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Three-Dimensional Auxetic Porous Medium
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Abstract

We propose the design of a novel three-dimensional porous continu-
ous solid exhibiting negative Poisson’s ratio. The shape and periodic
distribution of the pores guarantee cubic symmetry, and the direc-
tional dependance of the Poisson’s ratio and Young’s modulus shows
a moderate degree of anisotropy and multidirectional auxeticity. We
demonstrate the auxeticity of the porous solid numerically, solving
both a periodic analysis on a unit cell and a boundary value problem
on a finite specimen. The numerical results are fully confirmed by
experimental results, obtained from Digital Image Correlation data.
The final parametric analysis indicates how to modulate the charac-
teristic parameters of the microstructure in order to tune macroscopic
properties. The proposed design maintains a relatively high Young’s
modulus and it is prone to large-scale industrial production.

∗Corresponding author (e-mail address: mbrun@unica.it)

Keywords: Negative Poisson’s ratio, Auxetic Material, Porous Medium, Digital
Image Correlation.

1 Introduction

The Poisson’s ratio [68], the negative ratio between transverse and longitudinal
deformations, is a measure of the ratio between the bulk modulus K and the shear
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modulus µ and gives an indication of the tendency of a solid to deform by resisting
mainly to changes in volume or shape. It is well-known that, for a stable linear
elastic isotropic material, the Poisson’s ratio ν is limited from above by 0.5 for an
incompressible material, where K/µ → ∞, and from below by the stability limit
−1, where K/µ → 0; two limits which are not present in the anisotropic cases
[83, 65].

Materials with negative Poisson’s ratio, commonly addressed as auxetic (from
Evans [25, 27]), expand in the direction perpendicular to the applied tensile stress
and contract for perpendicular compressive stress.

Auxetic materials are known to provide higher indentation resistance [47, 33]
and fracture toughness [9, 22, 29], relatively low bulk and high shear stiffness [32,
78], significant acoustic [42, 66] and impact [39] energy absorption, deformation-
dependent permeability [2], large resistance to fiber pullout [91], natural coupling
with negative thermal expansion [38, 13, 71] and enhanced formability due to
sinclastic or dome-shape curvature under bending [19, 26].

Due to the above-mentioned properties, there is an increasing interest in nega-
tive Poisson’s ratio materials concerning technological applications: they include,
among the others, stent technology [62, 10, 55] and tissue engineering [59, 87, 77],
where the mechanical characteristics of auxetic engineered media match or even
enhance the mechanical properties of healthy normal host tissues, permitting
full functionality and enabling them to fulfil their role in vivo; impact protec-
tion [24, 28, 70], where auxeticity aids energy absorption, peak force attenuation
and indentation resilience; sensors [20, 51] and actuators [45, 50], where high-
compressibility and formability are key properties.

Naturally-occurring auxetic behaviour has been discovered both in inorganic
materials such as iron pyrites [56], arsenic and bismuth [37], cadmium [53], sev-
eral cubic and face-centred cubic rare gas solids along a specific crystallographic
direction [7], and in a number of biological tissues such as in cats’ [84] and cows’
[52] teat skins, cancellous bones [89], embryonic epithelial tissues [88], arteries [82],
tendons [31] and the annulus fibrosus of the intervertebral disc [21].

Nevertheless, the main attention has been devoted to the design of artificially-
architected materials, which is sustained by the dramatic advances in processing
techniques (polymer-based templating and direct single- or multi-material forma-
tion). The design of the microstructure exploits different geometries and mech-
anisms, which are reviewed in [33, 72, 48, 1]. We report here re-entrant unit
cells [46, 54, 67], star-shaped inclusions [81, 63], chiral configurations [69, 35, 5],
topologically-optimised microstructures [75, 49, 76], perforations and cuttings [36,
80, 73, 14, 15, 64], rotating rigid units [34, 60, 61], lattices [11, 12, 17] and elastic
instabilities [8].
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Figure 1: Finite specimen of a three-dimensional porous medium subjected to uniaxial
tension in x3−direction. The geometry of the specimen and constitutive properties of the
matrix are the same as in Sections 4 and 5. Initial and deformed configurations of the
central 2 × 2 × 2 cells are shown in parts (a) and (b), respectively. For the deformed
configuration: (c) top view, (d) side view, (e) front view.
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In the last decade, there has been a strong effort in the design of fully three-
dimensional microstructures, which are not obtained from simple extrusion of
a planar geometry: in the quasi-totality of the cases they are lattice structures
[3, 12, 30, 85, 92], with few exceptions concerning foams [23, 92], woven fabrics
[44] and voided elastomers [4, 74], both with very high porosity. Some designs may
reach low Poisson’s ratios: among isotropic models, in [12] it is reported a omni-
directional Poisson’s ratio equal to −0.41; on the other hand, anisotropic designs
can lead to Poisson’s coefficients close [58] or even lower [12, 86, 30] than −1 along
specific orientations.

