
 

 

 
 

 
 

 
 
 

This is the Author’s accepted manuscript version of the following 
contribution: 
Silvia Columbu, Valentina Mameli, Monica Musio, Philip Dawid, The 
Hyvärinen scoring rule in Gaussian linear time series models in Journal of 
Statistical Planning and Inference, 212 (2021), pp. 126-140. 

 

The publisher's version is available at: 
https://doi.org/10.1016/j.jspi.2020.08.004    
 
When citing, please refer to the published version. 
 
 
© 2020. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-
nd/4.0/ 
 
 
 
 

 
 

This full text was downloaded from UNICA IRIS https://iris.unica.it/  
 

 



 

 

 
The Hyvärinen scoring rule in Gaussian linear time series models 
 

 

Silvia Columbu a, 

Valentina Mamelib, 

Monica Musioa, 

Philip Dawid c 

 
 
Abstract 
In this work we study stationary linear time-series models, and construct and analyse ‘‘score-matching’’ estimators based on the 
Hyvärinen scoring rule. We consider two scenarios: a single series of increasing length, and an increasing number of independent series 
of fixed length. In the latter case there are two variants, one based on the full data, and another based on a sufficient statistic. 

We study the empirical performance of these estimators in three special cases, autoregressive (AR), moving average (MA) and 
fractionally differenced white noise (ARFIMA) models, and make comparisons with full and pairwise likelihood estimators. The 
results are somewhat model-dependent, with the new estimators doing well for MA and ARFIMA models, but less so for AR models. 
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1. Introduction 

 
Composite likelihoods methods have become an appealing tool, as alternative to the likelihood estimation method, 

in complex statistical models with interdependencies. The increasing importance of this methodology is due to its 
computational feasibility in a variety of applications. However, for the first order moving average model (MA(1)), the 
pairwise likelihood method, which is a special case of composite likelihood, has very poor asymptotic efficiency as the 
moving average parameter tends to the boundary of the parameter space (Davis and Yau, 2011). Composite likelihood 
estimation methods form a subset of a more general class of methods based on proper scoring rules, estimation being 
conducted by minimising the empirical score over distributions in the model (Dawid and Musio, 2014; Dawid et al., 2016). 
Some important proper scoring rules are the log-score (Good, 1952), which recovers the full (negative log) likelihood, the 
Brier score (Brier, 1950) and the Hyvärinen score (Hyvärinen, 2005). In the setting of MA(1) we consider alternatives to the 
pairwise likelihood approach, based on the theory of proper scoring rules, focusing on the Hyvärinen score. This score is a 
homogeneous proper scoring rule (see Ehm and Gneiting (2012) and Parry et al. (2012)), which is unchanged by applying 
a positive scale factor to the probability distribution. Homogeneous scoring rules have been characterised for continuous 
real variables (Parry et al., 2012) and for discrete variables (Dawid et al., 2012). In a Bayesian framework, Dawid and 
Musio (2015) have shown, for the case of continuous variables, how to handle Bayesian model selection with improper 
within-model prior distributions, by exploiting the use of homogeneous proper scoring rules. The discrete counterpart 
has been empirically studied by Dawid et al. (2017). In a recent contribution, Shao et al. (2019) consider the use of the 
Hyvärinen score for model comparison. Although the majority of contributions involving the use of Hyvärinen scoring 
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rules focus on Euclidean spaces, scholars have also investigated extensions to non-Euclidean spaces: for an early study
see Dawid (2007). Recently, Mardia et al. (2016) proposed an extension of the Hyvärinen scoring rule to compact oriented
Riemannian manifolds, and Takasu et al. (2018) constructed a novel class of homogeneous strictly proper scoring rules
for statistical models on spheres.

Given the growing interest in the use of this scoring rule, in this paper we aim to derive an estimation method based
on the Hyvärinen scoring rule not only for moving average model but in general for estimating linear Gaussian time series
models.

We distinguish two separate cases: a first in which the length of a single time series increases to infinity, and a second
in which the length of the time series is fixed and the number of series increases to infinity.

The consistency and asymptotic distribution of the Hyvärinen estimator are derived for the case of a single time series
of increasing length. In particular, under some mild regularity conditions we derive consistency of the proposed estimator
for linear Gaussian time series models, and its asymptotic distribution is found in the specific case of autoregressive
moving average (ARMA) causal invertible models. For time series with fixed length and the number of time series
increasing to infinity the performances of two estimators based on the Hyvärinen scoring rule, namely the total Hyvärinen
estimator and the matrix Hyvärinen estimator, are compared through simulation studies with the full maximum likelihood
and the pairwise maximum likelihood estimators. To evaluate the novel inferential procedure based on the Hyvärinen
scoring rule we consider simple situations where the likelihood function is available. In particular, three simple time series
models have been considered in the design of simulations: autoregressive (AR), moving average (MA) and fractionally
differenced white noise (ARFIMA).

Different behaviours can be detected for the total Hyvärinen estimator among the settings examined. In particular, it
outperforms the pairwise likelihood estimator in terms of efficiency for the MA and ARFIMA processes.

The paper unfolds as follows. Section 2 introduces basic notions on scoring rules. In Section 3 we introduce the
Hyvärinen scoring rule for Gaussian linear time series. Some asymptotic results for the Hyvärinen estimator are given. In
the specific case of n independent series we describe the total Hyvärinen estimator and the matrix Hyvärinen estimator.
Section 4 summarises the results of the simulation studies on n time series of fixed length T . Section 5 presents a
simulation study for a single time series model and a simple application in a real case study. Section 6 provides some
concluding remarks. Technical details are postponed to the Appendix.

2. Scoring rules

A scoring rule is a loss function designed to measure the quality of a proposed probability distribution Q , for a random
variable X , in light of the outcome x of X . Specifically, if a forecaster quotes a predictive distribution Q for X and the
event X = x realises, then the forecaster’s loss will be S(x,Q ). The expected value of S(X,Q ) when X has distribution P
is denoted by S(P,Q ).

The scoring rule S is proper (relative to the class of distributions P) if

S(P,Q ) ≥ S(P, P), for all P, Q ∈ P. (1)

It is strictly proper if equality obtains only when Q = P .
Any proper scoring rule gives rise to a general method for parameter estimation, based on an unbiased estimating

equation: see Section 2.2.

