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Abstract 

 The closed-loop (CL) 3-state stochastic dynamics of a benchmark 2-state nonlinear (NL) 

exothermic continuous reactor class with linear proportional-integral (PI) temperature control is 

analyzed with Fokker Planck (FP) partial differential equation (PDE) theory. The geometric 

correspondence between the CL stationary state probability density function (PDF) and 

deterministic global monostability is established. A control gain condition to attain robust (R) 

stationary state probability density function (PDF) monomodality and preclude metastability is 

obtained. The PDF transient along deterministic and probability diffusion time scales is 

characterized, finding that the most probable (MP) state and control as well as their local covariances 

evolve along nearly deterministic time scale. The compromise between MP state regulation speed, 

robustness, and control effort is identified, and the stochastic on deterministic dynamics dependency 

is characterized. The methodological developments and findings are illustrated with three indicative 

examples with open-loop (OL) complex bimodal and vulcanoid stationary state PDFs. 
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1. Introduction 

Closed-loop (CL) industrial exothermic continuous stirred tank reactors (CSTRs) with complex 

open-loop (OL) nonlinear (NL) dynamics and linear proportional-integral (PI) control operate in the 

presence of exogenous (inlet composition and temperature, heat exchange rates, actuator, and 

measurement, etc.) and endogenous (quasi-stationary dynamics, imperfect mixing-transport, etc.) 

parasitic (high frequency) fluctuations (Jazwinski, 1970; Risken, 1996; Gardiner, 1997). By complex 

dynamics it is meant with NL phenomena, that occur "in the large" (beyond locality) such as steady-

state (SS) multiplicity and/or limit cycling (LC) (Hubbard and West, 1995). Safety, disturbance 

and/or fault detection, reliability, product quality assessments and setpoint adjustment (Ratto, 1998; 

Ratto and Paladino, 2000) are executed in a supervisory layer (Burr, 1976; McAvoy, 2002), by ad hoc 

combinations of PI and statistical process (SP) control techniques The development of more 

systematic means to combine PI and SP control is a relevant problem along current industrial trends 

(Samad, 2017; Maxim et al., 2019). 

The OL stochastic stationary dynamics of the indicative 2-state reactor class addressed in the 

present study has been analyzed over 5 decades mostly with local (per stable SS) Monte Carlo (MC) 

method-based simulation, reporting that: (i): (i) reasonable state mean and covariance results are 

obtained in away from deterministic bifurcation condition (Pell and Aris, 1969; Doraiswamy and 

Kulkarny, 1986; Mandur and Budman, 2014), and (ii) the method breaks down (Pell and Aris, 1969) 

or yields atypical results (Doraiswamy and Kulkarny, 1986) in close to deterministic bifurcation. 

Recently (Alvarez et al., 2018), the OL PDF dynamics has been characterized with analytic NL global 

FP PDE theory (Risken, 1996) that yields rigorous and consistent stationary and transient state PDF 

results in away from and close to deterministic bifurcation. It was established that: (i) the stationary 

state PDF is R monomodal if and only if the deterministic global dynamics are R monostable, (ii) there 

can be or not metastable state PDF evolutions (a purely stochastic phenomenon, inexistent in 

deterministic systems) [Risken, 1996; Gardiner, 1997], depending on deterministic dynamics 

characteristics, (iii) a non-metastable state PDF evolves along deterministic and probabilistic time 

scales, and a metastable one evolves along those two scales as well as along a comparatively slower 

escape time scale. It was explained why the MC method of previous reactor studies: (i) breaks down 

in close to deterministic bifurcation, and (ii) cannot describe the purely stochastic phenomena 

(inexistent in deterministic systems) of transient along diffusion and metastability time scales. 

  The CL 3-state stochastic stationary dynamics of the above discussed 2-state reactor class with 

linear PI control has been analyzed local FP theory and MC simulation (Ratto, 1998; Ratto and 

Paladino, 2000), with emphasis on control gain selection in the light of state mean and variability 

along SP control considerations. It has been reported that: (i) as in the OL case (Pell and Aris, 1969), 
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the MC approach breaks down in close to deterministic bifurcation, and (ii) the overcoming of this 

obstacle for efficient gain tuning requires the global FP PDE approach (Ratto, 1998).  

 Recently, stochastic exothermic reactors have been stabilized about an OL unstable mean SS with: 

(i) linear proportional control tuned with a stochastic sensitivity-ellipsoidal confidence technique for 

a 2-state OL case (Bashkirtseva, 2018; Bashkirtseva and Pisarchik, 2018), and (ii) in a probabilistic 

sense, stochastic passive NL SF control (Krstic and Deng, 1988; Annunziato et al., 2014) for a 3-state 

OL case (Lu et al., 2022). In both studies, the multiscale transient response issue was not regarded. 

In an OL unstable industrial reactor stabilized with P or PI control, a practitioner should be willing to 

tune such control with a stochastic method in an advisory layer, but skeptical to replace it with a 

considerably more complex, model dependent, and expensive observer-based deterministic or 

stochastic NL SF control.  

The preceding considerations motivate the present study on the global CL stochastic dynamics of 

the above discussed class of CL 3-state stochastic exothermic reactors with complex deterministic 

dynamics and industrial-type linear PI control, and justify its scope and novelty: the FP theory-based 

formal resolution of the open and longstanding problem (Ratto, 1998; Ratto and Paladino, 2000) of 

choosing the control gains in the light of SP control considerations, along past current industrial 

trends (Samad, 2017; Maxim et al., 2019). 

 The methodological point of the departure is the FP PDE-based PDF modeling of the OL 2-state 

case (Alvarez et al., 2018), where the correspondence between CL stochastic PDF monomodality and 

deterministic monostability was established via the analytic solution of the 2-state FP PDE. The 

resolution of the present CL 3-state reactor problem requires the overcoming of two technical 

difficulties: (i) the correspondence between CL stochastic PDF monomodality and deterministic 

monostability must be established with a method that circumvents the difficult or infeasible task 

analytically solving the CL 3-state stationary state PDF, and (ii) the means to characterize MP state 

and control evolutions and their variabilities are lacking. These difficulties are overcome by 

combining notions and tools from: (i) FP PDE fluctuation-dissipation (Ao, 2003; Kwon et al., 2005; 

Wang et al., 2006) and functional analysis-based dynamics (Jazwinski, 1970; Markowich and Villani, 

2000), and (ii) deterministic NL dynamics (La Salle and Lefschetz, 1961; Hirsch and Smale, 1974; 

Sontag, 2008;) and control (Isidori, 1999). 

 The contents are organized as follows. In Section 2 the problem is technically stated. In Section 3, 

the deterministic CL R stability is characterized in terms of passivity and control gains. In Section 4, 

the correspondence between CL R state PDF monomodality and deterministic monostability is 

established. In Section 5, the MP state and control and their covariance evolutions are characterized. 

In Section 6, the proposed approach is illustrated with three examples with OL bimodal and vulcanoid 

PDFs. In Section 7, conclusions are drawn. The acronyms employed are listed in Table 1. 
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Table 1. Acronyms  

Acronym Meaning 

CL closed-loop 
CSTR continuous stirred tank reactor 

E exponentially  

EU exponentially ultimately  
FV finite volume 
IS input-to-state 
G geometric  

LC limit cycle 
LS limit set 
MP most probable 
NL nonlinear 

ODE ordinary differential equation 
OF output-feedback 
OL open-loop 
P practically 

MC Monte Carlo 
PDE partial differential equation 
PDF probability density function 
PI proportional-integral 
R robust 

SDE stochastic differential equation 
STD standard deviation 
SF state feedback 
SS steady-state 
SP statistical process 
ZD zero-dynamics 

 
2. Control problem 

Consider the class of exothermic CSTRs modeled by the deterministic mass and heat balances in 

dimensionless form (Aris, 1965; Alvarez et al., 2018): 

�̇�1 = 𝜃(𝑥1𝑒 − 𝑥1) − 𝛿𝑟(𝑥1, 𝑥2) ≔ 𝑔1(𝒛, 𝒅),      𝒛: (3b)         (1a) 

�̇�2 = 𝜃(𝑥2𝑒 − 𝑥2) − 𝜂(𝑥2– �̅�2𝑐) + (𝛿 2⁄ )𝑟(𝑥1, 𝑥2) + 𝜂𝑢 ≔ 𝑔2(𝒛, 𝒅, 𝑢)  (1b) 

𝑦 = 𝑥2,     𝑥1(0) = 𝑥1𝑜,    𝑥2(0) = 𝑥2𝑜 (1c) 

with nominal statics 

�̅�(�̅�1𝑒 − �̅�1) − 𝛿𝑟(�̅�1, �̅�2) = 0  (2a) 

�̅�(�̅�2𝑒 − �̅�2) − 𝜂(�̅�2– �̅�2𝑐) + (𝛿 2⁄ )𝑟(�̅�1, �̅�2) = 0 (2b) 

where  

𝑥1 = 𝐶 𝐶𝑟⁄ ,          𝑥1 = 𝑇 𝑇𝑟⁄ ,         𝑢 = 𝑥2𝑐 − �̅�2𝑐               

𝐶𝑟 = 𝐶�̅� ,               𝑇𝑟 = �̅�𝑒 ,              𝑇𝑎 = (−Δ𝑎)𝐶𝑟 (𝜌𝑐𝑝𝑇𝑟)⁄ ,     𝜂 = 𝑈𝐴 (�̅�𝜌𝑐𝑝)⁄ >𝑟 0     

𝜃 = 𝑄 �̅�⁄ ,            (∙)̇ =
𝑑(∙)

𝑑𝑡
,              𝑡 = 𝑡𝑎 𝑡𝜃  ⁄ ,                         𝑡𝜃 = 𝑉 �̅�⁄ ,       

𝛿 = �̅�𝑉 (�̅�⁄ 𝐶𝑟 ,           𝑟(𝑥1, 𝑥2) = 𝑅(𝐶𝑟𝑥1, 𝑇𝑟𝑥2) �̅�⁄ ,             �̅� = 𝑅(𝐶̅, �̅�)  
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 In the ODE (1): 𝑥1 (or 𝑥2) is the concentration (or temperature) state, 𝑥1𝑒 (or 𝑥2𝑒) is the feed 

concentration (or temperature) input, 𝑥2𝑐  is the coolant temperature, 𝛿 (or 𝜂) is the Damköhler (or 

Stanton) dimensionless number, 𝑟 is the reaction rate function, 𝑡𝜃  (or 𝜃) is the dimensionless nominal 

residence time (or dilution rate), 𝑦 is the measured temperature, 𝑢 is the jacket temperature control 

in deviation form with respect to the setpoint 𝑦 associated with the (possibly nonunique and 

unstable) stable steady-state (SS) concentration-temperature pair (�̅�1, �̅�2) of the nominal statics (2). 

2.1 Open-loop (OL) deterministic dynamics 

 In vector form, the deterministic nonlinear (NL) OL 2-state reactor dynamics (1) are written as    

�̇� = 𝒈(𝒛, 𝒅, 𝑢),     𝒛(𝟎) = 𝒛𝑜,    𝑦 = 𝒄𝑧𝒛,  𝑡 ≥ 0,     𝒛 ∈ 𝑍 ⊂ ℜ2,     𝒅 ∈ 𝐷 ⊂ ℜ2  (3a) 

where 

𝒛 = (𝑥1, 𝑥2)𝑇,          𝒈 = (𝑔1, 𝑔2)𝑇 ,    𝒄𝑧 = (0,1),     𝑔1, 𝑔2: (1a-b),       𝒅 = (𝜃, 𝑥1𝑒, 𝑥2𝑒)𝑇  (3b) 

𝑍 = {𝒛 = (𝑥1, 𝑥2)𝑇 ∈ ℜ2|0 ≤ 𝑥1 ≤ 𝑥1
+, 𝑥2

− ≤ 𝑥2 ≤ 𝑥2
+}    (3c) 

𝑥1
+ = 𝑥1𝑒

+ ,            𝑥2
− =

�̅�𝑥2𝑒
− +𝜂𝑥2𝑐

−

�̅�+𝜂
,           𝑥2

+ =
(𝛿 2⁄ )+�̅�𝑥2𝑒

+ +𝜂𝑥2𝑐
+

�̅�+𝜂
   (3d) 

𝒛 (or 𝒅) is the state (or input disturbance) in the bounded set 𝑍 (or 𝐷), 𝑍 is the invariant state space 

(Alvarez et al., 2018), and 𝒛𝑜 is the initial state. The corresponding limit set (LS) is 

𝔖𝑧 = 𝒮𝑧 ∪ ℒ𝑧 (4a) 

where 

𝒮𝑧 = {�̅�1, … , �̅�𝑛𝑠≥1} ⊃ 𝒮𝑧
𝑠 ,         𝒈(�̅�𝑖 , �̅�, 0) = 0,    �̅� ∈ 𝒮𝑧   (4b) 

is the set of steady-states (SSs), and 

ℒ𝑧 = {�̅�1(𝑡), … , �̅�𝑛𝑙
(𝑡)},            𝒈[�̅�𝑖(𝑡), �̅�, 0] = �̇�𝑖(𝑡) (4c) 

is the set of limit cycles (LCs), 𝒮𝑧
𝑠 is the set of stable SSs, and �̅� is the prescribed SS. 

 When the reaction rate 𝑟 in (3) is 1st-order (linear) in concentration and NL (with Arrhenius 

dependency) in temperature, over its Damköhler-Stanton (𝛿-𝜂) parameter space the deterministic 

reactor (3) has regions of monostability, bistability and limit cycling, delimited by saddle-node and 

Hopf bifurcation (Aris, 1965; Uppal et al., 1974; Aris, 1999; Alvarez et al., 2018). 

 For given [𝒛𝑜 , (𝒅, 𝑢)(𝑡)], the OL NL ODE (3) has a unique solution state motion 

𝒛(𝑡) = 𝝉𝒛[𝑡, 𝒛𝑜 , (𝒅, 𝑢)(𝑡)] (5a) 

and measured output signal 

𝑦(𝑡) = 𝒄𝑧{𝝉𝒛[𝑡, 𝒛𝑜 , (𝒅, 𝑢)(𝑡)]} (5b) 

When (𝒅, 𝑢) = (�̅�, 0), and 𝒛𝑜 is not a stable SS, 𝒛(𝑡) reaches asymptotically, with characteristic time 

𝑡𝑧 , a SS �̅� or a LC �̅�(𝑡) (Gavalas, 1968; Alvarez et al., 1991), i.e.,     

(𝒅, 𝑢)(𝑡) = (�̅�, �̅�),    𝒛𝑜 ∉ 𝒮𝑧
𝑠    ⇒   𝒛(𝑡)

𝑡𝒛
→ �̅� ∈ 𝒮𝑧   or    �̅�(𝑡) ∈ ℒ𝑧,      𝑡𝑧 = 1 𝜆𝑧⁄  (6) 

2.2 Open-loop (OL) stochastic dynamics  
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 The effect in the deterministic dynamics (3) of parasitic fluctuations (flow, temperature, and 

concentration variations, as well as reaction and mixing-transport quasi-SS assumptions) is 

expressed as a zero-mean uncorrelated white noise exogenous concentration (𝜉1) and temperature 

(𝜉2) rate of change inputs, according to the stochastic differential equations (SDEs) (Pell and Aris, 

1969; Doraiswamy and Kulkarni, 1986; Ratto, 1998; Alvarez et al., 2018):  

�̇�1 = 𝑔1(𝑧1, 𝑧2, 𝜃, 𝑥1𝑒) + 𝜉1(𝑡),         𝑧1(0) = 𝑧1𝑜 ,    𝜉1(𝑡) = 𝒲(0, 𝓆1),        𝑔1, 𝑔2: (1a-b)    (7a) 

�̇�2 = 𝑔2(𝑧1, 𝑧2, 𝜃, 𝑥2𝑒, 𝑢) + 𝜉2(𝑡),     𝑧2(0) = 𝑧2𝑜 ,    𝜉2(𝑡) = 𝒲(0, 𝓆2),       𝑦 = 𝑧2 (7b) 

which in vector form are written as the [also called Langevin (Risken, 1996)] equation 

�̇� = 𝒈(𝒛, 𝒅, 𝑢) + 𝝃(𝑡),   𝒛(0) = 𝒛𝑜~ℛ[𝜍𝑜(𝒛)],    𝑦 = 𝒄𝑧(𝒛),     𝒛 ∈ 𝒵 ⊇ 𝑍 (8a) 

where  

𝝃(𝑡) = 𝒲[𝟎, 𝓠],            𝝃 = (𝜉1, 𝜉2)𝑇 ,         𝓠 = [
𝓆1 0
0 𝓆2

],        𝓆1, 𝓆2 > 0    (8b-d) 

𝒵 = {𝒛 ∈ ℜ2|0 ≤ 𝑥1 ≤ (1 + 휀1)𝑥1
+, (1 − 휀2)𝑥2

− ≤ 𝑥2 ≤ (1 + 휀2)𝑥2
+},   𝑥1

+,𝑥2
−,𝑥2

+: (3d),   휀𝑖 ≈
1

3
  (8e) 

𝒛𝑜 is the initial random state 𝒛𝑜 with probability density function (PDF) 𝜍𝑜(𝒛) over the probabilistic 

state space 𝒵 (Alvarez et al., 2018). 