However, lattices and foams are generally characterized by significantly small
values of the Young’s moduli. In addition, lattice structures are manufactured with
technologies which are not prone to large-scale industrial production (in the quasi-
totality of the cases, 3D printing technologies are employed). On the other hand,
foams are random structures with good properties, which are not always easy to
control. Conversely, a regular porous system combines high predictability of the
macroscopic properties (due to the internal regular structure) and the possibility
to pave the way to industrial applications since particulate and, specifically, porous
composites are already produced at industrial level with, for example, a US market
that is expected to reach USD 3.2 billion by 2028 [43].

In this paper, we propose a novel porous material, a continuous composite with
a periodic three-dimensional microstructure exhibiting auxetic behavior. The mi-
crostructure does not derive from a simple extrusion of a two-dimensional geome-
try, but has fully three-dimensional nature. The particulate composite is charac-
terized by cubic symmetry, so that auxeticity is omnidirectional; in addition, the
low porosity (less than 20%) leads to a relatively large Young’s modulus, which
makes the composite suitable for technological applications where the structural
response plays a significant role.

The macroscopic auxetic effect is the result of non-homogeneous deformations,
localised in the neighbourhoods of the voids’ centres. More specifically, the mutual
interaction between voids induces a bulging (flattening) of the voids under tension
(compression) and internal rotations in the solid phase. In Fig. 1 it is possible to
appreciate qualitatively the internal mechanism leading to macroscopic auxeticity.
A finite specimen, subjected to uniaxial tension in the x3-direction, expands in the
transverse x1- and x2-directions; the deformation of the central 2×2×2 cells of the
specimen, composed of 4× 4× 5 cells, highlights that the expansion in transverse
directions is driven by the bulging of the voids and internal rotations.

In this work we determine the effective properties of the porous medium both
numerically and experimentally. The plan of the paper is as follows: in Section
2, we present the geometry of the microstructure, followed, in Section 3, by the
analytical and numerical determination of the effective properties of the periodic
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system, with the study of the directional dependence of the macroscopic material
parameters. In Section 4, we describe the experimental procedure, briefly detail-
ing the statistical analysis of the experimental data. The comparison between the
experimental and numerical data is shown in Section 5, with an additional numer-
ical simulation of the experimental sample. In Section 6, we report a parametric
analysis of the effective properties as functions of the microstructural geometric
parameters, while concluding remarks are given in Section 7.

2 Geometry of the microstructured auxetic

medium

In this section, we present the design of the microstructure of the porous medium,
where the shape and the periodic distribution of the void inclusions are responsible
for the negative effective Poisson’s ratio.

2.1 Shape and distribution of the voids

As shown in Fig. 2b, each void presents a parallelepiped shape having square base,
with height t and side length of the square base a, where a≫ t. In order to reduce
stress concentration, the parallelepiped-shaped void is rounded in proximity of the
thin lateral faces and the short edges.

The position of each void is determined by the vector x
(i)
C , defining the coor-

dinates of the centre C(i) (see Fig. 2a). The orientation of the void is specified
by the unit normal vector n(i), perpendicular to the square base, and by the unit
tangential vector t

(i), parallel to one edge of length a. The superscript i takes
the values 1, 2 or 3 since there are three sets of voids, as discussed in Section 2.2.
Note that the distance between coplanar void inclusions is 2l–(a + t), while the
coalescence limit introduces the constraint 2l > (a+

√
2t).

2.2 Description of the periodic system

The periodic medium is made of cubic unit cells of side length 2l. The set of lattice
vectors Λ defining the periodic structure is given by

Λ = {R : R = 2l(pe1 + qe2 + re3), p, q, r ∈ Z} . (1)

Three periodic sets of voids are embedded in the continuous matrix. The shape
of each void is illustrated in Figs. 2a and 2b. Each set Ω(i), with i = 1, 2, 3 here and
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Figure 2: Design of the unit cell. (a) Schematic representation of each void, where

x
(i)
C is the position vector of the centre of the void C(i), and n

(i) and t
(i) (i = 1, 2, 3)

are the normal and tangential vectors, respectively. (b) Dimensions of the parallelepiped-
shaped void inclusions: t and a denote the height and the side length of the square base,
respectively. (c) Unit cell of the periodic porous medium, having cubic shape with side
length 2l. The holes are coloured in grey. (d) Optimised mesh used in the numerical
computations.

