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A B S T R A C T

The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied:

⎧

⎪

⎪
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⎪

⎪

⎩

𝑢𝑡 = ∇ ⋅
(

(𝑢 + 1)𝑚1−1∇𝑢 − 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣
+𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤

)

+ 𝜆𝑢 − 𝜇𝑢𝑟 in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝜏𝑣𝑡 = 𝛥𝑣 − 𝜙(𝑡, 𝑣) + 𝑓 (𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝜏𝑤𝑡 = 𝛥𝑤 − 𝜓(𝑡, 𝑤) + 𝑔(𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥).

(◊)

Herein, 𝛺 is a bounded and smooth domain of R𝑛, for 𝑛 ∈ N, 𝜒, 𝜉, 𝜆, 𝜇, 𝑟 proper positive numbers,
𝑚1, 𝑚2, 𝑚3 ∈ R, and 𝑓 (𝑢) and 𝑔(𝑢) regular functions that generalize the prototypes 𝑓 (𝑢) ≃ 𝑢𝑘 and
𝑔(𝑢) ≃ 𝑢𝑙, for some 𝑘, 𝑙 > 0 and all 𝑢 ≥ 0. Moreover, 𝜏 ∈ {0, 1}, and 𝑇𝑚𝑎𝑥 ∈ (0,∞] is the maximal
interval of existence of solutions to the model. Once suitable initial data 𝑢0(𝑥), 𝜏𝑣0(𝑥), 𝜏𝑤0(𝑥) are
fixed, we are interested in deriving sufficient conditions implying globality (i.e., 𝑇𝑚𝑎𝑥 = ∞) and
boundedness (i.e., ‖𝑢(⋅, 𝑡)‖𝐿∞(𝛺) + ‖𝑣(⋅, 𝑡)‖𝐿∞(𝛺) + ‖𝑤(⋅, 𝑡)‖𝐿∞(𝛺) ≤ 𝐶 for all 𝑡 ∈ (0,∞)) of solutions
to problem (◊). This is achieved in the following scenarios:

⊳ For 𝜙(𝑡, 𝑣) proportional to 𝑣 and 𝜓(𝑡, 𝑤) to 𝑤, whenever 𝜏 = 0 and provided one of the
following conditions

(I) 𝑚2 + 𝑘 < 𝑚3 + 𝑙, (II) 𝑚2 + 𝑘 < 𝑟, (III) 𝑚2 + 𝑘 < 𝑚1 +
2
𝑛

is accomplished or 𝜏 = 1 in conjunction with one of these restrictions
(i) max [𝑚2 + 𝑘, 𝑚3 + 𝑙] < 𝑟, (ii) max [𝑚2 + 𝑘, 𝑚3 + 𝑙] < 𝑚1 +

2
𝑛
,

(iii) 𝑚2 + 𝑘 < 𝑟 and 𝑚3 + 𝑙 < 𝑚1 +
2
𝑛
, (iv) 𝑚2 + 𝑘 < 𝑚1 +

2
𝑛

and 𝑚3 + 𝑙 < 𝑟;
⊳ For 𝜙(𝑡, 𝑣) = 1

|𝛺|

∫𝛺 𝑓 (𝑢) and 𝜓(𝑡, 𝑤) = 1
|𝛺|

∫𝛺 𝑔(𝑢), whenever 𝜏 = 0 if moreover one among
(I), (II), (III) is fulfilled.
Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and
Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).

. Introduction and motivations

.1. Some indications on attraction–repulsion chemotaxis models

The general formulation of an attraction–repulsion chemotaxis model, incorporating logistic sources and linear or nonlinear
roductions, can be expressed as follows:
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑡 = ∇ ⋅ (𝐷(𝑢)∇𝑢 − 𝑆(𝑢)∇𝑣 + 𝑇 (𝑢)∇𝑤) + ℎ(𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝜏𝑣𝑡 = 𝛥𝑣 − 𝜙(𝑡, 𝑣) + 𝑓 (𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝜏𝑤𝑡 = 𝛥𝑤 − 𝜓(𝑡, 𝑤) + 𝑔(𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝑢𝜈 = 𝑣𝜈 = 𝑤𝜈 = 0 on 𝜕𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜏𝑣(𝑥, 0) = 𝜏𝑣0(𝑥), 𝜏𝑤(𝑥, 0) = 𝜏𝑤0(𝑥) 𝑥 ∈ 𝛺̄,

(1)

where 𝛺 is a bounded and smooth domain in R𝑛, 𝑛 ∈ N, and 𝐷(𝑢), 𝑆(𝑢), 𝑇 (𝑢), ℎ(𝑢), 𝜙(𝑡, 𝑣), 𝜓(𝑡, 𝑤), 𝑓 (𝑢) and 𝑔(𝑢) are functions
ith specific regularity properties. Furthermore, 𝜏 ∈ {0, 1} and additional regular initial data 𝑢0(𝑥) ≥ 0 and 𝜏𝑣0(𝑥), 𝜏𝑤0(𝑥) ≥ 0 are
rovided. The subscript 𝜈 in (⋅)𝜈 denotes the outward normal derivative on 𝜕𝛺 and 𝑇𝑚𝑎𝑥 ∈ (0,∞] represents the maximal temporal
nstant up to which solutions to the system do exist.

This model holds practical significance since it is applicable to studying inflammation in Alzheimer’s disease. In this framework,
icroglia secrete both attractive and repulsive chemicals, and the system above describes the overall mechanisms of the involved

uantities. In the specific linear diffusion, sensitivities and productions case (i.e., 𝐷(𝑢) = 1, 𝑆(𝑢) = 𝜒𝑢, 𝑇 (𝑢) = 𝜉𝑢, and 𝑓 (𝑢) = 𝑔(𝑢) = 𝑢),
nd in the absence of dampening external terms (i.e., ℎ(𝑢) ≡ 0), for 𝜙(𝑡, 𝑣) = 𝑣 and 𝜓(𝑡, 𝑤) = 𝑤 in [1] the authors provide insights
onnected to gathering mechanisms for (1) and develop numerical analyses within bounded intervals, particularly when 𝜏 = 0.

.2. The attractive and the repulsive models

Model (1) results from a combination of these perturbed signal-production mechanisms with aggregative effect

𝑢𝑡 = ∇ ⋅ (𝐷(𝑢)∇𝑢 − 𝑆(𝑢)∇𝑣) + ℎ(𝑢) and 𝜏𝑣𝑡 = 𝛥𝑣 − 𝜙(𝑡, 𝑣) + 𝑓 (𝑢), in 𝛺 × (0, 𝑇𝑚𝑎𝑥), (2)

nd repulsive one

𝑢𝑡 = ∇ ⋅ (𝐷(𝑢)∇𝑢 + 𝑇 (𝑢)∇𝑤) + ℎ(𝑢) and 𝜏𝑤𝑡 = 𝛥𝑤 − 𝜓(𝑡, 𝑤) + 𝑔(𝑢), in 𝛺 × (0, 𝑇𝑚𝑎𝑥). (3)

In order to properly frame model (1) in the context of biological mechanisms, let us describe it in terms of the phenomena formulated
n problems (2) and (3). The related partial differential equations are primarily employed to depict phenomena involving the
patial–temporal distribution of unicellular organisms (denoted as 𝑢 = 𝑢(𝑥, 𝑡)) within a confined and impenetrable environment (𝛺,
ith (⋅)𝜈 = 0 on 𝜕𝛺). The movement of these organisms is influenced not only by natural diffusion (i.e., ∇ ⋅ 𝐷(𝑢)∇𝑢), but also by

he gradient of a chemical signal 𝑣 = 𝑣(𝑥, 𝑡), referred to as a chemoattractant, which is produced at a rate 𝑓 (𝑢) and leads to the
ggregation of cells through the cross-diffusion −∇ ⋅ 𝑆(𝑢)∇𝑣. Additionally, a chemorepellent 𝑤 = 𝑤(𝑥, 𝑡), secreted at a rate 𝑔(𝑢),
ontributes to the cell repulsion by means of the counterpart +∇ ⋅ 𝑇 (𝑢)∇𝑤; moreover, an external source ℎ(𝑢) with both increasing
nd decreasing effects on the cell distribution takes part in the phenomena. Naturally, in order to have well-posed systems, some
nitial configurations for cell density and chemical signals must be given; these are denoted by 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜏𝑣(𝑥, 0) = 𝜏𝑣0(𝑥), and
𝑤(𝑥, 0) = 𝜏𝑤0(𝑥).