 For given [𝜍𝑜 , (𝒅, 𝑢)(𝑡), 𝓠], the SDE (8) has as unique solution a bivariate state PDF motion (Risken, 

1996; Gardiner, 1997)  

𝜍(𝒛, 𝑡) = 𝜏𝜍[𝑡, 𝜍𝑜(𝒛), 𝒅(𝑡), 𝑢(𝑡)],         𝜍(𝒛, 𝑡) ≥ 0          (9) 

that: (i) satisfies the 2-state dynamic FP PDE (10) [presented and discussed in (Alvarez et al., 2018)] 

𝑡 > 0, 𝒛 ∈ ℐ𝒵:       𝜕𝑡𝜍 = 𝛁 ∙ [
1

2
𝓠𝛁𝜍 − 𝒈(𝒛, 𝒅)𝜍] (10a) 

𝑡 = 0, 𝒛 ∈ 𝒵:         𝜍(𝒛, 0) = 𝜍𝑜(𝒛);       𝑡 ≥ 0:   ∫ 𝜍(𝒛, 𝑡)𝑑𝒛
 

𝒵
= 1  (10-c) 

𝑡 ≥ 0, 𝒛 ∈ ℬ𝒵:       
1

2
𝓠𝛁𝜍 − 𝒈(𝒛, 𝒅)𝜍 = 𝟎    (10d) 

and (ii) when (𝒅, 𝑢) = (�̅�, 0) and 𝜍𝑜(𝒛) ≠ 𝜍(̅𝒛), 𝜍(𝒛, 𝑡) (9) reaches asymptotically (along time scale 𝑡𝜍  

with deterministic, diffusion and escape time subscales), a stationary state PDF 

𝜍(̅𝒛) ≥ 0,        ∫ 𝜍(̅𝒛)𝑑𝒛
 

𝒵
= 1,   𝒛 ∈ 𝒵 ⊇ 𝑍 (11a) 

according to the expressions 

𝒅 = �̅�,     𝑢 = 0,   𝜍𝑜(𝒛) ≠ 𝜍(̅𝒛)    ⇒    𝜍(𝒛, 𝑡)
𝑡𝜍
→ 𝜍(̅𝒛) , (11b) 

where 

𝑡𝜍 ≈ {
𝑡𝑒

𝑜 ≥ 𝑡𝑑
𝑜

𝑡𝑑
𝑜 ≥ 𝑡𝑧

  
if
if

  
𝜍(𝒛, 𝑡) is metastable       

𝜍(𝒛, 𝑡) is not metasable 
,    𝑡𝑑

𝑜 ≈ 1 min(𝓆1, 𝓆2)⁄ > 𝑡𝑧 ,   𝑡𝑧 = 1 𝜆𝑧⁄  (11c) 

ℰ𝑧 = 𝔖𝑧 ∋ �̅�,     𝑦 = 𝒄𝑧(�̅�),   𝔖𝑧: (4) (11d) 

𝑡𝑧 , 𝑡𝑑
𝑜 , and 𝑡𝑒

𝑜  are the OL deterministic diffusion and escape time scales, respectively, ℰ𝑧 -equal to the 

deterministic LS (4)- is the extremum set (ES) of 𝜍(̅𝒛), and �̅� is the OL (possibly a minimum or saddle) 
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extremum point of interest, which determines the temperature setpoint 𝑦 for the CL reactor SDE with 

PI control that will be discussed in the next two subsections. 

 When the reaction rate 𝑟 in (3) is linear (or NL with Arrhenius dependency) in concentration (or 

temperature), over its Damköhler-Stanton (𝛿-𝜂) parameter space the stationary state PDF 𝜍(̅𝒛) (11a) 

has regions of monomodality, bimodality, and vulcanoid shape underlain by deterministic 

monostability, bistability and limit cycling, respectively (Alvarez et al., 2018). 

 As mentioned in the introduction (Alvarez et al., 2018): (i) the OL PDF responses 𝜍(𝒛, 𝑡) (9) along 

diffusion (𝑡𝑑
𝑜) and metastability (𝑡𝑒

𝑜) scales are purely stochastic phenomena (inexistent in 

deterministic systems) that are captured by the underlying FP PDE, and not by the local (Doraiswamy 

and Kulkarni, 1986; Ratto, 1998; Ratto and Paladino, 2000) and global (Vesterinen and Ritala, 2005) 

ODE simulation-based MC methods employed in previous OL and CL chemical reactor studies, and 

(ii) PDF motion (9) metastability (11c) is a per-state PDF motion property (and not a per-system 

generic one), which is generically ruled out by stationary state PD monomodality. Thus, attainment 

of CL robust PDF monomodality is a fundamental control task, especially when the OL PDF is not R 

monomodal.   

2.3 Closed-loop PDF dynamics 

 Consider the industrial-type deterministic linear PI control 

𝑢 = 𝑃𝐼(𝑦),       𝑃𝐼(𝑦): = �̅� − 𝑘𝑝{(𝑦 − 𝑦) + 𝜏𝐼
−1 ∫ [𝑦(𝓉) − 𝑦]𝑑𝓉}

𝓉

0
          (12a) 

with proportional gain 𝑘𝑝 , reset time 𝜏𝐼 , integral gain 𝑘𝐼 , set point 

𝑦 = 𝒄𝑧�̅� ∈ 𝑆𝑧  ∋  𝒈(�̅�, �̅�) = 𝟎,   𝒈: (1a-b) (12b) 

determined by the nominal target (possibly, neither unique nor maximum) extremum �̅� (4) of the 

bivariate OL PDF (11a), and gain set  

𝐾 = {𝒌 ∈ ℜ2|0 < 𝑘𝑝 ≤ 𝑘𝑝
+, 0 < 𝑘𝐼 ≤ 𝑘𝐼

+},     𝒌 = [𝑘𝑝 , 𝑘𝐼]𝑇,    𝑘𝐼 = 𝑘𝑝 𝜏𝐼⁄     (12c) 

 In the presence of measurement (or actuator) zero-mean uncorrelated white noise error 𝑤𝑦 (or 

𝜉𝑢) with variance 𝓆𝑦  (or 𝓆𝑢), the measurement (𝑦) and control (𝑢) become random variables, and 

the PI controller (12a) acquires the random variable form 

𝑢 = 𝑃𝐼(𝑦 + 𝑤𝑦) + 𝜉𝑢,        𝜉𝑢 = 𝒲(0, 𝓆𝑢),       𝑤𝑦 = 𝒲(0, 𝑞𝑦) (13a-c) 

 The application of this control to the OL NL 2-state SDE (8) yields the CL NL 3-state SDE 

�̇�1 = 𝑓1(𝑥1, 𝑥2, 𝜃, 𝑥1𝑒) + 𝑤1,                      𝑥1(0) = 𝑥1𝑜 (14a) 

�̇�2 = 𝑓2(𝑥1, 𝑥2, 𝑥3, 𝜃, 𝑥2𝑒, 𝑘𝑝) + 𝑤2,         𝑥2(0) = 𝑥2𝑜  (14b) 

�̇�3 = 𝑓3(𝑥2, 𝑘𝐼) + 𝑤3,                                   𝑥3(0) = 𝑥3𝑜 (14c) 

𝑦 = 𝒄𝑦𝒙 − 𝑘𝑝𝑤𝑦 ,    𝑢 = 𝒄𝑢𝒙 + 𝑤𝑢  (14d) 

where  

𝑓1(𝑥1, 𝑥2, 𝜃, 𝑥1𝑒) = 𝑔1(𝑥1, 𝑥2, 𝜃, 𝑥1𝑒),          𝑓3(𝑥2, 𝑘𝐼) = 𝑘𝐼(𝑥2 − �̅�2) (14e) 
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𝑓2(𝑥1, 𝑥2, 𝑥3, 𝜃, 𝑥2𝑒, 𝑘𝑝) = 𝑔2(𝑥1, 𝑥2, 𝑥3, 𝜃, 𝑥2𝑒) − 𝜂[𝑘𝑝(𝑥2 − �̅�2) + 𝑥3]       (14f) 

𝒄𝑦 = (0 1 0),     𝒄𝑢 = 𝜂[0 𝑘𝑝 1],       𝑔1, 𝑔2: (1a-b)         (14g) 

𝒘 = [

𝑤1

𝑤2

𝑤3

] = 𝒲[𝟎, 𝑸(𝒌)],          𝑸(𝒌) = [

𝑞1 0 0
0 𝑞2(𝑘𝑝) 𝑞𝑐(𝒌)

0 𝑞𝑐(𝒌) 𝑞3(𝑘𝐼)

]  (14h) 

and 𝒘 is a CL zero-mean correlated white noise vector with gain dependent covariance 3x3 matrix  

𝑸 is the gain-dependent covariance matrix of the with entries 

𝑞1 = 𝓆1 ,       𝑞2(𝑘𝑝) = 𝓆2 + 𝜂2(𝓆𝑢 + 𝑘𝑝
2𝑞𝑦),       𝑞3(𝑘𝐼) = 𝑘𝐼

2𝑞𝑦 ,       𝑞𝑐(𝒌) = −𝜂𝑘𝑝𝑘𝐼𝑞𝑦  (14j) 

 In compact vector form, the CL 3-state SDE (14) is written as 

�̇� = 𝒇(𝒙, 𝒅, 𝒌) + 𝒘,      𝒙𝑜 = ℛ[𝜋𝑜(𝒙)]    (15a) 

𝑦 = 𝒄𝑦𝒙 + 𝑤𝑦 ,    𝑢 = 𝒄𝑢𝒙 + 𝑤𝑢 ,      𝒙 ∈ 𝒳,     𝑢 ∈ 𝒰,       𝒌 ∈ 𝐾 (15b) 

where 

𝒙 = [𝑥1 𝑥2 𝑥3]𝑇,      𝒇 = [𝑓1 𝑓2 𝑓3]𝑇,   𝒘: (14h),   𝒳 = 𝒵 × ℐ ⊇ 𝑋,    𝒵: (8e) (15c) 

ℐ = {𝑥3 ∈ ℜ|(1 − 휀3)𝑥3
− ≤ 𝑥3 ≤ (1 + 휀2)𝑥3

+},     휀3 ≈ 1 3⁄   (15d) 

𝑓1, 𝑓2, 𝑓3: (14e-f),   𝒄𝑦 , 𝒄𝑢: (14g),   𝐾: (12c)         

 For given [𝜋𝑜(𝒙), 𝒅(𝑡), 𝑸(𝒌)], the SDE (15) has as unique state PDF motion solution (Risken, 1996; 

Gardiner, 1997) 

𝜋(𝒙, 𝑡) = 𝜏𝜋[𝑡, 𝜋𝑜(𝒙), 𝒅(𝑡), 𝒌],     𝜋(𝒙, 𝑡) ≥ 0        (16) 

that satisfies the dynamic 3-state FP PDE with initial (17b), conservation (17c) and boundary (17d) 

conditions: 

𝑡 > 0, 𝒙 ∈ ℐ𝒳 :        𝜕𝑡𝜋 = 𝛁 ∙ [
1

2
𝑸𝛁𝜋 − 𝒇(𝒙, 𝒅)𝜋] ≔ ℱ(𝜋, 𝒅, 𝒌) (17a) 

𝑡 = 0, 𝒙 ∈ 𝒳:         𝜋(𝒙, 0) = 𝜋𝑜(𝒙);       𝑡 ≥ 0:  ∫𝒳𝜋(𝒙, 𝑡)𝑑𝒙 = 1 (17b-c) 

𝑡 ≥ 0, 𝒙 ∈ ℬ𝒳 :       
1

2
𝑸𝛁𝜋 − 𝒇(𝒙, 𝒅)𝜋: = 𝓑(𝜋, 𝒅, 𝒌) = 𝟎    (17d) 

𝑡 ≥ 0,  𝑢 ∈ 𝒰:        𝜈(𝑢, 𝑡) = ℎ[𝜋(𝒙, 𝑡)] ≥ 0, 𝑢 ∈ 𝒰   ∫𝒰𝜈(𝑢, 𝑡)𝑑𝑢 = 1 (17e) 

𝑡 ≥ 0, 𝒙 ∈ 𝒳:         𝝍 = 𝒴[𝜋(𝒙, 𝑡)]  (17f) 

𝒳 is the probabilistic state space with interior (or boundary) ℐ𝒳  (or ℬ𝒳), and the output 

𝝍 = {𝝍1, 𝝍2},    𝝍1 = {𝒙𝑚 , 𝑢𝑚 , Σ𝑚 , 𝜎𝑢}     (18a) 

contains the PDF properties of interest in industrial statistical process control. 