6



in the following, is characterized by unit normal vector n(i) = ei, unit tangential
vector t(i) = ej or ek (i 6= j 6= k 6= i) and central points

C(1) = (l, l, 0), C(2) = (0, l, 0), C(3) = (0, 0, 0). (2)

The voids have different periodicity than the unit cell; the lattice vectors λi for
the three set of voids are expressed by

λ1 = {R : R = l[2pe2 + 2qe3 + r(e1 + e2 + e3)]} ,

λ2 = {R : R = l[2pe3 + 2qe1 + r(e1 + e2 + e3)]} ,

λ3 = {R : R = l[2pe1 + 2qe2 + r(e1 + e2 + e3)]} , p, q, r ∈ Z . (3)

The unit cell of the periodic medium is shown in Fig. 2c, where the matrix
phase has been made transparent to show all the pores inside the cell.

3 Effective properties of the periodic system

Here, we determine the effective elastic properties of the periodic porous auxetic
medium described in Section 2.2. The auxetic porous medium is a cubic material,
since both the matrix and the pores are isotropic and considering that the geometry
has cubic symmetry.

In the linear elastic regime, the material behaviour is determined when three
elastic constants, namely the effective Poisson’s ratio ν∗, the effective Young’s
modulus E∗ and the effective shear modulus µ∗, are known. They can be computed
from macroscopic stress σ̄ and deformation ε̄ components, along the principal
directions of the composite, as follows:

ν∗ =
(tr{ε̄} − ε̄ii)σ̄ii − (tr σ̄ − σ̄ii)ε̄ii

(tr{ε̄} − ε̄ii)(tr σ̄ − σ̄ii)− (σ̄ii + tr σ̄)ε̄ii
, (4)

E∗ =
(tr σ̄ − 3σ̄ii) tr σ̄

(tr{ε̄} − ε̄ii)(tr σ̄ − σ̄ii)− (σ̄ii + tr σ̄)ε̄ii
(5)

and

µ∗ =
σ̄ij
2ε̄ij

, (6)

for each i, j = 1, 2, 3, where i 6= j, i is not summed and tr is the trace operator.
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3.1 Numerical computation of effective properties

The unit cell shown in Fig. 2c is modelled in the finite element software Comsol

Multiphysics [18]. Dirichlet periodic conditions are imposed at the boundaries of
the domain (see, for reference, [14]) and six additional degrees of freedom have
been blocked in order to prevent rigid body motions. The mesh has been gener-
ated following a two-step procedure: first, symmetric boundary meshes have been
created on opposite boundary faces; subsequently, the internal three-dimensional
mesh has been built accordingly. The mesh size has been calibrated in order to
assure a sufficient convergence of the results, with a total of 1.86 ∗ 105 tetrahedral
elements. The optimised discretisation of the unit cell is shown in Fig. 2d.

We assume that the matrix is an isotropic linear elastic material, having Pois-
son’s ratio νm = 0.35 and Young’s modulus Em = 3035 MPa. The side length of
the cubic unit cell is 2l = 30 mm, and the voids have dimensions a = 25 mm and
t = 1.25 mm. These parameters also characterise the real specimen tested in the
laboratory (see Section 4).

To evaluate the effective Poisson’s ratio ν∗ and the effective Young’s modulus
E∗, we apply a macroscopic axial strain ε̄11 = 10−4, while the other macroscopic
strain components are set to zero (macroscopic strains are imposed through the
periodic boundary conditions). The numerical analysis provides the required com-
ponents of the stress tensor, averaged over the unit cell in order to give macro-
scopic fields. In particular, since ε̄22 = ε̄33 = 0 and, due to the cubic symmetry,
σ̄22 = σ̄33

1, (4) and (5) simplify into

ν∗ =
σ̄22

σ̄11 + σ̄22
(7)

and

E∗ =
(σ̄11 − σ̄22)(σ̄11 + 2σ̄22)

ε̄11(σ̄11 + σ̄22)
, (8)

respectively.
For the choice of the parameters considered here, the effective Poisson’s ratio

is found to be ν∗ = −0.171. Consequently, the porous medium is auxetic. The
numerical calculations yield an effective Young’s modulus equal to E∗ = 577.8
MPa.

Figure 3 shows the colour maps of the displacement components u1, u2 and
u3 along the three directions x1, x2 and x3. The thin black lines represent the
undeformed configuration of the model.

