors proposed a minimization
algorithm that, however, was extremely computationally demanding and required the careful
tuning of several parameters.

Our purpose is to propose here a computationally cheaper algorithm to solve (2) that
requires very minimal tuning of parameters and that can be used in a plug-and-play fashion.
We construct the method and show that, under reasonable theoretical hypothesis, it converges
to a stationary point of the problem.

Finally, we would like to stress that when we deal with small values of the conductivity,
a linear model is available [38]. This model has been treated in [4, 25, 45] and later in [20]
in order to obtain an optimized numerical approach. More recently, in [21, 22] the inversion
problem is solved in a reproducing kernel Hilbert space. The method proposed in this paper
can be easily extended to this case. However, we do not dwell on the linearized model here.

The main contributions of this paper are the following. Firstly, we show the convergence
of the ADMM in the nonlinear and nonconvex case, adapting the proof in [30]. We consider
different assumptions for the convergence that are suitable for our application. In particular,
we assume that the norm of the iterates is bounded rather than requiring that the nonlin-
ear function is Lipschitz differentiable. Secondly, to automatically select the regularization
parameter, we exploit the Residual Whiteness Principle; see [37, 42]. To the best of our
knowledge this criterion for the determination of the regularization parameter has never been
applied to nonlinear problems and has always been used exclusively in the linear case. Finally,
we propose an automatic rule for the selection of the regularization parameter that exploits
the statistical properties of the noise. This kind of rules have never been considered for the
inversion of FDEM data.

This paper is structured as follows. Section2 presents and briefly describes the nonlinear
FDEM model. In Sect. 3, we propose our new numerical approach and we demonstrate its
convergence in Sect. 4. Two variations of the ADMM developed are presented in Sect. 5, one
introduces the nonnegativity constraint, the other provides a cheaper way to determine μ
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in (2). Section6 reports some numerical experiments that illustrate the effectiveness of our
method, and concluding remarks can be found in Sect. 7.

2 The Nonlinear FDEMModel

In this section, we introduce briefly the nonlinear FDEM forward model. It is composed
of two Fredholm integral equations of the first kind and describes the interaction between
the soil and the FDEM induction device. The predicted data are functions of the electrical
conductivity and of the magnetic permeability.

The model assumes a layered structure soil with n layers, each one characterized by an
electrical conductivity σk (measured in Siemens per meter) and a magnetic permeability μk

(measured in Henry per meter), for k = 1, . . . , n. Each layer has a thickness dk , measured
in meters, with dn assumed as infinite.

Taking into account the interaction between the soil and the GCM, the nonlinear FDEM
model reads as follows

Mν(σ ,μ; h, ω, r) = −r3−ν

∫ ∞

0
λ2−νe−2hλRω,0(λ)Jν(rλ)dλ, ν = 0, 1, (3)

where ν ∈ {0, 1} represents the orientation of the coils, i.e., horizontal and vertical, respec-
tively, σ = (σ1, . . . , σn)

T is the electrical conductivity vector, μ = (μ1, . . . , μn)
T is the

magnetic permeability vector, where the superscript T denotes the transposition, h represents
the height above the ground at which the measurements are taken, ω stands for the angular
frequency of the electromagnetic wave generated by the device, r is the distance between
the coils, and J0 and J1 are first kind Bessel functions of order 0 and 1, respectively. The
reflection factor Rω,0(λ) is defined by

Rω,0(λ) = N0(λ) − Y1(λ)

N0(λ) + Y1(λ)
,

where N0(λ) = λ/(iμ0ω), with i the imaginary unit, μ0 = 4π ·10−7 H/m (Henry per meter)
the vacuum magnetic permeability, and Y1(λ) is computed by the back-recursion

Yk(λ) = Nk(λ)
Yk+1(λ) + Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))
, k = n − 1, . . . , 1,

where Nk(λ) = uk(λ)/(iμkω), uk(λ) = √
λ2 + iσkμkω is the propagation constant, and

the recursion is initialized by Yn(λ) = Nn(λ). For more details about the nonlinear FDEM
model see [14, 16, 19, 29].

It is possible to obtain simultaneous measurements with different configurations of the
GCM device. For instance, with different inter-coil distances or different operating fre-
quencies at different heights. To represent all the measurements, the vectors containing
the loop-loop distances, the angular frequencies, and the heights at which the readings
were taken are denoted, respectively, by r = (r1, . . . , rsr )

T , ω = (ω1, . . . , ωsω )T , and
h = (h1, . . . , hsh )

T . In this way, if we consider both orientations of the device, we have
s = 2sr sωsh measurements, arranged in a vector b ∈ R

s .
From now on, we will assume that the distribution of the magnetic permeability is the one

of free space, i.e., μk = μ0, for k = 1, . . . , n, so that the measurements are sensitive only
to electrical conductivity values σk . Of course, the same numerical procedure introduced in
this paper can be applied for the inversion of the magnetic permeability when the electrical
conductivity is neglectable; see [14].
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Finally, we assume in (1) thatm equispacedmeasurement sets b j ∈ R
s are collected using

different configurations of the FDEM device, i.e.,

B = [b1, . . . ,bm] ∈ R
s×m, � = [σ 1, . . . , σm] ∈ R

n×m,

where σ j are the corresponding electrical conductivities to the measurements b j . In this way,
the minimization problem (1) can be discretized as

m∑

j=1

min
σ j

∥
∥M(σ j ) − b j

∥
∥2
2 ,

where ‖·‖2 is the Euclidean vector norm, and the vector function

M(�) = [M(σ 1), . . . , M(σm)] ∈ R
s×m

returns the readings predicted by the model in the same order they were arranged in the
vector b j . This can be done because the model is one-dimensional, i.e., the values of the j-th
column of B depend only on the entries of the j-th column of�. Therefore, once discretized,
the two-dimensional problem is reduced to m independent one-dimensional problems.

Remark 1 The model (3) takes complex values, indeed GCM devices record both the real
(called the in-phase component) and the imaginary parts (called the quadrature component)
of the ratio between the secondary and the primary fields. In the inversion process, sometimes
we are interested in studying only one component (for instance the quadrature component,
as in Tests 1 and 2 of Sect. 6) or both components (as in Test 3 of Sect. 6). The treatment of
complex values does not introduce obstacles in solving the inversion problemwith the proce-
dure described in this paper, because the real and imaginary parts are considered separately.
Specifically, we have to handle only real vectors of the form

[
Re(B)

Im(B)

]

∈ R
2s×m,

[
Re(M(�))

Im(M(�))

]

∈ R
2s×m .

With abuse of notation, we will use s for the number of measurements in any case.

3 Alternating Directions Multiplier Method Applied to the Inversion of
FDEMData

Wenowdescribe howwe apply theADMM to theminimization problem (2). Before applying
ADMM to the solution of our problem we have to note that, if q ≤ 1, then the minimized
functional is non-smooth. Since the case q ≤ 1 is the one of interest in our application, we
wish to substitute the non-smooth functional with a smooth one, following the approach in
[31, 33].

Let ε > 0 be a fixed parameter, we consider the smoothed �q -norm defined by

‖x‖qq,ε =
n∑

j=1

(√
x2j + ε2

)q
.

Note that ‖x‖qq,ε is everywhere differentiable. This substitution usually does not affect the
quality of the computed solutions; see [9].

123



   14 Page 6 of 29 Journal of Scientific Computing           (2024) 101:14 

We can now reformulate (2), with the smoothed �q -norm, as a constrained minimization
problem

min
�,


{
1

2
‖M(�) − B‖2F + μ

q
‖L(
)‖qq,ε , � = 


}

.