 In the output 𝝍1 (18a) are included: (i) the state (𝒙𝑚) control (𝑢𝑚) PDF modes (most probable 

values)   

𝒙𝑚(𝑡) = arg max
𝜋 ∈ 𝒳

𝜋(𝒙, 𝑡) ≔ 𝒎𝑥[𝜋(𝒙, 𝑡)],                    𝛁𝜋(𝒙𝑚 , 𝑡) = 𝟎 (18b) 

𝑢𝑚(𝑡) = arg max
𝑢 ∈ 𝒰

𝜈(𝑢, 𝑡) ≔ 𝑚𝑢[𝜈(𝑢, 𝑡)],                   𝜕𝑢𝜈(𝑢𝑚 , 𝑡) = 0 (18c) 

and (ii) the corresponding state (Σ𝑚) and control (𝜎𝑢) variabilities (covariances) 

Σ𝑚[𝜋(𝒙, 𝑡)] = 𝑯−1(𝒙𝑚 , 𝑡),     𝜎𝑢 = 𝒗𝑢(diag 𝚺𝑚)𝒗𝑢
𝑇 ,       𝒗𝑢 = (0, 𝑘𝑝 , 1) (18d) 
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where 

𝑯(𝒙, 𝑡) = 𝓗𝜋(𝒙, 𝑡),        𝓗 = 𝛁𝛁𝑇 ,      𝛁 = (𝜕𝑥1
, 𝜕𝑥2

, 𝜕𝜕𝑥3
)𝑇   (18e)  

𝜈(𝑢, 𝑡) =
1

𝑘𝑝
∫ 𝜇𝑥2

[(𝑢 − 𝑥3) 𝑘𝑝⁄ ]𝜇𝑥3
(𝑥3, 𝑡)𝑑𝑥3

𝑥3
+

𝑥3
−   (18f) 

𝜇𝑥𝑖
(𝑥𝑖 , 𝑡) = ∫ ∫ 𝜋(𝒙, 𝑡)𝑑𝑥𝑗𝑑𝑥𝑘

𝑥𝑗
+

𝑥𝑗
−

𝑥𝑘
−

𝑥𝑘
− ,   𝑖 = 1, 2, 3,    𝑗, 𝑘 ≠ 𝑖 (18g) 

𝛁 (or 𝓗) is the gradient vector (or matrix Hessian) operator, (18e) determines the 1D control PDF 𝜈 

from the 3D state one 𝜋 (Papoulis and Pillai, 2002), and 𝜇𝑥𝑖
 is the marginal PDF with respect to the 

state 𝑥𝑖 (Papoulis and Pillai, 2002). In the output 𝝍2 (18a) can be included other properties such as 

state and control mean and their variabilities, as well as skewness measures like kurtocity. 

 When 𝒅 = �̅� and 𝜋𝑜(𝒙) ≠ �̅�(𝒙), the PDF motion state motion 𝜋(𝒙, 𝑡) (16) and control evolution 

𝜈(𝑢, 𝑡) (18f) reach asymptotically (along time scale 𝑡𝜋) the stationary PDFs �̅�(𝒙) and �̅�(𝑢), i.e., 

𝒅 = �̅�,    𝜋𝑜(𝒙) ≠ �̅�(𝒙)    ⇒    𝜋(𝒙, 𝑡)
𝑡𝜋
→ �̅�(𝒙),     𝜈(𝑢, 𝑡)

𝑡𝜋
→ �̅�(𝑢),      𝝍

𝑡𝜋
→ �̅�(𝑢) (19a) 

where 

𝑡𝜋(𝒌) ≈ {
𝑡𝑒 ≥ 𝑡𝑑

𝑡𝑑 ≥ 𝑡𝑥
  
if
if

  
𝜋(𝒙, 𝑡) is metastable     

𝜋(𝒙, 𝑡) is not metastable
 ,     𝑡𝑑 ≈ 1 min(𝑞1, 𝑞2, 𝑞3)⁄ > 𝑡𝑥 = 1 𝜆𝑥⁄  (19b)  

𝑡𝑥 , 𝑡𝑑 , and 𝑡𝑒  are the CL deterministic, diffusion, and escape time scales, respectively, with stationary 

state PDF 

�̅�(𝒙) ≥ 0,    ∫𝒳�̅�(𝒙)𝑑𝒙 = 1;     �̅�(𝑢) ≥ 0,   ∫𝒰�̅�(𝑢)𝑑𝑢 = 1  (20) 

 The stationary state PDF (20): (i) uniquely satisfies the static FP PDE 

𝒙 ∈ ℐ𝒳 :   ℱ(�̅�, �̅�) = 0,    ∫𝒳𝜋(�̅�, 𝑡)𝑑𝒙 = 1 (21a) 

𝒙 ∈ ℬ𝒳 :  𝓑(�̅�, �̅�) = 𝟎    (21b) 

𝑢 ∈ 𝒰:    �̅� = ℎ(�̅�) ≥ 0,  𝑢 ∈ 𝒰,     ∫𝒰𝜈(𝑢, 𝑡)𝑑𝑢 = 1 (21c) 

𝒙 ∈ 𝒳:   �̅� = 𝒴(�̅�) (21d) 

and (ii) has the extremum set (ES) 

ℰ = 𝒫 ∪ 𝒪,  𝒫 = {𝒙1, … , 𝒙𝑛𝑝≥1},     𝛁�̅�(𝒙𝑖 , 𝒌) = 𝟎 (21a) 

where 

𝒫 = {𝒙1, … , 𝒙𝑛𝑝≥1},       𝛁�̅�(𝒙𝑖 , 𝒌) = 𝟎 (21a) 

is the set of extremum points 𝒙𝑖 , and  

𝒪 = {𝒪1, … , 𝒪𝑛𝑐≥0},     𝒪𝑖 = {𝒙 ∈ 𝒳|[𝛁�̅�(𝒙)] ∙ 𝒏𝑖(𝒙)} = 0,    �̅�𝑚 = 𝒎𝑥(�̅�),  𝒎𝑥: (18b) (21b) 

is the set of extremum curves 𝒪𝑖  with normal unit vector 𝒏𝑖(𝒙).  

 A CL stationary monomodal PDF with prescribed mode �̅�𝑚 = �̅� is called �̅�𝑚-monomodal, and the 

set of gain pairs that yield �̅�𝑚-monomodality is denoted by  

𝐾𝑚 = {𝒌 ∈ 𝐾|ℰ =𝑟 �̅�𝑚 = �̅�},       �̅� = (�̅�𝑇 , 0)𝑇    (22) 

2.4 Problem 



10 
 

 Our problem and contribution consist in characterizing, on the basis of the FP PDE (17) and as 

improvement of the ones presented in Ratto's pioneering study (Ratto, 1998), the PI control gain pair 

conditions (22) so that:  

(i) The CL state PDF is R �̅�𝑚-monostable with mode �̅�𝑚 = �̅� (implying preclusion of metastability) 

at prescribed value �̅� associated to the nominal OL deterministic (possibly unstable) SS �̅� (4b). 

(ii) MP state (18b) regulation as close as possible to deterministic time scale with admissible state 

and control mode (18b) and their variabilities. 

 Methodologically, we are interested in characterizing: 

(i) The state [𝜋(𝒙, 𝑡): (17a-d)] control [𝜈(𝑢, 𝑡): (18f)] PDF evolutions along deterministic and 

probabilistic diffusion time scales. 

(ii) The compromise between regulation capability of PDF characteristics of interest, robustness, 

and MP control effort measured by MP state 𝑢𝑚  and its variability.   

(iii) The stochastic on deterministic dynamics dependency, to enable the exploitation the valuable 

accumulated knowledge on the complex nonlinear dynamics of the deterministic exothermic 

reactor class (Aris, 1965; Uppal et al., 1974). 

 The preceding specific and methodological problem are solved by combining notions and tools 

from: (i) the stochastic fluctuation-dissipation relationship associated to the FP PDE (Ao, 2003; Kwon 

et al., 2005; Wang et al., 2006), (ii) functional analysis-based FP PDE characterization (Jazwinski, 

1970, Markowich and Villani, 2000; Frank, 2006), and (iii) deterministic NL dynamics (La Salle and 

Lefschetz, 1961; Hirsch and Smale, 1974; Hubbard and West, 1995; Sontag, 2008) and passive control 

(Hirschorn, 1979; Isidori, 1999; Khalil, 2002; Sontag, 2008).  

 It must be pointed out that, while in a previous study (Alvarez et al., 2018) on the OL 2-state 

reactor class (8) the correspondence between PDF monomodality and deterministic monostability 

was established with the analytic solution for the stationary FP PDE (11), here the same 

correspondence for the 3-state CL stochastic reactor (15a) is obtained without having to solve 

analytically the 3D FP PDE (17). 

 To simply the notation, the explicit dependencies of vector, matrices, and operators on the gain 𝒌 

will be omitted and written explicity when convenient. 

3. Closed-loop deterministic dynamics 

 As a fundamental ingredient for the CL stochastic dynamics assessment problem at hand, here the 

deterministic CL dynamics are characterized. 

 The elimination of noise in the SDE (15) yields the CL deterministic dynamics 

�̇� = 𝒇(𝒙, 𝒅),       𝒙(0) = 𝒙𝑜 ,               𝒙 ∈ 𝑋,  𝒇: (14e-f) (23a) 

𝑦 = 𝒄𝑦𝒙,            𝑢 = 𝒄𝑢(𝒙),      𝑢 ∈ 𝑈,   𝒄𝑦 , 𝒄𝑢: (14g),  𝒌 ∈ 𝐾: (12c) (23b) 

with: (i) compact invariant set 
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𝑋 = 𝑍 × 𝐼,   𝑍: (3c),    𝐼 = {𝑥3 ∈ ℜ|(𝑥3
− ≤ 𝑥3 ≤ 𝑥3

+}      (23c) 

(ii) statics 

𝒇(�̅�, �̅�) = 𝟎,    𝑦 = 𝒄𝑦�̅� = 𝒄𝑧�̅� ∈ 𝑆𝑧 ,   �̅� = 0 (24) 

(iii) state motion  

𝒙(𝑡) = 𝜏𝒙[𝑡, 𝒙𝑜 , 𝒅(𝑡)],   𝑦(𝑡) = 𝒄𝑦{𝜏𝒙[𝑡, 𝒙𝑜 , 𝒅(𝑡)]} (25) 

and (iv) limit set 

𝔖𝑥 = 𝒮𝑥 ∪ ℒ𝑥  (26a) 

where 

𝒮𝑥 = {�̅�1, … , �̅�𝑛𝑠≥1} ∋ �̅�,      𝒇(�̅�𝑖 , �̅�) = 0,        �̅� = (�̅�𝑇 , �̅�3)𝑇,    �̅�3 = 0,    �̅�: (4b) (26b) 

is the set of SS points �̅�1, and  

ℒ𝑥 = {𝑂1(𝑡), … , 𝑂𝑛𝑙
(𝑡)},       𝒇[�̅�𝑖(𝑡), �̅�] = �̇�𝑖(𝑡),      𝑂𝑖 = {𝒙 ∈ 𝑋|𝒙 = �̅�𝑖(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑖

𝑥} (26c) 

is the set of SS limit cycles (LCs) points �̅�𝑖(𝑡). A central aim of this section is the characterization of 

the gain set 𝐾𝑚 (22) where the CL is R �̅�-monostable (at the prescribed SS �̅�).  

3.1 Passivity 

 Following the NL SF control approach (Isidori, 1999; Sepulchre et al., 2012) for chemical reactors 

(Alvarez et al., 1991), the enforcement of the setpoint (𝑦)-based isothermal operation conditions 

𝑥2 = 𝑦 = �̅�2,      �̇�2 = 0  (27) 

on the OL deterministic reactor (3) yields the 1-dimensional dynamical inverse (Hirschorn, 1979) 

�̇�1 = 𝑔𝑧(𝑥1, 𝑦, 𝜃, 𝑥1𝑒),    𝑥1(0) = 𝑥1𝑜;    𝑢 = 𝜇𝑧(𝑥1, 𝜃, 𝑥2𝑒),        𝑥1 ∈ 𝑋1 = [0, �̅�1𝑒
+ ]  (28a-b) 

where 

𝑔𝑧(𝑥1, 𝑦, 𝜃, 𝑥1𝑒) = 𝜃(𝑥1𝑒 − 𝑥1) − 𝛿𝑟(𝑥1, 𝑦),     𝑔𝑧(�̅�1, 𝑦, �̅�, �̅�1𝑒) = 0   (28c-d) 

𝜇𝑧(𝑥1, 𝜃, 𝑥2𝑒) = −
1

𝜂
[𝜃(𝑥2𝑒 − 𝑦) − 𝜂(𝑦– �̅�2𝑐) + (𝛿 2⁄ )𝑟(𝑥1, 𝑦)],   𝜂 ≠𝑟 0   (28e-f) 

(28a) is the isothermal (at temperature 𝑥2 = 𝑦) concentration zero (output deviation) (ZD) dynamics 

(1a), (28b) is the output map that adjusts the control 𝑢 to keep the temperature fixed at �̅�2, and 𝜂 ≠𝑟 0 

is the associated relative degree equal to one (RD = 1) condition. The OL reactor (3) is passive if: (i) 

it has RD = 1 (28e), and (ii) its ZD (28a) are R �̅�1-monostable. 

 The RD = 1 condition is met with a sufficiently large Stanton number 𝜂 >𝑟 0. The ZD (28a) are R 

�̅�1-monostable if and only if the map 𝑔𝑧  (28c): (i) is R 𝑥1-antitonic over 𝑋1, i.e., 

𝜕𝑥1
𝑓1(𝑥1, 𝑦, 𝜃, 𝑥1𝑒) = −𝜃 − 𝜕𝑥1

𝑟(𝑥1, 𝑦) <𝑟 0 ∀ 𝑥1 ∈   𝑋1  (29a) 

and (ii) with (�̅�, �̅�1𝑒), it vanishes at the nominal concentration value �̅�1, i.e., 

𝑔𝑧(�̅�1, 𝑦, �̅�, �̅�1𝑒) = 0  (29b) 

This passivity characterization is summarized in the next proposition. 

 Proposition 1. The deterministic OL system (3) is R passive if and only if 

(i) 𝜂 ≠𝑟 0,      (ii)  �̅� + 𝜕𝑥1
𝑟(𝑥1, 𝑦) >𝑟 0  ∀  𝑥1 ∈ 𝑋1 . •    (30a-b) 
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 The passivity property (30) (Isidori, 1999; Sepulchre et al., 2012) of the reactor class (Alvarez et 

al., 1991): (i) is the solvability condition for the NL R stabilizing SF control problem, and (ii) delimits 

the attainable CL behavior with any SF control. 

3.2 Steady-state (SS) uniqueness and stability 

 In detailed form, the CL deterministic statics (24) are written as 

�̅�(�̅�1𝑒 − 𝑥1) − 𝛿𝑟(𝑥1, 𝑥2) = 0 (31a) 

�̅�(�̅�2𝑒 − �̅�2) − 𝜂[𝑥2– �̅�2𝑐 + 𝑘𝑝(𝑥2 − 𝑦) + 𝑥3] + (𝛿 2⁄ )𝑟(𝑥1, 𝑥2) = 0,   𝑦 = �̅�2 (31b) 

𝑘𝐼(𝑥2 − 𝑦) = 0 (31c) 

 The unique-trivial solution for temperature 𝑥2 of the integral action eq. (31c) is (32a), the 

passivity property (30b) ensures the unique solution (32b) for concentration 𝑥1 of the static mass 

balance (31a), and the substitution of (31a) in (31b) followed by the unique solution (32c) for 𝑥3: 

𝑥2 = 𝑦 = �̅�2,    𝑥1 = 𝑚(𝑦) ≔ �̅�1,    𝑥3 = ℎ(𝑦) = 0 ≔ �̅�3 (32a-c) 

where 

𝑥1 = 𝑚(𝑦)    ⇔        �̅�(�̅�1𝑒 − 𝑥1) − 𝛿𝑟(𝑥1, 𝑦) = 0  (32d) 

ℎ(𝑦) = [�̅�(�̅�2𝑒 − 𝑦) − 𝜂(𝑦– �̅�2𝑐) + (𝛿 2⁄ )𝑟(𝑥1, 𝑦)] 𝜂⁄ = 0 (32e)  

 In vector form, the unique SS solution (32a-c) of the CL statics (24) are written as 

�̅� = 𝜷(𝑦),     �̅� = (�̅��̅� , 0)𝑇 ,   𝑦 = 𝒄𝑧�̅�  �̅� ∈ 𝑆𝑧 (33a-b) 

where 

𝜷(𝑦) = [𝑚(𝑦), 𝑦, ℎ(𝑦)]𝑇 ,     𝑚: (32d),   ℎ: (32e)     (33c) 

is the single-valued setpoint-to-SS (𝑦-to-�̅�) NL bifurcation map.  