1The condition σ̄22 = σ̄33 was verified numerically.
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Figure 3: Displacement components in the unit cell of the periodic medium. The cell is
subjected to the macroscopic axial strain ε11 = 10−4. The displacement components are
(a) u1, (b) u2 and (c) u3.

In order to confirm the numerical results, we have performed two additional
simulations, where the model has been subjected firstly to a macroscopic axial
strain ε̄22 = 10−4 and secondly to ε̄33 = 10−4. The values of effective Pois-
son’s ratio and Young’s modulus obtained from these additional computations are
identical to those found with the previously described simulation. Furthermore,
imposing a macroscopic shear strain ε̄12 = 10−4, ε̄23 = 10−4 or ε̄31 = 10−4, we
have determined an effective shear modulus equal to µ∗ = 245.5 MPa. Since

µ∗ 6= µ∗iso =
E∗

2(1 + ν∗)
= 348.5 MPa, (9)

the material is not isotropic.

3.2 Directional dependence of effective elastic constants

In Section 3.1 the effective Poisson’s ratio ν∗, Young’s modulus E∗ and shear
modulus µ∗ are given along the principal directions of the composite material. For
the anisotropic cubic material, it is of interest to understand the variation of the
above effective properties in different directions.

Following [83, 12] for the computations of the coefficients of the constitutive
tensor in a rotated frame of reference, the Young’s modulus E∗

n
along a generic

direction n (with |n| = 1) can be given in the form

E∗
n
= E∗

[

1− 2(1 + ν∗)

(

1− µ∗iso
µ∗

)

(n2
1n

2
2 + n2

1n
2
3 + n2

2n
2
3)

]

−1

, (10)

where E∗ = E∗(100) = E∗(010) = E∗(001), with the subscripts indicating the crystallo-
graphic directions.
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Figure 4: (a) Polar representation of the effective Young’s modulus E∗(n). The values
in the axes are given in MPa. (b) Extreme values of the effective Poisson’s ratio ν∗

n,m

along the path ABCA on the unit sphere |n| = 1. The values ν∗ = ν∗min, ν
∗

(110,001) and
ν∗(110,11̄0) = ν∗max are highlighted.

A further indication of the anisotropy of the porous composite is quantified by
the dimensionless Zener anisotropy factor [90]

βcub =
µ∗

µ∗iso
, (11)

which is equal to 1 for isotropic materials.
The value of the Young’s modulus along different directions is shown in Fig.

4a. The variation of the Young’s modulus, where E∗max/E
∗

min = 1.23 2, together
with the value of the Zener factor βcub = 0.704, indicate that the composite has a
“relatively small” anisotropy.

The variation of the Poisson’s ratio is more involved, since ν∗
n,m depends both

on the direction of the applied load n and on the transverse direction m, where
|m| = 1 and m · n = 0. Depending on n and m, the directional dependance of
the Poisson’s ratio is

ν∗
n,m =

ν∗ µ∗ + (1 + ν∗)(µ∗ − µiso)(n
2
1m

2
1 + n2

2m
2
2 + n2

3m
2
3)

µ∗ − 2(1 + ν∗)(µ∗ − µiso)(n2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1)

. (12)

While in the isotropic case the Poisson’s ratio is strictly bounded between −1 and
0.5, such bounds do not exist in the cubic case, and in [83] it is demonstrated that

2The maximum Young’s modulus is E∗max = E∗ = 577.8 MPa and the minimum is
E∗min = E∗(111) = 469.0 MPa.
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arbitrarily large positive or negative values of Poisson’s ratio could occur along
specific directions.

As shown in [65, 12], the extreme values of ν∗
n,m may be searched along the path

ABCA on the unit sphere |n| = 1, where A = (1, 0, 0), B = (1/
√
2, 1/

√
2, 0), C =

(1/
√
3, 1/

√
3, 1/

√
3) 3. For each n along this path, the maximum and minimum

values are searched with respect to m.
Following the analytical formulation developed by Norris [65], we determine

the following quantities:

ν∗ = ν∗(100,−) = −0.171 ,

ν∗(110,001) =
2µ∗ν∗

(1 + ν∗)µ∗iso + (1− ν∗)µ∗
= −0.146 ,

ν∗(110,11̄0) =
(1 + ν∗)µ∗iso − (1− ν∗)µ∗

(1 + ν∗)µ∗iso + (1− ν∗)µ∗
= 2.46 ∗ 10−3 .

