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Abstract 

Objective This work aimed to derive a machine learning (ML) model for the differentiation between ischemic car-
diomyopathy (ICM) and non-ischemic cardiomyopathy (NICM) on non-contrast cardiovascular magnetic resonance 
(CMR).

Methods This retrospective study evaluated CMR scans of 107 consecutive patients (49 ICM, 58 NICM), includ-
ing atrial and ventricular strain parameters. We used these data to compare an explainable tree-based gradient boost-
ing additive model with four traditional ML models for the differentiation of ICM and NICM. The models were trained 
and internally validated with repeated cross-validation according to discrimination and calibration. Furthermore, we 
examined important variables for distinguishing between ICM and NICM.

Results A total of 107 patients and 38 variables were available for the analysis. Of those, 49 were ICM (34 males, mean 
age 60 ± 9 years) and 58 patients were NICM (38 males, mean age 56 ± 19 years). After 10 repetitions of the tenfold 
cross-validation, the proposed model achieved the highest area under curve (0.82, 95% CI [0.47–1.00]) and lowest 
Brier score (0.19, 95% CI [0.13–0.27]), showing competitive diagnostic accuracy and calibration. At the Youden’s index, 
sensitivity was 0.72 (95% CI [0.68–0.76]), the highest of all. Analysis of predictions revealed that both atrial and ven-
tricular strain CMR parameters were important for the identification of ICM patients.

Conclusion The current study demonstrated that using a ML model, multi chamber myocardial strain, and function 
on non-contrast CMR parameters enables the discrimination between ICM and NICM with competitive diagnostic 
accuracy.

Clinical relevance statement A machine learning model based on non-contrast cardiovascular magnetic resonance 
parameters may discriminate between ischemic and non-ischemic cardiomyopathy enabling wider access to cardio-
vascular magnetic resonance examinations with lower costs and faster imaging acquisition.

Key Points 

• The exponential growth in cardiovascular magnetic resonance examinations may require faster and more cost-effective 
protocols.

• Artificial intelligence models can be utilized to distinguish between ischemic and non-ischemic etiologies.
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• Machine learning using non-contrast CMR parameters can effectively distinguish between ischemic and non-ischemic 
cardiomyopathies.

Keywords Cine magnetic resonance imaging, Artificial intelligence, Machine learning, Cardiomyopathy, 
Cardiovascular diseases

Graphical Abstract

Introduction
Cardiovascular diseases (CVDs) are a major contribu-
tor to premature death, with a rising trend due to popu-
lation growth and aging [1, 2]. Among CVDs, ischemic 
cardiomyopathy (ICM) is the most prevalent [2], while 
non-ischemic cardiomyopathy (NICM) represents a het-
erogeneous group of diseases that can also lead to heart 
failure, arrhythmias, and death [3]. Distinguishing ICM 
from NICM is important prognostically and therapeuti-
cally but has generally depended on invasive diagnostic 
techniques such as selective coronary arteriography.

Cardiovascular magnetic resonance (CMR) as reflected 
in the ESC guidelines [4–7] is a well-validated tool to 
detect myocardial fibrosis and scar allowing to detection 
of the specific pattern of late gadolinium enhancement 
(LGE) corresponding to ICM and different NICM [8].

Due to the exponential growth in CMR examinations, 
the wider availability of sustainable, faster, and more 
cost-effective CMR protocol is expected to unquestion-
ably yield significant advantages in real-life clinical prac-
tice. In addition, cardiac symptoms such as orthopnea 

may limit patient tolerability of CMR examinations, and 
some patients may not be eligible for contrast media 
administration due to concomitant renal disease.

In recent times, the field of non-contrast CMR exami-
nation has seen a significant emergence facilitated by arti-
ficial intelligence (AI) models, yielding promising results 
[9]. A subset of AI, namely machine learning (ML), may 
overcome the necessity of contrast media administration, 
expanding the clinical applicability of CMR. The ML-based 
models can employ hand-crafted features from non-con-
trast cine-CMR to discriminate ICM from NICM.

In particular, ML-based models have already shown 
utility in assessing myocardial scar location and exten-
sion [10–12], distinguishing chronic from subacute ICM 
[13], and characterizing different patterns of cardiomyo-
pathy [14, 15]. Previous AI-based cine-CMR research 
was mainly focused on the application of using radiomics 
analysis which had its intrinsic limitations, namely being 
time-consuming, less reproducible, lacking standardiza-
tion, and prone to mistakes in interpreting the results 
[16]. To overcome these limitations, the current study 

–
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investigated well-validated cardiac volumes and func-
tions as well as atrial and ventricular strain analysis.

This work aimed to derive a ML model for the differen-
tiation of ischemic and non-ischemic cardiomyopathies 
on cine-CMR without contrast.

Material and method
Study population
The current study was approved by the Institutional 
Review Board and informed consent was waived owing 
to the retrospective nature of the study.