 From the application of the Hurwitz stability criterion (Boyce and Di Prima, 1967), the SS �̅� (33) 

is stable if and only if the control gain meets the three inequalities 

𝒔(𝑦, 𝒌) >𝑟 0,   𝒔 = (𝑠1, 𝑠2, 𝑠3)𝑇 ,  𝑠1, 𝑠2, 𝑠3: (A4)   (34) 

with scalar functions 𝑠1, 𝑠2 and 𝑠2 defined (in Appendix A) in terms of the three coefficients of the 

monic characteristic polynomial (A2) of the Jacobian matrix 

�̅� = 𝑱(�̅�),         𝑱(𝒙) = [𝜕𝒙𝒇(𝒙, �̅�, 𝒌)]     (35) 

of the deterministic system (23) at its prescribed SS �̅�. This result is stated next in proposition form 

 Proposition 2. The unique CL SS �̅� (33) is R stable if and only if the control gain is chosen to that  

𝒌 ∈ 𝐾ℎ = {𝒌 ∈ 𝐾|𝒔(𝑦, 𝒌) >𝑟 0} ⊇ 𝐾𝑚,    𝐾: (12c),    𝒔: (34),   𝐾𝑚: (22). • (36) 

 In (36), the Hurwitz gain set 𝐾ℎ  is equal to or contained in the set 𝐾𝑚 of R �̅�-monostability.  The 

latter case (𝐾ℎ ⊃ 𝐾𝑚) occurs when �̅� has as basin of attraction the interior of a (possibly too small) 

spherical saddle limit cycle (Abraham and Shaw, 1992). This phenomenon: (i) has manifested itself 

in the deterministic reactor (23) with first-order kinetics and linear PI control (Giona and Paladino, 

1994), and (ii) can happen in the deterministic reactor with linear P (Aris, 1965) and NL passive SF 

(Alvarez et al., 1991) control. 
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3.3 Closed-loop (CL) monostability  

 According to Lyapunov stability theory (Abraham and Shaw, 1992; Hubbard and West, 1995), the 

CL deterministic system (23) with 𝒌 ∈ 𝐾𝑚 (22) is R �̅�-monostable (without limit cycling) if and only 

if there is a (single-well shaped) Lyapunov function (with minimum ℒ− at �̅�) 

𝑉 = ℒ(𝒙) > ℒ− ∀ 𝒙 ∈ 𝑋\�̅�,      ℒ(�̅�) = ℒ−,     𝛁ℒ(�̅�) = 𝟎 (37a) 

that decreases along the state motions  

�̇� = [𝛁ℒ(𝒙))𝒇(𝒙, 𝒌, 𝒅) < 0 ∀ 𝒙 ∈ 𝑋\�̅�,    �̇� = 0 @ 𝒙 = �̅�,     𝒌 ∈ 𝐾𝑚: (27) (37b) 

with exponential ultimate (EU) motion bounding (Khalil, 2002; Sontag, 2008) 

|�̃�(𝑡)| ≤ 𝑎𝑥𝑒−𝜆𝑥𝑡|�̃�𝑜|+ + 𝑏𝑥|�̃�|+ ≤ |�̃�|+     (38a) 

where 

�̃� = 𝒙(𝑡) − �̅�,  𝒙(𝑡): (25),      𝑎𝑥 > 0,  𝑏𝑥 = (𝑎𝑥 𝜆𝑥⁄ )𝑙𝒅
𝒇

> 0  (38b) 

𝜆𝑥 = 1 𝑡𝒙⁄ >𝑟 0,   𝑡𝑥: (19b),   |�̃�|+ = 𝑎𝑥|�̃�𝑜|+ + 𝑏𝑥|�̃�|+   (38c) 

|𝒇(𝒙, 𝒅) − 𝒇(�̅�, �̅�)| ≤ 𝑙𝒙
𝒇

|𝒙 − �̅�| + 𝑙𝒅
𝒇

|�̃�| ∀ 𝒙 ∈ 𝑋 (38d) 

| | is the vector Euclidian norm, and 𝑙𝒅
𝒇

 is the Lipschitz constant of 𝒇 with respect to 𝒅.     

 If admissible size (|�̃�𝑜|+ and |�̃�|+) deviations produce amissible state size (|�̃�|+) excursions, the 

SS �̅� said to practically (P) exponentially (E) stable (La Salle and Lefschetz, 1961). 

 According to the preceding developments, the control gain 𝒌 ∈ 𝐾𝑚 should be chosen with 

suggestive Hurwitz criterion-based 𝒌 ∈ 𝐾ℎ  (36) followed by conclusive fine tuning 𝒌 ∈ 𝐾𝑚 ⊆ 𝐾ℎ  (22) 

with numerical simulation of the CL deterministic ODE (23). In the next section, the Lyapunov 

characterization (37) of deterministic CL R �̅�-monostability will become a key ingredient in the 

assessment of the stochastic on deterministic dynamics dependency.     

4. Closed-loop PDF dynamics 

 In this section, the CL state PDF motion is characterized in terms of stationary R monomodality, 

deterministic-diffusion time scale, and MP state and its covariance evolutions. 

 The dynamic FP PDE (17) is written; (i) in detailed form as 

𝜕𝑡𝜋 = 𝜕𝑥1
[

1

2
𝑞1𝜕𝑥1

𝜋 − 𝑓1(𝒙, 𝒅)𝜋] + 𝜕𝑥2
[

1

2
𝑞2(𝑘𝑝)𝜕𝑥2

𝜋 +
1

2
𝑞𝑐(𝒌)𝜕𝑥3

𝜋 − 𝑓2(𝒙, 𝒅, 𝑘𝑝)𝜋]  (39a) 

            +𝜕𝑥3
[

1

2
𝑞3(𝒌)𝜕𝑥3

𝜋 +
1

2
𝑞𝑐(𝒌)𝜕𝑥2

𝜋 − 𝑓3(𝒙, 𝑘𝐼)𝜋],    𝑞1, 𝑞2, 𝑞3, 𝑞𝑐: (14h) 

𝜋(𝑥1, 𝑥2, 𝑥3, 0) = 𝜋𝑜(𝑥1, 𝑥2, 𝑥3),                 ∫𝑥1
−

𝑥1
+

∫𝑥2
−

𝑥2
+

∫𝑥3
−

𝑥3
+

𝜋(𝑥1, 𝑥2, 𝑥3, 𝑡)𝑑𝑥1𝑑𝑥2𝑑𝑥3 = 1  (39b-c) 

[
1

2
𝑞1𝜕𝑥1

𝜋 − 𝑓1(𝒙, 𝒅)𝜋]
𝑥1

±
= 0,    [

1

2
𝑞2(𝑘𝑝)𝜕𝑥2

𝜋 +
1

2
𝑞𝑐(𝒌)𝜕𝑥3

𝜋 − 𝑓2(𝒙, 𝒅, 𝑘𝑝)𝜋]
𝑥2

±
= 0 (39d-e) 

[
1

2
𝑞3(𝒌)𝜕𝑥3

𝜋 +
1

2
𝑞𝑐(𝒌)𝜕𝑥2

𝜋 − 𝑓3(𝒙, 𝑘𝐼)𝜋]
𝑥3

±
= 0  (39f) 

and (ii) in transport-reaction form as (Alvarez et al., 2018) 

𝜕𝑡𝜋 =
1

2
𝛁𝑇𝑸(𝒌)𝛁𝜋 − 𝒇(𝒙, 𝒅, 𝒌) ∙ 𝛁𝜋 + [𝛁 ∙ 𝒇(𝒙, 𝒅, 𝒌)]𝜋,   𝒙 ∈ ℐ𝒳 ,  𝑸: (14h),   𝒇: (15c) (40a) 
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1

2
𝑸(𝒌)𝛁𝜋 − 𝒇(𝒙, 𝒅, 𝒌)𝜋 = 𝟎, 𝒙 ∈ ℬ𝒳,    𝜋(𝒙, 0) = 𝜋𝑜(𝒙),      ∫𝒳𝜋(𝒙, 𝑡)𝑑𝒙 = 1 (40b) 

 From a chemical reactor engineering perspective, the CL reactor CL FP PDE (40) describes the 

dynamic conservation of probability over the tridimensional space 𝒳 with impermeable bounday 

ℬ𝒳, and rate of change terms [in the RHS of (40a)] due to: (i) Fick-like linear transport (1 2⁄ )𝛁𝑇𝑸𝛁𝜋 

with allotropic diffusion matrix 𝑸, (ii) convective transport 𝒇 ∙ 𝛁𝜋 with nonlinear space-dependent 

flow field 𝒇, and (iii) 1st-order reaction-like probability generation (𝛁 ∙ 𝒇)𝜋 proportional to the 

probability "concentration" 𝜋 and with NL dependency on the "position" 𝒙. The 3-dimensional FP 

PDE (40) can be solved numerically with specialized methods (LeVeque, 1992) or software packages 

(e.g., Ansys®, Comsol Multiphysics®). 

4.1 Robust stationary state PDF monomodality 

 Here, the correspondence between CL stochastic stationary state PDF monomodality and 

deterministic monostability is established by combining the characterizations of: (i) deterministic 

monostability with Lyapunov theory (37), and (ii) the state PDF with the fluctuation dissipation 

relationship (Ao, 2003; Kwon et al., 2005; Wang et al., 2006) and functional analysis tools 

(Markowich and Villani, 2000; Frank, 2006).  

 In Boltzmann-Gibbs form, the unique state PDF solution of the of the stationary FP PDE (20) is 

given by (Wang et al., 2006) 

�̅�(𝒙) = 𝑎𝑒−𝜙(𝒙),   𝒙 ∈ 𝒳,       𝛁𝜙(𝒙) = −𝑮−1(𝒙)𝒇(𝒙, �̅�),     det 𝑮 ≠ 𝟎  (41a-b) 

where 𝑎 is a normalization constant, and the 9-entry of the 3𝑥3 matrix 𝑮 satisfies: (i) the fluctuation-

dissipation relationship (with 9 algebraic equations)  

𝑮(𝒙) + 𝑮𝑇(𝒙) = 𝑸(𝒌) (41c) 

and (ii) the irrotationality condition (with 3 hyperbolic linear PDEs): 

𝛁 × [𝑮−1(𝒙)𝒇(𝒙, �̅�)] = 𝟎 (41d) 

 When the stationary state PDF 

�̅�(𝒙) < �̅�+ = �̅�(�̅�𝑚) ∀ 𝒙 ∈ 𝒳\�̅�𝑚,   𝛁�̅�(�̅�𝑚) = 0 

is R �̅�𝑚-monomodal (with maximum �̅�+ at �̅�𝑚): (i) by (41), the stochastic potential  

𝜙(𝒙) = − ln �̅�(𝒙) 𝑎⁄ > 𝜙− = 𝜙(�̅�𝑚) ∀ 𝒙 ∈ 𝒳\�̅�𝑚,     𝛁𝜙(�̅�𝑚) = 𝟎  (42) 

is single-well shaped (with minimum 𝜙− at �̅�𝑚), and (ii) the deterministic system (23) can be 

expressed in gradient form (Hirsch and Smale, 1974)  

�̇� = −𝑮(𝒙)𝛁𝜙(𝒙),   𝒙(0) = 𝒙𝑜   (43a) 

with the stochastic potential as Lyapunov function 

𝑉 = ℒ(𝒙) ∶= 𝜙(𝒙),  𝜙: (42) (43b) 

�̇� = −𝛁𝑇𝜙(𝒙)[𝑸(𝒌)]𝛁𝜙(𝒙) ≤ 0,     �̇� = 0 ⇔ �̅� = �̅�𝑚  (43c) 
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 According to the stochastic Boltzmann-Gibbs PDF (41) and the deterministic Lyapunov 

characterization (37), monostability is necessary and sufficient for monomodality. This result is 

stated in the next proposition. 

 Proposition 3. The CL stochastic stationary state PDF �̅�(𝒙) (41) is R �̅�𝑚-monomodal over 𝒳 if 

and only if the CL deterministic system (23) is R �̅�𝑚-monostable over 𝒳. •  

 Differently from a previous study (Alvarez et al., 2018) on the OL 2-state stochastic reactor (3) 

where the correspondence between state PDF monomodality and deterministic monostability was 

established with the analytic solution of the 2D FP PDE (10), here the same correspondence for the 

3-state CL stochastic reactor (15) has been obtained (Proposition 3) with a direct method that: (i) 

combines stochastic fluctuation-dissipation (41) and deterministic Lyapunov stability (37), and (ii) 

does not require the difficult or infeasible task of analytically solving the 3D FP PDE (39). 

4.2 Transient behavior 

 When the stationary state PDF �̅�(𝒙) is R �̅�𝑚-monomodal, by the generic linearity-stability 

property (Risken, 1996; Gardiner, 1997) of the FP PDE (39) the state PDF motion 𝜋(𝒙, 𝑡) (16) R 

converges to �̅�(𝒙): (i) along deterministic (𝑡𝑥) and diffusion (𝑡𝑑) time scales, without metastability, 

and (ii) with exponential ultimate (EU) bounding (Markowich and Villani, 2000; Frank, 2006)  

|�̃�(𝑡)|𝐻 ≤ 𝑎𝜋𝑒−𝜆𝜋𝑡|�̃�𝑜|𝐻
+ + 𝑏𝜋|�̃�|+ ≤ |�̃�|𝐻

+ ,       𝑎𝜋 , 𝑏𝜋 , 𝜆𝜋 > 0      (44a) 

where 

�̃�(𝑡) ≔ 𝜋(𝒙, 𝑡) − �̅�(𝒙),         |�̃�𝑜|𝐻
+ ≤ |�̃�𝑜|𝐻

+,         |�̃�(𝑡)| ≤ |�̃�|+  (44b) 

|�̃�|𝐻
+ = 𝑎𝜋|�̃�𝑜|𝐻

+ + 𝑏𝜋|�̃�|+,    𝑏𝜋 = (𝑎𝜋 𝜆𝜋⁄ )𝑙𝒅
ℱ,    𝜆𝜋 ≈ 1 𝑡𝑑⁄ ,  𝑡𝑑 ≥ 𝑡𝑥 ,   𝑡𝑑 : (19b) (44c) 

|ℱ(𝜋, 𝒅) − ℱ(�̅�, �̅�)| ≤ 𝑙𝜋
ℱ|𝒙 − �̅�| + 𝑙𝒅

ℱ|�̃�|,     (44d) 

| | (or | |𝐻) is the Euclidian vector (or Hilbert function) norm, and 𝑙𝑎
ℱ  is the Lipschitz constant of ℱ 

with respect to its argument 𝑎. 

 If admissible size (|�̃�𝑜|𝐻
+ and |�̃�|+) deviations produce amissible PDE motion deviations (�̃�) with 

admissible size (|�̃�|𝐻
+), the nominal stationary state PDF �̅� (41a) is said to be practically (P) EU stable 

(La Salle and Lefschetz, 1961). The employment of the R state motion convergence property in the 

context of a PDE reactor model can be seen in (Franco de los Reyes et al., 2020). 