Regarding model (2), for the specific choice 𝐷(𝑢) = 1, 𝑆(𝑢) = 𝜒𝑢, 𝜙(𝑡, 𝑣) = 𝑣, 𝑓 (𝑢) = 𝑢 and ℎ(𝑢) = 0 (for which essentially the
hemical signal 𝑣 increases with 𝑢), the natural homogenizing effect of the diffusion might be insufficient to make sure that the cell
ensity equally disperses in the environment; indeed, the drift/cross-diffusion term (i.e., 𝑆(𝑢)) may force the system to experience
gathering process, resulting in the formation of highly concentrated spikes at some instants. This phenomenon, called chemotactic

ollapse or blow-up at finite time, is intimately related to the value 𝜒𝑚 (being 𝑚 = ∫𝛺 𝑢0 the initial mass of the particle distribution)
nd the dimension 𝑛. Mathematically, 𝑇𝑚𝑎𝑥 is finite and the solution (𝑢, 𝑣) becomes unbounded at 𝑇𝑚𝑎𝑥. Notably, when 𝑛 = 1, blow-up
henomena are excluded and in this case 𝑇𝑚𝑎𝑥 = ∞ and the solution (𝑢, 𝑣) is bounded. However, for 𝑛 ≥ 2, chemotactic collapse
ccurs when 𝑚𝜒 surpasses a critical value, herein denoted by 𝑚𝜒 . If 𝑚𝜒 is lower than 𝑚𝜒 , no instability appears in the cells’ motion.
hese findings are part of broader analyses, which explore existence and properties (globality, uniform boundedness, or blow-up)
f solutions to the boundary-value problem associated to (2), especially in the parabolic–elliptic version (𝜏 = 0). Further details can
e found in references such as [2–6] and others.

If in problem (2) we fix 𝐷(𝑢) = 1, 𝑆(𝑢) = 𝜒𝑢, 𝜙(𝑡, 𝑣) = 𝑣, ℎ(𝑢) = 0, and 𝜏 = 1, by replacing the linear segregation 𝑓 (𝑢) = 𝑢 with a
onlinear one of the type 𝑓 (𝑢) ≃ 𝑢𝑘, with 0 < 𝑘 < 2

𝑛 (for 𝑛 ≥ 1), implies (see [7]) that all solutions remain bounded. On the contrary,
when 𝜏 = 0 and 𝜙(𝑡, 𝑣) = 1

|𝛺|

∫𝛺 𝑢, it is known that in spatially radial contexts (see [8]), 2
𝑛 plays the role of critical value; indeed,

olutions are bounded for any 𝑛 ≥ 1 and 0 < 𝑘 < 2
𝑛 , while blow-up phenomena may occur when 𝑘 > 2

𝑛 . (As it will be specified below,
he term 𝜙(𝑡, 𝑣) = 1

|𝛺|

∫𝛺 𝑢 influences on the production of 𝑣 in a nonlocal way: see Remark 1.)
On the other hand, in the case of linear production rate, combining (2) with terms representing population growth or decay,

uch as logistic sources (see [9]), seems quite natural. The equation for the particle density becomes

𝑢𝑡 = 𝛥𝑢 − 𝜒∇ ⋅ (𝑢∇𝑣) + ℎ(𝑢),

with ℎ(𝑢) generally taking the form ℎ(𝑢) = 𝜆𝑢− 𝜇𝑢𝑟, where 𝜆, 𝜇 > 0 and 𝑟 > 1. The mathematical intuition suggests that the presence
of a superlinear dampening effect may lead to boundedness and smoothness. This has been established for large 𝜇 (especially when
𝑟 = 2, 𝜙(𝑡, 𝑣) = 𝑣, as shown in [10,11] for respectively 𝜏 = 0 and 𝜏 = 1). However, for certain values of 𝑟 > 1, blow-up has been
demonstrated in the parabolic–elliptic formulation, first with 𝜙(𝑡, 𝑣) = 1

|𝛺|

∫𝛺 𝑢 for dimension 5 or higher [12] (see also [13] for a
7 and for the choice 𝜙(𝑡, 𝑣) = 𝑣 (see [14]).
2

ecent improvement), and later even in three-dimensional domains, with 𝑟 < 6
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Finally, moving our attention to the situation where the produced signal 𝑤 has repulsive consequences on the cells’ motility,
and this corresponds to model (3), to the best of our knowledge no results regarding blow-up scenarios are available. This is likely
due to the repulsive nature of the mechanism, and the existing literature on this topic is relatively limited, as seen in references
like [15,16] which analyse similar contexts.

1.3. An overview on the state of the art for the linear version of model (1)

What we have discussed for the purely attractive mechanism (2) can be also observed for attractive–repulsive models with linear
iffusion and drift terms. To be more precise, when in system (1) we set 𝐷(𝑢) = 1, 𝑆(𝑢) = 𝜒𝑢, 𝑇 (𝑢) = 𝜉𝑢, results dealing with blow-up

and boundedness of solutions have been derived for specific expressions of the equations for 𝑣 and 𝑤. We mention two situations,
known in the literature as local and nonlocal models.

The local model: 𝜙(𝑡, 𝑣) = 𝛽𝑣, 𝜓(𝑡, 𝑤) = 𝛿𝑤

▶ The nonlogistic case (ℎ(𝑢) = 0)

⊳ The case 𝜏 = 0: In the case of linear growth for both the chemoattractant and the chemorepellent, i.e., 𝑓 (𝑢) = 𝛼𝑢, 𝛼 > 0,
and 𝑔(𝑢) = 𝛾𝑢, 𝛾 > 0, the difference 𝛩 ∶= 𝜒𝛼 − 𝜉𝛾 between the parameters describing the impacts of the attraction and
the repulsion, plays a crucial role. Specifically, when 𝛩 < 0 (indicating a regime where the repulsion dominates the
attraction), all solutions to the model are globally bounded in any dimension. Conversely, when 𝛩 > 0 (emphasizing
now, that the attraction is the dominating effect) and 𝑛 = 2, unbounded solutions can be detected (for further details,
see [17–21]). On the other hand, for more general expressions of the production laws 𝑓 and 𝑔, and more exactly those
generalizing the prototypes 𝑓 (𝑢) ≃ 𝛼𝑢𝑘, 𝑘 > 0, and 𝑔(𝑢) ≃ 𝛾𝑢𝑙, 𝑙 > 0, the following recent results valid for 𝑛 ≥ 2 apply [22]:
For any 𝛼, 𝛽, 𝛾, 𝛿, 𝜒 > 0, and 𝑙 > 𝑘 ≥ 1 (or 𝑘 > 𝑙 ≥ 1), there exists 𝜉∗ > 0 (or 𝜉∗ > 0) such that if 𝜉 > 𝜉∗ (or 𝜉 ≥ 𝜉∗), any
sufficiently regular initial datum 𝑢0(𝑥) ≥ 0 (or 𝑢0(𝑥) ≥ 0 small in some Lebesgue space) leads to a unique classical
solution which remains uniformly bounded in time. Moreover, the same conclusion holds for any 𝛼, 𝛽, 𝛾, 𝛿, 𝜒, 𝜉 > 0, and
any sufficiently regular 𝑢0(𝑥) ≥ 0 if the conditions 0 < 𝑘 < 1 and 𝑙 = 1 are satisfied (see also [23] for further improvements
in some situations).

⊳ The case 𝜏 = 1: The research in [19] establishes that in two-dimensional domains, when 𝑓 (𝑢) = 𝛼𝑢 and 𝑔(𝑢) = 𝛾𝑢,
sufficiently smooth initial data lead to solutions that are globally bounded in time. This holds true if the condition 𝛩 < 0
is met (where 𝛩 = 𝜒𝛼 − 𝜉𝛾) and either

𝛽 = 𝛿 or −
𝜒2𝛼2(𝛽 − 𝛿)2

2𝛩𝛽2 ∫𝛺
𝑢0(𝑥) ≤ 𝐶(𝛺), for some constant 𝐶(𝛺) > 0.

Additionally, in three-dimensional ball-shaped domains, [24] highlights the occurrence of blow-up at a finite time under
the condition 𝛩 = 𝜒𝛼 − 𝜉𝛾 > 0.

▶ The logistic case (ℎ(𝑢) = 𝜆𝑢 − 𝜇𝑢𝑟, 𝜆, 𝜇 > 0, 𝑟 > 1)

⊳ The case 𝜏 = 0: For linear rates of the chemoattractant and the chemorepellent, 𝑓 (𝑢) = 𝛼𝑢, 𝛼 > 0, and 𝑔(𝑢) = 𝛾𝑢, 𝛾 > 0,
finite time blow-up is proved in [25] under the assumption 𝛩 = 𝜒𝛼 − 𝜉𝛾 > 0 in 𝑛-dimensional balls (𝑛 ≥ 3), for some
𝑟 = 𝑟(𝑛) close to 1 (additionally, also estimates of the blow-up time are given). Otherwise, for nonlinear behaviour of 𝑓
and 𝑔 (𝑓 (𝑢) ≃ 𝑢𝑘, 𝑔(𝑢) ≃ 𝑢𝑙), in [26] the authors show, inter alia, that if 𝑘 < max{𝑙, 𝑟 − 1, 2𝑛 } all solutions are globally
bounded; the related long-time behaviour of these solutions is studied in [27].

⊳ The case 𝜏 = 1: For 𝑟 = 2 and in the three-dimensional setting whenever 𝜇 is sufficiently large, boundedness and rate of
convergence to constant equilibria are discussed in [28].

The nonlocal model: 𝜏 = 0, 𝜙(𝑡, 𝑣) = 1
|𝛺|

∫𝛺 𝑓 (𝑢), 𝜓(𝑡, 𝑤) =
1
|𝛺|

∫𝛺 𝑔(𝑢)

In [29] it is proved, together with other results, that for 𝑓 (𝑢) ≃ 𝛼𝑢𝑘 and 𝑔(𝑢) ≃ 𝛾𝑢𝑙 with 𝑘 > 2
𝑛 and 𝑘 > 𝑙, unbounded solutions

an be detected, in absence of logistics. By contrast, also in the case ℎ ≡ 0, in [23] the authors show the boundedness of solutions
rovided that 𝑘 < 𝑙 or 𝑘 = 𝑙 and 𝛩 ∶= 𝜒𝛼 − 𝜉𝛾 < 0, or 𝑙 = 𝑘 ∈ (0, 2𝑛 ) and 𝛩 ≥ 0.