This work involved 240 consecutive patients with 
reduced left ventricle (LV) ejection fraction who under-
went CMR examinations at our institution for viability 
evaluation and the evaluation of cardiomyopathy etiology 
between March 3, 2017, and August 7, 2021.

The diagnosis of ischemic etiologies was based on the 
presence of significant coronary artery disease with more 
than 50% stenosis on coronary angiography and/or his-
tory of previous myocardial infarction or revasculariza-
tion. The diagnosis of NICM was based on the presence 
of LV dysfunction (LV ejection fraction < 50%) in the 

absence of prior myocardial infarction or obstructive 
stenoses on coronary arteriography.

CMR examinations that were incomplete or not evalu-
able due to motion or arrhythmia artifacts (n = 40) were 
excluded as well as patients with congenital heart disease 
(n = 25) and structural heart disease (n = 40). In addi-
tion, 28 cases were also excluded due to inadequate strain 
analysis, resulting from issues such as poor angle plane, 
ventricular wall not being fully visible, or low image qual-
ity in cine-CMR images.

After applying inclusion and exclusion criteria, 107 
patients including 49 ICM and 58 NICM were included. 
A flowchart demonstrating the application of inclusion 
and exclusion criteria is provided in Fig. 1.

CMR acquisition
CMR scans were performed at 4.1 ± 2.6 days (median = 1 day, 
range = 1–10 days) after admission to the hospital by using 
a Philips Achieva dStream 1.5-T scanner system (Philips 
Healthcare). Anterior coil arrays were used. All cine-images 
were acquired using a balanced steady-state free precession 
and retrospective gating during an expiratory breath-hold 

Fig. 1 Patient flowchart. Schematic of inclusion and exclusion criteria for this study
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manoeuvres (TE 1.7  ms; TR 3.4  ms/flip angle 45°, section 
thickness = 8 mm) in both long-axis (two-, three-, and four-
chamber view) as well as short-axis plane with whole ven-
tricular coverage from base to apex.

CMR image post‑processing
We used the commercially available software Circle 
CVI42 (CVI42, Circle Cardiovascular Imaging Inc.) for 
cardiac MRI feature tracking (CMR-FT) data analysis. 
Offline CMR-FT analyses were conducted for evaluation 
of peak global longitudinal strain (LS), global radial strain 
(RS), and global circumferential strain (CS) in a 16-seg-
ment software-generated 2D model. On all images, the 
epi- and endocardial borders were traced in end-diastole. 
After that, an automatic computation was triggered, by 
which the applied software algorithm automatically out-
lined the border throughout the cardiac cycle.

LA endocardial borders were manually traced on long-
axis view of the cine images when the atrium was at its 
minimum volume. In particular, the four-, three-, and two-
chamber views were used to derive LA longitudinal strain. 
LA appendage and pulmonary veins were excluded from 
segmentation. After manual segmentation, the software 
automatically tracked the myocardial borders throughout 
the entire cardiac cycle. The quality of the tracking and 
contouring was visually validated and manually corrected 
by a radiologist with 4 years of experience in cardiac imag-
ing. There are three peaks in the strain curve, including 
reservoir, conduit, and booster strain. Accordingly, their 
corresponding strain rate (SR) parameters were included.

Machine learning
Forty-one quantitative CMR-derived features of atrial 
strain (e.g., reservoir, conduit, booster), ventricular strain 
(e.g., longitudinal, radial, and circumferential strain of the 
ventricles), and ventricular function (e.g., ejection fraction, 
stroke volume) along with age, gender, and body surface 
area were available for feature selection and model build-
ing (see Supplemental Table 2 for all variables used in the 
analysis). Figure  2A shows an overview of the ML analy-
sis. Briefly, it involved automated feature selection by Gini 
impurity reduction, model building using a gradient boost-
ing generalized additive model (GB-GAM) and four tra-
ditional ML algorithms, probability calibration, and 10 
repetitions of the tenfold stratified cross-validation (CV) 
for the entire process. No data were missing, and no pre-
processing was applied to the data prior to model building.

Variable selection
We used the mean decrease in Gini impurity method 
on all available features. We retained only features 

showing a v score at least 1.25 times greater than the 
average score (see Supplemental Methods for more 
details).

Model definition
The GB-GAM algorithm was used to distinguish 
between ICM and NICM patients. This algorithm learns 
the relationships between each feature and the outcome 
separately using gradient boosting and combines them to 
produce a subject-level score that in this study is the log-
odds of ICM. When predicting unseen patients, every 
feature value is used to index the corresponding learned 
feature functions to obtain a partial contribution. Then, 
these partial contributions are summed together to 
obtain the final predicted log-odds of ICM.