(13)

In Fig. 4b, the extreme values of ν∗
n,m along the path ABCA are reported, to-

gether with ν∗, ν∗(110,001) and ν∗
(110,11̄0)

. As shown in [65], since ν∗ > −1 and

ν∗(110,001) < 0 < ν∗
(110,11̄0)

, the minimum Poisson’s ratio is ν∗min = ν∗ = −0.171.
Further, since −0.5 < ν∗(110,001) < ν∗

(110,11̄0)
, the maximum Poisson’s ratio is

ν∗max = ν∗
(110,11̄0)

= 2.46 ∗ 10−3, which is close to zero. We note two features

of the proposed periodic solid: first, the minimum Poisson’s ratio ν∗ is indepen-
dent of the transverse direction m; second, ν∗

n,m < 0 almost everywhere, with the
exception of a small neighborhood of B and for specific transverse directions m.

4 Experimental test

A sample of auxetic porous medium was produced using a 3D printer. The material
used for the fabrication of the specimen is PLA (polylactic acid), which can be
considered isotropic. Standard uniaxial tensile tests with longitudinal and lateral
measurements were carried out to determine the Young’s modulus and Poisson’s
ratio of the material, given by Em = 3035 MPa and νm = 0.35 respectively. These
are the same values used in the calculations of Section 3 for the periodic system
and of Section 5 for the finite model.

The specimen is made of 4 × 4 × 5 cells, as shown in Fig. 5a. Therefore,
the dimensions of the specimen are 12 cm × 12 cm × 15 cm. The same model,
illustrated in Fig. 5b, is built and analysed in the finite element software Comsol

Multiphysics, as described in Section 5.

3They correspond to the crystallographic directions (100), (110), (111).
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Figure 5: (a) Specimen manufactured by 3D printing technology using PLA; (b) three-
dimensional finite element model developed in Comsol Multiphysics; (c) experimental
setup, where the sample is subjected to a compressive load and, at each loading step,
its surface displacement components are determined by using the DIC (Digital Image
Correlation) technique.
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Figure 6: Force-displacement curve for the specimen in Fig. 5a. The compressive force
F = F3 is given in kN and the vertical displacement u = u3 in mm. The dashed line
indicates the applied displacement corresponding to the DIC colour maps reported in Fig.
7.

4.1 Experimental setup and procedure

The specimen consists of ten 3D printed layers assembled along the x3-direction.
The layers were aligned using cylindrical pins and stuck together with an epoxy
glue. Once assembled, the pins were removed and the specimen was painted to
realise a speckled surface, as required by DIC (Digital Image Correlation), the
experimental technique employed to measure displacements.

The test was performed at the Experimental Mechanics Laboratory of the Uni-
versity of Cagliari using a MTS LandMark 370 universal testing machine. Images
were acquired using an AlliedVision F421-B Pike camera (sensor: Kodak IT CCD
KAI4021, size 2048 pixel× 2048 pixel), a Schneider Kreuznach macro camera lens
and an isotropic, spot-free professional illuminator. The experimental apparatus
adopted to perform the compressive test on the specimen is illustrated in Fig. 5c.

The specimen was loaded under displacement control in the x3-direction and
setting a step increment of 0.25mm in quasi-static conditions. It was blocked on
the upper surface and displaced from below. The load-displacement curve is shown
in Fig. 6. It is noted that after an initial nonlinear settling in the displacement
range 0.0mm to 0.75mm, the specimen displays a linear behavior in the working
range.

At each load increment, images of the adjacent frontal and lateral surfaces of
the specimen were acquired. The two adjacent faces of the specimen are labeled
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Figure 7: Colour maps of the displacement components obtained experimentally from
DIC: (a) u1 and u3 on face F1, parallel to the x1 − x3 plane; (b) u2 and u3 on face F2,
parallel to the x2 − x3 plane. The values are given in pixels on the specimen compressed
from below and the results correspond to an applied displacement u = 1.75 mm (see Fig.
6). The dashed square regions R1 and R2 indicate the 2 × 2 and 3 × 3 cell domains,
respectively, where the average deformations have been calculated.
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as face “F1”, parallel to the x1 − x3 plane, and face “F2”, parallel to the x2 − x3
plane (see Fig. 5a).

An advanced DIC technique [79] has been adopted in order to determine ex-
perimentally the displacement components on the faces F1 and F2. Displacements
and deformations have been computed using an in-house developed C++ code,
described in [6].

The colour maps of the displacement components resulting from the experi-
mental tests at u =1.75mm are shown in Fig. 7a for face F1 and in Fig. 7b for
face F2. From the figures, compression is observed not only in the x3-direction but
also in the x1- (face F1) and x2- (face F2) directions, demonstrating the auxeticity
of the porous system.