So far, we only restricted our discussion to linear diffusion and sensitivities in model (1). Conversely, this project aims at
roviding results for alike models (both including local and nonlocal effects) involving nonlinear diffusion and drift terms, whose

𝑚1 , 𝑆(𝑢) ≃ 𝑢𝑚2 , 𝑇 (𝑢) ≃ 𝑢𝑚3 , where 𝑚 ,𝑚 ,𝑚 ∈ R.
3

rototypes are 𝐷(𝑢) ≃ 𝑢 1 2 3
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2. The nonlinear local and nonlocal models, known results and main claims

From the pure mathematical point of view, our attention is direct to these two systems, one of local type (indicated with ())
and the other of nonlocal nature, ( ):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑡 = ∇ ⋅
(

(𝑢 + 1)𝑚1−1∇𝑢 − 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣 + 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤
)

+ 𝜆𝑢 − 𝜇𝑢𝑟 in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝜏𝑣𝑡 = 𝛥𝑣 − 𝛽𝑣 + 𝑓 (𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝜏𝑤𝑡 = 𝛥𝑤 − 𝛿𝑤 + 𝑔(𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝑢𝜈 = 𝑣𝜈 = 𝑤𝜈 = 0 on 𝜕𝛺 × (0, 𝑇𝑚𝑎𝑥),
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜏𝑣(𝑥, 0) = 𝜏𝑣0(𝑥), 𝜏𝑤(𝑥, 0) = 𝜏𝑤0(𝑥) 𝑥 ∈ 𝛺̄,

()

and
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢𝑡 = ∇ ⋅
(

(𝑢 + 1)𝑚1−1∇𝑢 − 𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣 + 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤
)

+ 𝜆𝑢 − 𝜇𝑢𝑟 in 𝛺 × (0, 𝑇𝑚𝑎𝑥),

0 = 𝛥𝑣 − 1
|𝛺|

∫𝛺
𝑓 (𝑢) + 𝑓 (𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),

0 = 𝛥𝑤 − 1
|𝛺|

∫𝛺
𝑔(𝑢) + 𝑔(𝑢) in 𝛺 × (0, 𝑇𝑚𝑎𝑥),

𝑢𝜈 = 𝑣𝜈 = 𝑤𝜈 = 0 on 𝜕𝛺 × (0, 𝑇𝑚𝑎𝑥),

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ 𝛺̄,

∫𝛺 𝑣(𝑥, 𝑡) 𝑑𝑥 = ∫𝛺 𝑤(𝑥, 𝑡) 𝑑𝑥 = 0 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

( )

emark 1. In problem (), the equation 𝜏𝑣𝑡 = 𝛥𝑣 − 𝛽𝑣 + 𝑓 (𝑢) describes the local interaction between the involved quantities at
ach spatial point 𝑥; contrarily, in ( ) the nonlocal term 1

|𝛺|

∫𝛺 𝑓 (𝑢) appears, and it takes into account the entire distribution of 𝑢
all over the domain 𝛺. (Naturally, the same observation can be done for the equations related to 𝑤.)

Additionally, let us clarify that in the nonlocal model, 𝑣 and 𝑤 stand for the deviations of the chemoattractant and the
chemorepellent (and not for the chemicals themselves). Since by definition the deviation is the difference between the signal
concentration and its mean value, it follows that the means of 𝑣 and 𝑤 vanish, exactly as specified in the last positions of problem
( ). As a consequence, 𝑣 and 𝑤 change sign.

Consistently with the above problems, this paper is contextualized in the framework of a series of results dealing with local
and nonlocal, and linear and nonlinear, attraction–repulsion chemotaxis systems; in particular this research improves and extends
already known analyses in the literature (we will give more details in the sequel).

More specifically, as far as we know, for such discussed fully nonlinear versions, the literature is rather poor; nevertheless, issues
dealing with boundedness and blow-up of solutions have been addressed. More precisely, for problem () we mention the works
[30,31], where in the first the authors ensure the boundedness of solutions, for both 𝜏 = 0 and 𝜏 = 1, under suitable assumptions
n the data; in the second boundedness and blow-up analyses, in this case for the simplified parabolic–elliptic–elliptic version, are
iscussed. For the nonlocal problem ( ), and in the context of nonlinear productions, in [32] blow-up scenarios have been detected
or 𝑚1 ∈ R and 𝑚2 = 𝑚3 = 1; in turn, in the recent paper [33] this result has been extended to the case 𝑚1 ∈ R and 𝑚2 = 𝑚3 ∈ R.
s to the boundedness counterpart, at this point we simply make reference to [34]. (Since in this research we will improve some
esults derived in [23,30,31,34], we will spend more words on these papers in the below Remarks 2 and 3.)

.1. Presentation of the main theorems

In order to present our claims, some positions have to be previously fixed. In particular, here we assume that 𝛺, sources 𝑓, 𝑔
nd the initial data 𝑢0 = 𝑢0(𝑥), 𝜏𝑣0 = 𝜏𝑣0(𝑥) and 𝜏𝑤0 = 𝜏𝑤0(𝑥) are such that

⎧

⎪

⎨

⎪

⎩

𝛺 ⊂ R𝑛, 𝑛 ∈ N, is a bounded domain with smooth boundary 𝜕𝛺,
𝑓 , 𝑔 ∶ [0,∞) → R+, with 𝑓, 𝑔 ∈ 𝐶1([0,∞)),
𝑢0, 𝜏𝑣0, 𝜏𝑤0 ∶ 𝛺̄ → R+, with 𝑢0, 𝜏𝑣0, 𝜏𝑤0 ∈ 𝑊 1,∞(𝛺);

(4)

moreover, we suppose, for 𝛼, 𝑙, 𝑘 > 0 and 0 < 𝛾0 ≤ 𝛾1,

0 ≤ 𝑓 (𝑠) ≤ 𝛼(𝑠 + 1)𝑘 and 𝛾0(𝑠 + 1)𝑙 ≤ 𝑔(𝑠) ≤ 𝛾1(𝑠 + 1)𝑙 . (5)

Additionally, we will frequently invoke these

Assumptions 2.1. For 𝑛 ∈ N, 𝑚1, 𝑚2, 𝑚3 ∈ R, 𝑘, 𝑙 > 0 and 𝑟 > 1 let us set:
(1) 𝑚2 + 𝑘 < 𝑚3 + 𝑙; (2) 𝑚2 + 𝑘 < 𝑟; (3) 𝑚2 + 𝑘 < 𝑚1 +

2
𝑛 ; (4) 𝑚3 + 𝑙 < 𝑟; (5) 𝑚3 + 𝑙 < 𝑚1 +

2
𝑛 .
4

The above preparations allow us to state the following two theorems.
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Theorem 2.2. For 𝜏 = 0, let 𝛺, 𝑓, 𝑔, 𝑢0 comply with hypotheses in (4), (5), 𝜆, 𝜇, 𝜒, 𝜉, 𝛽, 𝛿 > 0 and 𝑞 > 𝑛. Additionally, let one among
(1), (2), (3) in Assumptions 2.1 hold true. Then, problems () and ( ) admit a unique solution

𝑢 ∈ 𝐶0(𝛺̄ × [0,∞)) ∩ 𝐶2,1(𝛺̄ × (0,∞)) and 𝑣,𝑤 ∈ 𝐶2,0(𝛺̄ × (0,∞)) ∩ 𝐿∞
𝑙𝑜𝑐 ((0,∞);𝑊 1,𝑞(𝛺)),

such that 𝑢 is nonnegative and 𝑢, 𝑣,𝑤 are bounded on 𝛺̄ × [0,∞). In particular, 𝑣,𝑤 are as well nonnegative on 𝛺̄ × [0,∞) for problem ().

Theorem 2.3. For 𝜏 = 1, let the remaining hypotheses of Theorem 2.2 be satisfied. Additionally, let one among (2) and (3) jointly
with one between (4) and (5) in Assumptions 2.1 hold true. Then, problem () admits a unique solution

𝑢 ∈ 𝐶0(𝛺̄ × [0,∞)) ∩ 𝐶2,1(𝛺̄ × (0,∞)) and 𝑣,𝑤 ∈ 𝐶0(𝛺̄ × [0,∞)) ∩ 𝐶2,1(𝛺̄ × (0,∞)) ∩ 𝐿∞
𝑙𝑜𝑐 ((0,∞);𝑊 1,𝑞(𝛺)),

such that 𝑢, 𝑣,𝑤 are nonnegative and bounded on 𝛺̄ × [0,∞).

As anticipated in the introductory part, let us specify in which sense our results improve what known so far in the literature.

Remark 2 (Comparisons with nonlocal problem ( )). Let us make these observations.