We compared its performance with four traditional 
ML algorithms, namely random forest (RF), support 
vector machines (SVM), k-nearest neighbors (KNN), 
and logistic regression (LR) (see Supplemental Meth-
ods for brief explanations). We refrained from tun-
ing hyperparameters due to the small sample size and 
opted for settings derived from previous experiments 
(refer to Supplemental Methods for detailed hyperpa-
rameter values used for training).

Probability calibration
Predicted probabilities were calibrated using an iso-
tonic regression approach to obtain more reliable esti-
mates of the true probabilities, thus improving the 
accuracy of downstream analysis [17] (see the Supple-
mental Methods for more details).

Model training and testing
The entire ML process was executed in a tenfold strati-
fied CV protocol with 10 repetitions, which allows for 
robust performance in small samples [18], and with a 
repeated leave-one-out procedure (see Supplemental 
Methods for detailed explanations).

Variable importance and explanations of case examples
Variables were ranked by the average absolute impact 
on ML-predicted scores across all training subjects and 
the ten most impactful were further analyzed. Finally, 
we showed two examples of patient-level explanations 
of ML predictions with feature-specific values and con-
tributions to the final prediction (more details in the 
Supplemental Methods).

Diagnostic performance evaluation
We assessed the discrimination abilities of the ML 
models using both receiver operating characteristic 
(ROC) analysis and precision-recall curves, with area 
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Fig. 2 Overview of machine learning (ML) analysis and performance of ML models. A ML analysis involved automated variable selection 
by mean decrease in Gini impurity, derivation of our gradient boosting generalized additive model and traditional ML models, model calibration 
through isotonic regression, and 10 repetitions of the tenfold stratified cross-validation. B Receiver-operating characteristic curves reporting 
performance of ML models in identifying patients with ischemic cardiomyopathy when mixed with patients with non-ischemic cardiomyopathy. 
CV indicates cross-validation; GB-GAM, gradient boosting generalized additive model; SVM, support vector machine; KNN, k-nearest neighbors; LR, 
logistic regression and RF, random forest
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under the curve (AUC) and average precision as the 
respective metrics. Calibration was assessed both qual-
itatively through actual vs. predicted plots, and quan-
titatively with Brier scores. Additionally, sensitivity, 
specificity, F1 score, and positive and negative predic-
tive value were calculated for the threshold that maxi-
mized the Youden’s J index (sensitivity + specificity − 1). 
Additional details on performance evaluation can be 
found in the Supplemental Methods section.

Statistical analysis
For continuous variables, which were reported as the 
mean ± SD or median (inter-quartile range), we used the 
Shapiro–Wilk’s test to assess normality of residuals. Sta-
tistical comparisons between continuous variables for 
the ICM and NICM groups were performed using the 
t-test when normality of residuals was confirmed, while 
the Mann–Whitney U test was utilized in cases where 
normality was not established [18]. For categorical vari-
ables, which were reported as frequency (percent), we 

used the χ2 test. The DeLong test [19] was used to com-
pare AUCs. Differences in sensitivities were tested with 
the McNemar test; the independent t-test was used to 
test for differences in average precisions and Brier scores. 
The outlined methodology was planned, and manuscript 
prepared according to the Checklist for Artificial Intel-
ligence in Medical Imaging (CLAIM, see Supplemental 
Table 1) [20]. A p value < 0.05 was considered statistically 
significant (more details in Supplemental Methods).

Results
Study population
The baseline characteristics and CMR parameters of 
included patients are summarized in Tables  1  and  2. 
In summary, this retrospective study enrolled a total 
of 107 patients. Of those, 49 were ICM (34 males, 
mean age 60 ± 9 years) and 58 patients were NICM (38 
males, mean age 56 ± 19 years). In patients with NICM, 
the etiologies included myocarditis (17, 29%), idi-
opathic dilated cardiomyopathy (20, 34%), Takotsubo 

Table 1 Demographics characteristics, clinical risk factors, medications, and clinical presentation of the study population. Results 
are shown as mean ± SD, median (inter-quartile range), or n (%) as appropriate. ICM ischemic cardiomyopathy, NICM non-ischemic 
cardiomyopathy, BSA body surface area, CAD coronary artery disease, ASA acetylsalicylic acid, ACE angiotensin-converting enzyme 
inhibitors, ARB angiotensin receptor blocker, PPI proton pump inhibitors