We can write the augmented Lagrangian of the problem as

Lρ (�,
; y) = 1

2
‖M(�) − B‖2F + μ

q
‖L(
)‖qq,ε + 〈y, � − 
〉 + ρ

2
‖� − 
‖2F ,

where ρ > 0 is a fixed parameter (see below), y ∈ R
n×m , and

〈y, x〉 =
n∑

i=1

m∑

j=1

yi, jxi, j

is the scalar product on Rn×m that induces the norm ‖·‖F . A solution of (2) is obtained as a
saddle point of Lρ . We define

(
�∗, 
∗; y∗) = argmin

�,

max
y

Lρ(�,
; y).

The ADMM approximately computes (�∗, 
∗; y∗) with the following iteration
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�(k+1) ∈ argmin
�

Lρ

(
�,
(k); y(k)

)
,


(k+1) ∈ argmin



Lρ

(
�(k+1), 
; y(k)

)
,

y(k+1) = y(k) + ρ
(
�(k+1) − 
(k+1)

)
.

(4)

This scheme is intuitively obtained by combining a Gauss-Seidel minimization method with
a proper update of the Lagrangian multiplier y. For simplicity of notation we will use the
equality sign, rather than ∈, in the following exposition. Note that, if ρ is large enough, the
solutions of the minimization problems in (4) are unique. This is a requirement of the proof
of convergence; see Remark 2 in Sect. 4.

We now discuss how we (approximately) solve the two minimization problems in (4).
Let us first consider the � subproblem. First, we discard in Lρ(�,
(k); y(k)) the terms

that do not depend on �, since they do not contribute to the minimization problem,

�(k+1) = argmin
�

1

2
‖M(�) − B‖2F +

〈
y(k), �

〉
+ ρ

2

∥
∥
∥� − 
(k)

∥
∥
∥
2

F
. (5)

Rearranging the terms, we obtain

�(k+1) = argmin
�

1

2
‖M(�) − B‖2F + ρ

2

∥
∥
∥
∥
∥
� −

(


(k) − y(k)

ρ

)∥
∥
∥
∥
∥

2

F

.

Defining the function M̃ and the vector B̃ as follows

M̃(�) =
[
M(�)√

ρ�

]

, B̃ =
[

B√
ρ
(

(k) − y(k)

ρ

)
]

,

we get

�(k+1) = argmin
�

1

2

∥
∥M̃(�) − B̃

∥
∥2
F . (6)
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Thanks to the structure of M , we can rewrite (6) as follows. Denote by σ
(k+1)
j , ξ (k)

j , y(k)
j , and

b j the j-th columns of �(k+1), 
(k), y(k), and B, respectively. Then, we can write

σ
(k+1)
j = argmin

σ

1

2

∥
∥
∥
∥
∥
∥

⎡

⎣
b j

√
ρ

(

ξ
(k)
j − y(k)

j
ρ

)
⎤

⎦−
[
M(σ )√

ρσ

]
∥
∥
∥
∥
∥
∥

2

2

= argmin
σ

1

2

∥
∥r j (σ )

∥
∥2
2 , j = 1, . . . ,m,

(7)

where r j (σ ) =
⎡

⎣
b j

√
ρ

(

ξ
(k)
j − y(k)

j
ρ

)
⎤

⎦ −
[
M(σ )√

ρσ

]

is the j-th component of the residual

function. We can now use the algorithm proposed in [6] on each minimization problem
in (7). Note that the m minimization problems are independent and, therefore, can be run in
parallel.

We now briefly discuss the algorithm proposed in [6]. This iterative procedure implements
a Gauss-Newton method and employs a projection in fairly small linear subspaces to ensure
a low computational cost. We note that the algorithm in [6] was developed for well-posed
problems, this is our case, assuming that ρ in (7) is large enough. As we will see in the
numerical simulations this is not a too restrictive requirement and a fairly small value of ρ

can be used.
Denote by J (σ ) the Jacobian matrix of M in the point σ , therefore, the Jacobian J̃ of

M̃(σ ) =
[
M(σ )√

ρσ

]

is

J̃ (σ ) =
[
J (σ )√
ρ In

]

,

where In denotes the identity matrix of order n. Given σ
(k,l)
j an approximation of σ

(k)
j , i.e.,

of a solution of (7), the Gauss-Newton method computes the next approximate solution by

σ
(k,l+1)
j = σ

(k,l)
j + α(l)q(l), l = 0, 1, . . . ,

where α(l) > 0 is determined by the Armijo-Goldstein principle (see below) and

q(l) = argmin
q

1

2

∥
∥
∥r j

(
σ

(k,l)
j

)
+ J (l)q

∥
∥
∥
2

2
.

Here we denote by J (l) the Jacobian matrix of r j computed in σ
(k,l)
j , i.e.,

J (l) = − J̃
(
σ

(k,l)
j

)
.

In applications, the Gauss-Newton method is not always convergent. In order to ensure the
convergence, we resort to the Armijo-Goldstein principle. It is satisfied by a given α if

∥
∥
∥r j

(
σ

(k,l)
j

)∥
∥
∥
2

2
−
∥
∥
∥r j

(
σ

(k,l)
j + αq(l)

)∥
∥
∥
2

2
≥ 1

2
α

∥
∥
∥J (l)q(l)

∥
∥
∥
2

2
.

To determine such α, we employ a line search algorithm. Given a certain α0, if it satisfies the
condition above, we set α(l) = α0, otherwise we define

α1 = α0

2
.
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We iterate in this way until we determine a t such that

αt = α0

2t

satisfies the inequality above and we set α(l) = αt . This procedure always concludes in a
finite amount of steps and ensures that the Gauss-Newton algorithm converges to a stationary
point of the problem; see [26].

In [6] the authors lowered the computational cost of the Gauss-Newton algorithm by
incorporating the so-called Generalized Krylov Subspace (GKS); see [32]. They determine
an iterate

σ
(k,l+1)
j = Vlz(l+1),

where Vl ∈ R
n×̂l has orthonormal columns and l̂ � n. The coefficients z(l+1) are obtained

using the Gauss-Newton algorithm, i.e., by

z(l+1) = z(l) + α(l)q(l),

where the step q(l) is obtained by

q(l) = argmin
q

1

2

∥
∥
∥r j

(
Vlz(l)

)
+ Ĵ (l)q

∥
∥
∥
2

2
.

The matrix Ĵ (l) is the Jacobian matrix of the function r j (Vlz), with respect to the variable z,
computed in z(l), i.e.,

Ĵ (l) = − J̃
(
Vlz(l)

)
Vl .

This latter matrix has many more rows than columns and, therefore, the computation of q
is extremely cheap. As in the classical algorithm, the parameter α(l) satisfies the Armijo-
Goldstein principle, i.e.,

∥
∥
∥r j

(
Vlz(l)

)∥
∥
∥
2

2
−
∥
∥
∥r j

(
Vl
(
z(l) + α(l)q(l)

))∥
∥
∥
2

2
≥ 1

2
α(l)

∥
∥
∥ Ĵ (l)q(l)

∥
∥
∥
2

2
,

and is determined by a linesearch algorithm.
Once z(l+1) is determined, the search-subspace is enlarged by computing

g(l+1) = J̃
(
Vlz(l+1)

)T
r j
(
Vlz(l+1)

)
,

and reorthogonalizing it against the basis Vl , i.e.,

g̃(l+1) = g(l+1) − VlV
T
l g(l+1).

Then, the new basis results by adding the normalized g̃(l+1), i.e.,

Vl+1 =
[
Vl

g̃(l+1)

‖̃g(l+1)‖2

]
.