 On the basis of (44), the mode (�̃�𝑚) and control (�̃�𝑚) deviations are EU bounded as  

|�̃�𝑚(𝑡)| ≤ 𝑙𝒙𝑚

𝒎𝑥(𝑎𝜋𝑒−𝜆𝜋𝑡|�̃�𝑜|𝐻
+ + 𝑏𝜋|�̃�|+) ≤ 𝑙𝒙𝑚

𝒎𝑥|�̃�|𝐻
+  (45a) 

|�̃�𝑚(𝑡)| ≤ 𝑙𝒙𝑚

𝒄𝑢 (𝑎𝜋𝑒−𝜆𝜋𝑡|�̃�𝑜|𝐻
+ + 𝑏𝜋|�̃�|+) ≤ 𝑙𝒙𝑚

𝒄𝑢 |�̃�|𝐻
+  (45b) 

where 

�̃�𝑚 = 𝒙𝑚(𝑡) − �̅�,   𝒎𝑥(�̅�) = �̅�𝑚 = �̅�,       |𝒎𝑥(𝜋) − 𝒎𝑥(�̅�)| ≤ 𝑙𝜋
𝒎𝑥|�̃�|     (45c) 

�̃�𝑚 = 𝑢𝑚(𝑡) − �̅�,  𝑚𝑢(�̅�𝑚) = �̅�𝑚 = �̅�,  |𝑚𝑢(𝒙𝑚) − 𝑚𝑢(�̅�𝑚)| ≤ 𝑘𝒙𝑚

𝒄𝑢 |�̃�𝑚|,    𝑘𝒙𝑚

𝒄𝑢 = (1 + 𝑘𝑝
2)1 2⁄  (45d) 
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 The preceding functional analysis-based characterization of PDF and mode evolutions over 

deterministic-diffusion time biscale (𝑡𝜋) is simpler and more complete than the in-probability mean-

state evolution over deterministic scale employed in the stochastic NL passive stabilizing control 

based on the FP PDE and a HJI PDE (Krstic and Deng, 1988).  

5. State and control mode evolutions 

 Here the state and control modes and their covariance evolutions are: (i) characterized according 

to the FP PDE (39), and (ii) approximated (in a practical IS convergence sense) with an ODE.  

5.1 FP PDE-based mode evolution 

 The state PDF mode evolution 𝒙𝑚  and its rate of change 𝒗𝑚  are determined by the FP PDE (39) 

(Jazwinski, 1970) with the output map (46b): 

𝜕𝑡𝜋 = ℱ(𝜋, 𝒅),      𝓑(𝜋, 𝒅) = 𝟎,       𝜋(0) = 𝜋𝑜(𝒙)            (46a) 

𝒙𝑚 = 𝒎𝑥(𝜋),       𝑢𝑚 = 𝒄𝑢(𝒙𝑚)  (46b) 

 In a way that is analogous to the way in which a geometric NLSF controller is constructed (Isidori, 

1999) and along FP PDE analysis ideas (Jazwinski, 1970), the time derivation of the output map 𝒎𝑥 

along the state PDF motion 𝜋 yields the next proposition in terms the NL vector 

𝝔𝜋(𝒙𝑚 , 𝒅) = [𝝔(𝜋, 𝒅)]𝒙=𝒙𝑚
,                𝝔�̅�(�̅�𝑚 , �̅�) = 𝟎,             �̅�𝑚 = �̅� (47a) 

|𝝔𝜋(𝜋, 𝒅)| ≤ 𝑙𝒙𝑚

𝝔𝜋 |�̃�𝑚| + 𝑙𝒅
𝝔𝜋|�̃�|,          𝑙𝒙𝑚

𝝔𝜋 = 𝑙𝜋
𝝔

 𝑙𝒙𝑚
𝜋 |�̃�𝑚|+,      𝑙𝒙𝑚

𝜋 = 𝜆�̅�
+ + 𝑘𝒙𝑚

𝑜 ,  𝑙𝒅
𝝔𝜋 = 𝑙𝜋

𝝔
 𝑙𝒅

𝜋 (47b) 

where 

𝝔(𝜋, 𝒅) = (𝓗𝜋)−𝟏{[𝓗𝒇(𝒙, 𝒅)]𝜋 − (1 2⁄ )𝓗(𝑸𝛁𝜋)},   𝝔(�̅�, �̅�) = 𝟎,     𝛁, 𝓗: (18e) (47c) 

|𝝔(𝜋, 𝒅)| ≤ 𝑙𝜋
𝝔

|�̃�|𝐻
+ + 𝑙𝒅

𝝔
|�̃�|,      𝝔(𝜋, 𝒅) = 𝟎  if 𝜋 is symmetric,      𝑸: (14h) (47d) 

𝝔𝜋 vanishes at (�̅�𝑚 , �̅�), and 𝝔 depends in a complex way (through up to 2nd and 3rd-order partial 

derivatives of the convective field 𝒇 and the state PDF 𝜋, respectively) on the PDF geometry at 𝒙𝑚 .  

 Proposition 4 (Proof in Appendix B). The R EU convergent state (48a) and control (48b) mode 

evolutions satisfy the ODE-based system [driven through 𝝔𝜋 by driven by the state PDF 𝜋 of the FP 

PDE (39)] 

�̇�𝑚 = 𝒇(𝒙𝑚 , 𝒅) + 𝝔𝜋(𝒙𝑚 , 𝒅),  𝒙𝑚(0) = 𝒙𝑚𝑜;   𝑢𝑚 = 𝒄𝑢(𝒙𝑚)      (48a-b) 

where 

𝒙𝑚𝑜 = 𝒎𝑥(𝜋𝑜),   𝒇 : (14e-f)  𝝔𝜋: (47c),   𝒎𝑥: (18a),   𝒄𝑢: (14g). •   

 According to (48a), the state mode rate of change (𝒇 + 𝝔𝜋) depends on the state PDF 𝜋 of the FP 

PDE (46a), and has two components: (i) the deterministic vector field 𝒇 (14) that does not depend on 

𝜋, and (ii) the term 𝝔𝜋 that depends (47) on the geometry of 𝜋 at the state mode 𝒙𝑚 . According to 

(48b), the control mode 𝑢𝑚  is an output of the ODE (48) driven by 𝜋.   

 From the application (Gonzalez and Alvarez, 2005; Franco-de los Reyes, 2022) of Lyapunov's 

Converse Theorem (Vidyasagar, 1993) to (48a) the next proposition follows, with the definitions 

𝑙𝑚 = 𝜆𝑥 − 𝑎𝑥𝑙𝒙𝑚

𝝔𝜋 > 0,     𝜆𝜋 < 𝑙𝑚 < 𝜆𝑥 ,    �̃�𝑚 = 𝒙𝑚 − �̅�𝑚,    𝑙𝒙𝑚

𝝔𝜋 : (47b) (49a) 
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𝑏𝑚 = (𝑙𝒅
𝒇

+ 𝑙𝒅
𝝔𝜋) 𝑙𝑚⁄ ,        |�̃�𝑚|+ = 𝑎𝑥|�̃�𝑚𝑜|+ + 𝑏𝑚|�̃�|+,          𝑙𝒅

𝒇
: (38d) (49b) 

where 

𝝔𝜋 = 0  ⇒  (𝑙𝑚, 𝑏𝑚) = (𝜆𝑥, 𝑏𝑥),   (𝜆𝑥 , 𝑏𝑥): (38b-c)  (49c) 

 Proposition 5 (Proof in Appendix C). The R EU convergent state (48a) and control (48b) mode 

evolutions are EU bounded as: 

|�̃�𝑚(𝑡)| ≤ 𝑎𝑥𝑒−𝑙𝑚𝑡|�̃�𝑚𝑜|+ + 𝑏𝑚|�̃�|+ ≤ |�̃�𝑚|+,                        𝑙𝑚: (49a)                     (50a) 

|�̃�𝑚(𝑡)| ≤ 𝑙𝒙𝑚

𝒄𝑢 (𝑎𝑥𝑒−𝑙𝑚𝑡|�̃�𝑚𝑜|+ + 𝑏𝑚|�̃�|+) ≤ 𝑘𝒙𝑚

𝒄𝑢 |�̃�𝑚|+,       𝑘𝒙𝑚

𝒄𝑢 : (45d)  (50b) 

where 

�̃�𝑚 = 𝒙𝑚 − �̅�,    �̃�𝑚 = 𝑢𝑚 − �̅�,      𝑏𝑚: (49b).   (50c) 

 The R stability bounding of (50): (i) is less conservative than its of FP PDE-based version (44), and 

(ii) states that, in the limit when 𝝔𝜋 vanishes, the state and control modes evolve along deterministic 

time scale 𝑙𝑚 = 𝑡𝑥 = 𝜆𝑥 with gain 𝑏𝑚 = 𝑏𝑥 [(𝜆𝑥 , 𝑏𝑥): (38b-c)].  

5.2 Approximated mode and variability evolutions 

 Motivated by the preceding developments, let us enforce 𝝔𝜋 = 0 in the ODE (48a) to obtain its 

approximation:  

�̇̂�𝑚 = 𝒇(�̂�𝑚 , 𝒅),        �̂�𝑚(0) = �̂�𝑚𝑜 ≈ 𝒙𝑚𝑜,   𝒇(�̂̅�𝑚 , �̅�) = 0 (51a) 

with solution motions 

�̂�𝑚 = 𝝉𝒙[𝑡, �̂�𝑚𝑜 , 𝒅(𝑡)],         �̂�𝑚 = 𝒄𝑢(�̂�𝑚)       (51b) 

which, by-construction (51), are EU bounded over deterministic time scale 𝑡𝑥  as 

|𝒆𝑚(𝑡)| ≤ 𝑎𝑥𝑒−𝜆𝑥𝑡|𝒆𝑚𝑜|+ + 𝑏𝑥|�̃�|+ ≤ |𝒆𝑚|+,     𝜆𝑥 ≈ 1 𝑡𝒙⁄ ,     𝑡𝑥: (18b),    𝑏𝑥: (38b) (52a) 

where 

𝒆𝑚 = �̂�𝑚(𝑡) − �̅�𝑚 ,   �̅�𝑚 = �̅�,   |𝒆𝑚|+ = 𝑎𝑥|𝒆𝑚𝑜|+ + 𝑏𝑥|�̃�|+ (52b) 

 Along the notion of practical stability "when admissible disturbance size cause admissible state 

deviation size" (LaSalle and Lefschetz, 1961), the (R stable) mode motion �̂�𝑚(51b) is said to be 휀-

practically (휀-P) convergent along deterministic time scale if its relative approximation error  

𝑒𝑟: =
||�̃�𝑚|+−|𝒆𝑚|+|

|�̃�𝑚|+ ≤ 𝜖: = 1 𝑁⁄ ,        |�̃�𝑚|+: (49b),      |𝒆𝑚|+: (52b)   (53) 

is less than one in 𝑁. 

 This 휀-P convergence property: (i) agrees with and explains the state mode evolutions over 

deterministic-like time scale obtained with FP PDE-based simulation in CL 1D isothermal (Baratti et 

al., 2018) and 2D biological (Schaum et al., 2021) reactors with proportional control. 

 The augmentation of (51a) with the cascaded Riccati matrix equation (54b) (Jazwinski, 1970) 

yields the approximated dynamics of the state (�̂�𝑚) and control (�̂�𝑢) modes as well of their 

covariances (�̂�𝑚 and �̂�𝑢): 

�̇̂�𝑚 = 𝒇(�̂�𝑚 , 𝒅),                                            �̂�𝑚(0) = �̂�𝑚𝑜 ≈ 𝒙𝑚𝑜  (54a)   
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�̇̂�𝑚 = 𝑱(�̂�𝑚 , 𝒅)�̂�𝑚 + �̂�𝑚𝑱(�̂�𝑚 , 𝒅) + 𝑸,  �̂�𝑚(0) = 𝚺𝑚𝑜 ,   𝑱: (35) (54b) 

�̂�𝑚 = 𝒄𝑢�̂�𝑚 ,    �̂�𝑢 = 𝒗𝑢(diag �̂�𝑚) 𝒗𝑢
𝑇   (54c) 

with 휀-P convergent motion and output 

(�̂�𝑚 , �̂�𝑚)(𝑡)
𝜆𝑥
→ (𝒙𝑚 , 𝚺𝑚)(𝑡),    (�̂�𝑚 , �̂�𝑢)(𝑡)

𝜆𝑥
→ (𝑢𝑚 , 𝜎𝑢)(𝑡),    𝒙𝑚 , 𝑢𝑚 , 𝜎𝑢: (18) (55) 

and stationary regime 

�̅̂�𝑚 = �̅�𝑚 = �̅�,      �̅̂�𝑚 = �̅�𝑚 = �̅�,                 �̂̅�𝑢 = 𝜎𝑢  (56a-c) 

𝒇(�̅�𝑚 , �̅�) = 𝟎,      �̅� �̅�𝑚 + �̅�𝑚 �̅�𝑇 + 𝑸 = 𝟎,   𝜎𝑢 = 𝒗𝑢(diag �̅�𝑚) 𝒗𝑢
𝑇 ,       �̅�: (35) (56d-f) 

where �̅� (or �̅�𝑚) is the prescribed CL deterministic SS (or state PDF mode) (32a-c) or [(43c)]. 

 The validity of the 휀-P approximation (53) will be assessed (in Section 6 on case examples) with 

FP PDE simulation. The analytic dependencies of the stationary state (�̅�) and control (𝜎𝑢) covariances 

on the control gains: (i) are listed in Appendix D, and (ii) will be employed in the next section to assist 

the gain tuning of the examples.  

5.3 Interpretation of the PI control 

 As an important conceptual conclusion of the present study, here the industrial-type PI control for 

the exothermic reactor class (3) is interpreted within the FP theory-based modeling framework.  

 The CL stochastic dynamics of the industrial PI temperature controller (12) is an output (57c) of 

the CL FP PDE (57a): 

𝜕𝑡𝜋 = ℱ(𝜋, 𝒅),   𝓑(𝜋, 𝒅) = 𝟎,   𝜋(0) = 𝜋𝑜(𝒙),   𝜈(𝑢, 𝑡) = ℎ[𝜋(𝒙, 𝑡)]           (57a-b) 

𝑢𝑚 = 𝑃𝐼(𝑦𝑚),    𝑦𝑚 = 𝒄𝑦𝒙𝑚 ,    𝒙𝑚 = 𝒎𝑥(𝜋) (57c-e) 

 On the basis of the most probable temperature measurement 𝑦𝑚, the PI control (57d) applies the 

most probable value 𝑢𝑚  of the control PDF 𝜈(𝑢, 𝑡). The effect of mass-heat balance, actuator, and 

measurement noises is accounted for by the noise covariance matrix 𝑸 (14h) of the FP PDE (57a) 

that generates the state (𝜋) and control (𝜈) PDFs. 

 Hitherto, the technical developments have been executed with the standard notation employed in 

the literature: denoting the deterministic and random variables of the ODE (23) and SDE (15) with 

the same symbol set {𝑢, 𝒙, 𝑦}. In Table 2 the deterministic (12a) and stochastic (13a) PI control 

variants are presented with explicitly differentiation of deterministic (𝒙𝑑) and random (𝒙𝑠) states. 