Total subjects ICM NICM p value

Demographics

  Gender (male) 35 (33.0%) 15 (31.0%) 20 (34.0%) .996

  Age (years) 61.0 (50.5–69.5) 60.0 (54.0–68.0) 63.0 (46.0–73.0) .873

  BSA  (m2) 1.8 ± 0.2 1.8 ± 0.2 1.8 ± 0.2 .289

Cardiovascular risk factors

  Hypertension 55 (51.0%) 28 (57.0%) 27 (47.0%) .879

  Dyslipidemia 29 (27.0%) 14 (29.0%) 15 (26.0%) .999

  Obesity 9 (8.0%) 6 (12.0%) 3 (5.0%) .786

  Smoke 33 (31.0%) 20 (41.0%) 13 (22.0%) .377

  Diabetes 16 (15.0%) 7 (14.0%) 9 (16.0%) 1.000

  Familiarity for CAD 16 (15.0%) 8 (16.0%) 8 (14.0%) .998

Medications

  ASA 39 (36.0%) 21 (43.0%) 18 (31.0%) .808

  Statins 29 (27.0%) 18 (37.0%) 11 (19.0%) .374

  Antiplatelet agent 23 (21.0%) 14 (29.0%) 9 (16.0%) .612

  Beta blocker 52 (49.0%) 22 (45.0%) 30 (52.0%) .974

  ACE-I/ARB 59 (55.0%) 27 (55.0%) 32 (55.0%) 1.000

  Diuretics 16 (15.0%) 5 (10.0%) 11 (19.0%) .808

  Metformin 13 (12.0%) 5 (10.0%) 8 (14.0%) .988

  Insulin 2 (2.0%) 0 (0.0%) 2 (3.0%) .787

  PPI 16 (15.0%) 10 (20.0%) 6 (10.0%) .715

Clinical presentation

  Chest pain 71 (66.0%) 40 (82.0%) 31 (53.0%) .051

  Heart failure 14 (13.0%) 2 (4.0%) 12 (21.0%) .168

  Arrhythmias 18 (17.0%) 7 (14.0%) 11 (19.0%) .981
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cardiomyopathy (12, 20%), amyloidosis (5, %), and 
arrhythmogenic cardiomyopathy (4, 8%).

Performance of ML with repeated tenfold testing
AUCs of ML models after 10 repetitions of the tenfold 
CV are shown in Fig. 2B. The proposed ML model (ML-
Ours) exhibited a higher AUC compared with all other 

ML models in identifying ICM patients (ML-Ours 0.82 
vs SVM 0.67, KNN 0.70, LR 0.73, RF 0.76, all p < 0.05). 
The average precision was also highest (ML-Ours 0.82 vs 
SVM 0.72, KNN 0.67, LR 0.78, RF 0.80, p < 0.05 vs SVM 
and KNN, p = 0.10 vs LR, p = 0.47 vs RF) (Supplemental 
Fig. 1). Using the threshold that maximizes the Youden’s 
J index as the optimal cutoff to classify patients as ICM, 

Table 2 CMR findings of the study population. Results are shown as mean ± SD, median (inter-quartile range) or n (%) as appropriate. 
ICM ischemic cardiomyopathy, NICM non-ischemic cardiomyopathy, LV left ventricle, EDV end-diastolic volume, ESV end-systolic 
volume, SV stroke volume, BSA body-surface area, RV right ventricle, RS radial strain, CS circumferential strain, LS longitudinal strain

Total subjects ICM NICM p value

CMR findings

  Reservoir (%) 20.0 (14.0 to 25.8) 19.8 (12.7 to 22.8) 21.4 (15.3 to 26.8) .185

  Reservoir rate (%) 0.9 (0.7 to 1.2) 0.8 (0.6 to 1.1) 0.9 (0.7 to 1.4) .164

  Conduit (%) 8.9 (4.8 to 12.6) 8.8 (4.4 to 11.8) 9.1 (5.7 to 14.8) .289

  Conduit rate (%)  − 0.9 (− 1.3 to − 0.6)  − 0.8 (− 1.1 to − 0.5)  − 0.9 (− 1.6 to − 0.7) .085

  Booster (%) 11.2 (7.8 to 14.0) 10.8 (7.8 to 12.7) 11.4 (7.6 to 14.1) .411

  Booster rate (%)  − 1.4 ± 0.6  − 1.4 ± 0.5  − 1.4 ± 0.6 .674

  LVEF (%) 43.8 (31.6 to 48.3) 37.1 (26.4 to 49.3) 44.5 (38.2 to 47.7) .091

  Heart rate (BPM) 68.0 (63.0 to 77.0) 70.0 (63.0 to 77.0) 67.0 (61.2 to 76.8) .485

  LV mass (g) 116.6 (91.3 to 145.9) 127.5 (106.2 to 146.5) 107.0 (89.2 to 133.3) .063

  LVEDV / BSA (mL/m2) 95.5 (79.9 to 126.0) 107.0 (83.2 to 130.9) 90.2 (78.8 to 116.7) .178

  LVESV / BSA (mL/m2) 50.6 (39.1 to 82.6) 58.6 (45.0 to 94.6) 45.2 (35.3 to 66.5) .013

  LVSV / BSA (mL/m2) 39.6 (32.7 to 49.8) 37.8 (28.4 to 47.5) 43.7 (36.4 to 50.5) .042

  LV mass / BSA (g/m2) 64.0 (54.0 to 77.7) 67.8 (61.4 to 76.4) 60.8 (51.8 to 77.8) .114