The internal “mechanism” responsible for the negative effective Poisson’s ratio
is also highlighted in Fig. 8, where the color maps of the rotations are reported.
The rotation components ω31 = (u3,1−u1,3)/2 and ω23 = (u2,3−u3,2)/2 are shown
in Figs. 8a and 8b, respectively, where, in general, ui,j = ∂ui/∂xj (i, j = 1, 2, 3).
The contours are obtained from the displacement components evaluated with the
DIC analysis. In each square, the compressed specimen undergoes opposite rota-
tions disposed in a checkerboard pattern. Such rotations are kinematically com-
patible with the flattening of the pores in the proximity of their centres. Note that
rotations in Fig. 8 have opposite signs with respect to those in Fig. 1, where a
tensile (instead of a compressive) boundary load was applied. In Fig. 1, rotations
are kinematically compatible with the bulging of the pores.

4.2 Data analysis

Here, we use the data provided by the DIC technique to statistically evaluate the
effective Poisson’s ratio of the sample.

The two adjacent faces F1 and F2 of the specimen are examined (see Fig. 5a).
For each face we consider the central square region R1 made of 2×2 cells, indicated
with a dashed line in Figure 7. From the DIC data we extrapolate the values of the
strain components ε11 = ε11(ti, pj) and ε22 = ε22(ti, pj). The strain components
are functions of the loading step ti (i = 1, · · · , Nt, where Nt = 8 is the number of
considered loading steps) and of the point pj (j = 1, · · · , Np, where Np is the total
number of the observed points belonging to the square region).

We point out that the tested region is taken in the middle part of the specimen
to reduce boundary effects. We also note that the first loading steps (u=u3 in the
range 0.0mm to 0.75mm) are not considered in the computation of the overall
Poisson’s coefficient, because the load needs to be large enough to allow for the
necessary adjustment of the specimen, as also reported in the discussion of the
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Figure 8: Rotations: (a) ω31 on face F1, (b) ω23 on face F2. The contour plots are
obtained from the DIC displacement measurements. Positive values correspond to anti-
clockwise rotations.

force-displacement curve in Fig. 6.
At any loading step ti (i = 1, · · · , Nt), the mean of ν(ti, pj) is given by

ν̄(ti) = −
ε̄11(ti)

ε̄22(ti)
, (14)

where the mean deformations are

ε̄11(ti) =

Np
∑

j=1

η′j ε11(ti, pj) and ε̄22(ti) =

Np
∑

j=1

η′j ε22(ti, pj) , (15)

with the weights defined in terms of the cumulative residual as follows

η′j =
1/χ2

j
∑Np

i=1

(

1/χ2
i

)

, (j = 1, · · · , Np). (16)

The standard error of the mean of ν(ti, pj) is

δν(ti) =
σν(ti)
√

Np

, (17)
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where
σν(ti) =

√

varν(ti) (18)

is the standard deviation of ν(ti, pj) and

varν(ti) =var

(

−ε11(ti)

ε22(ti)

)

≈
(

− ε̄11(ti)

ε̄22(ti)

)2

×
[

var(−ε11(ti))
(−ε̄11(ti))2

+
var(ε22(ti))

(ε̄22(ti))2
− 2

cov(−ε11(ti), ε22(ti))
−ε̄11(ti)ε̄22(ti)

]
(19)

is the variance of ν(ti, pj). Hence:

ν(ti) = ν̄(ti)± δν(ti) . (20)

The weighted mean is defined as

ν̄ =

∑Nt

i=1wi ν̄(ti)
∑Nt

i=1wi

, (21)

where

wi =
1

δ2ν(ti)
(22)

is the weight. Applying the formulas of error propagation, we obtain that the error
is given by

δν =
1

√

∑Nt

i=1wi

. (23)

Finally, the effective Poisson’s ratio of the medium is estimated by the formula:

ν∗ = ν̄ ± δν . (24)

The data corresponding to face F1 and face F2 yield ν∗ = −0.1268 ± 0.0024
and ν∗ = −0.2000 ± 0.0018, respectively. If we consider a region of the specimen
made of 3× 3 cells (see the domain R2 in Figure 7), following the same procedure
we obtain ν∗ = −0.1219 ± 0.0018 for face F1 and ν∗ = −0.1807 ± 0.0016 for face
F2. The average of all the values above is ν∗ ≈ −0.157.