Table 2. Deterministic and stochastic PI controls 

 Deterministic Stochastic 

PI control 𝑢𝑑 = 𝑃𝐼(𝑦𝑑) 𝑢𝑠 = 𝑃𝐼(𝑦𝑠 + 𝑤𝑦) + 𝜉𝑢  𝑢𝑚 = 𝑃𝐼(𝑦𝑚)  

 𝑢𝑑 , 𝑦𝑑: deterministic 𝑢𝑠 , 𝑦𝒔: random 𝑢𝑚, 𝑦𝑚: PDF modes 

Measurement 𝑦𝑑 = 𝒄𝑦𝒙𝑑 𝑦𝑠 = 𝒄𝑦𝒙𝑠 + 𝑤𝑦 𝑦𝑚 = 𝒄𝑦𝒙𝑚 

Dynamics ODE (23): 

�̇�𝑑 = 𝒇(𝒙𝑑, 𝒅) 

SDE (15): 

�̇�𝑑 = 𝒇(𝒙𝑑, 𝒅) + 𝒘 

FP PDE (39): 

𝒙𝑚 = 𝒎𝑥(𝜋) 
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𝒙𝑑(0) = 𝒙𝑑𝑜 𝒙𝑠(0) = ℛ[𝜋𝑜(𝒙𝑠)] 𝜕𝑡𝜋 = ℱ(𝜋, 𝒅) 

𝓑(𝜋, 𝒅) = 𝟎 

𝜋(𝒙, 0) = 𝜋𝑜(𝒙) 

State 𝒙𝑑: deterministic 𝒙𝒔: random 𝜋: PDF 

 

6. Illustration with indicative examples 

 Here, the main theoretical developments and findings of Sections 3 to 5 are illustrated with 

analytic formula application and finite volume method-based (Balzano et al., 2010) CL 3-state FP PDE 

(39) numerical simulation.  

 On the basis of a previous study (Alvarez et al., 2018), the OL 2-state stochastic reactor class (3) 

was set with: (i) reaction rate with first-order kinetics and Arrhenius temperature dependency, i.e.,  

𝑟(𝑥1, 𝑥2) = 𝑥1𝑒 𝑎(1−1 𝑥2⁄ ),    휀𝑎 = 𝐸𝑎 (𝑅𝑔𝑇𝑟)⁄ = 25,      �̅�1𝑒 = �̅�2𝑒 = �̅�2𝑐 = 1   (58a-c) 

and (ii) realistic background and instrument measurement noise standard deviations 

𝓈1 ≔ √𝓆1 = 1.14 ∙ 10−2,  𝓈2 ≔ √𝓆2 = 6.32 ∙ 10−3,  𝓈𝑢 ≔ √𝓆𝑢 = 0,  𝓈𝑦 ≔ √𝑞𝑦 = 2 ∙ 10−4 (59a-d) 

that determine the CL noise covariance 3x3 matrix 𝑸(𝒌) (14h).    

 Figure 1 shows that, over its Damköhler-Stanton (𝛿-𝜂) parameter space, the OL 2-state stochastic 

reactor (8) has regions of monomodal, bimodal and vulcanoid stationary 2-state PDF 𝜍(̅𝒛) (11a) 

(Alvarez et al., 2018): (i) underlain by deterministic monostability, bistability, and limit cycling, 

respectively, and (ii) delimited by deterministic saddle-node (S) (dashed line) and Hopf (H) 

(continuous line) bifurcation curves. 

 

 

Figure 1. Stationary state PDF [𝜍̅(𝒛) (11a)] behavior regions of the reactor class (3), in the 
Damköhler-Stanton parameter space delimited by deterministic saddle-node (𝑆𝑏) (- - - -) 

and Hopf (𝐻𝑏) (____) bifurcation: (i) monomodal (white), (ii) bimodal (yellow), and (iii) 
vulcanoid (pink). Indicative examples (Table 3) (•): (i) 𝐶1 (fragile bimodality), (ii) 𝐶2 (robust 
bimodality), and (iii) 𝐶3 (robust vulcanoid).  
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Table 3. OL 2-state and CL 3-state stationary PDF characteristics of the case examples. 

 Stationary state PDF 

Case  Open-loop Closed-loop 
 𝛿: Damköhler 

𝜂: Stanton 
 

 

Extremum set:    ℰ𝑜 

Setpoint:    �̅� = 𝒄𝑧 �̅�𝑚
−  

Target 

Extremum 

Robust 
monomodal 

state PDF 

𝐶1 

 
𝛿 = 0.0537 
𝜂 = 0.5 

Bimodal 

Fragile 
Alo- 

probable 

ℰ𝑜 = {�̅�𝑚
− , �̅�𝑠, �̅�𝑚

+ } 

�̅�𝑚
− , �̅�𝑚

+ : Highly pro-  
               bable modes  

�̅� = 1.05235 (of �̅�𝑚) 

�̅�𝑚
− : 

Least 
probable 

mode 

ℰ = �̅�𝑚  

�̅�𝑚 = [
�̅�𝑚

0
] 

�̅� = 𝒄𝑥�̅�𝑚 

𝐶2 

 
𝛿 = 0.030903 
𝜂 = 0.5 
 

Bimodal 

Robust 
Equi-

probable 

ℰ𝑜 = {�̅�𝑚
− , �̅�𝑠, �̅�𝑚

+ } 

�̅�𝑚
− , �̅�𝑚

+ : Highly pro-  
               bable modes  

�̅� = 1.15227 (of �̅�𝑠) 

�̅�𝑠: 

Almost null 
probable 

saddle 

𝐶3 

 
𝛿 = 0.23 
𝜂 = 2.5 

Vulcanoid 

Robust 

ℰ𝑜 = {�̅�𝑚, 𝒍}  

𝒍: Highly probable rim 

 �̅� = 1.09627 (of �̅�𝑚) 

�̅�𝑚: 

Almost null 
probable 
bottom 

 

 The tree indicative case examples listed in Table 3 (dots in Figure 1) with complex (non-

monomodal) OL PDFs and possibility of metastability (in cases 𝐶1 and 𝐶2) were chosen [geometric 

and denomination details can be seen in (Alvarez et al., 2018)]. 

• Case 𝐶1 with OL fragile aloprobable bimodality (underlain by deterministic aloattractive 

bistability), and the least probable mode as target CL extremum.    

• Case 𝐶2 with OL robustly equiprobable bimodality (underlain by deterministic equiattractive 

bistability), and the almost null probable saddle as target CL extremum. 

• Case 𝐶3 with OL robust vulcanoid (underlain by a deterministic limit cycle), and the almost null 

probable bottom minimum as target CL extremum. 

 In the three cases, CL state PDF dynamics must be attained, with: (i) robustly monomodal 

stationary 3-state PDF �̅�(𝒙) with prescribed mode �̅�𝑚 = �̅� (43c) determined by the OL 2-state 

extremum �̅� (4b), (ii) preclusion of metastability (19b), and (iii) an adequate compromise between 

state mode and variability regulation speed, robustness with respect to deterministic and stochastic 

disturbances, and control mode-variability effort. 

 The dependency of the stationary concentration (�̅�1), temperature (�̅�2), integral action (�̅�3) state 

and control (�̅�𝑢) standard deviations (STDs)  

(�̅�1, �̅�2, �̅�3, �̅�𝑢)(𝒌) = (√𝜎11, √𝜎22, √𝜎33, √𝜎𝑢)(𝒌)   (60) 

on PI gain vector 𝒌 (12a) is given by the analytical solution (D3 in Appendix D) of the stationary 

Riccati equation (56e). 
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 For application-oriented insight purpose, the proportional gain-reset time parametrization  

𝜿 = (𝑘𝑝 , 𝜏𝐼)𝑇 ∈ 𝒦ℎ ⊆ 𝒦𝑚 ⊂ 𝒦,     𝜏𝐼 = 𝑘𝑝 𝑘𝐼⁄ : (12c)  (61a) 

of the proportional-integral gain vector 𝒌 (12) will be employed, where 

𝒦ℎ = 𝒇𝜿(𝐾ℎ),     𝜿 = (𝑘𝑝 , 𝑘𝑝 𝑘𝐼⁄ )𝑇 ≔ 𝒇𝜿(𝒌),     𝐾: (12c),  𝐾ℎ: (36),  𝐾𝑚: (22)  (61b) 

 For comparative visualization purposes, the graphical displays will be done for: (i) the single-state 

marginal concentration, temperature, integral action, and control (18f-g) PDFs of the CL 𝜿-dependent 

3-state PDF (39), and (ii) the concentration-temperature marginal PDF  

𝜍�̅�(𝒛): = ∫ �̅�(𝒙)𝑑𝑥3
𝑥3

+

𝑥3
− ,    �̅�: (41),     𝜍(̅𝒛): (11a),     𝑥3

− = −0.2,    𝑥3
+ = 0.2 (62) 

and the OL 2-state PDF (11a). 

 Case 𝐶1 will examined in detail, including: (i) stationary state PDF shape, stationary state and 

control PDF standard deviations (STDs) dependency on gain as well as mode and its covariance 

evolution, and dependency of the PDF evolution on gain. Due to space limitation, for Cases 𝐶2 and 𝐶3 

only the stationary PDF shape and the dependency of the state and control STDs on gain will be 

presented.  

6.1 Case 𝑪𝟏 (OL fragile bimodal PDF) 

 In Case 𝐶1 (Figure 1, Table 3 ): (i) the OL 2-state PDF is fragilely aloprobable bimodal with least 

probable mode �̅�𝑚
−  as target extremum, and (ii) the controller must attain robust 3-state CL 

monomodality with most probable stationary state �̅�𝑚 at the extremum 𝒙𝑚
−  associated with �̅�𝑚

− . 

6.1.1 Gain selection 

 In Figure 2 are presented the analytic dependencies on the gain 𝜿 ∈ 𝒦ℎ (61) (green subset of the 

bottom gain plane 𝒦), where the necessary Hurwitz conditions (36) are met, of the concentration 

(�̅�1), temperature (�̅�2), and control (�̅�𝑢) standard deviations (60) of the stationary CL covariance 

matrix Σ̅ (56b), for three measurement noise STDs 𝓈𝑦: (i) = 0 (left column), (ii) = 2.00 ∙ 10−4 (59d) 

(center column, nominal value), and (iii) = 6.32 ∙ 10−4 (right column). 

According to Figure 2, for fixed integral reset time 𝜏𝐼 , with the increase of the proportional gain 

𝑘𝑃: (i) the concentration standard deviation �̅�1 (first row) decreases, reaching an asymptotic value 

determined by the background concentration [𝓈1 (59a)] and temperature measurement [(𝓈𝑦) (59d)] 

noise STDs, (ii) the temperature standard deviation �̅�2 (2nd row) initially decreases, reaches a 

minimum value, and then increases, (iii) and the control STD �̅�𝑢  (3rd row) grows with the gain. The 

increase of the temperature measurement STD 𝓈𝑦 makes more rapid and pronounced the changes. 

These FP theory-based results, agree with and explain: (i) common knowledge in industrial control 

practice (Samad, 2017), (ii) the results obtained before with MC simulation (Ratto, 1998; Ratto and 

Paladino, 2000). 
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Figure 2. Dependency of the stationary concentration (�̅�1) and temperature (�̅�2) states as well as 
control (�̅�3) PDF standard deviations on the control gain pair 𝜿 ∈ 𝒦 (61) for Case 𝐶1 
(Table 3) with noise STDs (59a-c). • (in bottom plane): tight control gain 𝜿1

𝑡 ∈ 𝒦ℎ  (63a). 
 
 Tight (𝜿1

𝑡 ) and loose (𝜿1
𝑙 ) gain pairs were considered   

𝜿1
𝑡 = (4,1)𝑇 ∈ 𝒦ℎ ,       𝜿1

𝑙 = (1,1)𝑇 ∈ 𝒦ℎ ,        𝒦ℎ ⊆ 𝒦𝑚: (61) (63a-b) 

with: (i) 𝜿1
𝑡  chosen to get an adequate compromise between regulation speed, state and control effort 

variances (see bottom plane of Figure 2, central column), and (ii) 𝜿2 (with proportional gain four 

times slower, closer to the bifurcation boundary of the gain 𝒦ℎ) chosen for comparison and analysis. 

The gain 𝜿1
𝑡  (or  𝜿1

𝑙 ) is away from (or close to) the boundary 𝒔(𝑦, 𝜿𝑖) = 0 (34) of the Hurwitz gain set 

𝒦ℎ  (61b) where mono-bimodal (Figure 1) CL extremum bifurcation occurs by control gain change.  

6.1.2 OL and CL stationary state PDFs 

With the tight gain 𝜿1
𝑡  (63a) and noise values (59), the OL (fragilely bimodal) stationary PDF (top 

panel) becomes the CL (robustly monomodal) concentration and temperature marginal PDF (bottom 

panel) 𝜍�̅�(𝒛) (62) reported in Figure 3, showing that, in agreement with the theoretical results (of 

Sections 3 to 5): in the open (top panel)-to-closed (bottom panel) loop passage, the least probable 

and nonunique 2-state OL mode �̅�𝑚 becomes the unique CL mode �̅�𝑚 of the monomodal almost 

Gaussian stationary 3-state PDF. As expected, the loose gain 𝜿1
𝑙  (63b) (with PDFs not shown for lack 

of space) yields larger state variance and skewness than the nominal gain 𝜿1
𝑡  (63a). 
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Figure 3. Stationary concentration-temperature state PDFs for Case 𝐶1 (Table 3) with tight control 
gain 𝜿1

𝑡  (63a): (i) OL 𝜍(̅𝒛) (11a) (top panel), and (ii) CL marginal 𝜍�̅�(𝒛) (62) (bottom panel) 
of �̅�(𝒙) (41).  

 
6.1.3 CL PDF transient behavior 

 To assess the CL state PDF (39) transients with tight [𝜿1
𝑡  (63a)] and loose [𝜿1

𝑙  (63b)] control gain 

pairs: (i) the FP PDE (39) and vector-Riccati ODE (54) systems were set with a +2% deterministic 

feed temperature disturbance 

𝒅 = (�̅�, �̅�1𝑒, �̅�2𝑒 + 0.02)𝑇  (64a) 

(ii) the FP PDE (39) was set with initial Gaussian PDF 𝜋𝑔 whose mode 𝒙𝑚𝑜 is the target one �̅�𝑚  

(associated to the least probable mode �̅�𝑚
−  of the OL bimodal distribution 𝜍(̅𝒛) in Table 3) 

𝜋𝑜 = 𝜋𝑔(𝒙),     𝒎𝑥(𝜋𝑜) = �̅�𝑚 = �̅�,    𝑥3𝑜 = 0 (64b) 

and numerically integrated with finite-volume method, and (ii) the vector-Riccati ODE (54) was set 

with initial zero integral action state and exact initial PDF mode and covariance 

�̂�𝑚𝑜 = �̅�𝑚 ,    �̂�𝑚𝑜 = 𝚺𝑚𝑜 ,    �̂�3𝑜 = 0 (64c) 

and numerically integrated with 4th-order Runge-Kutta method.  

 The corresponding CL marginal PDFs evolutions (18g) are presented in Figure 4, showing that: (i) 

with the tight gain 𝜿1
𝑡  (63a) (left column), the 3-state CL PDF remains monomodal along the entire 

transient, and (ii) with the loose gain 𝜿1
𝑙  (63b) (right column), the PDF becomes bimodal at 𝑡 ≈ 5, 

remains bimodal up to time ≈7, and becomes monomodal thereafter. As expected, in both cases the 

final state PDF is monomodal. The transient monomodal (or bimodal) behavior manifests the 

awayness from (or closeness to) of the gain 𝜿1
𝑡  (or 𝜿1

𝑙 ) to the boundary 𝒔(𝑦, 𝜿𝑖) = 0 (32) of the 

Hurwitz gain set 𝒦ℎ  (63b) (where mono-bimodal CL PDF extremum bifurcation occurs, see Figure 

1). The numerical FP PDE-based PDF modeling functions well in close to and away from deterministic 

bifurcation condition. 
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 From a FP theory modeling perspective (Risken, 1996; Gardiner, 1997), the breakdown of the MC 

method in close to deterministic bifurcation condition reported in previous OL (Pell and Aris, 1969) 

and CL (Ratto, 1998) exothermic chemical reactor studies is explained as follows (Alvarez et al., 

2018): the PDF characteristics of the infinite-dimensional FP PDE (39) cannot be -in general- 

captured by the finite-dimensional ODE (15) forced by a sequence of random steps (that approximate 

the noise 𝒘).  