  RVEF (%) 52.4 (45.6 to 58.9) 53.8 (48.3 to 60.0) 50.3 (44.0 to 57.8) .168

  RVEDV / BSA (mL/m2) 67.2 (54.3 to 86.3) 63.9 (51.7 to 78.7) 72.5 (61.0 to 89.3) .018

  RVESV / BSA (mL/m2) 32.2 (24.4 to 43.3) 30.3 (23.4 to 36.0) 35.2 (26.8 to 49.0) .011

  RVSV / BSA (mL/m2) 35.5 ± 12.9 33.7 ± 13.1 37.0 ± 12.7 .199

  Basal LVRS (%) 21.9 (15.2 to 31.1) 17.9 (14.5 to 27.3) 24.1 (15.8 to 32.5) .043

  Basal LVCS (%)  − 14.4 ± 4.9  − 13.3 ± 4.8  − 15.2 ± 4.8 .044

  Basal LVLS (%)  − 10.9 (− 14.0 to − 8.3)  − 10.6 (− 12.4 to − 7.8)  − 11.9 (− 15.0 to − 8.8) .086

  Mid LVRS (%) 18.2 (10.6 to 25.1) 15.6 (9.0 to 23.0) 21.4 (13.4 to 25.7) .029

  Mid LVCS (%)  − 12.8 (− 16.1 to − 8.4)  − 11.4 (− 14.5 to − 7.2)  − 14.3 (− 16.4 to − 10.2) .018

  Mid LVLS (%)  − 12.2 (− 15.7 to − 7.6)  − 9.9 (− 14.3 to − 6.2)  − 13.8 (− 16.4 to − 10.4) .007

  Apical LVRS (%) 22.3 (12.6 to 36.0) 14.9 (8.2 to 29.9) 25.9 (19.9 to 36.5) .006

  Apical LVCS (%)  − 14.8 (− 20.1 to − 9.6)  − 11.0 (− 17.6 to − 6.4)  − 16.2 (− 20.2 to − 13.7) .004

  Apical LVLS (%)  − 11.2 (− 15.6 to − 8.0)  − 9.6 (− 13.7 to − 6.8)  − 12.7 (− 15.7 to − 9.5) .016

  Global LVRS (%) 20.5 (12.6 to 28.6) 16.0 (10.4 to 26.9) 23.5 (15.6 to 29.0) .024

  Global LVCS (%)  − 13.4 ± 5.0  − 12.1 ± 5.2  − 14.4 ± 4.5 .015

  Global LVLS (%)  − 11.4 (− 15.1 to − 7.8)  − 9.8 (− 13.4 to − 6.9)  − 12.9 (− 15.4 to − 8.9) .014

  Basal RVRS (%) 14.5 ± 6.7 14.0 ± 6.0 14.8 ± 7.2 .533

  Global RVCS (%)  − 9.0 (− 11.2 to − 6.2)  − 9.2 (− 10.7 to − 5.8)  − 8.5 (− 11.9 to − 6.3) .958

  Mid RVRS (%) 19.2 (12.4 to 24.6) 20.0 (13.6 to 26.1) 19.0 (11.8 to 24.3) .499

  Mid RVCS (%)  − 11.8 ± 4.6  − 11.9 ± 5.1  − 11.7 ± 4.2 .813

  Apical RVRS (%) 23.2 (15.8 to 35.0) 25.0 (16.0 to 37.0) 22.6 (15.3 to 33.4) .548

  Apical RVCS (%)  − 13.8 (− 18.7 to − 9.8)  − 15.1 (− 19.7 to − 9.6)  − 13.4 (− 18.1 to − 10.4) .528

  Global RVRS (%) 17.5 (12.2 to 22.2) 17.9 (12.6 to 21.5) 17.0 (11.1 to 23.1) .738

  Global RVCS (%)  − 10.7 ± 4.0  − 10.8 ± 4.0  − 10.6 ± 4.0 .810

  Global RVLS (%)  − 16.4 (− 19.0 to − 12.4)  − 16.5 (− 20.0 to − 13.2)  − 16.1 (− 18.3 to − 11.1) .224
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the proposed ML model showed the highest sensitivity 
(72%, 95% CI [68–76], p < 0.05 vs all) and a specificity of 
68% (95% CI [64–71]). At 90% sensitivity, the specific-
ity was 43% (95% CI [39–47]). Furthermore, ML-Ours 
exhibited the highest F1 score (0.69 [0.65–0.72]) and 
area under the precision-recall curve (0.82 [0.50–1.00]). 
For a comprehensive overview of performance scores 
from repeated tenfold testing, please see Supplemental 
Table 3. The current approach also showed good agree-
ment between ML-predicted and observed probabilities 
of ICM, as confirmed by the calibration plot (Fig. 3) and 
lowest Brier score (0.19, 95% CI [0.13–0.27], p < 0.05 vs 
SVM, KNN, and LR, p = 0.06 vs RF).