Chosen an initial vector σ (k,0) 
= 0, we set V0 = σ (k,0)

‖σ (k,0)‖2
, therefore Vl ∈ R

n×(l+1). We will

assume that few iterations are needed for this procedure to converge (or at least to produce a
reasonable approximation of σ (k+1)) and so l � n. From a theoretical point of view, we set

σ (k+1) = σ (k,∞).
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We now turn to the 
 subproblem. By neglecting in Lρ(�(k+1), 
; y(k)) the terms that
do not depend on 
, we obtain


(k+1) = argmin



μ

q
‖L(
)‖qq,ε −

〈
y(k), 


〉
+ ρ

2

∥
∥
∥�(k+1) − 


∥
∥
∥
2

F
. (8)

Wefirst construct the operator L . To do this, we define the vec operator for amatrixC ∈ R
m×n

as

vec(C) = [
C1,1 . . . Cm,1 C1,2 . . . Cm,2 . . . C1,n . . . Cm,n

]T
.

For simplicity of notation, let us assume that n = m and denote by L2 the following
discretization of the one-dimensional Laplacian operator with reflective boundary conditions

L2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n .

Let In denote the identity matrix of order n, we define

vec(L(
)) = (L2 ⊗ In + In ⊗ L2)vec(
),

where⊗ is theKronecker product. Thanks to the structure of L2, thematrix (L2⊗In+In⊗L2)

is diagonalized by the two-dimensional Discrete Cosine Transform C and it holds

(L2 ⊗ In + In ⊗ L2) = CT
C, (9)

where 
 is a diagonal matrix containing the eigenvalues of the matrix (L2 ⊗ In + In ⊗ L2)

and can be computed by applying the dct algorithm to the first column of it; see, e.g., [28,
39] for more details.

We can now rearrange the terms in the 
 subproblem (8) obtaining


(k+1) = argmin



1

2

∥
∥
∥
∥
∥

 −

(

�(k+1) + y(k)

ρ

)∥
∥
∥
∥
∥

2

F

+ μ

qρ
‖L(
)‖qq,ε . (10)

To compute
(k+1) we use a variation, already used in [5], of the Majorization-Minimization
(MM) algorithm proposed in [31].

The MM algorithm determines a sequence of vectors that converges to a stationary point
of (10). At each iteration the functional in (10) is majorized by a quadratic functional Q
and the new approximate solution is obtained as the unique minimizer ofQ. To simplify the

notation, let �̃(k+1) = �(k+1) + y(k)

ρ
and define

ξ = vec(
) and σ̃ (k+1) = vec
(
�̃(k+1)

)
.

Therefore, we can rewrite (10), using (9), as

ξ (k+1) = argmin
ξ

1

2

∥
∥
∥ξ − σ̃ (k+1)

∥
∥
∥
2

2
+ μ

qρ

∥
∥
∥CT
Cξ

∥
∥
∥
q

q,ε
.

Let ξ (k, j) be an approximation of the solution of the problem above. A quadratic tangent

majorant of J (ξ) = 1
2

∥
∥ξ − σ̃ (k+1)

∥
∥2
2 + μ

qρ

∥
∥CT
Cξ

∥
∥q
q,ε

in the point ξ (k, j) is defined as a

function Q
(
ξ , ξ (k, j)

)
such that
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(i) Q
(
ξ , ξ (k, j)

)
is quadratic in ξ ;

(ii) Q
(
ξ (k, j), ξ (k, j)

)
= J

(
ξ (k, j)

)
;

(iii) ∇Q
(
ξ (k, j), ξ (k, j)

)
= ∇J

(
ξ (k, j)

)
;

(iv) Q
(
ξ , ξ (k, j)

)
≥ J (ξ) for all ξ .

The choice of Q is not unique. We consider here the so-called fixed majorant

Q
(
ξ , ξ (k, j)

)
= 1

2

∥
∥
∥ξ − σ̃ (k+1)

∥
∥
∥
2

2
+ η

2

(∥
∥
∥CT
Cξ

∥
∥
∥
2

2
− 2ωT

j C
T
Cξ

)

,

with η = μ
ρ
εq−2,

ω j = u j

⎛

⎝1 −
(
u2j + ε21

ε2

)q/2−1
⎞

⎠ , and u j = CT
Cξ (k, j),

where 1 denotes a vector of the same size of u j with all components equal to 1, and all the
operations are meant element-wise. The next iterate is obtained by

ξ (k, j+1) = argmin
ξ

Q
(
ξ , ξ (k, j)

)

= argmin
ξ

∥
∥
∥
∥

[
I√

ηCT
C

]

ξ −
[
σ̃ (k+1)
√

ηω j

]∥
∥
∥
∥

2

2

=
(
I + ηCT
T CCT
C

)−1 (
σ̃ (k+1) + ηCT
TCω j

)

= CT (I + η
2)−1
(
C σ̃ (k+1) + η
Cω j

)
,

(11)

where the last step is obtained by recalling that CTC = CCT = In2 and that 
 is a real,
square, and diagonal matrix. Therefore, the cost for computing ξ (k, j+1) is dominated by that
of two matrix–vector products with C and one with CT . The matrix–vector products with C
can be performed in O(nm log(nm)) operations using the dct algorithm.

The computations are summarized in Algorithm 1.

3.1 Selection of the Regularization Parameter

We now describe an automatic procedure to determine the regularization parameter μ. To
this aim, we exploit the assumption that the noise that corrupts the data is white Gaussian.
Let

�μ = argmin
�

1

2
‖M (�) − B‖2F + μ

q
‖L (�)‖qq,ε .

In the ideal scenario, i.e., when �μ is the exact solution of the problem, the residual

Rμ = M
(
�μ

)− B

coincides with the noise and, therefore, each of its entries is the realization of a random
variable with Gaussian distribution with zero mean and fixed variance. We wish to determine
μ so that Rμ satisfies as much as possible this property.
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Algorithm 1: ADMM for FDEM data

Input: B, q, μ, σ (0), ρ, ε, τ , Kmax
1 η = μ

ρ εq−2;

2 
(0) = 0;
3 y(0) = 0;
4 for k = 1, . . . , Kmax do
5 parfor j = 1, . . . ,m

6 σ
(0)
j = σ (0);

7 z(0) =
∥
∥
∥σ

(0)
j

∥
∥
∥
2
;

8 V0 = σ
(0)
j /z(0);

9 Define r j (σ ) =
⎡

⎢
⎣

b j
√

ρ

(

ξ
(k+1)
j − y(k)

j
ρ

)
⎤

⎥
⎦−

[
M(σ )√

ρσ

]

;

10 Compute J (0) = J (V0z(0));
11 for l = 1, . . . , Kmax do

12 q(l) = argminq

∥
∥
∥
∥r j

(
Vlz(l)

)
−
[
J (l)√
ρ I

]

Vlq

∥
∥
∥
∥

2

2
;

13 Determine α
(l)
j with the Armijo-Goldstein procedure;

14 z(l+1) = z(l+1) + α
(l)
j q(l);

15 if
∥
∥
∥z(l+1) − z(l)

∥
∥
∥
2

≤ τ

∥
∥
∥z(l)

∥
∥
∥
2
then

16 exit;

17 Compute J (l+1) = J (Vlz(l+1));

18 g(l+1) = V T
l

[
J (l)√
ρ I

]T
r j
(
Vlz(l+1)

)
;

19 g̃(l+1) = g(l+1) − VlV
T
l g(l+1);

20 Vl+1 =
[

Vl
g̃(l+1)

∥
∥̃g(l+1)

∥
∥
2

]

;

21 σ
(k+1)
j = Vlz(l+1);

22 �(k+1) =
[
σ

(k+1)
1 . . . σ

(k+1)
m

]
;

23 ξ (k,1) = 0;

24 σ̃ (k+1) = vec

(

�(k+1) + y(k)

ρ

)

;

25 for j = 1, . . . , Kmax do
26 u j = CT 
Cξ (k, j);