 

Figure 4: CL concentration (𝜇𝑥1
), temperature (𝜇𝑥2

) and integral action (𝜇𝑥3
) state marginal PDF 

evolutions (18g) of Case 𝐶1 (Table 3) with: (i) tight gain 𝜿1
𝑡 ∈ 𝒦ℎ  (63a) (left column), and 

(ii) tight gain 𝜿1
𝑙 ∈ 𝒦ℎ  (63b) (right column). 

 

6.1.4 Mode and variance evolutions 

 In Figure 5 are presented the actual PDE-based (46) and approximated ODE-based (54) mode 

transients 𝒙𝑚  and �̂�𝑚, respectively, with tight [𝜿1
𝑡  (63a)] and loose [𝜿1

𝑙  (63b)] control gain pairs and 

input-initial condition (64), showing that: (i) with 𝜿1
𝑡 , 𝒙𝑚  (left column) evolves over almost 

deterministic time scale 𝑡𝑥 ≈ 5, and �̂�𝑚 (left column) 휀-P converges (53) (with imperceptible to the 

eye error) to 𝒙𝑚 , and (ii) with 𝜿1
𝑙 , 𝒙𝑚  (right column) evolves over deterministic-diffusion time biscale 

𝑡𝜋 ≈ 25, and �̂�𝑚  (right column) 휀-P converges (53) (with admissible transient error) or not (if the 

error size is inadmissible) to 𝒙𝑚 , depending on the specific reactor and operation condition in actual 

variables and dimensions and associate model parameter uncertainties. In agreement with 

Proposition 5, in both gain cases, the approximated versus actual asymptotic mode error is zero.  
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Figure 5: Actual FP PDE (46) (black line) and approximated ODE (54a)-based (blue dashed line) CL 

concentration, temperature, and integral action state mode evolutions for Case 𝐶1 (Table 
3) with: (i) tight gain 𝜿1

𝑡 ∈ 𝒦ℎ  (63a) (left panel), and (ii) loose gain 𝜿1
𝑙 ∈ 𝒦ℎ  (63b) (right 

panel).   
 

 In Figure 6 are presented the actual FP PDE-based (39) (right panel) and approximated Riccati 

ODE-based (54a-b) (left panel) state [𝜇𝑥𝑖
 (18g)] and control [𝜈 (18f)] marginal PDFs evolutions in 

contour form (yellow/purple curve: most/least probable value) for the tight gain case 𝜿1
𝑡 , showing 

(in agreement with results of Subsection 5.2 and of Figure 5) that: (i) the actual marginal state (𝜇𝑥𝑖
) 

and control (𝜈) PDFs evolve over almost deterministic time scale 𝑡𝑥 ≈ 5, and the approximated ones 

�̂�𝑥𝑖
 and �̂� (bottom panels) 휀-P converge (53) (with imperceptible to the eye error) to 𝜇𝑥𝑖

 and 𝜈. The 

agreement between Riccati-based (left panel) and numerical solution of the FP PDE (right panel) 

marginals is rather good at any time since the enhanced-by-feedback CL diffusion characteristic time 

scale is comparable to the deterministic one. This verifies the methodological proposal (Subsection 

5.2) of selecting the control gain with a two-step procedure: gross tuning with the Hurwitz criterion 

[(36) and (61)] in the light of stationary state and control covariances (60) followed by fine tuning 

with stationary and transient FP PDE simulation.  

The preceding results and discussion confirm and illustrate the theoretical development 

presented in Sections 4-5. In particular, the validity of the 휀-P convergence theoretical possibility 

(53) for the mode transient has been validated with FP PDE simulation.  
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Figure 6. CL concentration (𝜇𝑥1
), temperature (𝜇𝑥2

), integral action (𝜇𝑥3
) and control (𝜈) state 

marginal PDF evolutions (18f-g) in contour form (black: mode, yellow/blue: most/least 
probable) for Case 𝐶1 (Table 3) with tight control gain 𝜿1

𝑡 ∈ 𝒦ℎ  (63a), on the basis of the 
numerical solutions of: (ii) the Riccati ODE (54) (left panel), and (ii) the FP PDE (39) (right 
panel). 

 
6.2 Case 𝑪𝟐 (OL robust bimodal PDF) 

 In case 𝐶2 (Figure 1, Table 3): (i) the OL 2-state state PDF is robustly equiprobable bimodal, and 

(ii) the controller must attain R 3-state CL monomodality with most probable state at the almost null 

probable OL saddle. 

In Figure 7, the analytic dependency on the gain 𝜿 ∈ 𝒦ℎ (61) (green subset of the bottom gain 

plane 𝒦) of the stationary concentration and temperature state as well as control STDs on gains for 

background noise intensity (60) are presented. The concentration STD (top panel) decreases with 

the proportional gain, reaching an asymptotic value determined by the background noise and 

temperature measurement noise STDs. The temperature STD (central panel) initially decreases with 

proportional, reaches a minimum, and grows thereafter. The control STD stand (bottom panel) 

initially decreases with proportional gain, reaches a minimum, and grow thereafter. As expected, the 

decrease of rest time (increase of integral gain) increases noise-to-control STD propagation. 
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Figure 7. Dependency of the CL stationary concentration (�̅�1) and temperature (�̅�2) states as well 
as control (�̅�3) PDF STDs on the control gain pair 𝜿 ∈ 𝒦ℎ (61) for Case 𝐶2 (Table 3) with 
noise STDs (60). • (in bottom plane 𝒦): control gain 𝜿2 ∈ 𝒦ℎ  (65). 

 
On the basis of the analytic (Appendix D) state and control standard deviation dependencies on 

the gain pair 𝜿 plotted in Figure 7 plus FP PDE simulation-based tuning, the control gain pair (dot in 

the bottom plane of Figure 7) 

𝜿2 = (𝑘𝑝, 𝜏𝐼)𝑇 = (8, 1)𝑇 ∈ 𝒦ℎ  (65) 

was chosen to get an adequate compromise between regulation speed, state and control effort modes 

and variances. 

 The resulting CL robust concentration-temperature marginal PDF 𝜍�̅� (62) is plotted in Figure 8 

(bottom panel). In the open-to-closed loop passage the PDF saddle (associated to the unstable 

deterministic steady state) becomes the most probable state of a monomodal state PDF, in agreement 

with Proposition 3. 

 

Figure 8. Stationary concentration-temperature state PDFs for Case 𝐶2 (Table 3) with control gain 
𝜿2 ∈ 𝒦ℎ  (65): (i) OL 𝜍(̅𝒛) (11a) (top panel), and (ii) CL marginal 𝜍�̅�(𝒛) (62) (bottom panel) 
of �̅�(𝒙) (41). 
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6.3 Case 𝑪𝟑 (OL robust vulcanoid PDF) 

 In case 𝐶3 (Figure 1, Table 3): (i) the OL 2-state state PDF has vulcanoid shape, and (ii) the 

controller must attain R 3-state CL monomodality with most probable state at the almost null 

probable OL volcano bottom. 

In Figure 9, the analytic dependencies on the gain 𝜿 ∈ 𝒦ℎ  (61) (green subset of the bottom gain 

plane 𝒦) of the stationary concentration and temperature state as well as control STDs on control 

gain are plotted for the noise STDs (60). The STD on gain dependency is similar to the one (Figure 2) 

of Case 𝐶1, with an important difference: the temperature STD exhibits a more pronounced minimum 

(at gain 𝑘𝑝 ≈ 12). This reflects the fact that the temperature set point of the PI control is associated 

with: (i) the absolute minimum (bottom point) of the OL vulcanoid PDF, and (ii) the unstable focus 

of the deterministic limit cycle. 

 

 

Figure 9. Dependency of the CL stationary concentration (�̅�1) and temperature (�̅�2) states as well 
as control (�̅�3) PDF STDs on the control gain pair 𝜿 ∈ 𝒦ℎ  (61) for Case 𝐶3 (Table 3) with 
noise STDs (60). • (in bottom plane 𝒦): control gain 𝜿𝟑 ∈ 𝒦ℎ (66).  

 
 On the basis of the analytic (Appendix D) state and control standard deviation dependencies on 

the gain pair 𝜿 plotted in Figure 9 followed by some FP PDE simulation-based tuning, the control gain 

pair (dot in the bottom plane of Figure 9) 

𝜿3 = (𝑘𝑝, 𝜏𝐼)𝑇 = (4, 1)𝑇 ∈ 𝒦ℎ  (66) 

was chosen to attain an adequate compromise between regulation speed, state and control effort 

variances. 

 The resulting CL stationary concentration-temperature marginal PDF 𝜍�̅� (62) is presented in 

Figure 10 (bottom panel), confirming again that -in agreement with theoretical results- in the open-

to-closed loop passage the almost improbable vulcanoid PDF bottom tip (associated with the center 

of a deterministic OL LC) becomes the most probable state of a monomodal state PDF. 

0.005

0.01

0.02

10
-3

10
-2

4
2

10
-2

00 20 40 60



29 
 

 

Figure 10. Stationary concentration-temperature state PDFs for Case 𝐶3 (Table 3) with control gain 
𝜿3 (66): (i) OL 𝜍(̅𝒛) (11a) (top panel), and (ii) CL marginal 𝜍�̅�(𝒛) (62) (bottom panel) of 
�̅�(𝒙) (41). 

 
7. Conclusions 

 The longstanding problem (Ratto, 1998; Ratto and Paladino, 2000) of assessing the CL stochastic 

dynamics of a class (15) of 2-state NL exothermic continuous reactors with PI temperature control 

has been formally resolved with Fokker Planck (FP) PDE theory. The dependency of the stochastic 

on deterministic dynamics was established, including the geometric correspondence between 

stationary state PDF and deterministic global monostability. This dependency is important to exploit 

the accumulated knowledge and insight on deterministic reactor NL dynamics in the stochastic 

dynamics assessment and PI control tuning tasks. Along pioneering studies with local FP and MC 

method (Ratto, 1998; Ratto and Paladino, 2000) and current industrial trends (Samad, 2017; Maxim 

et al., 2019), a further step towards the development of a FP theory-based joint PI-SP control design 

methodology for industrial reactors with complex OL PDF dynamics has been taken. 

 It was established that: (i) stochastic R PDF monomodalization requires deterministic passivity 

and the fulfillment of a control gain condition, (ii) the state PDF transient evolves along deterministic 

and probability diffusion time scales, with preclusion of long-term metastability, (iii) with an 

adequate gain choice, the most probable (MP) state and control and their variabilities evolve along 

almost deterministic time scale, and (iv) the industrial PI control regulates the reactor MP state by 

adjusting the MP control on the basis of the MP temperature measurement. The interplay between 

gain choice, state PDF regulation capability, and control effort was identified. An application-oriented 

efficient two-step gain tuning scheme was proposed: analytic formulae-based gross tuning followed 

by FP PDE simulation-based fine tuning.  

 The proposed methodology was illustrated with three indicative examples with complex OL 

bimodal and vulcanoid state PDFs. With FP PDE numerical simulation it was corroborated that: (i) 
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CL R monomodality is attained in the three cases, and (ii) the proposed methodology functions well 

in away from and close to deterministic bifurcation, while the MC method of previous OL (Pell and 

Aris, 1969) and CL (Ratto, 1998) reactor studies breaks down in close to deterministic bifurcation. 

 The present study is a point of departure to address in the future: (i) the optimization-based 

systematization of PI control gain tuning in the light of SP control, (ii) the compensation of PDF 

extremum shifting due to multiplicative noise (Krstic and Deng, 1988; Baratti et al., 2018), (iii) the 

development of the observer-based MP state control variant of the stochastic passive NL mean SF 

control (Krstic and Deng, 1988; Lu et al., 2022), (iv) the supplementation of the proposed PI control-

based MP state regulation scheme with a noninterfering MP state estimator for setpoint adjustment 

in a supervisory layer (McAvoy, 2002; Maxim et al., 2019), and (v) the deterministic-to-stochastic 

extension of the saturated PI control with anti-windup protector (Alvarez et al., 1991; Schaum et al., 

2012; Franco-de los Reyes, 2022).  
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Appendix A: Hurwitz conditions for deterministic SS stability 

 The 3x3 Jacobian matrix of the deterministic system (23) at its prescribed SS �̅� = (32) is  

�̅� = [
𝑳(𝑦, 𝑘𝑝) 𝒗

𝒉(𝑘𝐼) 0
],     �̅�: (35),   𝒇: (31) (A1a) 

where 

𝑳(𝑦, 𝑘𝑝) = [
−𝑙1(�̅�) −𝑐1(𝑦)

𝑐2(𝑦) −𝑙2(𝒛, 𝑘𝑝)
],            𝒗 = [

0
−𝜂

],        𝒉(𝑘𝐼) = [0, 𝑘𝐼] 

𝑐1 = (𝛿 2⁄ )𝑟1(𝑦),   𝑐2 = (𝛿 2⁄ )𝑟2(𝑦),        𝑟𝑖(𝑦) = [𝜕𝑥𝑖
𝑟(𝑥1, 𝑥2)]𝑥1=𝑚(�̅�),𝑥2=�̅� 

𝑙1(𝑦, 𝑘𝑝) = �̅� + 𝛿𝑟1(𝑦),    𝑙2(𝑦, 𝑘𝑝) = 𝑙2𝑜(𝒙) + 𝜂𝑘𝑝 ,      𝑙2𝑜(�̅�, 𝑘𝑝) = �̅� + 𝜂 −
𝛿

2
𝑟2(𝑦)  

 The characteristic polynomial of �̅� (A1) is 

𝜆3 + 𝑎1(�̅�, 𝑘𝑝)𝜆2 + 𝑎2(𝑦, 𝑘𝑝)𝜆 + 𝑎3(𝑦, 𝑘𝐼) = 0   (A2a) 

where 

𝑎1(�̅�, 𝑘𝑝) = 𝑇𝑳(𝑦, 𝑘𝑝),     𝑎2(�̅�, 𝑘𝑝) = 𝐷𝑳(𝑦, 𝑘𝑝) + 𝑘𝐼𝜂,        𝑎3(𝑦, 𝑘𝐼) = 𝑘𝐼𝜂𝑙1   (A2b-d) 

𝑇𝑳(𝑦, 𝑘𝑝) = 𝑙1(�̅�) + 𝑙2(𝑘𝑝),    𝐷𝑳(𝑦, 𝑘𝑝) = 𝑙1(𝑦, 𝑘𝑝)𝑙2(𝑘𝑝) + 𝑐(𝑦),    𝑐(𝑦) =
𝛿2

2
𝑟1(𝑦)𝑟2(�̅�)   (A2e-g) 

 The Hurwitz stability conditions (34) of Proposition 2 (36) are (Boyce and Di Prima, 1967)  

𝑠1 = 𝑎1,   𝑠2 = 𝑎1𝑎2 − 𝑎3,  𝑠3 = 𝑎3   (A3a-c) 
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or in detailed form 

𝑠1(𝑦, 𝑘𝑝) = 𝑇𝑳(𝑦, 𝑘𝑝),   𝑠2(𝑦, 𝑘𝐼) = 𝑘𝐼𝜂𝑙1(𝑦),   𝑠3(𝑦, 𝒌) = 𝑇𝑳(𝑦, 𝑘𝑝)𝐷𝑳(𝑦, 𝑘𝑝) + 𝑙2(�̅�, 𝑘𝑝)𝜂𝑘𝐼 .   (A4a-c) 