Performance of ML with repeated leave‑one‑out testing
After conducting 10 repetitions of the leave-one-out test-
ing, the proposed ML-Ours model demonstrated a con-
sistently higher AUC compared to all other traditional 
ML models (ML-Ours 0.73 vs. SVM 0.59, KNN 0.62, and 
RF 0.69, p < 0.05; LR 0.68, p = 0.07) (Supplemental Fig. 2). 
Although the improvements in AUC were not always 
statistically significant, the relative performance of the 
model remained consistent with the results obtained 
through repeated tenfold CV. Furthermore, the proposed 
approach exhibited the highest sensitivity (0.66 [0.61–
0.70]) and F1 score (0.64 [0.61–0.67]). For a compre-
hensive overview of performance scores from repeated 
leave-one-out testing, please see Supplemental Table 4.

Computational complexity
The experimental outcomes are achieved for the pro-
posed structure using Python version 3.9.6 on an Apple 
M1 Max with 10 cores, 64 GB RAM, 48 MB Cache, and 

integrated GPU under a 64-bit operating system. In the 
repeated tenfold CV setting, the outer CV scheme par-
titions the available 107 subjects in train and testing 
folds of approximately 96 and 11 subjects, respectively. 
Of these 96, 15% is reserved for calibration purposes, 
leading to approximately 82 subjects for training and 
15 for calibration. On average, feature selection over 
fivefold CV required 0.312 ± 0.02  s; training of the pro-
posed approach required 22.7 ± 11.9 s; model calibration 
required 0.0025 ± 0.0002 s; and prediction of 11 test sub-
jects required 0.0013 ± 0.0002 s (Supplemental Fig. 3A).

In the leave-one-out testing scheme, 106 of 107 are used 
for training and 1 is held out as test. Of these 106, 15% 
(approximately 16 subjects) is held out for model calibra-
tion, leading to 90 subjects for training. On average, feature 
selection over fivefold CV required 0.31 ± 0.02 s; training of 
the proposed approach required 14.3 ± 11.8  s; model cali-
bration required 0.0025 ± 0.0003 s; and prediction of 1 test 
subject required 0.0013 ± 0.0003 s (Supplemental Fig. 3B).

Important features for identifying ICM
Both atrial and ventricular strain CMR parameters were 
important for the identification of ICM patients (Fig. 4A). 
Overall, left ventricle RS and CS, left ventricle ejection 
fraction (LVEF), right ventricle LS, conduit rate, and 
reservoir rate had the most impact on identifying ICM 
patients. Detailed contribution to the prediction of ICM 
by the top ten important variables is shown in Fig. 4B to 
K.

Greater basal and apical CS, right ventricle LS, and 
conduit rate values had more significant impact in dis-
criminating ICM patients. Conversely, lower basal and 
apical RS, LVEF, and reservoir rate parameters had 
more impact on identifying ICM patients.

Fig. 3 Calibration of the proposed ML model. Calibration plot after 10 repetitions of the tenfold cross-validation reporting a comparison 
between observed frequencies (green bars) and ML-predicted probabilities (orange curve) for ischemic cardiomyopathy, grouped by deciles 
of predicted probabilities



Page 9 of 14Cau et al. European Radiology 

Individualized explanations of ML predictions
To understand better the decisional process of the pro-
posed ML model when classifying unseen patients, Fig. 5 
shows two case examples of patient-level explanations and 
feature-specific contributions to the predicted ML score. 

The first case (Fig.  5A) is a 60-year-old female with ICM 
correctly classified as ICM by the model. The second case is 
a 76-year-old female with NICM which was wrongly clas-
sified as ICM by the model (i.e., false positive). The x-axis 
reports the predicted probability of the patient having 

Fig. 4 Impact-ranking of variables in identifying patients with ischemic cardiomyopathy. A Variables were ranked by their average absolute impact 
on machine learning (ML) predictions of ischemic cardiomyopathy (ICM). This figure shows the average absolute contributions to ML-predicted 
probability of ICM of selected features from one representative fold of the cross-validation procedure (full details on the variables used 
in the Supplemental Appendix). B–K Detailed relationship between the top ten most impactful features and the predicted probability of ICM. 
Different values within the range of possible values that each feature can take on have a different impact on the predictions: values in green regions 
have a positive impact on predictions (these values increase the probability of ICM) whereas values in orange regions have a negative contribution 
(they decrease the probability of ICM). LV indicates left ventricular; RV, right ventricular; LVCS, LV circumferential strain; LVEF, LV ejection fraction; 
LVRS, LV radial strain; LVLS, LV longitudinal strain; LVSV, LV stroke volume; BSA, indexing by body surface area; RVCS, RV circumferential strain; RVEF, 
RV ejection fraction; RVESV, RV end-systolic volume; LVESV, LV end-systolic volume; RVEDV, RV end-dyastolic volume; LVEDV, LV end-dyastolic 
volume; RVRS and RV radial strain
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ICM; the y-axis reports the specific values of each covariate 
for that patient. The horizontal bars represent the influence 
of each feature on the overall prediction (log-odds of ICM), 
along with the specific increase (green bars) or decrease 
(orange bars) in the predicted log-odds.