27 ω j = u j

⎛

⎝1 −
(
u2j+ε21

ε2

)q/2−1
⎞

⎠;

28 ξ (k, j+1) = CT
(
I + η
2

)−1 (
C σ̃ (k+1) + η
Cω j

)
;

29 if
∥
∥
∥ξ (k, j+1) − ξ (k, j)

∥
∥
∥
2

≤ τ

∥
∥
∥ξ (k, j)

∥
∥
∥
2
then

30 exit;

31 vec
(

(k+1)

)
= ξ (k, j+1);

32 y(k+1) = y(k) + ρ
(
�(k+1) − 
(k+1)

)
;

33 if
∥
∥
∥
(k+1) − 
(k, j)

∥
∥
∥
F

≤ τ

∥
∥
∥
(k)

∥
∥
∥
F
and

∥
∥
∥�(k+1) − �(k, j)

∥
∥
∥
F

≤ τ

∥
∥
∥�(k)

∥
∥
∥
F
then

34 exit;
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This idea of exploiting the whiteness property of the corrupting noise has been widely
used for the solution of linear inverse problems. Themain advantage is that it does not require
any additional information on the noise that corrupts the data aside from its whiteness. This
idea has been vastly investigated for image denoising and deblurring problems; see, e.g., [1,
2, 27, 34–36, 42–44].

Here, we follow the approach proposed in [8] that uses the a posteriori criterion described
in [1, 37]. We first outline the main ideas of this a posteriori criterion, referred to as Residual
Whiteness Principle (RWP), and then describe how to use it to determine a suitable value for
μ.

Denote by η ∈ R
s×m the noise that corrupts the data B. Thus,

η = {
ηi, j

}
(i, j)∈�

, � := {0, . . . , s − 1} × {0, . . . ,m − 1}.
The sample auto-correlation of η is defined as

a(η) = {
al,k(η)

}
(l,k)∈�

,

where � := {−(s − 1), . . . , s − 1} × {−(m − 1), . . . ,m − 1}. The values al,k(η) ∈ R are
computed by

al,k(η) = 1

sm
(η�η)l,k = 1

sm

(
η∗η′)

l,k

= 1

sm

∑

(i, j)∈�

ηi, jηi+l, j+k, (l, k) ∈ �,
(12)

where the pairs (l, k) are referred to as lags, ·�· and · ∗ · denote the two-dimensional discrete
correlation and convolution operators, respectively, and η′(i, j) = η(−i,− j).

Since we wish to define the auto-correlation in (12) for all lags (l, k) ∈ �, we need
to pad the noise realization η with at least s − 1 samples in the first direction and m − 1
samples in the second one. For simplicity, we will assume periodic boundary conditions for
η. Thanks to this assumption, the operators ·�· and · ∗ · in (12) become the two-dimensional
circular correlation and convolution, respectively. As a result of the imposed structure in the
auto-correlation, we can only consider some lags and not all of them, namely

(l, k) ∈ � := {0, . . . , s − 1} × {0, . . . ,m − 1}.
Since we assume that the error η is a realization of a white noise process, then it is well

known that the following asymptotic property of the sample auto-correlation a(η) is satisfied

lim
m→+∞ al,k(η) =

{
σ 2 for (l, k) = (0, 0),

0 for (l, k) ∈ �0 := � \ {(0, 0)}. (13)

To avoid the dependency on the noise variance σ 2, we consider the normalized sample
auto-correlation of the noise realization η

β(η) = 1

a0,0(η)
a(η) = 1

‖η‖2F
(η�η) .

From (13) it is trivial to see that

lim
m→+∞ βl,k(η) =

{
1 for (l, k) = (0, 0),

0 for (l, k) ∈ �0.
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We can, therefore, introduce the following σ -independent non-negative scalar measure of
whiteness W : Rs×m → R

+ of the noise realization η

W(η) := ‖β(η)‖2F = ‖ η�η‖2F
‖η‖4F

. (14)

As stated above, if�μ well approximates the exact solution of the problem, the associated
s×m residualRμ = M

(
�μ

)−Bwell approximates the white noise realization η. Hence, in
this case, the residual Rμ is white according to the scalar measure in (14). We can formulate
the RWP for automatically selecting the regularization parameter μ as follows

μ∗ ∈ argmin
μ>0

W (μ), W (μ) := W (
Rμ

)
, Rμ = M

(
�μ

)− B,

where the function W is defined by

W (μ) = ∥
∥β(Rμ)

∥
∥2
F =

∥
∥Rμ�Rμ

∥
∥2
F

∥
∥Rμ

∥
∥4
F

. (15)

We refer to W as the residual whiteness function.
We propose to determine μ by following one of the strategies in [8]. Consider a set of

candidate values for the regularization parameter {μ1, . . . , μd} ⊂ R
+. For each μ j we

compute, using Algorithm 1, an approximation of �μ j . We determine a suitable value of the
regularization parameter and we denote it by μ∗ by

μ∗ = argmin
{
W
(
μ j
)
, j = 1, . . . , d

}
,

where W is defined in (15).

4 Convergence of the Iterations

We now wish to show that the iterations determined by Algorithm 1 converge to a stationary
point of

1

2
‖M(�) − B‖2F + μ

q
‖L(�)‖qq,ε .

The proof of this result is inspired by the ones in [7, 30] with some substantial modifications.
We need the following assumptions.

Assumption 1 Denote by
{
�(k)

}
k∈N and

{

(k)

}
k∈N the iterates generatedbyAlgorithm1.We

assume that these sequences are bounded, that is, there exists R > 0 such that
∥
∥�(k)

∥
∥
F ≤ R

and
∥
∥
(k)

∥
∥
F ≤ R, for all k ∈ N.

Assumption 2 The computed �(k+1) and 
(k+1) are such that

�(k+1) = argmin
�

Lρ

(
�,
(k); y(k)

)
,


(k+1) = argmin



Lρ

(
�(k+1), 
; y(k)

)
,

i.e., the inner iterations in Algorithm 1 converge to the unique minimizer of the respective
subproblem.
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Remark 2 Assumption 2 requires that ρ is large “enough” so that the subproblems are strictly
convex and that the inner iterations reach convergence; see below. However, note that this
is rarely satisfied in practice since, firstly, only a finite amount of inner iterations can be
performed and the inner iterations may have not reached convergence. Secondly, a too large
value of ρ may slow down significantly the computations and, to ensure that the algorithm
is computationally feasible, a small value of ρ may be needed. Therefore, the subproblems
may be non-convex and, even if a stationary point is computed, this may be a saddle point
or a local minimum. Nevertheless, vast numerical experience suggests that the procedure
converges even when an accurate enough approximate minimization is performed and when
ρ is not too large.

Note that, due to Assumption 1 and since M(�) ∈ C1, there exists c1 such that
∥
∥
∥∇M

(
�( j)

)
− ∇M

(
�(k)

)∥
∥
∥
F

≤ c1
∥
∥
∥�( j) − �(k)

∥
∥
∥
F

, ∀ j, k,

where ∇M is the gradient of M .
Before showing our main result, we need some auxiliary results.

Lemma 1 Consider the iterates y(k) and 
(k) generated by Algorithm 1 and assume that
Assumption 2 is satisfied. Then, there exists a constant c2 such that

∥
∥
∥y(k+1) − y(k)

∥
∥
∥
F

≤ c2
∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
F

, for all k ∈ N.