▶ Nonlinear diffusion and sensitivities (𝑚1, 𝑚2, 𝑚3 ∈ R): in [34, Theorem 1.1] boundedness for problem ( ) is achieved for each
of the following cases:
(i) 𝑚3 + 𝑙 < 𝑚2 + 𝑘 + 1 and 𝑚2 + 𝑘 < 𝑚1 +

2
𝑛 ; (ii) 𝑚2 + 𝑘 < 𝑚3 + 𝑙 < 𝑚1 +

2
𝑛 ; (iii) max{𝑚2 + 𝑘, 𝑚3 + 𝑙} < 𝑟 < 𝑚1 +

2
𝑛 .

It is seen that assumption (1) in Theorem 2.2 is sharper with respect to (ii), and (2) with respect to (iii) and, finally, (3)
with respect to (i).

▶ Linear diffusion and sensitivities (𝑚1 = 𝑚2 = 𝑚3 = 1): in [23, Theorem 2.3] boundedness for problem ( ) is established,
among other situations, whenever:
(a) 𝑘 < 𝑙; (b) 𝑘 = 𝑙 ∈ (0, 2𝑛 ) and 𝛩0 ∶= 𝜒𝛼 − 𝜉𝛾0 ≥ 0.
Evidently, if from the one hand (a) is recovered from (1), on the other hand, also in this case some milder conclusions can
be observed: in the specific (3) improves (b) and provides a further situation where 𝑙 > 0 and 𝑘 ∈

(

0, 2𝑛
)

.

emark 3. (Comparisons with local problem ()) Even for the local problem, the present analysis gives some more precise insight
n the context of attraction–repulsion chemotaxis mechanisms.

▶ Nonlinear diffusion and sensitivities (𝑚1, 𝑚2, 𝑚3 ∈ R):

⊳ 𝜏 = 0: In [31, Theorem 3.1 and Theorem 3.5], where the authors consider the problem with linear productions (𝑘 = 𝑙 = 1),
globality of solutions is carried out for the case 𝑚2 ≤ 𝑚3, so leaving room for the case 𝑚2 > 𝑚3; in particular, for either
𝑚2 < 𝑚3 or 𝑚2 = 𝑚3 and 𝛩0 = 𝜒𝛼 − 𝜉𝛾0 < 0 (naturally, for 𝑘 = 𝑙 = 1 we have 𝛾0 = 𝛾1), boundedness is, respectively,
achieved. Indeed, assumptions (2) and (3) of Theorem 2.2 can be used independently by the relation between 𝑚2
and 𝑚3.
Furthermore, Theorem 2.2 extends [30, Theorem 1.3], where only the case 𝑚1 ∈ R, 𝑚2 = 𝑚3 = 1 and 𝑘, 𝑙 ≥ 1 is
addressed; particularly assumption (3) is less restricted than [30, Theorem 1.3, (i)], since it requires the extra restriction
1 < 𝑟 < 𝑘+1 and (1) provides a further condition. Oppositely, [30, Theorem 1.3, (ii)] coincides with (2), whereas [30,
Theorem 1.3, (iii)] covers the limit case 𝑟 = 𝑘 + 1, not studied in our work.

⊳ 𝜏 = 1: In [30, Theorem 1.1] boundedness of solutions is established, inter alia, if

max{𝑚2 + 𝑘, 𝑚3 + 𝑙} < 𝑚1 +
2
𝑛

or max{𝑚2 + 𝑘, 𝑚3 + 𝑙} < 𝑟 (6)

are fulfilled. In this way, ((2), (4)) and ((3), (5)) of Theorem 2.3 coincide with (6), but ((2), (5)) and ((3),
(4)) provide a further scenario towards boundedness.

▶ Linear diffusion and sensitivities (𝑚1 = 𝑚2 = 𝑚3 = 1): For 𝜏 = 0 if we compare Theorem 2.2 with [23, Theorem 2.1], not
only the same conclusion given in the second item of Remark 2 still applies but even [23, Thorem 2.1, (2)] is turned into a
weaker condition. For the fully parabolic case, assumption (3) and (5) of Theorem 2.3 imply 𝑙, 𝑘 ∈ (0, 2𝑛 ), so improving [23,
Theorem 2.2].

. Adjusting parameters and recalling necessary results

Let us now dedicate ourselves to summarizing some tools which will be used in our reasoning. These are connected to algebraic
nequality and regularity results for Partial Differential Equations.

emma 3.1. Let 𝐴,𝐵 ≥ 0 and 𝑑1, 𝑑2 > 0 be such that 𝑑1 + 𝑑2 < 1. Then, for all 𝜖 > 0 there exists 𝑐 = 𝑐𝜀 > 0 such that

𝐴𝑑1𝐵𝑑2 ≤ 𝜖(𝐴 + 𝐵) + 𝑐.

Proof. The proof can be found in [35, Lemma 4.3]. □
5
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Lemma 3.2. Let 𝛺 ⊂ R𝑛 satisfy condition in (4), 𝜂 > 0 and 𝑞 > max{𝑛, 1𝜂 }.

⋄ Elliptic regularity: Let 𝜗 ∈ (0, 1). If 𝜓 ∈ 𝐶𝜗(𝛺̄), then the solution 𝑧 ∈ 𝐶2+𝜗(𝛺̄) of
{

−𝛥𝑧 + 𝜂𝑧 = 𝜓 in 𝛺,
𝑧𝜈 = 0 on 𝜕𝛺,

is such that

∇𝑧 ∈ 𝐿∞(𝛺). (7)

Moreover for any 𝑐, 𝜌 > 0, there is 𝐶𝜌 > 0 such that

𝑐 ∫𝛺
𝑧𝑞 ≤ 𝜌∫𝛺

𝜓𝑞 + 𝐶𝜌

(

∫𝛺
𝜓
)𝑞

. (8)

⋄ Parabolic regularity : Let 𝑇 ∈ (0,∞]. Then, for 𝜓 ∈ 𝐿𝑞([0, 𝑇 );𝐿𝑞(𝛺)) and 𝑧0 ∈ 𝑊 2,𝑞(𝛺) with 𝜕𝜈𝑧0 = 0 on 𝜕𝛺, there exists
𝐶𝑃 = 𝐶𝑃 (𝛺, 𝑞, ‖𝑧0‖𝑊 2,𝑞 (𝛺)) such that every solution 𝑧 ∈ 𝑊 1,𝑞

𝑙𝑜𝑐 ([0, 𝑇 );𝐿
𝑞(𝛺)) ∩ 𝐿𝑞𝑙𝑜𝑐 ([0, 𝑇 );𝑊

2,𝑞(𝛺)) of

⎧

⎪

⎨

⎪

⎩

𝑧𝑡 = 𝛥𝑧 − 𝜂𝑧 + 𝜓 in 𝛺 × (0, 𝑇 ),
𝜕𝜈𝑧 = 0 on 𝜕𝛺 × (0, 𝑇 ),
𝑧(⋅, 0) = 𝑧0 on 𝛺,

satisfies

∫

𝑡

0
𝑒𝑠 ∫𝛺

|𝛥𝑧(⋅, 𝑠)|𝑞 𝑑𝑠 ≤ 𝐶𝑃

[

1 + ∫

𝑡

0
𝑒𝑠 ∫𝛺

|𝜓(⋅, 𝑠)|𝑞 𝑑𝑠
]

for all 𝑡 ∈ (0, 𝑇 ). (9)

Additionally, if 𝜓 ∈ 𝐿∞([0, 𝑇 );𝐿𝑞(𝛺)) then

∇𝑧 ∈ 𝐿∞((0, 𝑇 );𝐿∞(𝛺)). (10)

Proof. Relation (7) is an obvious consequence of [36, Theorem IX.33]. For estimate (8), we indicate [37, Lemma 2.2] (and also [22,
Lemma 3.1]) and we point out that the power 𝑞 may be replaced by any other one larger than 1. (Since 𝑞 will be chosen arbitrarily
large we preferred to synthesize the nomenclature.) On the other hand, for (9) we refer to [38, Lemma 3.6], whereas for (10)
we can invoke [39, Lemma 4.1] and the embedding 𝑊

1, 𝑛𝑞
(𝑛−𝑞)+ (𝛺) ⊂ 𝐿∞(𝛺), valid for 𝑞 > 𝑛. (The reason why we need 𝑞 > 1

𝜂 is
understandable seeing [38, Lemma 3.6].) □

The following lemma defines crucial parameters; its proof is based on some of the relations fixed in Assumptions 2.1.