2.1. Examples of proper scoring rules

Some important proper scoring rules are the log-score, S(x,Q ) = − log q(x) (Good, 1952), where q(·) is the density
function of Q , which recovers the full (negative log) likelihood; and the Brier score (Brier, 1950). A particularly interesting
case, which avoids the need to compute the normalising constant, produces the score matching estimation method of
Hyvärinen (2005), based on the following proper scoring rule:

S(x,Q ) = ∆x ln q(x) +
1
2

∥∇x ln q(x)∥2 , (2)

where X ranges over the whole of Rp supplied with the Euclidean norm ∥ · ∥, q(·) is assumed twice continuously
differentiable, and x is the realised value of X. In (2), ∇x denotes the gradient operator, and ∆x the Laplacian operator,
with respect to x. For p = 1 we can express

S(x,Q ) =
q′′(x)
q(x)

−
1
2

(
q′(x)
q(x)

)2

. (3)

The scoring rule (2) is a 2-local homogeneous proper scoring rule (see Parry et al. (2012)). It is homogeneous in the density
function q(·), i.e. its value is unaffected by applying a positive scale factor to the density q, and so can be computed even
if we only know the density function up to a scale factor. Inference performed using any homogeneous scoring rule does
not require knowledge of the normalising constant of the distribution.
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2.2. Estimation based on proper scoring rules

Let (x1, . . . , xn) be independent realisations of a random variable X , having distribution Pθ depending on an unknown
parameter θ ∈ Θ , where Θ is an open subset of Rm. Given a proper scoring rule S, let S(x, θ) denote S(x, Pθ).

Inference for the parameter θ may be performed by minimising the total empirical score,

S(θ) =

n∑
p=1

S(xp, θ), (4)

resulting in the minimum score estimator , θ̂S = argminθ S(θ).
Under broad regularity conditions on the model (see e.g. Barndorff-Nielsen and Cox (1994)), θ̂S satisfies the score

equation:

s(θ) :=

n∑
p=1

s(xp, θ) = 0, (5)

where s(x, θ) := ∇θS(x, θ), the gradient vector of S(x, θ) with respect to θ. The score equation is an unbiased estimating
equation (Dawid and Lauritzen, 2005). When S is the log-score, the minimum score estimator becomes the maximum
likelihood estimator.

From the general theory of unbiased estimating functions, under broad regularity conditions on the model the
minimum score estimate θ̂S is asymptotically consistent and normally distributed: θ̂S ∼ N(θ, {nG(θ)}−1), where G(θ)
denotes the Godambe information matrix G(θ) := M(θ)TV (θ)−1M(θ), where V (θ) = E

{
s(X, θ)s(X, θ)T

}
is the variability

matrix, and M(θ) = E
{
∇θs(X, θ)T

}
is the sensitivity matrix. In contrast to the case for the full likelihood, V and M are

different in general: see Dawid and Musio (2014) and Dawid et al. (2016). We point out that estimation of the matrix
V (θ), and (to a somewhat lesser extent) of the matrix M(θ), is not an easy task: see Varin (2008), Varin et al. (2011) and
Cattelan and Sartori (2016).

3. Gaussian linear time series models

In this section we introduce some results based on the use of the Hyvärinen scoring rule in the setting of Gaussian
linear time series models.

Let θ = (µ, σ 2,λ) be an m-dimensional parameter, where µ ∈ R, σ 2
∈ R+ and λ ∈ Rm−2. Consider the Gaussian linear

time series model (yt ) defined by

yt = µ+

∞∑
j=0

ψjzt−j, t = 1, 2, . . . , (6)

where, for j ≥ 0, ψj = ψj(λ) satisfies ψ0 = 1 and
∑

∞

t=0 ψ
2
t < ∞. The (zt ) are i.i.d. Gaussian variables with mean 0 and

variance σ 2. The auto-covariance function is E{(yt+j−µ)(yt−µ)} = σ 2 ∑
∞

t=0 ψtψt+j = σ 2γλ(j), where γλ(j) =
∑

∞

t=0 ψtψt+j
is twice continuously differentiable for all j. Using basic differentiation rules, it is easy to find the Hyvärinen score based
on the single time series YT = (y1, y2, . . . , yT ):

H(YT , θ) = −
1
σ 2

T∑
i=1

Γ ii
+

1
2

T∑
i=1

{
T∑

t=1

1
σ 2Γ

it (yt − µ)

}2

, (7)

where the matrix Γ has (i, j) entry Γij = γλ(|i − j|) and Γ ij is the (i, j) entry of Γ −1. We will denote the Hyvärinen
estimator based on a single series by θ̂H.

3.1. Asymptotic results for a single time series

In this section we analyse the asymptotic statistical properties of the Hyvärinen scoring rule estimator, based on (7),
for a single time series.

The following theorem shows the consistency of the estimator θ̂H in the Gaussian linear time series setting. The proof
of the Theorem is deferred to the Appendix and follows arguments similar to those used by Davis and Yau (2011) to
prove the consistency of the pairwise likelihood estimator.

Theorem 3.1. Suppose (yt ) is the linear process in (6) with µ = 0 and parameter θ0 = (σ 2
0 ,λ0). Let

θ̂H = argmin
θ

H(YT , θ)
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be the minimum score estimator, where θ = (σ 2,λ) and λ ∈ Λ, where Λ is a compact set. If the identifiability condition

σ 2
1 γλ1 (j) = σ 2

2 γλ2 (j) iff (σ
2
1 ,λ1) = (σ 2

2 ,λ2) (8)

is satisfied, then θ̂H
a.s.
−→ θ0 as T → ∞.

Once consistency has been proved, we focus on the asymptotic distribution of θ̂H. Its analytic form involves the
elements Γ ij of the inverse of the auto-covariance matrix. In order to guarantee its absolute summability, we restrict
our attention to the case of ARMA causal invertible processes.

Defining bij = Γ ij/σ 2, the gradient and the hessian with respect to θ̂H are given, respectively, by the following two
expressions:

J(θ) = ∇θH(YT , θ) =

(
∂H(YT , θ)

∂θ

)
= −

T∑
i=1

∇θ(bii) +

T∑
i,j,t=1

bit∇θ(bij)yjyt (9)

K (θ) =
∂ J(θ)
∂θ

=
∂2H(YT , θ)
∂θ∂θT = −

T∑
i=1

∂2bii
∂θ∂θT +

T∑
i,j,t=1

∂bij
∂θ

(
∂bit
∂θ

)T

yjyt

+

T∑
i,j,t=1

∂2bij
∂θ∂θT bityjyt (10)

where ∇θ = ∂/∂θ denotes differentiation with respect to the components of the vector θ.

Theorem 3.2. Suppose that (yt ) is an ARMA(p, q) causal and invertible process. If the identifiability condition (8) holds, then
√
T (̂θT − θ0)

D
−→ Nm−1

(
0,M(θ0)−1V (θ0)MT (θ0)−1) ,

where M(θ0) is invertible in a neighbourhood of θ0 and equal to

M(θ0) =

∞∑
r,k=−∞

∂

∂θ0

γ−1(k)
σ 2
0

(
∂γ−1(k + r)

∂θ0

)T

γ (r)

and

V (θ0) =

(
∂

∂θ0

γ−1(0)
σ 2
0

)(
∂

∂θ0

γ−1(0)
σ 2
0

)T

+

∞∑
r,k=−∞

∂

∂θ0

γ−1(k)
σ 2
0

γ−1(0)
(
∂γ−1(k + r)

∂θ0

)T

γ (r).