Proof Let fq(
) := μ
q ‖L(
)‖qq,ε. Note that fq is continuously differentiable and it is easy

to see that ∇ fq is Lipschitz continuous.
By definition, 
(k+1) is a minimizer of Lρ

(
�(k+1), 
; y(k)

)
, then it holds

0 = ∇
(

fq(
) − 〈y(k), 
〉 + ρ

2

∥
∥
∥�(k+1) − 


∥
∥
∥
2

F

)∣
∣
∣
∣

(k+1)

= ∇ fq
(

(k+1)

)
− y(k) − ρ

(
�(k+1) − 
(k+1)

)
.

From this equality and the definition of y(k+1) in (4), it immediately follows that

∇ fq
(

(k+1)

)
= y(k+1). (16)

This relation and the Lipchitz continuity of fq imply that there exists a constant c2 such that
∥
∥
∥y(k+1) − y(k)

∥
∥
∥
F

=
∥
∥
∥∇ fq(


(k+1)) − ∇ fq(

(k))

∥
∥
∥
F

≤ c2
∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
F

,

which concludes the proof. ��

We now recall the definition of a ω-strongly convex function.

Definition 1 A differentiable function f is called strongly convex with parameter ω > 0 if
the following inequality holds for all points x , y in its domain

f (x) − f (y) ≤ 〈∇ f (x), x − y〉 − ω

2
‖x − y‖2 .

We can now show the following proposition.
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Proposition 1 Under Assumptions 1 and 2 and with the notation above, assume that ρ is
large enough so that Lρ

(
�,
(k); y(k)

)
and Lρ

(
�(k+1), 
; y(k)

)
are both ω-strongly convex

functions of � and 
, respectively. Then,

Lρ

(
�(k+1), 
(k+1); y(k+1)

)
− Lρ

(
�(k), 
(k); y(k)

)

≤
(
c22
ρ

− ω

2

)
∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
2

F
− ω

2

∥
∥
∥�(k+1) − �(k)

∥
∥
∥
2

F
.

Proof We rewrite the difference between the augmented Lagrangians in the thesis in an
equivalent form

Lρ

(
�(k+1), 
(k+1); y(k+1)

)
− Lρ

(
�(k), 
(k); y(k)

)

= Lρ

(
�(k+1), 
(k+1); y(k+1)

)
− Lρ

(
�(k+1), 
(k+1); y(k)

)

+ Lρ

(
�(k+1), 
(k+1); y(k)

)
− Lρ

(
�(k), 
(k); y(k)

)
. (17)

By manipulating the first two terms in the right-hand side of (17) and by using the last
definition of y(k+1) in (4), we obtain

〈
y(k+1), �(k+1) − 
(k+1)

〉
−
〈
y(k), �(k+1) − 
(k+1)

〉

=
〈
y(k+1) − y(k), �(k+1) − 
(k+1)

〉

=
〈

y(k+1) − y(k),
1

ρ
(y(k+1) − y(k))

〉

= 1

ρ

∥
∥
∥y(k+1) − y(k)

∥
∥
∥
2

F
. (18)

We consider the last two terms of the right-hand side of (17). Applying theω-strong convexity
of Lρ gives

Lρ

(
�(k+1), 
(k+1); y(k)

)
− Lρ

(
�(k), 
(k); y(k)

)

= Lρ

(
�(k+1), 
(k+1); y(k)

)
− Lρ

(
�(k+1), 
(k); y(k)

)

+ Lρ

(
�(k+1), 
(k); y(k)

)
− Lρ

(
�(k), 
(k); y(k)

)

≤
〈
∇Lρ

(

(k+1)

)
, 
(k+1) − 
(k)

〉
− ω

2

∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
2

F

+
〈
∇Lρ

(
�(k+1)

)
, �(k+1) − �(k)

〉
− ω

2

∥
∥
∥�(k+1) − �(k)

∥
∥
∥
2

F

= −ω

2

(∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
2

F
+
∥
∥
∥�(k+1) − �(k)

∥
∥
∥
2

F

)

, (19)

where the last equality follows from ∇Lρ

(

(k+1)

) = 0 and ∇Lρ

(
�(k+1)

) = 0. Then,
summing (18) and (19) yields

Lρ

(
�(k+1), 
(k+1); y(k+1)

)
− Lρ

(
�(k), 
(k); y(k)

)

≤ 1

ρ

∥
∥
∥y(k+1) − y(k)

∥
∥
∥
2

F
− ω

2

(∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
2

F
+
∥
∥
∥�(k+1) − �(k)

∥
∥
∥
2

F

)

≤ c22
ρ

∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
2

F
− ω

2

(∥
∥
∥
(k+1) − 
(k)

∥
∥
∥
2

F
+
∥
∥
∥�(k+1) − �(k)

∥
∥
∥
2

F

)

,
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where the second inequality follows from Lemma 1. Rearranging this expression concludes
the proof. ��

We can now show that the sequence
{Lρ(�(k), 
(k); y(k))

}
k∈N converges to a limit point.

Lemma 2 Under the assumptions and notation of Proposition 1 assume thatρ is large enough

so that
c22
ρ

− ω
2 < 0 and denote by

ν = inf

{
1

2
‖M(�) − B‖2F + μ

q
‖L(�)‖qq,ε

}

.

Then,

lim
k→∞Lρ

(
�(k), 
(k); y(k)

)
≥ ν,

and the sequence
{Lρ(�(k), 
(k); y(k))

}
k∈N converges.

Proof If
c22
ρ

− ω
2 < 0, then the sequence

{Lρ(�(k), 
(k); y(k))
}
k∈N is monotonically decreas-

ing. Now, we show it is bounded from below. From the proof of Lemma 1, we obtain that
y(k) = ∇ fq

(

(k)

)
, where fq(·) = μ

q ‖L(·)‖qq,ε. Plugging in the definition of Lρ the latter

equality, we obtain that the augmented Lagrangian evaluated at
(
�(k), 
(k); y(k)

)
satisfies

Lρ

(
�(k), 
(k); y(k)

)
= 1

2

∥
∥
∥M(�(k)) − B

∥
∥
∥
2

F
+ fq(


(k)) +
〈
∇ fq(


(k)), �(k) − 
(k)
〉

+ ρ

2

∥
∥
∥�(k) − 
(k)

∥
∥
∥
2

F

≥ 1

2

∥
∥
∥M(�(k)) − B

∥
∥
∥
2

F
+ ω

2

∥
∥
∥�(k) − 
(k)

∥
∥
∥
2

F
+ fq(�

(k))

+ ρ

2

∥
∥
∥�(k) − 
(k)

∥
∥
∥
2

F

≥ 1

2

∥
∥
∥M(�(k)) − B

∥
∥
∥
2

F
+ μ

q

∥
∥
∥L(�(k))

∥
∥
∥
q

q,ε
≥ ν,

where the first inequality follows from the ω-strong convexity of fq(·) = μ
q ‖L(·)‖qq,ε.

The convergence of the sequence
{Lρ

(
�(k), 
(k); y(k)

)}
k∈N is ensured by its monotonically

decreasing and its boundedness. ��
We are now in position to show that the sequences

{
�(k)

}
k∈N and

{

(k)

}
k∈N converge to

a limit point.

Lemma 3 With the notation and the assumptions of Lemma 2, the sequences
{
�(k)

}
k∈N and

{

(k)

}
k∈N converge.

Proof Let k be fixed, but arbitrary. From Proposition 1 we have

Lρ

(
�(0), 
(0); y(0)

)
− Lρ

(
�(k), 
(k); y(k)

)

≥ −
k−1∑

j=0

[(
c22
ρ

− ω

2

)
∥
∥
∥
( j+1) − 
( j)

∥
∥
∥
2

F
− ω

2

∥
∥
∥�( j+1) − �( j)

∥
∥
∥
2

F

]

≥ 0,
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where the last inequality follows from the assumption that
c22
ρ

− ω
2 < 0. Denote by L∗

ρ the

limit point of the sequence
{Lρ(�(k), 
(k); y(k))

}
k∈N, that exists thanks to Lemma 2. Then,

∞∑

j=0

[(
ω

2
− c22

ρ

)
∥
∥
∥
( j+1) − 
( j)

∥
∥
∥
2

F
+ ω

2

∥
∥
∥�( j+1) − �( j)

∥
∥
∥
2

F

]

≤ Lρ(�(0), 
(0); y(0)) − L∗
ρ.