Appendix B: Proof of Proposition 4 (State mode rate of change)  

 Following (Jazwinski, 1970), the time derivation of the null-gradient condition (18b) followed by 

substitution of the RHS of the FP PDE (39) yields that the state mode rate of change is given by  

�̇�𝑚 = −[(𝓗𝜋)−1𝛁ℱ]𝒙=𝒙𝑚
,   ℱ: (17a),    𝛁, 𝓗: (18e) (B1) 

 The application of the vector analysis formula (Oates, 1974) (for the divergency of the vector-

scalar field product 𝒗𝜋) 

𝛁 ∙ (𝒗𝜋) = (𝛁𝜋) ∙ 𝒗 + (𝛁 ∙ 𝒗)𝜋  

to the probability transport-generation operator ℱ of the FP PDE (39) yields the gradient of ℱ  

𝛁ℱ = 𝛁[𝛁 ∙ ((1 2⁄ )𝑸𝛁𝜋)] − (𝓗𝜋)𝒇 − [𝑱𝑇 + 𝑰(𝛁 ∙ 𝒇)]𝛁𝜋 − [𝛁(𝛁 ∙ 𝒇)]𝜋,    𝑸: (14h),   𝑱: (A1a) 

which at the state mode 𝒙𝑚  (where 𝛁𝜋 = 𝟎) becomes 

𝛁ℱ(𝜋, 𝒅) = 𝛁[(1 2⁄ )𝛁 ∙ (𝑸𝛁𝜋)] − (𝓗𝜋)𝒇 − [𝛁(𝛁 ∙ 𝒇)]𝜋  

The substitution of this expression in (B1) followed by arrangement yields the FP PDE-based mode 

rate of change (48) of Proposition 4. QED          

Appendix C: Proof of Proposition 5 (Mode evolutions)  

 By the CL deterministic stability property (36), the state [�̃�𝑚: (45c)] and control [�̃�𝑚: (45d)] mode 

and control evolution deviations of the PDF-dependent ODE system (48) with 𝒅 = �̅� and 𝝔𝜋 = 𝟎  

�̇�𝑚 = 𝒇(𝒙𝑚 , �̅�),         𝒙𝑚(0) = 𝒙𝑚𝑜 = 𝒎𝑥(𝜋𝑜) 

are bounded by 

|�̃�𝑚(𝑡)| ≤ 𝑎𝑥𝑒−𝜆𝑥𝑡|�̃�𝑚𝑜|+ ≔ 𝑠(𝑡),          �̃�𝑚 ≔ 𝒙𝑚(𝑡) − �̅� (C1a) 

|�̃�𝑚(𝑡)| ≤ 𝑘𝒙𝑚

𝒄𝑢 𝑎𝑥𝑒−𝜆𝑥𝑡|�̃�𝑚𝑜|+,                  �̃�𝑚 = 𝑢𝑚(𝑡) − �̅� (C1b) 

or equivalently, by the linear scalar ODE-based form 

|�̃�𝑚(𝑡)| ≤ 𝑠(𝑡):   �̇� = −𝜆𝑥𝑠,    𝒔𝑜(0) = 𝑠𝑜 = 𝑎𝑥|�̃�𝑚𝑜|+,  |�̃�𝑚(𝑡)| ≤ 𝑘𝒙𝑚

𝒄𝑢 𝑠(𝑡) (C2) 

 From the application (Gonzalez and Alvarez, 2005, Franco-de los Reyes, 2022) of Lyapunov's 

Converse Theorem (Vidyasagar, 1993) to (48a) in the light of (C1) and (C2), the mode and control 

evolution deviations of the PDF-dependent ODE system (48) are bounded as  

|�̃�𝑚(𝑡)| ≤ 𝑠(𝑡):   �̇� = −(𝜆𝑥 − 𝑎𝑥𝑙𝒙𝑚

𝝔𝜋 )𝑠 + (𝑎𝑥 𝜆𝑥⁄ )𝑙𝒅
𝒇

|�̃�|+: 𝒔𝑜(0) = 𝑠𝑜 (C3a) 

|�̃�𝑚(𝑡)| ≤ 𝑘𝒙𝑚

𝒄𝑢 𝑠(𝑡),   𝑠𝑜 = 𝑎𝑥|�̃�𝑚𝑜|+,    𝜆𝑥 > 𝑎𝑥𝑙𝒙𝑚

𝝔𝜋  ,     𝑙𝒙𝑚

𝝔𝜋 : (47b),  𝑙𝒅
𝒇

 : (38d)  (C3b) 

 From the analytic integration of the linear ODE (C3a) the algebraic bounding inequalities (50) of 

Proposition 5 follow. QED 

Appendix D: Stationary state covariance and control variance 

D.1 State covariance matrix 
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 In terms of the proportional-integral gain vector 𝒌 (12), the analytic solution of the stationary 

Riccati equation (56e) with �̅� = �̅�𝑚 (56b) is given by the state covariance matrix 

�̅�𝑚(𝒌) = [
𝜎11 𝜎12 𝜎13

𝜎12 𝜎22 𝜎23

𝜎13 𝜎23 𝜎33

] = �̅�(𝒌),     𝒌 ∈ 𝐾ℎ ⊂ 𝐾,      𝐾: (12c),  𝐾ℎ: (36) (D1) 

where 

𝜎11(𝒌) =
𝑘𝐼[2𝜂𝑘𝐼�̅�(𝑘𝑝)+2�̅�(𝑘𝑝)2𝑙1̅+2�̅�(𝑘𝑝)𝑙1̅

2+𝛿2𝑙1̅𝑟�̅�1𝑟�̅�2]𝑞1+2𝛿2𝑘𝐼𝑙1̅𝑟�̅�2
2 𝑞2+2𝛿2𝜂𝑟�̅�2

2 (�̅�(𝑘𝑝)+𝑙1̅)𝑞3

2𝑘𝐼𝑙1̅𝐿𝑑(𝒌)
  (D2a) 

𝜎12(𝒌) =
𝛿𝑘𝐼�̅�(𝑘𝑝)𝑟�̅�1𝑞1+2𝛿𝑘𝐼𝑙1̅𝑟�̅�2𝑞2−2𝛿𝜂𝑟�̅�2(�̅�(𝑘𝑝)+𝑙1̅)𝑞3

2𝑘𝐼𝐿𝑑(𝒌)
  (D2b) 

𝜎13(𝒌) =
𝛿𝑘𝐼

2�̅�(𝑘𝑝)𝑟�̅�1𝑞1−2𝛿𝑘𝐼
2𝑙1̅𝑟�̅�2 𝑞2+𝛿[𝑟�̅�2(�̅�(𝑘𝑝)+𝑙1̅)(2�̅�(𝑘𝑝)𝑙1̅+𝛿2𝑟�̅�1𝑟�̅�2)−2𝜂𝑘𝐼𝑙1̅𝑟�̅�2]𝑞3

2𝑘𝐼𝑙1̅𝐿𝑑(𝒌)
  (D2c) 

𝜎22(𝒌) =
𝛿2𝑘𝐼𝑟�̅�1

2 𝑞1+2𝑘𝐼[2𝜂𝑘𝐼+2�̅�(𝑘𝑝)𝑙1̅+2𝑙1̅
2+𝛿2𝑟�̅�1 𝑟�̅�2]𝑞2+4[𝜂2𝑘𝐼+𝜂�̅�(𝑘𝑝)𝑙1̅+𝜂𝑙1̅

2]𝑞3

4𝑘𝐼𝐿𝑑(𝒌)
  (D2d) 

𝜎23(𝒌) = −
𝑞3

2𝑘𝐼
,         𝜎33(𝒌) =

𝛿2𝑘𝐼
2𝑟�̅�1

2 (�̅�(𝑘𝑝)+𝑙1̅)𝑞1+4𝑘𝐼
2𝑙1̅[𝜂𝑘𝐼+�̅�(𝑘𝑝)𝑙1̅+𝑙1̅

2]𝑞2+𝛽1𝑞3+𝛽2𝑞𝑐

4𝜂𝑘𝐼𝑙1̅𝐿𝑑(𝒌)
  (D2e-f) 

and 

𝑞1, 𝑞2(𝑘𝑝), 𝑞3(𝑘𝐼), 𝑞𝑐(𝒌): (14h) 

𝐿𝑑(𝒌) = {2𝜂𝑘𝐼�̅�(𝑘𝑝) + [�̅�(𝑘𝑝) + 𝑙1̅][2�̅�(𝑘𝑝)𝑙1̅ + 𝛿2�̅�𝑥1
�̅�𝑥2

]}  

𝛽1(𝒌) = 4𝜂𝑘𝐼𝑙1̅[𝜂𝑘𝐼 + �̅�(𝑘𝑝)2 + �̅�(𝑘𝑝)𝑙1̅ + 𝑙1̅
2] + 4�̅�(𝑘𝑝)𝑙1̅(�̅�(𝑘𝑝)2 + 𝑙1̅

2)  

                + 𝛿2[4�̅�(𝑘𝑝)𝑙1̅(�̅�(𝑘𝑝) + 𝑙1̅) − 2𝜂𝑘𝐼𝑙1̅ + 𝛿2(�̅�(𝑘𝑝) + 𝑙1̅)�̅�𝑥1
�̅�𝑥2

]�̅�𝑥1
�̅�𝑥2

 

𝛽2(𝒌) = 4𝑘𝐼𝑙1̅[2𝜂𝑘𝐼�̅�(𝑘𝑝) + 2�̅�(𝑘𝑝)2𝑙1̅ + 2�̅�(𝑘𝑝)𝑙1̅
2 + 𝛿2(�̅�(𝑘𝑝) + 𝑙1̅)�̅�𝑥1

�̅�𝑥2
]  

D.2 Marginal state and control PDFs 

 Knowing the stationary solution of the covariance matrix, it is possible compute the marginal PDFs 

for concentration (𝜇𝑥1
), temperature (𝜇𝑥2

) and integral action (𝜇𝑥3
) from the approximated steady 

state PDF (41)  

�̂�𝑥1
(𝑥1, 𝒌) =

1

√2𝑝𝑛�̅�11(𝒌)
exp [−

(𝑥1−�̅�1)2

2�̅�11(𝒌)
],      𝜎11(𝒌): (D2a) (D3a) 

�̂�𝑥2
(𝑥2, 𝒌) =

1

√2𝑝𝑛�̅�22(𝒌)
exp [−

(𝑥2−�̅�2)2

2�̅�22(𝒌)
],      𝜎22(𝒌): (D2d) (D3b) 

�̂�𝑥3
(𝑥3, 𝒌) =

1

√2𝑝𝑛�̅�33(𝒌)
exp [−

(𝑥3−�̅�3)2

2�̅�33(𝒌)
],      𝜎33(𝒌): (D2f) (D3c) 

and the unidimensional control 𝜈 PDF can be determined through (18f) by (Papoulis and Pillai, 2002) 

�̂�(𝑢, 𝒌) =
1

2√2𝑝𝑛�̅�𝑢(𝒌)
exp [−

(𝑢−�̅�3)2

2�̅�𝑢(𝒌)
],   𝜎𝑢(𝒌) = 𝑘𝑝

2𝜎22(𝒌) + 𝜎33(𝒌),    𝑝𝑛: “pi” number (D3d) 
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Figure captions 

Figure 1. Stationary state PDF [𝜍̅(𝒛) (11a)] behavior regions of the reactor class (3), in the 
Damköhler-Stanton parameter space delimited by deterministic saddle-node (𝑆𝑏) (- - - -) 

and Hopf (𝐻𝑏) (____) bifurcation: (i) monomodal (white), (ii) bimodal (yellow), and (iii) 
vulcanoid (pink). Indicative examples (Table 3) (•): (i) 𝐶1 (fragile bimodality), (ii) 𝐶2 
(robust bimodality), and (iii) 𝐶3 (robust vulcanoid). 

 
Figure 2. Dependency of the stationary concentration (�̅�1) and temperature (�̅�2) states as well as 

control (�̅�3) PDF standard deviations on the control gain pair 𝜿 ∈ 𝒦 (61) for Case 𝐶1 
(Table 3) with noise STDs (59a-c). • (in bottom plane): tight control gain 𝜿1

𝑡 ∈ 𝒦ℎ  (63a). 
 
Figure 3. Stationary concentration-temperature state PDFs for Case 𝐶1 (Table 3) with tight control 

gain 𝜿1
𝑡  (63a): (i) OL 𝜍(̅𝒛) (11a) (top panel), and (ii) CL marginal 𝜍�̅�(𝒛) (62) (bottom panel) 

of �̅�(𝒙) (41). 
 
Figure 4: CL concentration (𝜇𝑥1

), temperature (𝜇𝑥2
) and integral action (𝜇𝑥3

) state marginal PDF 

evolutions (18g) of Case 𝐶1 (Table 3) with: (i) tight gain 𝜿1
𝑡 ∈ 𝒦ℎ  (63a) (left column), and 

(ii) tight gain 𝜿1
𝑙 ∈ 𝒦ℎ  (63b) (right column). 

 
Figure 5: Actual FP PDE (46) (black line) and approximated ODE (54a)-based (blue dashed line) CL 

concentration, temperature, and integral action state mode evolutions for Case 𝐶1 (Table 
3) with: (i) tight gain 𝜿1

𝑡 ∈ 𝒦ℎ  (63a) (left panel), and (ii) loose gain 𝜿1
𝑙 ∈ 𝒦ℎ  (63b) (right 

panel). 
 
Figure 6. CL concentration (𝜇𝑥1

), temperature (𝜇𝑥2
), integral action (𝜇𝑥3

) and control (𝜈) state 

marginal PDF evolutions (18f-g) in contour form (black: mode, yellow/blue: most/least 
probable) for Case 𝐶1 (Table 3) with tight control gain 𝜿1

𝑡 ∈ 𝒦ℎ  (63a), on the basis of the 
numerical solutions of: (ii) the Riccati ODE (54) (left panel), and (ii) the FP PDE (39) (right 
panel). 

 
Figure 7. Dependency of the CL stationary concentration (�̅�1) and temperature (�̅�2) states as well 

as control (�̅�3) PDF STDs on the control gain pair 𝜿 ∈ 𝒦 (61)  for Case 𝐶2 (Table 3) with 
noise STDs (60). • (in bottom plane 𝒦): control gain 𝜿2 ∈ 𝒦ℎ  (65). 

 
Figure 8. Stationary concentration-temperature state PDFs for Case 𝐶2 (Table 3) with control gain 

𝜿2 ∈ 𝒦ℎ  (65): (i) OL 𝜍(̅𝒛) (11a) (top panel), and (ii) CL marginal 𝜍�̅�(𝒛) (62) (bottom panel) 
of �̅�(𝒙) (41). 

 
Figure 9. Dependency of the CL stationary concentration (�̅�1) and temperature (�̅�2) states as well 

as control (�̅�3) PDF STDs on the control gain pair 𝜿 ∈ 𝒦 (61) for Case 𝐶3 (Table 3) with 
noise STDs (60). • (in bottom plane 𝒦): control gain 𝜿𝟑 ∈ 𝒦ℎ (66). 

 
Figure 10. Stationary concentration-temperature state PDFs for Case 𝐶3 (Table 3) with control gain 

𝜿3 (66): (i) OL 𝜍(̅𝒛) (11a) (top panel), and (ii) CL marginal 𝜍�̅�(𝒛) (62) (bottom panel) of 
�̅�(𝒙) (41). 

 