Theorem 3.2 shows that the Hyvärinen scoring rule estimator θ̂H, in the case that (yt ) is an ARMA causal invertible process,
is asymptotically normally distributed with rate of decay

√
T . As is well known, the auto-covariance function of an ARMA

process decays exponentially, which means that an ARMA process is a short memory process, and its auto-covariance
function is absolutely summable (Brockwell and Davis, 1991). This property, together with the duality of ARMA models
under causality and invertibility, allows us to prove asymptotic normality. For the complete proof refer to the Appendix.
These results are based on the first-order approximations to the distribution of the Hyvärinen scoring rule estimator,
providing a satisfactory approximation for large sample sizes, but may be unreliable for small values of T .

3.2. Estimation approaches for n independent time series

In the remainder of this section we discuss the case of n independent series of length T . We assume that T is fixed
while n increases to infinity. We also specialise to the case that the common mean µ and innovation variance σ 2

= σ 2
0

are known; without loss of generality we take µ = 0.
Consider now n independent and identically distributed processes Y1, . . . , Yn, where Yp = (yp1, . . . , ypT ), each having

the T -variate normal distribution with mean-vector 0 and variance covariance matrix σ 2Γ , with unknown parameter λ.
Let the (n × T ) random matrix Y have the vector Yp as its pth row. We define the total Hyvärinen score (HT) as the sum
of n single Hyvärinen scores in (7):

HT(λ) =

n∑
p=1

Hp(Yp,λ), (11)

where

Hp(Yp,λ) = −
1
σ 2

T∑
i=1

Γ ii
+

1
2

T∑
i=1

{
T∑

t=1

1
σ 2Γ

itypt

}2

. (12)

The estimate of λ minimising the total Hyvärinen score will be denoted by λ̂HT.
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An alternative approach is to consider as basic observable the sum-of-squares-and-products matrix SSP = Y TY , which
is a sufficient statistic for the multivariate normal model, having the Wishart distribution with n degrees of freedom and
scale matrix σ 2Γ . Then inference for the parameter λ can be performed by resorting to the Hyvärinen score based directly
on the Wishart model. We will call this scoring rule the matrix Hyvärinen score.

Assuming n ≥ T , so that the joint distribution of the upper triangle
(
sij : 1 ≤ i ≤ j ≤ T

)
of the sum-of-squares-and-

products random matrix SSP (which has a Wishart distribution with parameters n and σ 2Γ ) has a density, and taking
into consideration all of the properties of the derivatives of traces and determinants, it can be shown that the Hyvärinen
score based on this joint density is

HW(SSP,Γ ) = −
(n − T − 1)

2

T∑
i=1

(sii)2 +
1
2

T∑
i,j=1

{
(n − T − 1)

2
sij −

1
2σ 2Γ

ij
}2

, (13)

where sij and Γ ij are the elements of the inverse matrices SSP−1 and Γ −1, respectively. The matrix Hyvärinen estimator
for λ, minimising HW(SSP,Γ ) with respect to λ, will be denoted by λ̂HW.

The derivative of HW(SSP,Γ ) with respect to λ is

HWλ(SSP,Γ ) = −
1

2σ 2

T∑
i,j=1

{
(n − T − 1)

2
sij −

1
2σ 2Γ

ij
}
∂Γ ij

∂λ
, (14)

and E {HWλ(SSP,Γ )} = 0 since E
(
sij

)
= Γ ij/(σ 2(n − T − 1)) (see Von Rosen (1997)).

Moreover, M(λ) = E {HWλλ(SSP,Γ )} = (1/(4σ 4))
∑T

i,j=1

(
∂Γ ij/∂λ

) (
∂Γ ij/∂λ

)T. The function V (λ), calculated after
taking account of (14),

V (λ) =
(n − T − 1)2

16σ 4

T∑
i,j,k,l=1

∂Γ ij

∂λ

(
∂Γ kl

∂λ

)T

cov
(
sij, skl

)
, (15)

involves calculations requiring the covariance matrix of the random matrix SSP−1, which has an Inverse Wishart
distribution with scale matrix 1

σ2Γ
−1: see Von Rosen (1997) for details on the components of the covariance matrix.

In general, the Godambe information needed to estimate the standard error of λ̂HW is not easy to derive analytically
due to the form of the matrix Γ . It should be pointed out that this approach cannot be used if we have a single time
series of length T with T increasing to ∞, since for non-singularity of the Wishart distribution we need to assume n ≥ T .

4. Numerical assessment on n time series of fixed length T

In this section we report simulation studies designed to assess and compare the behaviours of the estimators obtained
by using the total and the matrix Hyvärinen estimators. We refer to the case described in paragraph 3.2 in which T is fixed
and n increases to ∞. For comparison, we will consider also the full and pairwise maximum likelihood estimators (Davis
and Yau, 2011). We discuss three examples: the first order autoregressive AR(1), the first order moving average MA(1)
and the fractionally differenced white noise ARFIMA(0, d, 0). Various parameter settings are considered in all simulation
studies. All calculations have been done in the statistical computing environment R (R Core Team, 2019). The summary
statistics shown are: average estimates of the parameters, asymptotic standard deviations (sd) and the asymptotic relative
efficiency (ARE) with respect to the maximum likelihood estimator.

4.1. First order autoregressive models

The stationary univariate autoregressive process of order 1, denoted by AR(1), is defined by

y1 = µ+
1√

1 − φ2
z1

yt = µ+ φ(yt−1 − µ) + zt , (t = 2, . . . , T ),

where (zt ) is a Gaussian white noise process with mean 0 and variance σ 2. Let θ = (σ 2, λ) = (σ 2, φ), where λ is
represented by the scalar parameter φ. Here φ, with |φ| < 1, is the autoregressive parameter . Then y1, . . . , yT are jointly
normal with mean vector µ1T (where 1T is the T -dimensional unit vector), and covariance matrix σ 2Γ , with Γ having
components Γlm = φ|l−m|/(1 − φ2) (l,m = 1, . . . , T ).

For comparison purposes we consider also the numerical performance of a class of pairwise likelihood estimators.
Since, in the time series considered, dependence decreases in time, as in Davis and Yau (2011) we shall restrict to the
first order consecutive pairwise likelihood, rather than the complete pairwise likelihood, so that adjacent observations are
more closely related than the others. This choice is motivated also by the loss in efficiency incurred in using the kth order
consecutive pairwise likelihood as k increases (see Davis and Yau (2011), Joe and Lee (2009). Note that, when it is known
that µ = 0 but σ 2 is unknown, the pairwise likelihood estimator of φ is φ̂PL = 2

∑T
t=2 ytyt−1/

∑T
t=2(y

2
t + y2t−1), which is

also the Yule–Walker estimator (Davis and Yau, 2011).
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Table 1
Simulation 1. Estimated mean (Est.), asymptotic standard deviation (sd), and Asymptotic Relative Efficiency (ARE) of estimators of the parameter φ
in the AR(1) model, for n = 200, T = 50, and varying values of φ. We denote by φ̂ the maximum likelihood estimate, by φ̂PL the pairwise likelihood
estimate, and by φ̂HT and φ̂HW the total and the matrix Hyvärinen estimates, respectively.
φ φ̂ φ̂PL φ̂HT φ̂HW