Discussion
The present study demonstrated that a ML algo-
rithm trained with CMR left ventricular, left atrial, and 
right ventricular quantified strain and general cardiac 

functions could distinguish patients with ICM accurately 
from those with patients with NICM.

The major advantage of this novel ML approach is 
obviating the need for contrast media administration 
thus enhancing patient tolerability and shortening scan 
time at a lower cost.

In clinical practice, the exponential increase in CMR 
examinations may necessitate the optimization of clini-
cal workflows with faster and more cost-effective CMR 
protocols. Furthermore, individuals who are ineligible for 

Fig. 5 Explanations of machine learning (ML) predictions with subject-specific feature contributions. This figure shows two case examples 
from a representative fold of the cross-validation procedure. A A 60-year-old male with ischemic cardiomyopathy (ICM) correctly identified 
as having ICM by the proposed ML model. B A 76-year-old female with non-ischemic cardiomyopathy wrongly classified by the proposed model 
as ICM (false positive). On the left, individual contributions of each variable to the predicted log-odds of ICM for each patient (x-axis) are shown, 
along with the value of each variable. Green and orange bars indicate positive and negative contributions towards a prediction of ICM, respectively. 
For each case, the predicted score (i.e., the probability obtained after transforming the log-odds) and the threshold used for classification are 
reported for reference. On the right, cine CMR images in the long axis and the short axis are reported. Abbreviations as in Fig. 4
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contrast media administration and have a limited toler-
ance for CMR examinations may find shorter, non-contrast 
CMR examinations advantageous. Non-contrast CMR 
imaging improves the applicability of CMR examinations 
and offers greater patient comfort and can lower costs [12].

Several authors have explored the diagnostic capability 
of non-contrast cine-CMR images using ML-based mod-
els as an alternative to LGE images [11, 13, 21–23]. Avard 
et al explored a ML algorithm and radiomics features to 
differentiate myocardial infarction and normal cases on 
non-contrast cine-CMR images showing that the AI-
based model yielded optimal results with an AUC of 0.93 
[10]. Similarly, Larroza et  al utilized a support vector 
machine classifier to explore the potential of texture anal-
ysis with cine-CMR images in distinguishing between 
infarcted nonviable, viable, and remote segments. The 
results showed that texture analysis could effectively 
detect non-viable segments on non-contrast cine-CMR 
images, achieving an impressive AUC of 0.849 and a sen-
sitivity of 92% [11]. Conversely, Zhang et al evaluated vir-
tual native enhancement combining cine-CMR images 
and native T1 mapping to produce LGE-like images. This 
approach used a deep learning model achieving a strong 
correlation with LGE in quantifying scar size and trans-
murality with an accuracy, specificity, and sensitivity of 
84%, 100%, and 77%, respectively [12].

Previous ML-based cine-CMR research focused on the 
application of radiomics analysis, which requires time-
consuming quantitative post-processing image analysis 
or the acquisition of additional CMR sequences, leading 
to longer CMR examinations.

To the best of our knowledge, this is the first work 
focused on a ML-based model that includes cine-
CMR parameters to discriminate between ICM and 
NICM. Previous work investigating myocardial strain-
derived parameters to determine the etiology of heart 
failure have focused on the analysis of a single cardiac 
chamber or on radiomics analysis [10, 13, 23–25]. The 
present study has a retrospective study design and a 
single-center data collection approach. The retrospec-
tive analysis enables to harness a substantial dataset 
of CMR cases, encompassing a significant timeframe, 
which is essential for training and validating a robust 
ML model. Additionally, the decision to focus on a 
single center offered a dataset characterized by con-
sistency and homogeneity in relation to imaging proto-
cols and CMR scanner which contributes to reducing 
potential variability and confounding factors.

The current study simultaneously analyzed multiple car-
diac chambers using an ML algorithm. The physiological 
“communication” between cardiac chambers may be too 
complex to be captured using the traditional regression 
models. A ML-based model for assessing the relationship 

between cardiac chambers interaction can overcome some 
limitations of common regression techniques.

In the features importance analysis, ventricular and left 
atrial strain parameters presented the most discrimina-
tive value in discriminating between ICM and NICM.

In fact, NICM tends to show global myocardial fiber 
dysfunction involving both ventricles in comparison with 
ICM that shows a more regional dysfunction [26]. The 
contribution of circumferential and radial strain param-
eters in discriminating ICM from NICM seen in the 
current study is explained by the different effects on sub-
epicardial and transmural fiber by myocyte injuries.