The experimental data ν(ti) at each step on the faces F1 and F2 are reported
in Fig. 9, in part (a) and (b) respectively, together with the average values ν∗ =
−0.1268 and ν∗ = −0.2000, indicated with dashed lines. The curves confirm
quantitatively the auxeticity of the porous medium.
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Figure 9: Effective Poisson’s ratio ν(ti) at each loading step ti as a function of the
applied displacement u (in mm) in the compression test (see Eq. (20)). Values have been
computed from DIC data on face (a) F1 and (b) F2. Black dots indicate the data adopted
in the computation of the average effective Poisson’s ratio ν∗, indicated with a dashed line
(see Eq. (24)). Numerical values computed with finite element analyses are also shown:
the continuous and dot-dashed lines indicate the results for the finite specimen (Section
5) and for the unit cell in the periodic system (Section 3.1), respectively.

5 Numerical vs experimental model

In this section, we present the results of a finite element model of the specimen
and we compare them with the experimental findings reported in Section 4. These
numerical simulations embed the effect of the boundary conditions of the finite
specimen.

5.1 Numerical simulations for the finite model

The numerical model of the specimen, shown in Fig. 5b, is built in the finite
element software Comsol Multiphysics. The lower face of the model, parallel to
the x1 − x2 plane, is subjected to a displacement in the x3-direction equal to
u = u3 = 1 mm. In addition, the three components of the displacement on the
upper face are prevented. The values of the material and geometrical parameters
are identical to those of the real sample, discussed in Section 4. The mesh consists
of 7.43 ∗ 105 tetrahedral elements.

A static analysis is performed to determine the components of the stress and
strain tensors, evaluated as the average values in the internal 2 × 2 × 3 cells.
Eqs. (4) and (5) are used to compute the effective Poisson’s ratio and Young’s
modulus from the average components of the stress and strain tensors; they have
been implemented for i = 1, 2, 3, leading to the same results up to the third digit,
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namely ν∗ = −0.142 and E∗ = 652 MPa, respectively.
The colour maps of the three displacement components are presented in Fig.

10. The effect of the negative Poisson’s ratio on the deformation of the structure
is very clear: a longitudinal compression of the model in the x3-direction produces
transverse contractions in both the x1- and x2-direction. We also stress the good
agreement between the experimental and numerical results in Figs. 7 and 10,
respectively.

5.2 Summary of numerical and experimental results

The values of the effective Poisson’s ratio determined numerically and experimen-
tally are summarised in Table 1. The first column refers to the periodic system
examined in Section 3. The second column includes the value of ν∗ derived from
the finite element analysis of the finite model, discussed in Section 5.1. Finally, the
third column presents the effective Poisson’s ratio provided by the DIC technique,
described in Section 4.

The comparison shows the agreement between the two numerical and the ex-
perimental findings. In particular, it is clear that the model presented in this paper
is auxetic. Besides, the difference between the periodic and the finite system is an
indication of the relative long-range effect of the boundary conditions for this type
of microstructured medium. More precisely, the exponentially decaying perturba-
tions induced by the boundary conditions on the fields in the bulk (obtained from
the periodic analysis on a unit cell) has a non-negligible effect over more than one
unit cell.

Table 1: Effective Poisson’s ratio ν∗ obtained from the numerical simulations (both for
the periodic system and finite model) and from the experimental tests.

numerical
(periodic)

numerical
(finite) experimental

ν
∗ −0.171 −0.142 −0.157
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Figure 10: Colour maps of the displacement components obtained from the numerical
finite model: (a) displacement u1 along the x1-direction; (b) displacement u2 along the
x2-direction; (c) displacement u3 along the x3-direction. Results correspond to an applied
displacement u3 = 1.00mm.
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6 Voids’ dimension versus effective proper-

ties

The effective properties of the medium strongly depend on the shape and size of
the voids. In this section, we present the results of a parametric study where the
relative dimensions of the voids ã = a/(2l) and t̃ = t/(2l) (see Fig. 2) are varied
and the corresponding effective elastic constants of the medium are determined
from (7), (8) and (6). The computations are performed on the unit cell subjected
to periodic boundary conditions as in Section 3.