Est. sd Est. sd ARE Est. sd ARE Est. sd ARE

−0.9 −0.8997 0.0041 −0.8997 0.0045 0.8625 −0.9008 0.0150 0.0738 −0.9004 0.0244 0.0278
−0.8 −0.8000 0.0059 −0.7999 0.0064 0.8340 −0.8007 0.0146 0.1602 −0.8007 0.0236 0.0613
−0.7 −0.7002 0.0071 −0.7001 0.0079 0.8087 −0.7007 0.0139 0.2599 −0.7005 0.0226 0.0979
−0.6 −0.6002 0.0080 −0.6002 0.0089 0.7986 −0.6008 0.0130 0.3794 −0.6008 0.0216 0.1367
−0.5 −0.5001 0.0087 −0.4999 0.0097 0.8069 −0.5009 0.0122 0.5060 −0.5011 0.0202 0.1853
−0.4 −0.4002 0.0092 −0.4000 0.0101 0.8351 −0.4006 0.0115 0.6466 −0.4001 0.0184 0.2505
−0.3 −0.2997 0.0096 −0.2997 0.0102 0.8808 −0.2998 0.0109 0.7773 −0.2995 0.0164 0.3438
−0.2 −0.2003 0.0099 −0.2002 0.0102 0.9347 −0.2005 0.0104 0.8991 −0.2007 0.0143 0.4780
−0.1 −0.0997 0.0100 −0.0997 0.0101 0.9813 −0.0997 0.0102 0.9776 −0.0999 0.0125 0.6493
0 0.0002 0.0101 0.0002 0.0101 0.9998 0.0002 0.0101 1.0077 0.0003 0.0117 0.7401
0.1 0.1005 0.0100 0.1005 0.0101 0.9810 0.1005 0.0101 0.9810 0.1007 0.0125 0.6506
0.2 0.1997 0.0099 0.1997 0.0102 0.9350 0.1998 0.0104 0.8980 0.1995 0.0143 0.4802
0.3 0.2997 0.0096 0.2997 0.0102 0.8808 0.2998 0.0109 0.7774 0.2995 0.0164 0.3433
0.4 0.3993 0.0092 0.3993 0.0101 0.8355 0.3997 0.0115 0.6451 0.3995 0.0184 0.2506
0.5 0.5002 0.0087 0.5003 0.0097 0.8071 0.5006 0.0122 0.5077 0.5004 0.0201 0.1867
0.6 0.5997 0.0080 0.5997 0.0089 0.7985 0.5998 0.0130 0.3757 0.5990 0.0215 0.1376
0.7 0.6992 0.0071 0.6992 0.0079 0.8087 0.6997 0.0138 0.2630 0.6993 0.0227 0.0977
0.8 0.8001 0.0058 0.8001 0.0064 0.8343 0.8006 0.0146 0.1605 0.8002 0.0235 0.0618
0.9 0.8998 0.0041 0.8998 0.0044 0.8622 0.8999 0.0150 0.0734 0.8987 0.0244 0.0278

Simulation 1. The values of the model parameters are µ = 0 and σ = 1, with the autoregressive parameter φ ∈

{−0.9,−0.8, . . . , 0.8, 0.9}. In the simulation study, 1000 replicates are generated of n = 200 processes of length T = 50.
Results are summarised in Table 1. The numerical results in Table 1 and in the panel (a) of Fig. 1 suggest that φ̂HT and φ̂HW
do not have high efficiency as φ approaches 1: in particular, the asymptotic efficiency of φ̂HW tends to 0 for large values of
|φ|. In contrast, under the same model setting, there is only a modest loss of efficiency for the pairwise likelihood-based
estimator φ̂PL.

4.2. First order moving average models

The univariate moving average process of order 1, denoted by MA(1), is defined by

yt = µ+ αzt−1 + zt , (t = 1, . . . , T ), (16)

where |α| < 1 and z0, . . . , zT are independent Gaussian random variables with 0 mean and variance σ 2. Let θ = (σ 2, λ) =

(σ 2, α), where λ is represented by the scalar parameter α. Then the random variables y1, . . . , yT are jointly normal, each
having mean µ and variance σ 2(1 + α2). The variables yt and yt+k are independent for |k| > 1, while yt and yt+1
have covariance σ 2α (t = 1, . . . , T − 1). Hence, the covariance matrix σ 2Γ of Y = (y1, y2, . . . , yT ) has components
σ 2Γss = σ 2(1 + α2), σ 2Γst = σ 2α if |s − t| = 1, σ 2Γst = 0 otherwise.

As before, we consider the first order consecutive pairwise likelihood since the use of a higher order consecutive
pairwise likelihood is unrealistic due to the independence of yt and yt+k for k ≥ 2. For t = 1, . . . , T − 1, the pair (yt , yt+1)
has a bivariate Gaussian distribution, in which the two components both have mean µ and variance σ 2(1+α2), and have
covariance σ 2α.

Simulation 2. The values of the model parameters are µ = 0 and σ = 1, with the moving average parameter
α ∈ {−0.9,−0.8, . . . , 0.8, 0.9}. In the simulation study, 1000 replicates are generated of n = 200 processes of length
T = 50. Results are summarised in Table 2. The simulation shows that the total Hyvärinen estimator α̂HT achieves the
same efficiency as the MLE in the MA(1) model for values of the moving average parameter near 0; see Table 2 and panel
(b) of Fig. 1. However, the loss in efficiency of the total Hyvärinen estimator α̂HT is modest even when the absolute value of
the moving average parameter reaches 1. In contrast, the pairwise likelihood estimator α̂PL shows very poor performances
in terms of asymptotic relative efficiency: the ARE ranges from 1 to 0.1 as |α| increases.

4.3. Fractionally differenced white noise

The fractionally differenced white noise, ARFIMA(0, d, 0), model is defined by

(1 −Π )dyt = zt , with t = 1, . . . , T ,

where Π is the lag operator and d ∈ (0, 0.5), and z1, . . . , zT are independent Gaussian random variables with 0 mean
and variance σ 2. Let θ = (σ 2, λ) = (σ 2, d), where λ is represented by the scalar parameter d. Then the random variables
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Fig. 1. Asymptotic Relative Efficiency (ARE) of estimators for the AR(1) model (Panel (a)), for the MA(1) model (Panel (b)) and for the ARFIMA(0, d, 0)
model (Panel (c)).

y1, . . . , yT are jointly normal, with covariance matrix σ 2Γ whose components (see Hosking (1981)) are

σ 2Γij =
(−1)|k|σ 2Γ (1 − 2d)

Γ (|k| − d + 1)Γ (−|k| − d + 1)
(k = i − j) (17)

(where in the right-hand side of (17), Γ denotes the gamma function.)
As before, we consider the first order consecutive pairwise likelihood since no great improvement can be detected

by using a higher order consecutive pairwise likelihood: see the results of Davis and Yau (2011). For t = 1, . . . , T − 1,
the pair (yt , yt+1) has a bivariate Gaussian distribution, in which the two components both have mean µ and variance
σ 2Γ (1 − 2d)/Γ (1 − d)2, and have covariance −σ 2Γ (1 − 2d)/Γ (2 − d)Γ (−d).