Indeed, the myocardium is composed of three layers of 
fibers, namely (1) subendocardial fibers acting on longi-
tudinal shortening, (2) subepicardial fibers acting on cir-
cumferential shortening, and (3) transmural fibers acting 
on radial shortening [27, 28].

The pathophysiology of myocardial infarction is character-
ized by a waveform appearance from the subendocardium to 
the epicardial layer. Therefore, the subendocardial fibers are 
the earliest myocardium layers involved in ischemia [28, 29]. 
In addition, it has been suggested that impairment in the con-
traction of longitudinal fiber in ICM is compensated by the 
augmentation of the other layers [29, 30]. Similarly, the RV 
strain parameters’ impact in discriminating between ICM 
and NICM demonstrated in the present study may relate 
to the ventricular interaction through the interventricular 
septum [31]. Indeed, the RV shares oblique fibers with the 
LV in the interventricular septum. In the RV contraction, 
the oblique septal fibers are more efficient than the free wall 
transverse fibers and consequently, LV remodeling leads to 
septal fibers dysfunction impairing RV contraction [32].

Another hypothesis suggested is an intrinsic injury of 
the RV myocardium in NICM patient [33]. Due to the 
anatomical connection of the ventricle and atrium, their 
contribution to differentiate ICM and NICM is expected 
in this model. The LA strain parameters more relevant in 
the proposed model are reservoir and conduit strain rate 
parameters reflecting LA expansibility and stiffness.

In patients with LV dysfunction, LA contraction rises 
to maintain optimal LV filling. Consequently, early in 
ventricular dysfunction LA pump function is increased 
but LA stiffness augmented, and work mismatch occurs. 
Subsequently, LA pump function decreases as a result of 
the progression of LV dysfunction due to the increased 
afterload imposed on the LA [7, 34]. In addition, some 
authors suggested a direct myopathic involvement of the 
LA myocardium in various NICM [22, 35, 36].

Practical advantages
The aim of the current study was to investigate the 
capability of an ML algorithm using cardiac function, 
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volumes, and atrial and ventricular strain features from 
cine-CMR in discriminating ischemic from non-ischemic 
etiologies. Using cine-CMR features could potentially 
avoid the contrast media administration and increase 
the clinical availability of CMR examinations allowing 
increased accessibility to CMR examinations achieved 
through reduced costs and faster imaging acquisition.

Limitations
The following study limitations should be acknowledged 
and addressed in future research before the presented 
method can be employed in clinical practice. First, the rela-
tively small sample size was evaluated with a single CMR 
scanner and the retrospective single-center observational 
design of the study with no external validation dataset. 
Although we have taken precautions to mitigate the chal-
lenges posed by the limited dataset, the sample size and 
single-center study design could potentially impact the 
generalizability to more diverse populations, encompass-
ing variations in race, medications, and other factors. To 
confirm the robustness of the present findings, future 
multi-center studies are prompted to facilitate the incor-
poration of larger, more varied datasets, bolstering the reli-
ability and broader applicability of the proposed approach. 
Even though the purpose of the study was to evaluate an AI 
model to discriminate between ICM and NICM, and thus 
required a heterogenous NICM cohort, the composition of 
the evaluated population might be influenced by statistical 
variations as may the subsequent results.

Second, although we have taken precautions when 
training models and estimating generalization perfor-
mance, this model may still suffer from overfitting. To 
guard against overfitting, we employed cross-validation 
to select features with diagnostic value, train algorithms, 
calibrate predicted probabilities, and evaluate perfor-
mance on the same cohort, by considering non-overlap-
ping subsets of the data and thus reducing the bias in 
performance estimation.

Finally, in the current study, the predictive value of 
strain and parametric mapping parameters for adverse 
cardiovascular events was not assessed at follow-up. The 
promising results could prompt further prospective tri-
als including a larger number of patients to confirm the 
present findings. However, implementing non-contrast 
AI models into real-world clinical practices poses con-
siderable challenges, including the lack of transparency 
and interpretability of AI models, the needed of a large 
amount of annotated data from different centers, as well 
as ethical and legal issue. The derivation of an effective 
non-contrast ML model that can be applied to the real-
world clinical practice would require a considerably 
larger training group across different centers and patient 

groups and its validation would require an independent 
validation cohort. Furthermore, the development of a 
privacy protection algorithm is essential, which should 
integrate encryption and AI techniques to achieve secure 
and generalizable non-contrast AI models.

Conclusion
The proposed GB-GAM model integrating multi-cham-
ber myocardial strain, function, and volumes on non-
contrast CMR scan achieved a competitive diagnostic 
accuracy (AUC = 0.82) with a sensitivity of 0.72 and a 
specificity of 0.68 in discriminating between ICM and 
NICM. Non-contrast AI models may offer clinical ben-
efits to CMR examinations by reducing costs and scan 
times, enhancing availability and broadening clinical 
applicability.
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