Lemma 3.3. Let 𝑛, 𝑘, 𝑙, 𝑚1, 𝑚2, 𝑚3 be as in Assumptions 2.1 and let relations (3) and (5) be valid. Then, there exists 𝑝̄ > 1 such that,
for all 𝑝 > 𝑝̄, 𝑞 > 1 and

𝜃(𝑝) ∶=

𝑝+𝑚1−1
2 − 𝑝+𝑚1−1

2(𝑝+𝑚2+𝑘−1)
𝑝+𝑚1−1

2 − 1
2 + 1

𝑛

, 𝜎(𝑝) ∶=
2(𝑝 + 𝑚2 + 𝑘 − 1)

𝑝 + 𝑚1 − 1
, 𝜃1(𝑝) ∶=

𝑝+𝑚1−1
2 − 𝑝+𝑚1−1

2(𝑝+𝑚3+𝑙−1)
𝑝+𝑚1−1

2 − 1
2 + 1

𝑛

, 𝜎1(𝑝) ∶=
2(𝑝 + 𝑚3 + 𝑙 − 1)
𝑝 + 𝑚1 − 1

𝜃2(𝑝) ∶=
𝑝+𝑚1−1

2 − 𝑝+𝑚1−1
2𝑙

𝑝+𝑚1−1
2 − 1

2 + 1
𝑛

, 𝜃3(𝑝) ∶=
𝑝+𝑚1−1

2 − 𝑝+𝑚1−1
2𝑝

𝑝+𝑚1−1
2 − 1

2 + 1
𝑛

, 𝜃4(𝑝) ∶=
𝑝+𝑚1−1

2 − 𝑝+𝑚1−1
2𝑞

𝑝+𝑚1−1
2 − 1

2 + 1
𝑛

, 𝜎2(𝑝) ∶=
2(𝑝 + 𝑞)
𝑝 + 𝑚1 − 1

,

these relations hold:

0 < 𝜃 < 1, (11a)

0 < 𝜎𝜃
2
< 1, (11b)

0 < 𝜃1 < 1, (11c)

0 <
𝜎1𝜃1
2

< 1, (11d)

0 < 𝜃2 < 1, (11e)

0 <
𝜎1𝜃2
2

< 1, (11f)

0 < 𝜃 < 1, (11g)
6

4
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0 <
𝜎2𝜃4
2

< 1, (11h)

0 < 𝜃3 < 1, (11i)

here (11e) and (11f) are valid only for 𝑙 > 1.

roof. First let us consider the function 𝜃(𝑝). Since lim𝑝→∞ 𝜃(𝑝) = 1, we have that 𝜃(𝑝) is definitively positive; on the other hand,
(𝑝) increases for 𝑝 sufficiently large so that 1 is an upper bound. Therefore, (11a) is proved. Relations (11c), (11i), (11b) and (11d)
ollow by means of analogous arguments, once for (11b) and (11d) conditions (3) and (5) are respectively taken into account.
et us consider now the functions 𝜃2(𝑝) and 𝜎1(𝑝). Relations (11e) and (11f) are consequence of

lim
𝑝→∞

𝜃2(𝑝) = lim
𝑝→∞

𝜎1(𝑝)𝜃2(𝑝)
2

= 1 − 1
𝑙
∈ (0, 1), for 𝑙 > 1.

n the same way, relations (11g) and (11h) are given for every 𝑞 > 1.
From all of the above, once the parameters of our problem and any 𝑞 > 1 are fixed, it is possible to find 𝑝̄ > 1 (depending itself

n the parameters and also on 𝑞) such that the previous relations are complied for every 𝑝 > 𝑝̄. □

For our purposes and for reasons which will be clear later on, the value of 𝑝 > 𝑝̄ > 1 derived in the above result can be taken
rbitrarily large.

. Local existence and extensibility criterion

A first necessary step on which our computations have to rely is the local-in-time existence of classical solutions to systems
) and ( ). The succeeding requirement is, indeed, providing a criterion capable of turning such solutions into global ones. The
ollowing lemma focuses on these two aspects.

emma 4.1. For 𝜏 ∈ {0, 1}, let 𝛺, 𝑓, 𝑔, 𝑢0, 𝜏𝑣0 and 𝜏𝑤0 comply with hypotheses in (4). Moreover, let 𝜒, 𝜉, 𝛽, 𝛿, 𝜆, 𝜇 > 0, 𝑚1, 𝑚2, 𝑚3 ∈ R,
> 1, and 𝑞 > 𝑛. Then, there exist 𝑇𝑚𝑎𝑥 ∈ (0,∞] and a unique solution (𝑢, 𝑣,𝑤) to problems () and ( ), defined in 𝛺× (0, 𝑇𝑚𝑎𝑥) and such

hat if 𝜏 = 0

𝑢 ∈ 𝐶0(𝛺̄ × [0, 𝑇𝑚𝑎𝑥)) ∩ 𝐶2,1(𝛺̄ × (0, 𝑇𝑚𝑎𝑥)) and 𝑣,𝑤 ∈ 𝐶2,0(𝛺̄ × (0, 𝑇𝑚𝑎𝑥)) ∩ 𝐿∞
𝑙𝑜𝑐 ((0, 𝑇𝑚𝑎𝑥);𝑊

1,𝑞(𝛺)),

hereas if 𝜏 = 1

𝑢 ∈ 𝐶0(𝛺̄ × [0, 𝑇𝑚𝑎𝑥)) ∩ 𝐶2,1(𝛺̄ × (0, 𝑇𝑚𝑎𝑥)) and 𝑣,𝑤 ∈ 𝐶0(𝛺̄ × [0, 𝑇𝑚𝑎𝑥)) ∩ 𝐶2,1(𝛺̄ × (0, 𝑇𝑚𝑎𝑥)) ∩ 𝐿∞
𝑙𝑜𝑐 ((0, 𝑇𝑚𝑎𝑥);𝑊

1,𝑞(𝛺)).

he components (𝑢, 𝑣,𝑤) of solutions to problem () are nonnegative, whereas for ( ) only 𝑢 is nonnegative.
In addition,

if 𝑇𝑚𝑎𝑥 <∞ then lim sup
𝑡→𝑇𝑚𝑎𝑥

‖𝑢(⋅, 𝑡)‖𝐿∞(𝛺) = ∞. (12)

inally, if 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥), 𝐿𝑝(𝛺)) for all 𝑝 > 1, then 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥), 𝐿∞(𝛺)) and 𝑇𝑚𝑎𝑥 = ∞.

roof. Existence and uniqueness of solutions can be established using well known techniques based on fixed point arguments and
lliptic and parabolic regularity results: we refer to [40–43].

Let us spend some words on the last implication. Naturally 𝑢 = 𝑢(𝑥, 𝑡), with (𝑥, 𝑡) ∈ 𝛺 × (0, 𝑇𝑚𝑎𝑥), also classically solves problem
A.1) in [44, Appendix A] for

𝐷(𝑥, 𝑡, 𝑢) = (𝑢 + 1)𝑚1−1, 𝑓 (𝑥, 𝑡) = −𝜒𝑢(𝑢 + 1)𝑚2−1∇𝑣 + 𝜉𝑢(𝑢 + 1)𝑚3−1∇𝑤, 𝑔(𝑥, 𝑡) = 𝜆𝑢 − 𝜇𝑢𝑟.

pecifically, by making use of the Neumann boundary conditions, we can see that (A.2)–(A.5) are complied with. On the other

and, for any 𝜆, 𝜇 > 0 and 𝑟 > 1, it holds that 𝜆𝑢 − 𝜇𝑢𝑟 has a positive maximum 𝐿 at 𝑢𝑀 =
(

𝜆
𝑟𝜇

)
1
𝑟−1 , so that from 𝑔(𝑥, 𝑡) ≤ 𝐿 in

× (0, 𝑇𝑚𝑎𝑥) the second requirement in (A.6) is verified for any 𝑞2 > 1. Since, by hypotheses, 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝐿𝑝(𝛺)) for every
> 1, we have that ∫𝛺 𝑢

𝑝 is uniformly bounded on (0, 𝑇𝑚𝑎𝑥) for 𝑝 arbitrary large (without relabelling it) and henceforth conditions
A.7)–(A.10) are fulfilled. As to the first assumption of [44, (A.6)], if 𝜏 = 0 in problem () (or model ( )), from the obtained

inclusion 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝐿𝑝(𝛺)) we have 𝑓 (𝑢) ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝐿𝑝(𝛺)), and in turn relation (7) provides ∇𝑣 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝐿∞(𝛺)),
and similarly ∇𝑤 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝐿∞(𝛺)). For 𝜏 = 1 we directly invoke (10); in both cases we have that, for any 𝑞1 > 1,
𝑓 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥);𝐿𝑞1 (𝛺)). As a consequence of what explained, we have the claim by virtue of [44, Lemma A.1] and the extensibilty
7

criterion (12). □
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5. Some a priori estimates

In this section we will dedicate ourselves to deriving some uniform-in-time estimates of the previously obtained local solution
he investigated problems. In this framework, from now on we will tacitly assume that

⊳ all the constants 𝑐𝑖 (𝑖 = 1, 2,…) appearing below are positive,
⊳ the triplet (𝑢, 𝑣,𝑤) indicates the local solution to models () or ( ) (naturally recognizable from the context), obtained in

Lemma 4.1.

he forthcoming lemmas hold for models () and ( ).

emma 5.1. The 𝑢-component is such that the mass ∫𝛺 𝑢(𝑥, 𝑡)𝑑𝑥 is uniformly bounded over (0, 𝑇𝑚𝑎𝑥), more specifically,

∫𝛺
𝑢 ≤𝑀 ∶= max

⎧

⎪

⎨

⎪

⎩

∫𝛺
𝑢0(𝑥) 𝑑𝑥,

(

𝜆
𝜇
|𝛺|

𝑟−1
)

1
𝑟−1

⎫

⎪

⎬

⎪

⎭

for all 𝑡 ∈ [0, 𝑇𝑚𝑎𝑥).