Simulation 3. The values of the model parameters are µ = 0 and σ = 1, with the fractional parameter d ∈

{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. In the simulation study, 1000 replicates are generated of n = 100 processes of length
T = 50. Results are summarised in Table 3. Simulation 3 shows that the total Hyvärinen estimator d̂HT achieves the same
efficiency as the MLE in the ARFIMA(0, d, 0) model near 0 and near 0.3; see Table 3 and panel (c) of Fig. 1. The loss in
efficiency of the total Hyvärinen estimator d̂HT is very slight when d ∈ (0, 0.3). The efficiency of d̂HW is poor with ARE
values ranging from 0 to 0.45. For all the estimators considered the ARE is 0 when d ∈ (0.3, 0.5). The pairwise estimator
d̂PL performs better than d̂HW, however the values of ARE range from 0.6 to 0.96, reaching a maximum when d = 0.1,
with a major loss of efficiency with respect to the total Hyvärinen estimator.
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Table 2
Simulation 2. Estimated mean (Est.), asymptotic standard deviation (sd), and Asymptotic Relative Efficiency (ARE) of estimators of the parameter α
in the MA(1) model, for n = 200, T = 50, and varying values of α. We denote by α̂ the maximum likelihood estimate, by α̂PL the pairwise likelihood
estimate, and by α̂HT and α̂HW the total and the matrix Hyvärinen estimates, respectively.
α α̂ α̂PL α̂HT α̂HW

Est. sd Est. sd ARE Est. sd ARE Est. sd ARE

−0.9 −0.8998 0.0055 −0.8996 0.0167 0.1064 −0.8999 0.0064 0.7208 −0.8993 0.0074 0.5471
−0.8 −0.7997 0.0066 −0.7996 0.0176 0.1390 −0.7998 0.0075 0.7566 −0.7992 0.0091 0.5177
−0.7 −0.6997 0.0075 −0.6996 0.0183 0.1692 −0.6997 0.0086 0.7583 −0.6993 0.0106 0.5020
−0.6 −0.6004 0.0083 −0.6005 0.0182 0.2080 −0.6007 0.0095 0.7553 −0.6003 0.0119 0.4878
−0.5 −0.5004 0.0089 −0.4999 0.0169 0.2757 −0.5007 0.0101 0.7646 −0.5002 0.0129 0.4743
−0.4 −0.4000 0.0093 −0.3997 0.0148 0.3984 −0.4003 0.0104 0.8038 −0.4001 0.0136 0.4713
−0.3 −0.3003 0.0097 −0.3000 0.0126 0.5905 −0.3006 0.0105 0.8527 −0.3006 0.0139 0.4838
−0.2 −0.2000 0.0099 −0.2002 0.0111 0.7926 −0.2001 0.0104 0.9119 −0.1999 0.0135 0.5408
−0.1 −0.1003 0.0101 −0.1004 0.0103 0.9456 −0.1004 0.0101 0.9882 −0.1006 0.0124 0.6557
0 0.0001 0.0101 0.0001 0.0101 1.0082 0.0001 0.0101 1.0101 0.0005 0.0117 0.7429
0.1 0.1000 0.0101 0.1000 0.0103 0.9526 0.1001 0.0101 0.9933 0.0997 0.0124 0.6554
0.2 0.2000 0.0099 0.2000 0.0111 0.7932 0.2000 0.0104 0.9171 0.1994 0.0135 0.5402
0.3 0.2994 0.0097 0.2996 0.0126 0.5853 0.2994 0.0105 0.8475 0.2992 0.0139 0.4835
0.4 0.4000 0.0093 0.4006 0.0148 0.3979 0.4000 0.0105 0.7938 0.3994 0.0137 0.4639
0.5 0.5002 0.0089 0.5000 0.0169 0.2760 0.5004 0.0101 0.7672 0.5000 0.0129 0.4721
0.6 0.6001 0.0083 0.6000 0.0182 0.2075 0.6001 0.0095 0.7643 0.5993 0.0119 0.4850
0.7 0.6999 0.0075 0.6997 0.0182 0.1707 0.6999 0.0086 0.7682 0.6996 0.0106 0.5047
0.8 0.7999 0.0066 0.7997 0.0175 0.1402 0.8000 0.0075 0.7639 0.7995 0.0091 0.5209
0.9 0.8999 0.0055 0.8997 0.0167 0.1072 0.9000 0.0064 0.7300 0.8995 0.0074 0.5504

Table 3
Simulation 3. Estimated mean (Est.), asymptotic standard deviation (sd), and Asymptotic Relative Efficiency (ARE) of
estimators of the parameter d in the ARFIMA model, for n = 200, T = 50, and varying values of d. We denote by d̂ the
maximum likelihood estimate, by d̂PL the pairwise likelihood estimate, and by d̂HT and d̂HW the total and the matrix
Hyvärinen estimates, respectively.
d d̂ d̂PL d̂HT d̂HW

Est. sd Est. sd ARE Est. sd ARE Est. sd ARE

0.01 0.0121 0.0059 0.0101 0.007 0.7015 0.0101 0.0059 0.9866 0.0105 0.0087 0.4537
0.05 0.0526 0.0062 0.0499 0.0067 0.8585 0.0499 0.0065 0.9257 0.0504 0.0117 0.2827
0.1 0.1034 0.006 0.0997 0.0062 0.9593 0.1 0.0067 0.8241 0.1001 0.0128 0.223
0.15 0.1545 0.0052 0.15 0.0054 0.9258 0.1503 0.0058 0.8226 0.1497 0.0108 0.2349
0.20 0.2041 0.0038 0.1999 0.0043 0.8061 0.2 0.0041 0.8809 0.1997 0.0077 0.2475
0.25 0.2587 0.0021 0.2499 0.0026 0.6173 0.2499 0.0021 0.9339 0.2495 0.0038 0.3005
0.3 0.3032 0 0.3 0.0009 0 0.3 0.0001 0 0.3 0.0043 0

4.4. Discussion

It should be noted that for the MA(1) and the ARFIMA(0, d, 0) models no analytic expressions for the derivatives of
(7) are available. The standard deviations of φ̂HT, α̂HT and d̂HT are empirical estimates of the square root of the Godambe
information function, which is obtained by compounding the empirical estimates of V and M . The standard deviations
of the pairwise maximum likelihood estimator and the maximum likelihood estimator are obtained using the analytic
expressions (see Pace and Salvan (1997)) for the AR(1) model and the empirical counterparts for the MA(1) model.
Numerical evaluation of scoring rule derivatives has been carried out using the R package numDeriv; see Gilbert and
Varadhan (2012).