Therefore, we have

lim
j→∞

∥
∥
∥�( j+1) − �( j)

∥
∥
∥
2

F
= 0 and lim

j→∞

∥
∥
∥
( j+1) − 
( j)

∥
∥
∥
2

F
= 0,

and, since thanks to Assumption 1 the sequences
{
�( j)

}
j∈N and

{

( j)

}
j∈N are bounded,

they converge to a limit point. ��
We can now prove our main result.

Theorem 1 Under the assumptions and with the notation above, let (�∗, 
∗) be the limit
point of the sequence

{(
�(k), 
(k)

)}
k∈N and let us denote by gM (·) = 1

2 ‖M(·) − B‖2F . Then,
(�∗, 
∗) satisfies:
(i) �∗ = 
∗;
(ii) The sequence

{
y(k)

}
k∈N converges to a limit point y∗ such that ∇ fq(
∗) − y∗ = 0 and

∇gM (�∗) + y∗ = 0;
(iii) �∗ is a stationary point of gM + fq .

Proof First we observe that the existence of the limit point (�∗, 
∗) is ensured by Lemma 3.
We can now show the three points in the statement of the theorem.

(i) From Lemma 3 we have that
∥
∥
(k+1) − 
(k)

∥
∥
F → 0 as k → ∞, therefore, Lemma 1

yields
∥
∥y(k+1) − y(k)

∥
∥
F → 0 as k → ∞. From the definition of y(k+1) in (4), it follows

that

lim
k→∞

∥
∥
∥�(k+1) − 
(k+1)

∥
∥
∥
F

= lim
k→∞

∥
∥
∥y(k+1) − y(k)

∥
∥
∥
F

= 0,

that implies �∗ = 
∗.
(ii) Recall that (16) states that y(k) = ∇ fq

(

(k)

)
. Therefore,

y∗ = lim
k→∞ ∇ fq

(

(k)

)
= ∇ fq

(

∗) ,

where the last equality follows from the continuity of ∇ fq . This proves that the
sequence

{
y(k)

}
k∈N converges and the first relation in the statement trivially follows.

The optimality condition on �(k+1) [see (5)] implies

0 = ∇gM
(
�(k+1)

)
+ y(k) + ρ

(
�(k+1) − 
(k)

)

= ∇gM
(
�(k+1)

)
+ y(k+1) + ρ

(

(k+1) − 
(k)

)
.

We obtain the second relation in the statement taking the limit for k → ∞.
(iii) Since �∗ = 
∗, adding the two equalities in (ii), shows that

∇ fq(�
∗) + ∇gM (�∗) = 0,

which concludes the proof.

��
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5 Variations of Algorithm 1

We now present two variations of Algorithm 1 that either improve the accuracy of the com-
puted solutions or lower the computational cost. However, at this point we are not able to
prove the convergence of these methods and they remain heuristic algorithms. Nevertheless,
extensive numerical experience shows that these methods perform well and provide good
restorations.

5.1 Nonnegativity Constraint

Since the electrical conductivity is a nonnegative quantity, we wish to add the constraint
� ≥ 0 on the computed solution, i.e., we wish to solve

min
�≥0

1

2
‖M(�) − B‖2F + μ

q
‖L (�)‖qq,ε . (20)

To do this we follow the procedure in [7, 13]. We rewrite the above minimization problem
as

min
�

1

2
‖M(�) − B‖2F + μ

q
‖L (�)‖qq,ε + ι0 (�) ,

where ι0 denotes the indicator function of the nonnegative cone, i.e.,

ι0(�) =
{
0 � ≥ 0,

+∞ else.

We can reformulate this minimization problem as a constrained one by

min
�, 
L , 
0

{
1

2
‖M(�) − B‖2F + μ

q
‖L (
L)‖qq,ε + ι0 (
0) , � = 
L , � = 
0

}

.

The associated augmented Lagrangian is

Lρ (�,
L , 
0; yL , y0) =1

2
‖M(�) − B‖2F + μ

q
‖L (
L)‖qq,ε + ι0 (
0)

+ 〈yL , � − 
L 〉 + ρ

2
‖� − 
L‖2F

+ 〈y0, � − 
0〉 + ρ

2
‖� − 
0‖2F .

The ADMM iterations can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(k+1) = argmin
�

1

2
‖M(�) − B‖2F +

〈
y(k)
L , �

〉
+ ρ

2

∥
∥
∥� − 


(k)
L

∥
∥
∥
2

F
+
〈
y(k)
0 , �

〉
+ ρ

2

∥
∥
∥� − 


(k)
0

∥
∥
∥
2

F
,



(k+1)
L = argmin


L

μ

q
‖L (
L)‖qq,ε −

〈
y(k)
L , 
L

〉
+ ρ

2

∥
∥
∥�(k+1) − 
L

∥
∥
∥
2

F
,



(k+1)
0 = argmin


0
ι0 (
0) −

〈
y(k)
0 , 
0

〉
+ ρ

2

∥
∥
∥�(k+1) − 
0

∥
∥
∥
2

F
,

y(k+1)
L = y(k)

L + ρ
(
�(k+1) − 


(k+1)
L

)
,

y(k+1)
0 = y(k)

0 + ρ
(
�(k+1) − 


(k+1)
0

)
.
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The �(k+1) subproblem can be reformulated as

�(k+1) = argmin
�

1

2
‖M(�) − B‖2F + ρ

2

∥
∥
∥
∥
∥
∥

[
In
In

]

� −
⎡

⎣



(k)
L − y(k)

L
ρ



(k)
0 − y(k)

0
ρ

⎤

⎦

∥
∥
∥
∥
∥
∥

2

F

.

This minimization problem can be solved in the same way described in Sect. 3. The only
difference is in the definition of the functional M̃ and its Jacobian matrix, that are

M̃(σ ) =
⎡

⎣
M(σ )√

ρσ√
ρσ

⎤

⎦ and J̃ (σ ) =
⎡

⎣
J (σ )√
ρ In√
ρ In

⎤

⎦ .

The minimization problem for the computation of 

(k+1)
L is identical to the one in Sect. 3

and, therefore, we do not dwell on it here.
Finally, we discuss the minimization problem to obtain 


(k+1)
0 . Dropping the constant

terms with respect to 
0, this can be rewritten as



(k+1)
0 = argmin


0

1

2

∥
∥
∥
∥
∥

0 −

(

�(k+1) + y(k)
0

ρ

)∥
∥
∥
∥
∥

2

F

+ ι0 (
0) ,

which can be solved in closed form as



(k+1)
0 = max

{(

�(k+1) + y(k)
0

ρ

)

, 0

}

,

where the maximum is meant element-wise.
We do not present here a proof of convergence for this algorithm. Note that the proof in

Sect. 4 cannot be applied here since ι0, while convex, is only weakly lower semicontinuous
and it is not differentiable.

5.2 Non-stationary Regularization Parameter

The method proposed in Sect. 3.1 requires the computation of many �μ to select the “best”
one. This approach can be computationally demanding since problem (2) has to be solved
several times. However, this approach ensures the convergence of the method as shown in
Sect. 4. We wish to describe here a heuristic, but computationally cheaper, way to determine
a suitable value for μ. We follow the idea in [8, Section 3.2.2] and in [42].