Proof. This property can be proved by integrating over 𝛺 the first equation of the models and then by applying the Hölder inequality
and ODI comparison principles. □

Lemma 5.2. Let the hypotheses of Lemma 3.3 be valid and let 𝑝̄ > 1 be the value therein found. Then, for every 𝑐, 𝜀1, 𝜀2 > 0 and for every
𝑝 > 𝑝̄, there exist some constants 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6 such that

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚2+𝑘−1 ≤ 𝑝 − 1

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐1 on (0, 𝑇𝑚𝑎𝑥), provided (3), (13a)

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 ≤ 𝑝 − 1

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐2 on (0, 𝑇𝑚𝑎𝑥), provided (5), (13b)

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1

∫𝛺
(𝑢 + 1)𝑙 ≤ 𝜀1 ∫𝛺

(𝑢 + 1)𝑝+𝑚3+𝑙−1 +
𝑝 − 1

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐3 on (0, 𝑇𝑚𝑎𝑥), (13c)

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1𝑤 ≤ 𝜀2 ∫𝛺

(𝑢 + 1)𝑝+𝑚3+𝑙−1 +
𝑝 − 1

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐4 on (0, 𝑇𝑚𝑎𝑥), (13d)

− ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
≤ 𝑐5 − 𝑐6

(

∫𝛺
(𝑢 + 1)𝑝

)

𝑝+𝑚1−1
𝑝𝜃3 on (0, 𝑇𝑚𝑎𝑥). (13e)

Proof. Let us show (13a). Under assumption (3), taking into account (11a), (11b) and the boundedness of the mass (Lemma 5.1),
we can derive through the Gagliardo–Nirenberg, used in its less common version proved in [45, Lemma 2.3], and Young’s inequalities
this bound

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚2+𝑘−1 =𝑐

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

2(𝑝+𝑚2+𝑘−1)
𝑝+𝑚1−1

𝐿
2(𝑝+𝑚2+𝑘−1)
𝑝+𝑚1−1 (𝛺)

≤𝑐7

(

‖

‖

‖

‖

∇(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

𝜃

𝐿2(𝛺)

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

1−𝜃

𝐿
2

𝑝+𝑚1−1 (𝛺)
+
‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖𝐿
2

𝑝+𝑚1−1 (𝛺)

)𝜎

≤𝑐8

(

∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2)
𝜎𝜃
2
+ 𝑐9 ≤ 𝑝 − 1

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐1 on (0, 𝑇𝑚𝑎𝑥).

(We point out that we have made use of

(𝐴 + 𝐵)𝑠 ≤ 2𝑠(𝐴𝑠 + 𝐵𝑠) for all 𝐴,𝐵, 𝑠 > 0, (14)

which we will employ without mentioning it if not necessary.)
Similarly to what we have done before, by supposing (5), estimate (13b) is obtained by applying in this case (11c) and (11d),

so entailing

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 =𝑐

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

2(𝑝+𝑚3+𝑙−1)
𝑝+𝑚1−1

𝐿
2(𝑝+𝑚3+𝑙−1)
𝑝+𝑚1−1 (𝛺)

≤𝑐10

(

‖

‖

‖

‖

∇(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

𝜃1

𝐿2(𝛺)

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

1−𝜃1

𝐿
2

𝑝+𝑚1−1 (𝛺)
+
‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖𝐿
2

𝑝+𝑚1−1 (𝛺)

)𝜎1

≤𝑐11

(

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

2)
𝜎1𝜃1
2

+ 𝑐12 ≤ 𝑝 − 1 |

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

2
+ 𝑐2 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).
8

∫𝛺 | |
(𝑝 + 𝑚1 − 1)2 ∫𝛺 | |
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In order to prove (13c) we distinguish the cases 𝑙 ≤ 1 and 𝑙 > 1. If 0 < 𝑙 ≤ 1 the boundedness of the mass, given in Lemma 5.1, and
Young’s inequality yield

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1

∫𝛺
(𝑢 + 1)𝑙 ≤ 𝑐13 ∫𝛺

(𝑢 + 1)𝑝+𝑚3−1 ≤ 𝜀1 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐3 on (0, 𝑇𝑚𝑎𝑥).

On the other hand, if 𝑙 > 1 we first have to introduce 𝑞 > max {𝑙, 𝑚3 + 𝑙 − 1}. Subsequently, by applying twice the Hölder inequality,
we get by relying on Lemma 3.1

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1

∫𝛺
(𝑢 + 1)𝑙 ≤ 𝑐14

[

∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1

]

𝑝+𝑚3−1
𝑝+𝑚3+𝑙−1

[

(

∫𝛺
(𝑢 + 1)𝑞

)
𝑝
𝑞 +1

]

𝑙
𝑝+𝑞

≤ 𝜀1 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝜀1

(

∫𝛺
(𝑢 + 1)𝑞

)
𝑝
𝑞 +1

+ 𝑐15 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(15)

Now we focus on the second integral of the right-hand side of (15). By exploiting (11g), (11h) and Lemma 5.1, a combination of
the Gagliardo–Nirenberg and Young’s inequalities gives

𝜀1

(

∫𝛺
(𝑢 + 1)𝑞

)
𝑝
𝑞 +1

=𝜀1
‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

2(𝑝+𝑞)
𝑝+𝑚1−1

𝐿
2𝑞

𝑝+𝑚1−1 (𝛺)

≤𝑐16

(

‖

‖

‖

‖

∇(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

𝜃4

𝐿2(𝛺)

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

1−𝜃4

𝐿
2

𝑝+𝑚1−1 (𝛺)
+
‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖𝐿
2

𝑝+𝑚1−1 (𝛺)

)𝜎2

≤𝑐17

(

∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2)
𝜎2𝜃4
2

+ 𝑐18 ≤ 𝑝 − 1
(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐3 on (0, 𝑇𝑚𝑎𝑥),

which plugged in the previous one concludes the proof.
As to (13d), again by means of the Young inequality and relation (8), recalling the definition of 𝑔 in (5) we can write

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1𝑤 ≤ 𝜌∫𝛺

(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐19 ∫𝛺
𝑤

𝑝+𝑚3−1
𝑙 +1

≤ 𝜌∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝜌∫𝛺

𝑔(𝑢)
𝑝+𝑚3+𝑙−1

𝑙 + 𝐶𝜌

(

∫𝛺
𝑔(𝑢)

)

𝑝+𝑚3+𝑙−1
𝑙

≤ 𝜀2 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐20

(

∫𝛺
(𝑢 + 1)𝑙

)

𝑝+𝑚3+𝑙−1
𝑙

for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

(16)

or 𝑙 ≤ 1, due to Lemma 5.1 the last integral of the right-hand side of (16) is bounded, and we have

𝑐 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1𝑤 ≤ 𝜀2 ∫𝛺

(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐4 on (0, 𝑇𝑚𝑎𝑥).

nstead, for 𝑙 > 1, by virtue of (11e), Lemma 5.1, and (11f), the Gagliardo–Nirenberg and Young’s inequalities imply

𝑐20

(

∫𝛺
(𝑢 + 1)𝑙

)

𝑝+𝑚3+𝑙−1
𝑙

= 𝑐20
‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

𝜎1

𝐿
2𝑙

𝑝+𝑚1−1 (𝛺)

≤ 𝑐21

(

‖

‖

‖

‖

∇(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

𝜃2

𝐿2(𝛺)

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

1−𝜃2

𝐿
2

𝑝+𝑚1−1 (𝛺)
+
‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖𝐿
2

𝑝+𝑚1−1 (𝛺)

)𝜎1

≤ 𝑐22

(

∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2)
𝜎1𝜃2
2

+ 𝑐23

≤ 𝑝 − 1
(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐4 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

and we conclude by plugging the bound above into (16).
Finally, let us prove (13e). Taking into account (11i) and Lemma 5.1, a further application of the Gagliardo–Nirenberg inequality

leads to

∫𝛺
(𝑢 + 1)𝑝 =

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

2𝑝
𝑝+𝑚1−1

𝐿
2𝑝

𝑝+𝑚1−1 (𝛺)

≤𝑐24

(

‖

‖

‖

‖

∇(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

𝜃3

𝐿2(𝛺)

‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖

1−𝜃3

𝐿
2

𝑝+𝑚1−1 (𝛺)
+
‖

‖

‖

‖

(𝑢 + 1)
𝑝+𝑚1−1

2
‖

‖

‖

‖𝐿
2

𝑝+𝑚1−1 (𝛺)

)
2𝑝

𝑝+𝑚1−1

≤𝑐25

(

∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2)
𝑝𝜃3

𝑝+𝑚1−1
+ 𝑐26 ≤ 𝑐27

(

∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 1

)

𝑝𝜃3
𝑝+𝑚1−1

on (0, 𝑇𝑚𝑎𝑥),
9

obtaining the claim after basic manipulations in the previous estimate. □
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Lemma 5.3. For the value of 𝑝̄ > 1 found in Lemma 3.3, let for 𝑝 > 𝑝̄ define the functional 𝜑(𝑡) by

𝜑(𝑡) ∶= 1
𝑝 ∫𝛺

(𝑢 + 1)𝑝,

nd for 𝑗 ∈ {𝑚2, 𝑚3}, let

𝐹𝑗 (𝑢) ∶= ∫

𝑢

0
𝑢̂ (𝑢̂ + 1)𝑝+𝑗−3 𝑑𝑢̂. (17)