Results from simulations reveal that the estimators considered produce estimates very close to the true values of the
parameters.

Results not reported here show that, as expected, the differences in terms of bias among the estimators fade out as the
length of the time series increases. Panels (a), (b) and (c) of Fig. 1 depict the asymptotic relative efficiency as a function
of φ for the AR(1) model, as a function of α for the MA(1) model, and as a function of d for the ARFIMA(0, d, 0) model,
respectively.

All the results of the simulation studies are in agreement with the findings of Davis and Yau (2011) who focus on
pairwise likelihood-based methods for linear time series.

5. Experiments on a single time series

5.1. Numerical assessment

We consider also a simulation study designed to assess and compare the behaviours of the estimators obtained by using
the total Hyvärinen estimators in the case of a single time series with T increasing to ∞. We investigate the case of a

133



S. Columbu, V. Mameli, M. Musio et al. Journal of Statistical Planning and Inference 212 (2021) 126–140

Table 4
Simulation 4. Estimated mean (Est.), asymptotic standard deviation (sd), and 95% Empirical Coverage Probabilities (ECP) of the parameters α and σ
in the MA(1) model, for T = 400, varying values of α and σ = 1. We denote by α̂ and σ̂ the maximum likelihood estimates, by α̂PL and σ̂PL the
pairwise likelihood estimates, and by α̂HT and σ̂HT the total Hyvärinen estimates.
α Estimates of α Estimates of σ

α̂ α̂PL α̂HT σ̂ σ̂PL σ̂HT

Est. sd ECP Est. sd ECP Est. sd ECP Est. sd ECP Est. sd ECP Est. sd ECP

−0.9 −0.902 0.023 0.92 −0.856 0.128 0.40 −0.913 0.032 0.84 0.998 0.035 0.95 1.013 0.072 0.76 1.074 0.143 0.92
−0.8 −0.799 0.035 0.96 −0.819 0.192 0.53 −0.815 0.042 0.91 0.999 0.035 0.95 0.983 0.099 0.73 1.058 0.109 0.96
−0.7 −0.696 0.037 0.94 −0.746 0.144 0.71 −0.710 0.068 0.98 0.998 0.035 0.95 0.972 0.070 0.78 1.023 0.121 0.99
−0.6 −0.594 0.041 0.91 −0.630 0.135 0.89 −0.602 0.051 0.96 0.998 0.035 0.95 0.981 0.061 0.91 1.005 0.046 0.93
−0.5 −0.493 0.044 0.89 −0.509 0.09 0.93 −0.498 0.051 0.95 0.998 0.035 0.95 0.991 0.043 0.95 1.002 0.040 0.94
−0.4 −0.392 0.046 0.87 −0.402 0.069 0.93 −0.395 0.053 0.9 0.998 0.035 0.95 0.994 0.037 0.94 1 0.04 0.94
−0.3 −0.292 0.048 0.88 −0.298 0.06 0.92 −0.293 0.051 0.9 0.998 0.035 0.95 0.996 0.036 0.95 0.998 0.036 0.94
−0.2 −0.192 0.049 0.9 −0.196 0.054 0.92 −0.193 0.050 0.9 0.998 0.035 0.95 0.997 0.035 0.95 0.998 0.035 0.95
−0.1 −0.093 0.045 0.9 −0.095 0.051 0.92 −0.093 0.05 0.9 0.998 0.036 0.95 0.998 0.0.035 0.95 0.998 0.035 0.95
0 0.006 0.049 0.90 0.007 0.050 0.91 0.005 0.049 0.90 0.998 0.035 0.95 0.998 0.035 0.95 0.998 0.035 0.95
0.1 0.104 0.049 0.90 0.108 0.051 0.90 0.103 0.049 0.90 0.998 0.035 0.95 0.998 0.035 0.95 0.998 0.034 0.95
0.2 0.203 0.048 0.92 0.211 0.054 0.90 0.201 0.050 0.95 0.998 0.035 0.95 0.997 0.035 0.95 0.997 0.035 0.95
0.3 0.302 0.047 0.93 0.314 0.060 0.92 0.300 0.051 0.96 0.998 0.035 0.95 0.995 0.036 0.95 0.997 0.036 0.97
0.4 0.401 0.045 0.93 0.95 0.072 0.95 0.399 0.049 0.98 0.998 0.035 0.95 0.992 0.038 0.95 0.996 0.036 0.96
0.5 0.4998 0.043 0.94 0.534 0.093 0.93 0.498 0.049 0.97 0.998 0.035 0.95 0.986 0.044 0.94 0.996 0.039 0.96
0.6 0.599 0.04 0.96 0.661 0.145 0.86 0.598 0.05 0.97 0.998 0.035 0.95 0.972 0.066 0.89 0.997 0.044 0.96
0.7 0.698 0.036 0.97 0.777 0.152 0.64 0.697 0.055 1.00 0.998 0.035 0.95 0.963 0.076 0.74 0.997 0.072 0.98
0.8 0.797 0.030 0.97 0.843 0.107 0.43 0.798 0.040 0.93 0.998 0.035 0.95 0.976 0.065 0.72 1.006 0.078 0.91
0.9 0.898 0.022 0.97 0.873 0.113 0.36 0.908 0.037 0.84 0.998 0.035 0.95 1.009 0.066 0.79 1.12 0.142 0.82

MA(1) model. For comparison, as before, we will consider also the full and pairwise maximum likelihood estimators (Davis
and Yau, 2011). Moreover, we suppose that the parameter µ is known and equal to 0 and that the two parameters σ and
α are unknown. We consider the moving average parameter α ∈ {−0.9,−0.8, . . . , 0.8, 0.9}. In the simulation study, 100
replicates of a single process of length T = 400 are generated. Results are summarised in Table 4. Moreover, Table 4
shows the Empirical Coverage Probability of the 95% confidence intervals based on the full and the pairwise likelihood
methods, and the Hyvärinen scoring rule. The behaviour of the Empirical Coverage Probability is also summarised in
Fig. 2. The simulation shows that the total Hyvärinen estimator α̂HT performs similarly to the MLE in the MA(1) model
for values of the moving average parameter near 0, the first one tends to show a slightly higher standard deviation; see
Table 4. The gap in terms of standard deviation increases when the absolute value of the moving average parameter
approaches 1. When looking at the coverage probability, we notice, see Fig. 2 panel (a), that for both estimators the
nominal value is never reached in the central part of the distribution of α, whereas, sometimes, when approaching the
tails, the Hyvärinen estimator tends to outperform the maximum likelihood one. At this regard, it is important to recall
that asymptotic properties of the estimators considered are derived to first order. In contrast, the pairwise likelihood
estimator α̂PL shows very poor performances in terms of standard deviation, coverage probability and bias as |α| increases.
The situation is different if we focus on the estimates of the variability parameter σ . In this case all the three estimators
perform well when α ∈ [−0.5, 0.5]. The scenario worsens in the tails. Considering the pairwise estimator, as shown in
Fig. 2(b), we observe a dramatic decrease in terms of coverage probability. If we focus on our proposal we can note that the
standard deviation of the variability parameter σ increases as the moving average parameter approaches the boundaries
of the parameter space.