Figures 11a, 11b and 11c show how the effective Poisson’s ratio ν∗, the nor-
malised effective Young’s modulus E∗/Em and the normalised effective shear mod-
ulus µ∗/µm, respectively, vary with the relative size of the voids ã, for three dif-
ferent values of the relative thickness of the voids t̃, detailed in the diagrams. The
stars identify the values of the effective properties corresponding to the particular
choice of ã and t̃ adopted previously in Sections 3, 4 and 5, namely ã = 0.833
and t̃ = 0.042. The computations are performed for ã < ãcr, where ãcr = 1−

√
2t̃

denotes the critical value of ã at which coalescence of voids is attained.
All the curves in Fig. 11 are monotonically decreasing functions of ã. Further,

from Fig. 11a it is apparent that, for a fixed value of ã, the effective Poisson’s ratio
of the medium decreases as the relative thickness t̃ increases. On the contrary, the
minimum values of ν∗ at coalescence decrease with the decrease of the relative
thickness t̃. Concurrently, the effective Young’s and shear moduli decrease (see
Figs. 11b and 11c).

The dot-dashed lines in Fig. 11b indicate the Hashin-Shtrikmann upper bounds
for different thicknesses. The upper bound [40, 41] in terms of the Young’s modulus
[16] takes the form

E∗HS

Em

=
2(1− φ)(7− 5νm)

2(7− 5νm) + (13− 2νm − 15ν2m)φ
, (25)

where the porosity is given by

φ = t̃(6ã2 + 3πãt̃+ πt̃ 2) . (26)

The dashed lines in Fig. 11c represent the normalised effective shear modulus
µ∗iso/µm of an isotropic medium, where µ∗iso = E∗/[2(1 + ν∗)]. The difference
between the solid and dashed curves highlights once more that the porous medium
is cubic, but the anisotropy is not “large”.

Similar trends can be observed in Figs. 12a, 12b and 12c where ν∗, E∗/Em

and µ∗/µm, respectively, are shown as functions of the porosity φ. The results
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Figure 11: (a) Effective Poisson’s ratio, (b) normalised effective Young’s modulus and (c)
normalised effective shear modulus as functions of ã. The curves correspond to three values
of t̃, specified in the figures. The stars indicate the values of the effective elastic constants
obtained for the particular case considered in Section 3. In (b), the dot-dashed lines
indicate the Hashin-Shtrikman upper bounds for different thicknesses. In (c), the dashed
lines represent the values of the normalised shear modulus µ∗iso/µm of the corresponding
isotropic medium (see Eq. (9)).
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Figure 12: (a) Effective Poisson’s ratio, (b) normalised effective Young’s modulus and
(c) normalised effective shear modulus as functions of the porosity φ, defined in (26),
for three values of the relative thickness t̃. The stars indicate the values of the effective
elastic constants obtained for the choice of parameters considered in Section 3, for which
φ = 0.187. In (b) the dot-dashed line indicates the Hashin-Shtrikman upper bound. In
(c), the dashed lines represent the values of the normalised shear modulus µ∗iso/µm of the
corresponding isotropic medium.

23



in Figures 12 reveal that the effective elastic constants depend not only on the
porosity, but also on the shape of the voids, that can be linked to the relative
thickness t̃.

7 Conclusions

The periodic medium presented in this work is a porous continuous system with
a fully 3D distribution of void inclusions. The macroscopic negative Poisson’s
ratio derives from the design of the microstructure, which has cubic symmetry
and moderate degree of anisotropy. The numerical and experimental results are
in good agreement and demonstrate the auxeticity of the medium.

The negative Poisson’s ratio is comparable to that of the three-dimensional wo-
ven fabric in [44]. Simultaneously, the medium is characterised by low porosity and
large relative Young’s modulus; hence, it is suitable for technological applications
where the structural performance in terms of rigidity is desirable.

The relative Young’s modulus E∗/Em is about 16%, one order of magni-
tude larger than the relative Young’s modulus of the lattice model in [58] (where
E∗/Em < 1, 6%) and more than two orders of magnitude larger than that of the
design in [86] (E∗/Em ≃ 0.2% in the highest case). Concerning foams, Gibson
and Ashby showed that the relative Young’s modulus scales as (A/L2)2 (see [57]),
where A is the cross-sectional area and L is the length of the internal ribs, leading
to values of the relative Young’s modulus that are several orders of magnitude
smaller than the Young’s modulus of the proposed porous system.

The model presented in this paper represents a new class of three-dimensional
porous composite materials beyond lattice, cellular, chiral and origami auxetic
media, that can be useful in novel technological applications for large-scale pro-
duction.

In a future work, we aim to carry out a thorough optimisation of the geo-
metrical parameters of the system, in order to minimise the Poisson’s coefficient
controlling the corresponding reduction of the effective stiffness of the microstruc-
tured material. In addition, we plan to analyse the effects of constitutive and
geometrical nonlinearities both in traction and compression, where the second
loading condition is expected to cause partial closure of internal voids over a cer-
tain threshold.
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