Then, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥) and some 𝑐28 and 𝑐29, it holds

𝜑′(𝑡) ≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
− (𝑝 − 1)𝜒 ∫𝛺

𝐹𝑚2
(𝑢)𝛥𝑣 + (𝑝 − 1)𝜉 ∫𝛺

𝐹𝑚3
(𝑢)𝛥𝑤 − 𝑐28 ∫𝛺

(𝑢 + 1)𝑝+𝑟−1 + 𝑐29. (18)

roof. By differentiating the energy functional, we have

𝜑′(𝑡) =∫𝛺
(𝑢 + 1)𝑝−1𝑢𝑡

=∫𝛺
(𝑢 + 1)𝑝−1∇ ⋅

(

(𝑢 + 1)𝑚1−1∇𝑢
)

− 𝜒 ∫𝛺
(𝑢 + 1)𝑝−1∇ ⋅

(

𝑢(𝑢 + 1)𝑚2−1∇𝑣
)

+ 𝜉 ∫𝛺
(𝑢 + 1)𝑝−1∇ ⋅

(

𝑢(𝑢 + 1)𝑚3−1∇𝑤
)

+ 𝜆∫𝛺
(𝑢 + 1)𝑝−1𝑢 − 𝜇 ∫𝛺

(𝑢 + 1)𝑝−1𝑢𝑟 on (0, 𝑇𝑚𝑎𝑥).

ue to the divergence theorem, the three first integrals on the right-hand side make that the above identity becomes

𝜑′(𝑡) = − (𝑝 − 1)∫𝛺
(𝑢 + 1)𝑝+𝑚1−3

|∇𝑢|2 + (𝑝 − 1)𝜒 ∫𝛺
𝑢(𝑢 + 1)𝑝+𝑚2−3∇𝑢 ⋅ ∇𝑣

− (𝑝 − 1)𝜉 ∫𝛺
𝑢(𝑢 + 1)𝑝+𝑚3−3∇𝑢 ⋅ ∇𝑤 + 𝜆∫𝛺

(𝑢 + 1)𝑝−1𝑢 − 𝜇 ∫𝛺
(𝑢 + 1)𝑝−1𝑢𝑟 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

y recalling (17), we rewrite the previous expression as

𝜑′(𝑡) = −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ (𝑝 − 1)𝜒 ∫𝛺

∇𝐹𝑚2
(𝑢) ⋅ ∇𝑣 − (𝑝 − 1)𝜉 ∫𝛺

∇𝐹𝑚3
(𝑢) ⋅ ∇𝑤

+ 𝜆∫𝛺
(𝑢 + 1)𝑝−1𝑢 − 𝜇 ∫𝛺

(𝑢 + 1)𝑝−1𝑢𝑟 on (0, 𝑇𝑚𝑎𝑥),

nd again the divergence theorem provides

𝜑′(𝑡) = −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
− (𝑝 − 1)𝜒 ∫𝛺

𝐹𝑚2
(𝑢)𝛥𝑣 + (𝑝 − 1)𝜉 ∫𝛺

𝐹𝑚3
(𝑢)𝛥𝑤

+ 𝜆∫𝛺
(𝑢 + 1)𝑝−1𝑢 − 𝜇 ∫𝛺

(𝑢 + 1)𝑝−1𝑢𝑟, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

he inequality

1
2𝑟 ∫𝛺

(𝑢 + 1)𝑝−1+𝑟 ≤ ∫𝛺
(𝑢 + 1)𝑝−1𝑢𝑟 + ∫𝛺

(𝑢 + 1)𝑝−1 on (0, 𝑇𝑚𝑎𝑥),

ustified by inequality (14), leads to the further bound

𝜑′(𝑡) ≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
− (𝑝 − 1)𝜒 ∫𝛺

𝐹𝑚2
(𝑢)𝛥𝑣 + (𝑝 − 1)𝜉 ∫𝛺

𝐹𝑚3
(𝑢)𝛥𝑤

+ 𝜆∫𝛺
(𝑢 + 1)𝑝 + 𝜇 ∫𝛺

(𝑢 + 1)𝑝−1 −
𝜇
2𝑟 ∫𝛺

(𝑢 + 1)𝑝−1+𝑟 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).
(19)

inally, a double application of Young’s inequality (recalling 𝑟 > 1) gives

𝜆∫𝛺
(𝑢 + 1)𝑝 + 𝜇 ∫𝛺

(𝑢 + 1)𝑝−1 ≤ 𝜇
2𝑟+1 ∫𝛺

(𝑢 + 1)𝑝−1+𝑟 + 𝑐30 on (0, 𝑇𝑚𝑎𝑥),

hich, in conjunction with inequality (19), leads to (18). □

From now on we will distinguish the analyses for the local problem and the nonlocal one.

.1. Study of the local problem ()
10

Let us separate the elliptic and parabolic cases, i.e., 𝜏 = 0 and 𝜏 = 1, respectively.
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5.1.1. The parabolic–elliptic case: 𝜏 = 0

Lemma 5.4. For the value of 𝑝̄ > 1 found in Lemma 3.3, let conditions (5), (1), (2) and (3) be satisfied. Then, 𝑢 ∈
𝐿∞((0, 𝑇𝑚𝑎𝑥), 𝐿𝑝(𝛺)) for all 𝑝 > 𝑝̄.

Proof. The second and third equations in () allow the substitution of 𝛥𝑣 and 𝛥𝑤 in (18), obtaining once nonpositive terms are
dropped

𝜑′(𝑡) ≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
− (𝑝 − 1)𝜒 ∫𝛺

𝐹𝑚2
(𝑢) (𝛽𝑣 − 𝑓 (𝑢)) + (𝑝 − 1)𝜉 ∫𝛺

𝐹𝑚3
(𝑢) (𝛿𝑤 − 𝑔(𝑢))

− 𝑐28 ∫𝛺
(𝑢 + 1)𝑝+𝑟−1 + 𝑐29

≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ (𝑝 − 1)𝜒 ∫𝛺

𝐹𝑚2
(𝑢)𝑓 (𝑢) + 𝑐31 ∫𝛺

𝐹𝑚3
(𝑢)𝑤 − (𝑝 − 1)𝜉 ∫𝛺

𝐹𝑚3
(𝑢)𝑔(𝑢)

− 𝑐28 ∫𝛺
(𝑢 + 1)𝑝+𝑟−1 + 𝑐29 on (0, 𝑇𝑚𝑎𝑥).

(20)

ith some calculations, by using the definition in (17), we find that

0 ≤ 1
𝑝 + 𝑗 − 1

𝑢𝑝+𝑗−1 ≤ 𝐹𝑗 (𝑢) ≤
1

𝑝 + 𝑗 − 1
(

(𝑢 + 1)𝑝+𝑗−1 − 1
)

. (21)

By considering (5), (20), and (21), we have

𝜑′(𝑡) ≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐32 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 + 𝑐33 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1𝑤

− 𝑐34 ∫𝛺
𝑢𝑝+𝑚3−1(𝑢 + 1)𝑙 − 𝑐28 ∫𝛺

(𝑢 + 1)𝑝−1+𝑟 + 𝑐29

≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐32 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 + 𝑐33 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1𝑤

− 𝑐35 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐34 ∫𝛺

(𝑢 + 1)𝑙 − 𝑐28 ∫𝛺
(𝑢 + 1)𝑝−1+𝑟 + 𝑐29 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),

(22)

here we have rearranged the term proportional to − ∫𝛺 𝑢
𝑝+𝑚3−1(𝑢+ 1)𝑙 through (14). Let us deal with the two terms ∫𝛺(𝑢+ 1)𝑙 and

𝛺(𝑢 + 1)𝑝+𝑚3−1𝑤. For every 𝑙 > 0, we have thanks to the Young inequality that for all 𝑐 > 0

𝑐 ∫𝛺
(𝑢 + 1)𝑙 ≤

𝑐28
2 ∫𝛺

(𝑢 + 1)𝑝−1+𝑟 + 𝑐36 on (0, 𝑇𝑚𝑎𝑥), (23)

(for 𝑙 ≤ 1 the boundedness of the mass (see again Lemma 5.1) would provide a sharper estimate), whereas through (13d) applied
with 𝜀2 < 𝑐35, from (22) we derive for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥)

𝜑′(𝑡) ≤ −𝑐37 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐32 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 − 𝑐38 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 −

𝑐28
2 ∫𝛺

(𝑢 + 1)𝑝−1+𝑟 + 𝑐39. (24)

Now we use assumption (1) to write by Young’s inequality

𝑐32 ∫𝛺
(𝑢 + 1)𝑝+𝑚2+𝑘−1 ≤ 𝑐38 ∫𝛺

(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐40 on (0, 𝑇𝑚𝑎𝑥),

which, introduced into (24), provides after neglecting the term from the logistic source

𝜑′(𝑡) ≤ −𝑐37 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐41 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

he same estimate, up to constants, is obtained with assumption (2) by controlling ∫𝛺(𝑢+1)𝑝+𝑚2+𝑘−1 with ∫𝛺(𝑢+1)𝑝−1+𝑟, invoking
he Young inequality, or relying on assumption (3) by exploiting (13a).