For both parameters, the Hyvärinen scoring rule overestimates the real coverage, on average, it produces longer
confidence intervals, especially when |α| approaches 1. The confidence intervals based on the Hyvärinen scoring rule
exhibit more reliable coverage than the confidence intervals obtained from the pairwise likelihood.

5.2. Real data example

In order to illustrate the behaviour of the Hyvärinen scoring rule in the context of the linear Gaussian time series
models, we consider the well known Box & Jenkins AirPassengers time series dataset (Box et al., 1976) available on
the R base package. The dataset concerns the number of international air travellers in the US between 1949 and 1960.
This data set consists of T = 144 observations. The data are illustrated in Fig. 3(a): this figure suggests that there is a
linear increasing trend of the series and a seasonal component of period 12: in fact, as is well known, there is an increase
in the number of travellers during the summer periods. This series is clearly non-stationary, we therefore transform it
to achieve stationarity. In order to remove both components of trend and seasonality, we consider a first and a seasonal
differencing (see Fig. 3(b)). As suggested by the correlogram of the transformed series in Fig. 3(c), we estimate a moving
average model of order 1. We fit the model by the full likelihood and the Hyvärinen scoring rule. The estimates of the
parameters µ, α and σ based on the full likelihood and the Hyvärinen scoring rule are reported in Table 5. Moreover, 95%
confidence intervals for µ, α and σ are reported in Table 6. Tables 5 and 6 reveal that the two methods perform similarly,

134



S. Columbu, V. Mameli, M. Musio et al. Journal of Statistical Planning and Inference 212 (2021) 126–140

Fig. 2. Empirical Coverage Probabilities (ECP) of the 95% confidence intervals for the MA(1), single series, with T = 400 for different values of α
with σ = 1. Panel (a) reports empirical coverages for the estimates of α, panel (b) coverages for the estimates of σ for various values of α.

Table 5
Estimates of the parameters (µ, α and σ ) based on the full likelihood and the Hyvärinen
scoring rule.

µ α σ

Likelihood 0.1934 −0.3196 11.712
Hyvärinen 0.2126 −0.3426 11.806

Table 6
95% confidence intervals for the three parameters (µ, φ and σ ) based on the full likelihood
and the Hyvärinen scoring rule.

µ α σ

Likelihood (−1.18,1.56) (−0.49,−0.15) (10.29,13.13)
Hyvärinen (−1.59,2.02) (−0.58,−0.10) (9.99,13.62)

although the confidence intervals obtained with the Hyvärinen scoring rule are wider than the one obtained with the
likelihood method confirming the results of the simulation studies.
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Fig. 3. AirPassengers time series description. Panel (a) represents the original time series, panel (b) the time series with first and seasonal
differences, panel (c) reports the correlogram of the differenced AirPassengers time series.

6. Conclusions

In this paper we have considered the use of Hyvärinen scoring rules in linear time series estimation under different
conditions. We have established the consistency of the Hyvärinen scoring rule estimator for a single times series under
some general conditions and its asymptotic normality in an ARMA time series context.

We have investigated, for n independent time series, the performances of two estimators based on the Hyvärinen
scoring rule, which can be regarded as a surrogate for a complex full likelihood. The properties of the estimators found
using this scoring rule are compared with the full and pairwise maximum likelihood estimators. Three simple models
are discussed: the first a stationary first order autoregressive model, the second a first order moving average model and
the third a fractionally differenced white noise. In the first case the total Hyvärinen method leads to poor estimators;
in contrast, in the second and third this method produces good estimators. The opposite behaviour is observed for the
pairwise estimators. For the moving average process and the fractionally differenced white noise, there can be a large
gain in efficiency, as compared to the pairwise likelihood method, by using the total or the matrix Hyvärinen scoring rule
estimators. For the autoregressive model, in contrast, the total Hyvärinen score methods suffer a loss of efficiency as |φ|

approaches 1.
The Hyvärinen and the pairwise estimators may work well for many time series models, but it is clear that the loss

of efficiency incurred in using the Hyvärinen scoring rules or pairwise likelihood can be substantial. This depends on the
underlying model (for both short-memory and long-memory), and no overall general principle has emerged that might
offer guidance for cases not yet considered.
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In all examples, results not reported here show that there is a great improvement in the performances of the matrix
Hyvärinen estimator based on the Wishart model as the ratio T/n becomes negligible. The matrix Hyvärinen estimator has
the apparent advantage over the other estimators (apart from full maximum likelihood) of being based on the sufficient
statistic of the model; nevertheless the total Hyvärinen estimator shows good performance in terms of efficiency.

Although examples illustrated in Section 4 focus on simple linear time series models, they are classical examples of
application of full and pairwise likelihood based methods in this framework (Davis and Yau, 2011), which highlight that
the total Hyvärinen score may offer a viable and useful approach to estimation in linear time series models.

A promising future line of research appears to be the investigation of the Hyvärinen scoring rule for more complex
models, where the evaluation of the exact full likelihood may be difficult or even impossible, entailing multidimensional
integration of the full joint density for each value of the parameter, which is likely to occur for instance in spatial statistics
and non linear time series frameworks.
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Appendix

Proof of Theorem 3.1. Let θ = (σ 2,λ) and let Eθ denote the expectation with respect to the probability distribution
for (yt ) defined in Eq. (6). Let θ0 = (σ 2

0 ,λ0) denote the true parameter value. From the ergodicity of (yt ), it follows that
H(YT , θ) is ergodic and stationary and therefore

1
T
H(YT , θ)

a.s.
−→ H(θ0, θ) := Eθ0H(y1, θ). (18)

Since the Hyvärinen score is strictly proper we have

H(θ0, θ) ≥ H(θ0, θ0) (19)

with equality if and only if θ = θ0, by the identifiability condition (8). The approach used to derive the consistency of
the total Hyvärinen estimator now follows the same general argument used to derive the consistency of the pairwise
likelihood estimator in Davis and Yau (2011).

In particular, the compactness of Λ and the inequality (19) are used as devices for proving the claim.

Proof of Theorem 3.2. Define the sample gradient and Hessian as

JT (θ) := −
1
T

T∑
i=1

∇θ(bii) +
1
T

T∑
i,j,t=1

bit∇θ(bij)yjyt

and

KT (θ) := −
1
T

T∑
i=1

∂2bii
∂θ∂θT +

1
T

T∑
i,j,t=1

∂bij
∂θ

(
∂bit
∂θ

)T

yjyt +
1
T

T∑
i,j,t=1

∂2bij
∂θ∂θT bityjyt .