Instead of running Algorithm 1 for a fixed value of μ, we construct a non-stationary
method that generates a sequence of values of μ so that the RWP is satisfied at each (inner)
iteration.

At iteration k of Algorithm 1 (or its constrained counterpart in Sect. 5.1) the parameter
μ is considered only when computing 
(k+1), i.e., when solving (10). We recall that this
minimization problem is solved by the MM algorithm described in Sect. 3. At each iteration
(k, j) of the inner loop that computes 
(k+1), we determine a “proper” parameter μk, j . As
stated above, to select μk, j at each iteration, we still exploit the RWP. Denote by ξ (k, j)

μ the

value obtained in (11) with η = μεq−2

ρ
and let 
(k, j)

μ be such that

ξ (k, j)
μ = vec

(

(k, j)

μ

)
.
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We define

R(k, j)
μ = M

(

(k, j)

μ

)
− B and W (k, j)(μ) =

∥
∥
∥R(k, j)

μ �R(k, j)
μ

∥
∥
∥
2

F
∥
∥
∥R(k, j)

μ

∥
∥
∥
4

F

as in (15). We determine a “proper” value for μk, j by

μk, j = argmin
μ

W (k, j)(μ)

and we set the iterate ξ (k, j) = ξ (k, j)
μk, j

.
By employing this strategy, we require only a single run of the modified version of Algo-

rithm 1. However, the cost per iteration increases due to the additional computational cost
required to minimize W (k, j)(μ). Nevertheless, the overall cost is much lower than when
Algorithm 1 is used in a stationary way for several values of μ; see the numerical results in
Sect. 6.

In practice, to minimize the functionW (k, j)(μ), we employ theMatlab routine fminbnd.
This method requires to evaluate several times the functionW (k, j)(μ) for different μ values.
This may become computationally expensive. To further lower the computational cost, we
impose the RWP only on a subset of the residual R. Fixing a number 2 ≤ t ≤ s, this will
be the number of contiguous columns of R that we will consider when minimizing W (k, j).
To ensure that most of the columns are eventually considered, we randomly select the set
of t columns at each outer iteration k. In particular, at iteration k we fix a random index
ik ∈ {1, . . . , s − (t − 1)} and we define

R̃(k, j)
μ =

(
M
(

(k, j)

μ

)
− B

)

ik :ik+t
,

where by (A)i : j we denote the matrix obtained by extracting the columns from i to j from

the matrix A. Thanks to the structure of the function M , we can compute R̃(k, j)
μ as

R̃(k, j)
μ =

[
M
(



(k, j)
μ

)

ik
M
(



(k, j)
μ

)

ik+1
. . . M

(



(k, j)
μ

)

ik+t

]
− Bik :ik+t .

Therefore, computing R̃(k, j)
μ requires only t one-dimensional evaluation of M , instead of s.

In our experiments we set t = 4.

6 Numerical Examples

In this section, we show the effectiveness of the numerical procedures described in this paper
through three synthetic examples. In Test 1we detail the behavior of our algorithmic proposal
with respect to the different parameters involved in the algorithm. In Test 2, we generate
several FDEM datasets by considering one model profile for the electrical conductivity and
two different FDEM devices. We illustrate the effectiveness of our heuristic choice rule for
the regularization parameter and compare between the stationary and non-stationary version
of our method. Finally, in Test 3, we compare the results obtained by the algorithms here
proposed with the ones obtained in [5].

We briefly describe the approach in [5]. The algorithm proposed by the authors tackled
the minimization problem (20). The problem is reformulated as follows

min
�,


1

2
‖M(�) − B‖2F + μ

q
‖L (
)‖qq,ε + ι0 (�) + β

2
‖
 − �‖2F ,
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where β > 0 is large “enough”. The solution is obtained using the alternating minimization
algorithm. This results in an additional parameter to estimate, i.e., β. The minimization
with respect to 
 is performed as in our current proposal, while the other minimization is
performed using the method in [18]. Since this algorithm does not project the problem into
GKS this results in an overall higher computational cost.

To simulate experimental errors, we add white Gaussian noise to the data, by letting

η = δ
‖Bexact‖F
‖W‖F

W,

where W is a normally distributed random matrix, Bexact is the exact generated data, and δ

stands for the noise level.
In order to assess the quality of the algorithms, we compute the Relative Restoration Error

(RRE)

RRE(�) = ‖� − �exact‖F
‖�exact‖F ,

where �exact denotes the exact solution of the problem and � the approximate solution, and
the CPU time for every numerical approach.

To avoid the estimation of ε we select it in an adaptive way. In particular, when solving
the problem for 
(k+1) we fix

ε(k+1) = 1

100nm

n∑

i=1

m∑

j=1

(
�(k+1)

)

i, j
,

i.e., one-hundredth of the mean value of �(k+1). Note that, in practice, the value for ε has
little to no impact on the quality of the computed results; see, e.g., [9, 10].

In all the experiments we adopt the following stopping criteria: we set the maximum
number of iterations to 500 and the convergence tolerance to τ = 10−3.

All simulations have been performed usingMATLAB version 9.10 (R2021a) on an Intel®

Xeon® Gold 6136 CPU 3.00GHz processor with 128 GB of RAM and 32 cores, running the
Ubuntu GNU/Linux operating system.

Test 1.We wish to detail the behavior of the stationary algorithm with respect to the various
parameters involved. In particular, we consider the effects of μ and ρ. The analysis with
respect to the values of ε produces similar results as the one in [9, 10], where the authors
determined that the algorithm is stable with respect to the value of ε in terms of RRE, but
small values of ε may lead to slow convergence.

We first observe that, in order to satisfy the hypothesis of Theorem 1, i.e., that
Lρ(�(k+1), 
; y(k)) is an ω-strongly convex function of 
, we require that ρ is large enough
when compared to μ. Therefore, the values of these two parameters are necessarily linked.

We construct a synthetic example that concerns with the inversion of the imaginary part of
the data (quadrature component of the signal) generated by the Geophex GEM-2 device with
the following configuration: both orientations of the coils,with inter-coil distance r = 1.66m,
fivedifferent operating frequencies f = 775, 1175, 3925, 9825, 21725Hz, and twomeasuring
heights h = 0.75, 1.5 m above the ground.

Therefore,we have s = 20measurements for each position j = 1, . . . ,m. Chosenm = 10
soundings, the forward model generates the matrix Bexact of dimension s × m of the exact
synthetic measurements. In this experiment, the data is perturbed by white Gaussian noise
of levels δ = 10−3 and δ = 10−2. We discretize the soil with n = 50 layers up to the depth
of 6m, each of which is of the same thickness.
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Fig. 1 Test 1. Relative restoration error obtained for noise level 10−3 (left) and 10−2 (right) using Algorithm 1

Fig. 2 Test 1. Relative restoration error against the number of iterations for noise level 10−3 (left) and 10−2

(right) obtained by Algorithm 1 for some selection of μ and ρ

We run our stationary method for (ρ, μ) ∈ {ρ1, . . . , ρ10} × {μ1, . . . , μ10}, where ρ j and
μ j are logarithmically equispaced numbers between 10−7 and 10−3.

We show in Fig. 1 the relative restoration error obtained with all the considered couples
of parameters and the two noise levels. We can see that the obtained RRE depends on both
values of μ and ρ. In particular, we can observe that choosing a tiny value for ρ, may lead to
instabilities especially if μ is large. This is due to the fact that in this case the hypothesis of
Theorem 1 may not be satisfied since Lρ may not be ω-strongly convex.