Finally, inequality (13e) yields the initial problem

⎧

⎪

⎨

⎪

⎩

𝜑′(𝑡) ≤ 𝑐42 − 𝑐43𝜑(𝑡)
𝑝+𝑚1−1
𝑝𝜃3 on (0, 𝑇𝑚𝑎𝑥),

𝜑(0) = 1
𝑝 ∫𝛺

(𝑢0 + 1)𝑝,

and ODI comparisons arguments ensure 𝜑(𝑡) ≤ max

{

𝜑(0),
(

𝑐42
𝑐43

)

𝑝𝜃3
𝑝+𝑚1−1

}

for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). □

5.1.2. The parabolic-parabolic case: 𝜏 = 1

emma 5.5. For the value of 𝑝̄ > 1 found in Lemma 3.3, let conditions (5), (2), (3), (4) and (5) be valid. Then, 𝑢 ∈
∞ 𝑝
11

𝐿 ((0, 𝑇𝑚𝑎𝑥), 𝐿 (𝛺)) for all 𝑝 > 𝑝̄.
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Proof. We start dealing with bounds for the terms ∫𝛺
𝐹𝑚2

(𝑢)𝛥𝑣 and ∫𝛺
𝐹𝑚3

(𝑢)𝛥𝑤. Relations in (21) and Young’s inequality provide
or all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥)

− (𝑝 − 1)𝜒 ∫𝛺
𝐹𝑚2

(𝑢)𝛥𝑣 ≤ (𝑝 − 1)𝜒 ∫𝛺
𝐹𝑚2

(𝑢) |𝛥𝑣| ≤ 𝑐44 ∫𝛺
(𝑢 + 1)𝑝+𝑚2−1

|𝛥𝑣| ≤ ∫𝛺
(𝑢 + 1)𝑝+𝑚2+𝑘−1 + 𝑐45 ∫𝛺

|𝛥𝑣|
𝑝+𝑚2−1+𝑘

𝑘 (25)

and analogously

(𝑝 − 1)𝜉 ∫𝛺
𝐹𝑚3

(𝑢)𝛥𝑤 ≤ ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐46 ∫𝛺

|𝛥𝑤|
𝑝+𝑚3−1+𝑙

𝑙 . (26)

or 𝑧 = 𝑣, 𝜂 = 𝛽, 𝜓 = 𝑓 (𝑢) (and using (5)) and 𝑞 = 𝑝+𝑚2+𝑘−1
𝑘 , inequality (9) allows us to write

∫

𝑡

0
𝑒𝑠 ∫𝛺

|𝛥𝑣|
𝑝+𝑚2+𝑘−1

𝑘 𝑑𝑠 ≤ 𝐶𝑃

(

1 + ∫

𝑡

0
𝑒𝑠 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 𝑑𝑠
)

on (0, 𝑇𝑚𝑎𝑥), (27)

and, reasoning similarly for the third equation in model (),

∫

𝑡

0
𝑒𝑠 ∫𝛺

|𝛥𝑤|
𝑝+𝑚3+𝑙−1

𝑙 𝑑𝑠 ≤ 𝐶̃𝑃

(

1 + ∫

𝑡

0
𝑒𝑠 ∫𝛺

(𝑢 + 1)𝑝+𝑚3+𝑙−1 𝑑𝑠
)

for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (28)

y substituting (25) and (26) into (18), we obtain

𝜑′(𝑡) ≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 + 𝑐45 ∫𝛺
|𝛥𝑣|

𝑝+𝑚2+𝑘−1
𝑘 + ∫𝛺

(𝑢 + 1)𝑝+𝑚3+𝑙−1

+ 𝑐46 ∫𝛺
|𝛥𝑤|

𝑝+𝑚3+𝑙−1
𝑙 − 𝑐28 ∫𝛺

(𝑢 + 1)𝑝+𝑟−1 + 𝑐29 on (0, 𝑇𝑚𝑎𝑥).
(29)

Now we add to both sides of (29) the term 𝜑(𝑡), and successively we multiply by 𝑒𝑡. Since 𝑒𝑡𝜑′(𝑡) + 𝑒𝑡𝜑(𝑡) = 𝑑
𝑑𝑡 (𝑒

𝑡𝜑(𝑡)), an integration
ver (0, 𝑡) provides for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥)

𝑒𝑡𝜑(𝑡) ≤𝜑(0) + ∫

𝑡

0
𝑒𝑠

(

−
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 + 𝑐45 ∫𝛺
|𝛥𝑣|

𝑝+𝑚2+𝑘−1
𝑘

+∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐46 ∫𝛺

|𝛥𝑤|
𝑝+𝑚3+𝑙−1

𝑙 + 1
𝑝 ∫𝛺

(𝑢 + 1)𝑝 − 𝑐28 ∫𝛺
(𝑢 + 1)𝑝+𝑟−1 + 𝑐29

)

𝑑𝑠.
(30)

elations (27) and (28), in conjunction with Young’s inequality (recall 𝑟 > 1) entail on (0, 𝑇𝑚𝑎𝑥) once inserted into (30)

𝑒𝑡

𝑝 ∫𝛺
𝑢𝑝 ≤ 𝑒𝑡𝜑(𝑡) ≤𝜑(0) + ∫

𝑡

0
𝑒𝑠

(

−
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐47 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1

+𝑐48 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 −

𝑐28
2 ∫𝛺

(𝑢 + 1)𝑝+𝑟−1 + 𝑐49

)

𝑑𝑠.
(31)

t this stage, analogously to what we have done in the previous lemma, if restriction (2) is supported with one between (4) and
5), Young’s inequality and (13b) make that bound (31) is turned into

𝑒𝑡 ∫𝛺
𝑢𝑝 ≤ 𝑐50 + 𝑐51(𝑒𝑡 − 1) for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (32)

he same procedure applies if we take into account (3), implying (13a), with either (4) (by means of Young’s inequality) or
5), ensuring (13b).

Henceforth, also in this case inequality (32) is derived and as a consequence, in each of the above situations, we conclude that

∫𝛺
𝑢𝑝 ≤ 𝑐52 on (0, 𝑇𝑚𝑎𝑥). □

.2. Study of the nonlocal problem ( )

emma 5.6. Let the hypotheses of Lemma 5.4 be valid. Then, 𝑢 ∈ 𝐿∞((0, 𝑇𝑚𝑎𝑥), 𝐿𝑝(𝛺)) for all 𝑝 > 𝑝̄.

roof. Starting from relation (18), the second and the third equations in model ( ) lead to

𝜑′(𝑡) ≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ (𝑝 − 1)𝜒 ∫𝛺

𝐹𝑚2
(𝑢)𝑓 (𝑢) +

(𝑝 − 1)𝜉
|𝛺|

∫𝛺
𝐹𝑚3

(𝑢)∫𝛺
𝑔(𝑢)

− (𝑝 − 1)𝜉 ∫𝛺
𝐹𝑚3

(𝑢)𝑔(𝑢) − 𝑐28 ∫𝛺
(𝑢 + 1)𝑝−1+𝑟 + 𝑐29

≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐53 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 + 𝑐54 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1

∫𝛺
(𝑢 + 1)𝑙

− 𝑐55 𝑢𝑝+𝑚3−1(𝑢 + 1)𝑙 − 𝑐28 (𝑢 + 1)𝑝−1+𝑟 + 𝑐29 for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥),
12

∫𝛺 ∫𝛺
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W

where we have taken in mind the properties of 𝐹𝑗 and 𝑓 and 𝑔 fixed in (5) and (21), and dropped nonpositive terms. In turn, thanks
again to (14), we have

𝜑′(𝑡) ≤ −
4(𝑝 − 1)

(𝑝 + 𝑚1 − 1)2 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐53 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 + 𝑐54 ∫𝛺
(𝑢 + 1)𝑝+𝑚3−1

∫𝛺
(𝑢 + 1)𝑙

− 𝑐56 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 + 𝑐57 ∫𝛺

(𝑢 + 1)𝑙 − 𝑐28 ∫𝛺
(𝑢 + 1)𝑝−1+𝑟 + 𝑐29 on (0, 𝑇𝑚𝑎𝑥).

ith the aid of estimate (23), by exploiting (13c) with 𝜀1 < 𝑐56, we obtain on (0, 𝑇𝑚𝑎𝑥)

𝜑′(𝑡) ≤ −𝑐11 ∫𝛺

|

|

|

|

∇(𝑢 + 1)
𝑝+𝑚1−1

2
|

|

|

|

2
+ 𝑐53 ∫𝛺

(𝑢 + 1)𝑝+𝑚2+𝑘−1 − 𝑐58 ∫𝛺
(𝑢 + 1)𝑝+𝑚3+𝑙−1 −

𝑐28
2 ∫𝛺

(𝑢 + 1)𝑝−1+𝑟 + 𝑐59.

Since up to constants the previous estimate coincides with (24), we can follow the same arguments of Lemma 5.4 to conclude. □

6. Proof of Theorems 2.2 and 2.3

For 𝜏 = 0, we use respectively Lemma 5.4 and Lemma 5.6, supported by the extension criterion in Lemma 4.1; in this way
Theorem 2.2 is established. Theorem 2.3 is evidently obtained by invoking Lemma 5.5.
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