Using a Taylor expansion of JT (θ) around θ0 and the consistency of Hyvärinen scoring rule estimator, it can be proved
that, for some θ+

T between θ0 and θ̂T ,

JT (θ0) = KT (θ+

T )
√
T (θ0 − θ̂T ). (20)

The asymptotic distribution of θ̂T can be derived by exploiting the asymptotic properties of KT (θ+

T ) and JT (θ0), together
with the fact that θ+

T
a.s.
−→ θ0.
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Writing

∂

∂θ0
=

∂

∂θ

⏐⏐⏐⏐
θ=θ0

Γ = Γ (λ0)

it can be shown that

Eθ0 (KT ) =
1
T

T∑
i,j,t=1

∂bij
∂θ0

(
∂bit
∂θ0

)T

σ 2
0Γjt

T→∞
−−−→ M(θ0). (21)

The expectation in (21) can be rewritten as

Eθ0 (KT ) =
1
T

T∑
i,j,t=1

∂bij
∂θ0

(
∂bit
∂θ0

)T

σ 2
0Γjt =

1
T

T∑
i,j,t=1

∂

∂θ0

γ−1(i − j)
σ 2
0

(
∂

∂θ0

γ−1(i − t)
σ 2
0

)T

σ 2
0 γ (j − t),

where γ (j− t) = Γjt and γ−1(i− j) = Γ ij. Let k = i− j and r = j− t . Without lose of generality, we assume that γ (h) = 0
if |h| > T − 1. Then the previous expression and consequently the first term in (24) simplifies to

1
T

T∑
k,r=−T

(T − max{|k|, |k + r|, |r|})
∂

∂θ0

γ−1(k)
σ 2
0

(
∂γ−1(k + r)

∂θ0

)T

γ (r). (22)

The absolute summability of the auto-covariance and the duality properties of autocorrelation and of its inverse for
causal invertible autoregressive-moving average processes (see Cleveland (1972), Chatfield (1979) and Hosking (1980))
guarantee the following holds:

lim
T→∞

T∑
r,k=−T

(T − max{|k|, |k + r|, |r|})
T

×
∂

∂θ0

γ−1(k)
σ 2
0

(
∂γ−1(k + r)

∂θ0

)T

γ (r)

=

∞∑
r,k=−∞

∂

∂θ0

γ−1(k)
σ 2
0

(
∂γ−1(k + r)

∂θ0

)T

γ (r)

=

∞∑
r,k=−∞

M(r, k, θ0) = M(θ0). (23)

In order to calculate the asymptotic distribution of θ̂T we need to calculate the expectation and the variance of
JT (θ0). The calculation of the expectation of JT (θ0) follows easily from the unbiasedness of the scoring rule estimating
equation (Dawid and Lauritzen, 2005). However, calculation of the variance of JT (θ0) is challenging due to the presence
of the non deterministic term

Bi =

T∑
j,t=1

∂bij
∂θ0

bityjyt .

It relies on the following calculation:

var(JT (θ0)) =
1
T

T∑
i=1

var(Bi)

=
1
T

T∑
i,j,t,ℓ,h=1

∂bij
∂θ0

bit

(
∂biℓ
∂θ0

)T

bihcov(yjyt , yℓyh)

=
1
T

T∑
i,j,t,ℓ,h=1

∂bij
∂θ0

Γ it

σ 2
0

(
∂biℓ
∂θ0

)T
Γ ih

σ 2
0

{cov(yj, yℓ)cov(yt , yh)

+ cov(yj, yh)cov(yt , yℓ) + cum4(yj, yt , yℓ, yh)}

=
1
T

T∑
i,j,t,ℓ,h=1

Ajℓth + Cjhtℓ + Ditℓh, (24)
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where

Ajℓth =
∂bij
∂θ0

Γ it

σ 2
0

(
∂biℓ
∂θ0

)T
Γ ih

σ 2
0
cov(yj, yℓ)cov(yt , yh)

Cjhtℓ =
∂bij
∂θ0

Γ it

σ 2
0

(
∂biℓ
∂θ0

)T
Γ ih

σ 2
0
cov(yj, yh)cov(yt , yℓ)

Ditℓh =
∂bij
∂θ0

Γ it

σ 2
0

(
∂biℓ
∂θ0

)T
Γ ih

σ 2
0
cum4(yj, yt , yℓ, yh).

The first term in (24) simplifies as

T∑
i,j,t,ℓ,h=1

Ajℓth =

T∑
i,j,t,ℓ,h=1

∂bij
∂θ0

Γ ii
(
∂biℓ
∂θ0

)T

Γjℓ. (25)

The second term simplifies as

T∑
i,j,t,ℓ,h=1

Cjhtℓ = T
(
∂

∂θ0

γ−1(0)
σ 2
0

)(
∂

∂θ0

γ−1(0)
σ 2
0

)T

. (26)

The third term in (24), which involves the fourth cumulant, vanishes as for Gaussian linear processes all the cumulant
functions cumk for k > 3 are identically null Brockwell and Davis (1991). Hence convergence of var(JT (θ0)) is evaluated
by considering only the first non-constant term (25).

Eq. (25) can be rewritten as

T∑
i,j,t,ℓ,h=1

Ajℓth =

T∑
i,j,ℓ=1

∂

∂θ0

γ−1(i − j)
σ 2
0

γ−1(0)
(
∂

∂θ0

γ−1(i − ℓ)
σ 2
0

)T

γ (j − ℓ),

applying the same substitutions and conditions used in (22) we obtain

T∑
k,r=−T

(T − max{|k|, |k + r|, |r|})
∂

∂θ0

γ−1(k)
σ 2
0

γ−1(0)
(
∂

∂θ0

γ−1(k + r)
σ 2
0

)T

γ (r).

Taking limits we have then

lim
T→∞

T∑
r,k=−T

(T − max{|k|, |k + r|, |r|})
T

×
∂

∂θ0

γ−1(k)
σ 2
0

γ−1(0)
(
∂

∂θ0

γ−1(k + r)
σ 2
0

)T

γ (r)

=

∞∑
r,k=−∞

∂

∂θ0

γ−1(k)
σ 2
0

γ−1(0)
(
∂

∂θ0

γ−1(k + r)
σ 2
0

)T

γ (r). (27)

Combining Eqs. (26) and (27) we obtain

V (θ0) =

(
∂

∂θ0

γ−1(0)
σ 2
0

)(
∂

∂θ0

γ−1(0)
σ 2
0

)T

+

∞∑
r,k=−∞

∂

∂θ0

γ−1(k)
σ 2
0

γ−1(0)
(
∂γ−1(k + r)

∂θ0

)T

γ (r),

and then

var(JT (θ0)) −→ V (θ0). (28)

Since J(θ0) depends on the Bi’s, which involve the sample auto-covariance, it follows from the asymptotic normality
of the sample auto-covariance of ARMA processes that JT (θ0) is also asymptotically normal with zero mean and variance
V . From (20) and (28) we obtain the asymptotic normality of θ̂T :

√
T (̂θT − θ0)

D
−→ Nm−1

(
0,M(θ0)−1V (θ0)M⊤(θ0)−1) .
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