We report the evolution of the RRE against the number of iterations for some selection of
μ and ρ in Fig. 2. We can observe that, as ρ increases, the method slows down, while smaller
values of ρ produce a faster convergence. If the value of ρ is too large, the convergence may
be so slow that the stopping criterion terminates the iteration too soon. Note that, we cannot
simply choose ρ tiny since we need to satisfy the assumptions of Theorem 1. To empirically
verify this one can look at the behavior of

∥
∥�(k+1) − �(k)

∥
∥
F /
∥
∥�(k)

∥
∥
F , since this quantity

is expected to smoothly decay. An oscillatory behavior may be an indicator that a larger value
of ρ is required.

Test 2. This example concerns with the inversion of synthetic FDEM data generated by the
Geophex GEM-2 device with the following configuration: vertical orientation of the coils
and same inter-coil distance, frequencies, and measuring heights above the ground as in Test
1.
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Fig. 3 Test 2. Reconstructions of the electrical conductivity from data generated by the Geophex GEM-2
obtained by Algorithm 1: the plots show the exact solution (a), the approximate solution with q = 0.1 (b),
q = 0.5 (c), and q = 1 (d)

Fig. 4 Test 2. Whiteness (left) and error (right) obtained for the reconstruction of the electrical conductivity
obtained by Algorithm 1 in dependence of the parameter μ. The measurement data are generated by the
configuration of Geophex GEM-2. The errors and the whiteness are obtained with q = 0.1 (red line), q = 0.5
(orange dashed-dotted line), q = 1 (blue dashed line), respectively (Color figure online)

Therefore,we have s = 10measurements for each position j = 1, . . . ,m. Chosenm = 25
soundings, the forward model generates the matrix Bexact of dimension s × m of the exact
synthetic measurements. In this experiment, the data is perturbed by white Gaussian noise
of level δ = 10−3. We discretize the soil with n = 50 layers up to the depth of 4.5 m, each
of which is of the same thickness.

Figure 3 reports the exact solution (a) and the reconstructions (b), (c), and (d) for three
different values of the parameter q = 0.1, 0.5, 1, respectively, obtained by applying Algo-
rithm 1 with nonnegativity constraint. The parameter ρ has been chosen as ρ = 10−9 and μ

has been automatically estimated from the procedure described in Sect. 3.1. The initial value
vector is set as σ 0 = 0.5.

We can observe that all reconstructions are very accurate.
Figure 4 analyzes the relation between the whiteness [see (15)] and the error for different

values of the parameter μ. We can observe that the RRE and W seen as functions of the
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Fig. 5 Test 2. Reconstructions of the electrical conductivity from data generated by the Geophex GEM-2
obtained by non-stationary algorithm: the plots show the exact solution (a), the approximate solution with
q = 0.1 (b), q = 0.5 (c), and q = 1 (d)

Table 1 Test 2. CPU time (in
seconds), RRE, and number of
iterations of the two algorithms
for different values of
q = 0.1, 0.5, 1

q Method CPU time RRE #iter

0.1 Algorithm 1 29,069 0.1443 500

Non-stationary 18,497 0.1937 500

0.5 Algorithm 1 27,025 0.1842 500

Non-stationary 17,836 0.1431 500

1 Algorithm 1 7721 0.1666 164

Non-stationary 3024 0.1503 115

regularization parameter μ behave quite similarly and, therefore, we can use the latter to
determine a good approximation of the minimizer of the first one.

The reconstructions of the electrical conductivity obtained by the non-stationary algorithm
described in Sect. 5 are reported in Fig. 5. Also in this case, we compare the exact solution
with the ones approximated by using different values of the parameter q . From a visual
analysis, the best reconstruction is obtained for q = 1; see Fig. 5d.

The main advantage of the non-stationary version of Algorithm 1 is the computational
cost. Table 1 shows the CPU time in seconds and the RRE of the reconstructions obtained
by the two algorithms proposed in this paper. We can see that the error committed by non-
stationary approach is comparable with respect to the one obtained by Algorithm 1. However,
the non-stationary version reduces the CPU time considerably, almost half of the CPU time
computed by Algorithm 1.

Test 3. In this third experiment, in order to compare the new algorithms with the one proposed
in [5], we consider two synthetic datasets presented in [5, Section 5.1, Test 1]. We briefly
recall them here. The available complex datasets for the inversion procedure are generated
by two different FDEM devices. The first dataset is constructed considering the following
configuration of the Geophex GEM-2: both orientations of the coils, with inter-coil distance
r = 1.66 m, six different operating frequencies f = 775, 1175, 3925, 9825, 21725, 47025
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Fig. 6 Test 3. Reconstruction of the electrical conductivity from data generated by the Geophex GEM-2
obtained by Algorithm 1 (left panels) and by non-stationary algorithm (right panels). The rows report the
exact solution (a), the approximated solution with q = 0.1 (b), q = 0.5 (c), and q = 1 (d)

Hz, placed at a height of h = 1 m above the ground. Therefore, we have s = 12 mea-
surements for each position j = 1, . . . ,m. The second dataset is constructed considering
another device, the CMD Explorer, placed at h = 1 m above the ground, with the following
configuration: both orientations of the coils, with three different values of inter-coil distance
r = 1.48, 2.82, 4.49 m, and a frequency f = 10 kHz. In this way, we get s = 6 measured
data for each position j = 1, . . . ,m.

In both datasets, we add white Gaussian noise of level δ = 10−2 and we assume to
discretize the soil with n = 20 layers up to the depth of 10m. In this experiment, we simulate
to collect the data along a straight line with m = 50 soundings. The initial value vector is set
as σ 0 = 0.1.

In all the examples we have chosen the value of the parameter ρ as the smallest one such
that the Jacobian matrix involved in the problem has a small enough conditioning number,
i.e., κ2(J ) ≈ 106.

Moreover, an automatic choice of μ and different values of q have been tested and
compared.

The reconstructions obtained from the first dataset (configuration of Geophex GEM-2)
are depicted in Fig. 6, while the ones obtained from the second dataset (CMD Explorer) are
illustrated in Fig. 7. Table 2 reports the RRE produced by each algorithm for both device
configurations. The methods proposed in this paper reconstruct a better solution in terms of
RRE, compared to the algorithm suggested in [5].
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Fig. 7 Test 3. Reconstruction of the electrical conductivity from data generated by the CMDExplorer obtained
by Algorithm 1 (left panel) and by non-stationary algorithm (right panel). The rows report the exact solution
(a), the approximated solution with q = 0.1 (b), q = 0.5 (c), and q = 1 (d)

Table 2 Test 3. Comparison
between Algorithm 1,
non-stationary algorithm, and the
algorithm proposed in [5]:
relative restoration error (RRE)
and number of iterations obtained
with q = 0.1, 0.5, 1

Device q Method RRE #iter

Geophex GEM-2 0.1 [5] 0.3783 –

Algorithm 1 0.2527 500

Non-stationary 0.1896 500

0.5 Algorithm 1 0.2357 500

Non-stationary 0.2284 500

1 Algorithm 1 0.1469 500

Non-stationary 0.2485 500

CMD Explorer 0.1 [5] 0.3584 –

Algorithm 1 0.3296 500

Non-stationary 0.3412 500

0.5 Algorithm 1 0.3126 500

Non-stationary 0.2685 500

1 Algorithm 1 0.2157 500

Non-stationary 0.2197 500
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7 Conclusions

In this paper, we have proposed an ADMM algorithm in order to invert FDEM data and
reconstruct the electrical conductivity distribution of the ground assuming the magnetic
permeability is known.We have shown the convergence of the method and we have presented
two variations that improve either the accuracy or the computational cost of the ADMM.We
have compared the obtained results with the ones computed by using the variationalmethod in
[5], showing, through different numerical tests, that the proposed algorithm better computes
the solution of the nonlinear problem. We remark that the same procedure could be applied
to get the magnetic permeability distribution by assuming that the electrical conductivity is
known.
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